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ENVIRONMENTAL POLICY,
EDUCATION AND GROWTH:
A REAPPRAISAL WHEN
LIFETIME IS FINITE
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When finite lifetime is introduced in a Lucas [Journal of Monetary Economics 22 (1988),
3–42] growth model where the source of pollution is physical capital, the environmental
policy may enhance the growth rate of a market economy, whereas pollution does not
influence educational activities, labor supply is not elastic, and human capital does not
enter the utility function. The result arises from the generational turnover effect due to
finite lifetime and it remains valid under conditions when the education sector uses final
output as well as time to accumulate human capital. This article also demonstrates that
ageing reduces the positive influence of environmental policy when growth is driven by
human capital accumulation à la Lucas in the overlapping-generations model of Yaari
[Review of Economic Studies 32 (1965), 137–150] and Blanchard [Journal of Political
Economy 93 (1985), 223–247].
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1. INTRODUCTION

Although the link between environment and growth has already been extendedly
investigated [see Brock and Taylor (2005); Xepapadeas et al. (2005)], conclusions
about the influence of environmental policy on economic growth remain open. The
purpose of this article is to contribute to the debate, by reexamining the influence
of environmental policy on human capital–based growth when finite lifetime is
taken into account. It demonstrates that finite lifetime introduces a new channel of
transmission between the environment and economic performance based on the
turnover of generations.

Most of the industrialized countries are now becoming knowledge- and
education-based economies using more and more human capital instead of physi-
cal capital to produce. And education played a major role in the industrialization
of the Southeast Asian countries during the 1970 and 1980s.1 Nevertheless, few
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theoretical works have investigated environmental issues in a framework where
human capital is the engine of growth and economic prosperity.2 A noteworthy
exception is the seminal article by Gradus and Smulders (1993). In a model à la
Lucas (1988), where pollution originates from physical capital, they demonstrate
that the environment never influences the steady-state growth rate except when
pollution affects education activities.3 This result comes from the fact that the
growth rate of consumption relies on the after-tax interest rate and the rate of
time preference and that the tax rate is invariant with pollution tax in the steady
state when labor supply is inelastic. When environmental taxation increases, the
after-tax interest rate decreases and becomes lower than the returns to human
capital. Consequently, investment in physical capital drops in favor of human
capital accumulation. Final production becomes more intensive in human capital
and the allocation of human capital in production diminishes. This mechanism
perpetuates until the after-tax interest rate returns to its initial value, equal to the
rate of return in human capital accumulation. Because the aggregate consumption
growth in the steady state relies only on the after-tax interest rate, it is not modified
by the higher pollution tax.

Assuming that labor supply is elastic and pollution originates from the stock
of physical capital, Hettich (1998) finds a positive influence of the environmental
policy on human capital accumulation in a Lucas setting. The increase in the
environmental tax compels firms to increase their abatement activities at the ex-
pense of household consumption. To counteract this negative effect, households
substitute leisure to education and the growth rate rises. Nevertheless, the author
demonstrates that his result is very sensitive to the assumption about the source of
pollution. When pollution originates from final output rather than physical capital,
the link between the environment and growth no longer exists. By taxing output,
a tighter environmental policy reduces both the returns to physical capital and the
wage rate, which contributes to the returns to education. The incentives of agents
to invest more in education vanish.

More recently, Grimaud and Tournemaine (2007) demonstrate that a tighter
environmental policy promotes growth, in a model combining R&D and human
capital accumulation, where education directly enters the utility function as a
consumption good and knowledge from R&D reduces the flow of pollution emis-
sions. By increasing the price of the good whose production pollutes, the higher
tax rate reduces the relative cost of education and therefore incites agents to invest
in human capital accumulation. Because education is the engine of growth, the
growth rises in the steady state. As highlighted by the authors, the key assumption
is the introduction of education as a consumption good in utility, which lets the
returns to education be dependent on the environmental policy. When education
does not influence utility, the returns to education are exogenous and therefore are
not affected by the policy.

In the present article, we reexamine the link between environmental policy
and growth in a Lucas setting, assuming that lifetime is finite. We use a Yaari
(1965)–Blanchard (1985) overlapping-generations model where growth is driven
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by human capital accumulation à la Lucas (1988) and pollution arises from phys-
ical capital.4 We study both the long-run balanced growth path and the transition.

Our results are as follows. First, we demonstrate that when lifetime is finite
and physical capital is the source of pollution, tightening environmental policy
enhances growth even if pollution does not affect educational activity, labor supply
is inelastic, and human capital does not enter the utility function. Indeed, besides
the crowding-out effect and the substitution effect of a tighter environmental tax on
growth [see Gradus and Smulders (1993)], when agents have finite lifetimes, there
exists a third impact arising from the turnover of generations. Because, at each
date, a new generation is born without financial assests and a cross section of the
existing population dies, the aggregate consumption rate of growth is enhanced
by a higher environmental tax and agents invest more in human capital (the
nonpolluting factor).

We also demonstrate that the aging of the population (a lower probability of
dying) reduces the positive influence of environmental policy on growth, for the
aforementioned reasons.

Finally, when an education good is used as on input in education activities,
the generational turnover effect continues to operate, but environmental policy
enhances growth only if the part of the education good in human capital accu-
mulation remains small. Otherwise, the crowding-out effect makes environmental
policy harmful to growth.

Section 2 presents the model. Section 3 is devoted to the study of the existence
of the balanced growth path (BGP) equilibrium. Section 4 investigates the influ-
ence of environmental taxation along the BGP and during the transition. Finally,
Section 5 concludes.

2. THE MODEL

We consider a Yaari (1965)–Blanchard (1985) overlapping-generations model
with human capital accumulation and environmental concerns. Time is continuous.
Each individual born at time s faces a constant probability of death per unit of time
λ ≥ 0. Consequently his or her life expectancy is 1/λ. When λ increases, the life
span decreases. At time s, a cohort of size λ is born. At time t ≥ s, this cohort has a
size equal toλe−λ(t−s) and the constant population is equal to

∫ t
−∞ λe

−λ(t−s)ds = 1.
There are insurance companies and there is no bequest motive.5

The expected utility function of an agent born at s ≤ t is6

∫ ∞

s

[
log c(s, t)− ζ

1 + ψ
P(t)1+ψ

]
e−(�+λ)(t−s)dt, (1)

where c(s, t) denotes consumption in period t of an agent born at time s, � ≥ 0
is the rate of time preference, ζ > 0 measures the environmental care, that is,
the weight in utility attached to the environment (capured here by the net flow of
pollution P),7 and ψ > 0.
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At time t , each agent born at s ≤ t can increase his or her stock of human capital
h(s, t) by devoting time to schooling, as in Lucas (1988), and by purchasing z(s, t)
units of an educational input, such as

ḣ(s, t) = B [(1 − u(s, t))h(s, t)]1−δ z(s, t)δ, (2)

where ḣ(s, t) ≡ ∂h(s, t)/∂t and δ ∈ [0, 1[.8 Parameter B is the efficiency of
schooling activities; u(s, t) ∈]0, 1[ is the part of human capital owned by an
agent born at s ≤ t that is allocated to productive activities at time t . Note that
we make no assumption about the influence of pollution on individual human
capital accumulation. Furthermore, we assume that the educational input z(s, t) is
produced with final output (one to one).

Households face the following budget constraint:

ȧ(s, t) = [r(t)+ λ] a(s, t)+ u(s, t)h(s, t)w(t)− c(s, t)− z(s, t), (3)

where a(s, t) stands for real financial assets in period t and w(t) represents the
wage rate per effective unit of human capital u(s, t)h(s, t). In addition to the
budget constraint, there exists a transversality condition that must be satisfied to
prevent households from accumulating debt indefinitely:

lim
v→∞ a(s, v)e

− ∫ v
t
(r(ι)+λ)dι = 0.

The representative agent chooses the time path for c(s, t), his or her working time
u(s, t) and the amount of educational good z(s, t) by maximizing (1) subject to
(2) and (3). It yields

ċ(s, t) = [r(t)− �]c(s, t). (4)

Integrating (3) and (4) and combining the results gives the consumption at time t
of an agent born at time s:

c(s, t) = (� + λ) [a(s, t)+ ω(s, t)],

where

ω(s, t) ≡
∫ ∞

t

[u(s, ν)h(s, ν)w(ν)] e−
∫ ν
t

[r(ζ )+λ]dζ dν

is the present value of lifetime earning.
Utility maximization also implies that u(s, t) and the ratio z(s, t)/h(s, t)

are independent of s (see Appendix A). Conveniently, denoting z̃(t) ≡
z(s, t)/(1 − u(s, t))h(s, t),

z̃(t) = δ

1 − δ
w(t). (5)
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Finally, utility maximization leads to equality between the rate of return to human
capital and the effective rate of interest:9

(1 − δ)
˙w(t)

w(t)
+ B(1 − δ)1−δδδw(t)δ = r(t)+ λ. (6)

Due to the simple demographic structure, all individual variables are additive
across individuals. Consequently, aggregate consumption equals

C(t) =
∫ t

−∞
c(s, t)λe−λ(t−s)ds = (� + λ) [K(t)+
(t)], (7)

where
(t) ≡ ∫ t
−∞ ω(s, t)λe

−λ(t−s)ds is aggregate human wealth in the economy.
The aggregate stock of physical capital is defined by

K(t) =
∫ t

−∞
a(s, t)λe−λ(t−s)ds,

the amount of final output used as educational good is

Z(t) ≡
∫ t

−∞
z(s, t)λe−λ(t−s)ds = z̃(t)[1 − u(t)]H(t),

and the aggregate human capital is

H(t) =
∫ t

−∞
h(s, t)λe−λ(t−s)ds. (8)

We assume that the human capital of an agent born at the current date, h(t, t), is
inherited from the dying generation. Because the mechanism of intergenerational
transmission of knowledge is complex, we make the simplifying assumption that
the human capital inherited from the dying generation is a constant part of the
aggregate level of human capital such that h(t, t) = ηH(t) with η ∈]0, 1] [see
Song (2002)].10

The productive sector is competitive. The representative firm produces the final
good Y with the following technology:

Y (t) = K(t)α
[∫ t

−∞
u(s, t)h(s, t)λe−λ(t−s)ds

]1−α
, 0 < α < 1,

with Y (t) being the aggregate final output.
∫ t
−∞ u(s, t)h(s, t)λe

−λ(t−s)ds is the
amount of the aggregate stock of human capital used in production.

Following Gradus and Smulders (1993), pollution flow is assumed to increase
with the stock of physical capitalK and decreases with private abatement activities
D (made by the firms, with final output one for one):

P(t) =
[
K(t)

D(t)

]γ
, γ > 0. (9)
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We assume that the government implements an environmental policy to induce
firms to reduce their net flow of pollution. To do so, the government taxes the net
flow of pollution from the firms and transfers the fruit of the taxes to them to fund
their abatement activities. Consequently, the representative firm under perfect com-
petition pays a pollution tax on its net pollution P(t) and it chooses its abatement
activities D(t) [whose cost equals D(t)] and the amount of factors that maxi-
mizes its profits π(t) = Y (t)− r(t)K(t)−w(t)[∫ t−∞ u(s, t)h(s, t)λe

−λ(t−s)ds] −
ϑ(t)P(t)−D(t)+ T (t)p, where ϑ(t) is the pollution tax rate and T p(t) denotes
transfers from the public sector, with T p(t) = ϑ(t)P(t). The representative firm
takes these transfers as given and pays each production factor at its marginal
productivity to maximize profit:

r(t) = α
Y(t)

K(t)
− ϑ(t)γ

P(t)
K(t)

,

w(t) = (1 − α)K(t)α
[∫ t

−∞
u(s, t)h(s, t)λe−λ(t−s)ds

]−α
, (10)

D(t) = ϑ(t)γP(t). (11)

From equations (9) and (11), we obtain

P(t) =
[
γ
ϑ(t)

K(t)

]−γ /(1+γ )
. (12)

In the long run, the net flow of pollution will be constant because K and D
will evolve at the same growth rate (see Section 3). As a result, from equation
(12), the environmental tax must rise over time because the physical capital stock
accumulates over time [see Hettich (1998)]. Intuitively, ϑ(t) increases over time
to encourage firms to increase abatement activities to limit pollution, which rises
with the physical capital stock. Consequently, we define τ ≡ ϑ(t)/K(t), the
environmental tax normalized by the physical capital stock, and we obtain

P = �(τ)−γ ,

D(t) = �(τ)K(t),

with�(τ) ≡ (γ τ)1/(1+γ ). Because τ is fixed by the government and therefore has
no transitional dynamics, P is independent of time.

3. THE GENERAL EQUILIBRIUM AND THE BALANCED GROWTH PATH

The final market-clearing condition is

Y (t) = C(t)+ K̇(t)+D(t)+ Z(t),

where Z(t) = �
(

1−u(t)
u(t)

)
Y (t) from (5) and (10), with � ≡ δ(1−α)

1−δ .
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Differentiating (8) with respect to time and using the fact that u(s, t) = u(t),
the aggregate accumulation of human capital is

Ḣ (t) = B[1 − u(t)]z̃(t)δH(t)− (1 − η)λH(t). (13)

The first term on the right-hand side of the equation represents the increase
in aggregate human capital due to the investment of each living generation in
education at time t . The second term represents the loss of human capital due
to the vanishing of the dying generation net of intergenerational transmission of
human capital. Indeed, on one hand, a part λ of the living cohort born at s with
a stock of human capital equal to h(s, t)λe−λ(t−s) vanishes, reducing growth by
λ

∫ t
−∞ h(s, t)λe

−λ(t−s)ds = λH(t) when all generations are aggregated. On the
other hand, at the same time, a new cohort of size λ appears, adding λh(t, t) to
growth, with h(t, t) = ηH(t) and η ∈]0, 1] (see above). This net loss reduces the
aggregate accumulation of human capital.

Differentiating (7) with respect to time gives

Ċ(t)

C(t)
= ċ(s, t)

c(s, t)
− 1

C(t)
[λC(t)− λc(t, t)] . (14)

Aggregate consumption growth differs from individual consumption growth by
the term in brackets, − [λC(t)− λc(t, t)], which represents what Heijdra and
Ligthart (2000) called the generational turnover effect. This effect appears because
at each date a cross section of the existing population dies (reducing aggregate
consumption growth by λC(t)) and a new generation is born (adding λc(t, t)).
Because new agents are born without financial assets, their consumption c(t, t) is
lower than the average consumption C(t) and therefore the generational turnover
effect reduces the growth rate of the aggregate consumption.

Using the expressions for dK(t)/dt and d
(t)/dt , and equation (4), we
obtain

Ċ(t)/C(t) = r(t)− � − (1 − η)λ− ηλ(� + λ)K(t)/C(t). (15)

The generational effect rises with the probability of dying, λ: on one hand, agents
die at a higher frequency (which increases the generational turnover), and on
the other hand, the propensity to consume out of wealth � + λ increases due
to the shorter horizon. Compared with the case where there is no human cap-
ital accumulation, a new term η appears that captures the fact that newborns
inherit from the dying generation only a part η ∈]0, 1] of the aggregate hu-
man wealth and not the total amount [as in the Yaari (1965)–Blanchard (1985)
model].
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Using previous results, we can write the dynamics of the model as (see Appen-
dix A)

ẋ(t) =
({

α −
[

1 +�

(
1 − 1

u(t)

)]}
[b(t)u(t)]1−α

− �−(1 − η)λ− ηλ(� + λ)x(t)−1 + x(t)

)
x(t)

ḃ(t) =
{

[1 − u(t)]B�δ[b(t)u(t)]−αδ

− (1 − η)λ+ x(t)+�(τ)−
[

1 +�

(
1 − 1

u(t)

)]
[b(t)u(t)]1−α

}
b(t)

u̇(t) =
(

[α−1 − 1 + u(t)]B�δ[b(t)u(t)]−αδ + {[α(1 − δ)]−1 − 1}�(τ)

+�
{[

1 − 1

u(t)

]
− 1

1 − α

}
[b(t)u(t)]1−α

− {[α(1 − δ)]−1 + η − 1}λ− x(t)

)
u(t),

where x(t) ≡ C(t)/K(t) and b(t) ≡ H(t)/K(t).
Along the balanced growth path (BGP),C,K ,H ,D, and Y evolve at a common

positive rate of growth (denoted g�, where a � means along the BGP) and the
allocation of human capital across sectors is constant. As a consequence, along
the balanced growth path ẋ = ḃ = u̇ = 0, x = x�, b = b�, u = u�, and g� > 0.

From the last equation of the dynamical system, we obtain along the BGP

(1 − δ)B�δ(b�u�)−αδ = α(b�u�)1−α −�(τ)+ λ, (16)

where the left-hand side is the returns to human capital accumulation along the
BGP and the right-hand side is the effective interest rate (the returns to physical
capital accumulation), also evaluated along the BGP. This relation states that b�u�

as an increasing function of τ [because d�(τ)/dτ > 0], denoted by R(B, τ)
[with ∂R(B, τ)/∂τ > 0 and ∂R(B, τ)/∂B > 0]. The two remaining equations of
the dynamical system evaluated at the steady state [ẋ(t) = 0 and ḃ(t) = 0] enable
us to write the following proposition.

PROPOSITION 1. There exists a unique u� ∈]uδ, ūδ[ with (uδ ≡ δ +
�+λ

B�δR(B,τ )−αδ , ūδ ≡ 1− (1−η)λ
B�δR(B,τ )−αδ , and 0 < uδ < ūδ < 1), solving �δ(u; τ) = 0,

where �δ(u; τ) is defined as

�δ(u; τ) ≡ [(u− δ)B�δR(B, τ)−αδ − λ− �]

×
{
(u− δ)B�δR(B, τ)−αδ − ηλ+ (1 − α)(u− δ)

(1 − δ)u
R(B, τ)1−α

}

− ηλ(� + λ),

with R(B, τ) ≡ b�u� the solution of equation (16).
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Proof. See Appendix A.

The condition u� < ūδ means that the BGP rate of growth must be positive
and the condition u� > uδ means that it cannot exceed the maximum feasible rate
of growth. Such a conditions are conventional in the Lucas (1988) human capital
accumulation model.11

Finally, the rate of growth along the BGP is

g� = B(1 − u�)�δR(B, τ)−αδ − (1 − η)λ, (17)

where u� is defined in Proposition 1.

PROPOSITION 2. The BGP equilibrium is saddle-path stable.

Proof. See Appendix B.

4. THE ENVIRONMENTAL POLICY AND GROWTH

In this section, we investigate the impact of the environmental tax rate τ on the rate
of growth, both along the BGP and during the transition. Because the derivation
of this influence is analytically cumbersome when δ > 0, we first analytically
investigate the case δ = z(s, t) = 0, and then we broaden the analysis to the case
δ > 0 using numerical simulations. In both cases, we examine the transitional path
of the economy toward the BGP and the transitional influence of the environmental
tax.

When δ = z(s, t) = 0, human capital accumulation depends only on the time
allocated to education, à la Lucas (1988). In this case �δR(B, τ)−αδ = 1 and
from Proposition 1 (with δ = 0), u� is the solution of the equation

[Bu� − λ− �] × [(A0 + u�)B + A0�(τ)− (A0 + η)λ] − ηλ(� + λ) = 0,

(18)

with A0 ≡ α−1 − 1 > 0.

PROPOSITION 3. u�, defined by equation (18), is a decreasing function of τ
and an increasing function of λ, denoted by U(τ, λ) [with ∂U(τ, λ)/∂τ < 0 and
∂U(τ, λ)/∂λ > 0].

Proof. See Appendix A.1.

Thus, in the Lucas (1988) model with finite lifetime, the allocation of human
capital into the production sector along the BGP u� falls when environmental
taxation is higher (see the explanations below after Table 2). With δ = 0,
the human capital to physical capital ratio along the BGP given by equation
(16) is

b� = {α−1 [B − λ+�(τ)]}1/(1−α)U(τ, λ)−1 > 0.
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A higher environmental tax makes the final production less intensive in physical
capital and more intensive in human capital because it increases the cost of physical
capital: b� rises. The aggregate consumption to physical capital ratio along the
BGP is given by

x� = λη(� + λ)

B U(τ, λ)− λ− �
> 0

and increases with the environmental tax rate. Finally, the growth rate along the
BGP, defined by equation (17), becomes, with δ = 0,

g� = B[1 − U(τ, λ)] − (1 − η)λ. (19)

PROPOSITION 4. The environmental policy has a positive impact on the bal-
anced growth path rate of growth.

Proof. This comes directly from Proposition 3 and equation (19).

Consequently, when lifetime is finite, it is possible to implement a win–win
environmental policy in a Lucas (1988) growth model. Furthermore, when the
horizon extends (λ decreases), the allocation of human capital to final production
u� drops: agents invest more in human capital. And when lifetime is infinite
(λ = 0), the allocation of human capital to production u� is independent of τ
along the balanced growth path (as demonstrated in Appendix A.1).

PROPOSITION 5. The aging of the population (a lower λ) reduces the influ-
ence of the environmental policy on the BGP rate of growth. When lifetime is
infinite, the BGP rate of growth is not affected by the environmental policy.

Proof. See Appendix A.1.

We also investigate the trajectory of the economy out of the steady state and
the influence of the environmental tax during this transition. Due to the complex-
ity of the model, we use the time-elimination method to perform the numerical
analysis.12 We calibrate the model to obtain realistic values of the growth rate
of GDP and the probability of death for the U.S. economy. From the World
Development Indicators 2005 of the World Bank, life expectancy was 77.4 years
in 2003 and the growth rate was 3.3% during the period 1990–2002. Because the
expected lifetime is the inverse of the probability of death per unit of time λ, we
want λ to be close to 1/77.4 = 0.0128. We adjust other variables to obtain such
values for our benchmark case.

Table 1 summarizes the benchmark values of parameters and Table 2 summa-
rizes the comparative statics. Figures 1 and 2 draw the temporal evolution of the
main variables toward the new steady state when an unanticipated increase in the
environmental tax is implemented by the government, respectively, for infinite and
finite lifetimes.

To understand the economic mechanisms underlying Propositions 3, 4, and 5,
we first consider the case where lifetime is infinite (λ = 0), there is a single
representative household, and the generational turnover effect is absent. In such
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TABLE 1. Benchmark
value of parameters

Parameter Value

α 0.3
η 0.85
� 0.025
B 0.075
γ 0.3
λa 0.0128
λb 0

aFinite lifetime.
bInfinite lifetime.

TABLE 2. The increase in the environmental tax along the BGP

Finite lifetime

λ = 0.0128 λ = 0.0200 Infinite lifetime

τ = 0.01 τ = 0.1 τ = 0.01 τ = 0.1 τ = 0.01 τ = 0.1

g� 3.32% 3.40% 2.29% 2.45% 5% 5%
P� 3.82 2.25 3.82 2.25 3.82 2.25
u� 0.5313 0.5206 0.6545 0.6323 1/3 1/3
r�a + λ 0.075 0.075 0.075 0.075 0.075 0.075
x�b 0.2009 0.3305 0.1872 0.3160 0.2268 0.3572
b�c 0.2532 0.5790 0.1774 0.4394 0.5073 1.0345

aαY/K −�(τ).
bC/K .
cH/K .

a case, the environmental policy, through a tighter environmental tax, has two
effects. First, a crowding-out effect, due to the rise of abatement expenditures,
reduces consumption and investment. Second, a factorial reallocation effect leads
to production more intensive in human capital: there is a replacement of the
pollutant factor (physical capital) with the clean factor (human capital). The two
effects offset to keep the interest rate constant and the growth rate along the BGP
unchanged [see Gradus and Smulders (1993)].

When agents have finite lives (λ > 0), the tighter environmental policy has a
third impact: a generational turnover effect that affects the aggregate consumption
rate of growth. Indeed, with finite lifetimes, the aggregate consumption rate of
growth differs from the individual consumption rate of growth r − �, by the
proportionnal difference between average consumption and consumption by newly
born households [C(t)− c(t, t)]/C(t) [see equation (14)]. And that generational
turnover explains the positive impact of the environnmental taxation of the BGP
growth with finite lifetime.
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FIGURE 1. Infinite lifetime.
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Indeed, at the impact, the tighter environmental tax brings down the returns
to capital below the returns to education [see equation (16) with δ = 0] both
in infinite and finite lifetime, as shown respectively by Figure 1iv and Figure
2iv. Agents allocate a part of their resources from final output to human capital
accumulation: u jumps downward and the wage rises [see equation (10), Figures
1i–v, and Figures 2i–v]. The discounted value of earnings (that is the human
wealth) increases and the interest payments on nonhuman wealth (K is given
because it is predetermined) fall: agents reduce their saving and consumption
jumps at impact (see the transitional dynamics of the aggregate consumption to
physical capital ratio x(t) ≡ C(t)/K(t) in Figure 1iii and Figure 2iii). Because
with finite lifetime the horizon is shorter and at each date a new generation’s born
without financial assets, that jump in aggregate consumption C(t) is lower than in
the infinite lifetime case, as shown in Figure 1ix and Figure 2ix.13 In addition, the
growth rate of the aggregate consumption to physical capital ratio ẋ(t)/x(t) jumps
upward at impact because the fall in aggregate physical capital growth at impact
is greater than the fall in aggregate consumption growth. During the transition,
ẋ(t)/x(t) decreases toward 0, whereas aggregate physical capital growth and
aggregate consumption growth converge toward their new BGP equilibrium (see
Figures 1vii–ix and Figures 2vii–ix). After the tax shock, the aggregate consump-
tion to physical capital ratio x is always higher than its value before the tightening
of environmental taxation (see Figure 1iii and Figure 2iii), Because aggregate
consumption growth with finite lifetime is negatively affected by the generational
turnover term [C(t)− c(t, t)] /C(t) [which depends onK(t)/C(t) = x(t)−1; see
equations (14) and (15)], it is always above its initial value, for a given level
of interest rate. Therefore, when aggregate consumption growth goes back to its
initial level, the interest rate is lower than its initial value (that is, lower than the
returns to education).14 Thus, the substitution between physical capital and human
capital continues so that at the new BGP equilibrium (when the interest rate returns
to its initial value) u� remains lower than its value before the tightening of the
environmental tax, and human capital accumulation, aggregate consumption, and
the physical capital rates of growth are higher.15

The longer the horizon (the lower λ), the lower the influence of the generational
turnover and the lower the fall in u to go to the new BGP equilibrium. For a given
rise of the environmental tax, the allocation of human capital to the output sector
along the BGP (u�) decreases less for a lower λ than for a higher λ.

In the remaining of the section, we broaden our analysis to the case δ >
0, in which an educational good besides time is used in education. Conversely
to the case δ = 0 we dealt with, the influence of environmental taxation on
the allocation of human capital into the manufacturing sector u� is not clear-
cut when lifetime is finite. To understand the reason, we return to the infinite-
lifetime case. As demonstrated in Appendix A.2, in that case, u� rises with τ
because the tighter environmental policy crowds out not only consumption and
physical capital accumulation, but also the part of output allocated to the education
sector Z. As a result, the rewards to education fall below their initial value and
the agents reallocate their time to production to compensate for the decrease in
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TABLE 3. Impact of the environmental policy according to δ

δ = 0.01 δ = 0.06 δ = 0.1 δ = 0.5

τ = 0.01 τ = 0.1 τ = 0.01 τ = 0.1 τ = 0.01 τ = 0.1 τ = 0.01 τ = 0.065

g� 2.92% 2.99% 1.8766% 1.8821% 1.3825% 1.3378% 0.4071% 0.0205%
P� 3.82 2.25 3.82 2.25 3.82 2.25 3.82 2.48
u� 0.5663 0.5556 0.6812 0.6750 0.7480 0.7478 0.9362 0.9747
r� + λ 0.0711 0.0709 0.0610 0.0600 0.0562 0.0546 0.0470 0.0419
x� (C/K) 0.19061 0.3187 0.1645 0.2874 0.1530 0.2736 0.1295 0.2051
b� (H/K) 0.2198 0.5183 0.1461 0.3745 0.1181 0.3156 0.0725 0.1484︸ ︷︷ ︸

Positive effect on growth

︸ ︷︷ ︸
Negative effect on growth

their consumption. The BGP rate of growth falls and the environmental tax is
detrimental to growth. When lifetime is finite, the aforementioned effect exists
besides the generational turnover effect, which operates in the opposite way. To
investigate whether the generational turnover effect is high enough to compensate
for or to offset the crowding-out effect, we use numerical simulations. In particular,
we examine the increase in environmental taxation for different values of δ, insofar
as we demonstrated that the environmental policy enhances growth when only
time is used as an input for education (that is, δ = 0) and because we expect
that environmental policy is harmful for growth when only final output is used to
increase human capital (that is, δ = 1).16

Results of the numerical simulations are reported in Table 3.17 They show that,
for the parameter values chosen, Proposition 4 still holds when an education good
(produced with human and physical capital) is introduced into the technology of
education, only if the part of this education good in human capital accumulation
remains small enough. Indeed, when the relative part of this education good in
human capital accumulation becomes important, the crowding-out effect offsets
the positive effect arising from the generational turnover effect. The BGP rate of
growth drops.

5. CONCLUSION

In this article, we demonstrate that, if finite lifetime is taken into account, a win–win
environmental policy may be implemented in an economy where growth is driven
by human capital accumulation à la Lucas (1988) and the source of pollution is
physical capital, whereas pollution does not influence educational activities, labor
supply is not elastic, and human capital does not enter the utility function. This
is because finite lifetime and the appearance of newborns at each date create a
turnover of generations that disconnects the aggregate consumption growth from
the after-tax interest rate. We also demonstrate that the aging of the population (a
lower probability of dying) reduces the positive influence of environmental policy
on growth.

Finally, using numerical simulations, we show that the positive impact of a
highter environmental tax on the growth rate still holds when an education good
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(produced with human and physical capital) is introduced into the technology of
education, only if the part of this education good in human capital accumulation
is small enough to prevent the crowding-out effect of the tax from offsetting the
generational turnover effect arising from finite lifetime.

NOTES

1. See World Bank (1993) for empirical evidence of this role. Grimaud and Tournemaine (2007)
point out this role to justify the need to investigate the link between environment and growth through
the channel of education.

2. Here, we do not deal with the major question of climate change and we do not integrate
non-renewable resources in the analysis. See Schou (2000, 2002) and Grimaud and Rougé (2005,
2008) for authors who investigate environmental policy and growth in the presence of nonrenewable
resources and endogenous growth. Note also that there exists an important literature on the impact of
environmental policy on growth, even if the contributions do not deal with human capital accumulation:
on the double dividend, see Bovenberg and Smulders (1995, 1996), Bovenberg and de Mooij (1997);
for contributions using the OLG model, see Ono (2002, 2003)(discrete time model) or Bovenberg and
Heijdra (1998, 2002) (continuous-time Yaari–Blanchard model), among others.

3. More precisely, they assume that pollution depreciates the stock of human capital. Van Ewijk
and van Wijnbergen (1995) assume that pollution reduces the ability to train .

4. Following Gradus and Smulders (1993) and many other authors, we model pollution as a flow
that originates from production. It corresponds to pollutant emissions such as untimely noise or
nonpermanent volatile organic compounds produced by industry or generated by industrial processes
(such as the use of solvents in consumer and commercial products, which corresponds to 28% of the
total emissions of VOCs in Canada for 2000). As in Hettich (1998, p. 292), one should observe that the
“flow” assumption (rather than the “stock” assumption) does not modify the qualitative results along
the balanced growth path.

5. The first assumption is made because here death may be interpreted as the termination of a
family dynasty and therefore adults who die do not care about what occurs beyond their death. The
second assumption is made to avoid unintented bequests.

6. We use logarithmic utility for the sake of simplicity. Our results remain valid when the
intertemporal elasticity of substitution of the consumption is different from unity [see Pautrel
(2008)].

7. Here, we investigate neither the welfare impact of the environmental policy nor the optimal
environmental tax. Nevertheless, the net flow of pollution enters as an argument of the utility function
because the damages from pollution negatively affect the agents’ well-being. See Pautrel (2008) for
the welfare analysis and the study of the optimal environmental tax.

8. When δ = z(s, t) = 0, we obtain Lucas (1988) human capital accumulation.
9. The effective interest rate is the interest rate on the debt r plus the insurance premium λ the

agent has to pay when borrowing [Blanchard and Fisher (1989)].
10. We assume that η could be equal to unity, that is, the total aggregate level of human capital

is inherited from the dying generation. Because population is constant and normalized to unity, this
assumption could be viewed alternatively as the fact that the mean (or per capita) aggregate level of
human capital is inherited from the dying generation by each newborn.

11. See Appendix A for details and the textbook by Barro and Sala-i Martin (1995) for examples.
12. See Mulligan and Sala-i Martin (1991) for details about the time-elimination method, and

Mulligan and Sala-i Martin (1993) for an application of the two-sector models of endogenous
growth.

13. That explanation is based on the one given by Blanchard and Fisher (1989, 138–139), who
consider the impact of an increase in the interest rate in a continuous-time overlapping-generations
model with no endogenous growth.
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14. Using our numerical simulation for the finite lifetime case, we find that Ċ(t)/C(t) = 3.32%
(its initial level reported in Table 2) at t = 18, whereas at that time r(t)+ λ = 0.0742 is lower than its
initial level 0.075 (see Table 2). Note that r(t)+ λ goes back to its initial level 0.075 at t = 50.

15. Note that when pollutant emissions enter the final output production function as a factor,
environmental taxation does not affect growth in the long run despite finite lifetime [see Pautrel (2008)
for a formal proof].

16. In such a case, the technology to accumulate human capital is similar to the technology of final
output production and physical capital accumulation except the parameter B [see equation (2)].

17. Note that in our numerical simulations, when δ = 0.5, u� /∈]uδ, ūδ[, and g� < 0 when
τ > 0.065.

18. See Note 9 for the definition of the effective interest rate.
19. Conditions (C1) and (C2) ensure that the BGP growth rate of individual consumption

ċ(s, t)/c(s, t)|BGP is higher than the individual accumulation of human capital ḣ(s, t)/h(s, t)|BGP,
that is c(s, t)|BGP > 0 [see the denominator of equation (A.8)].

20. Because [(1 − δ)B�δR(B, τ)−αδ − (2 −η)λ−�][(1 − δ)B�δR(B, τ)−αδ −λ] > ηλ(�+λ),
we obtain �δ(ūδ; τ) > 0.

21. α−1(B − λ)[B − (2 − η)λ − �] > ηλ(� + λ) and [B − (2 − η)λ − �] × A0�(τ) > 0 ⇒
�(ū0; τ) > 0.
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APPENDIX A
In this Appendix, we first solve the general model of Section 2, where δ ≥ 0. Then we
focus our attention on the case δ = 0 (A.1). Finally, we investigate the case δ > 0 and
λ = 0 (A.2). References to equations without the prefix A are references to the equations
in the body of the paper.

The program of the households is

max
c(s,t),z(s,t),a(s,t),h(s,t),u(s,t)

∫ ∞

s

[
log c(s, t)− ζ

1 + ψ
P(t)1+ψ

]
e−(�+λ)(t−s)dt

s.t. ȧ(s, t)= [r(t)+ λ] a(s, t)+ u(s, t)h(s, t)w(t)− c(s, t)− z(s, t)
ḣ(s, t) = B(1 − u(s, t))1−δh(s, t)1−δz(s, t)δ

a(s, s) = 0 h(s, s) = ηH(s) > 0.

The Hamiltonian of the program may be written as

H =
[

log c(s, t)− ζ

1 + ψ
P(t)1+ψ

]

+π1(t) [(r(t)+ λ)a(s, t)+ u(s, t)h(s, t)w(t)− c(s, t)− z(s, t)]

+π2(t)B(1 − u(s, t))1−δh(s, t)1−δz(s, t)δ.
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The first-order conditions are

∂H
∂c(s, t)

= 0 ⇒ 1

c(s, t)
= π1(t) (A.1)

∂H
∂z(s, t)

= 0 ⇒ π1(t) = π2(t)δB[1 − u(s, t)]1−δ
[
z(s, t)

h(s, t)

]δ−1

(A.2)

∂H
∂u(s, t)

= 0 ⇒ π1(t)w(t) = π2(t)B(1 − δ)[1 − u(s, t)]−δ
[
z(s, t)

h(s, t)

]δ
(A.3)

∂H
∂a(s, t)

= −π̇1(t)+ (� + λ)π1(t) ⇒ π1(t)[r(t)+ λ] = −π̇1(t)+ (� + λ)π1(t)
(A.4)

∂H
∂h(s, t)

= −π̇2(t)+ (� + λ)π2(t) ⇒ π1(t)w(t)u(s, t)

+π2(t)B(1 − δ)[1 − u(s, t)]1−δ
[
z(s, t)

h(s, t)

]δ
= −π̇2(t)+ (� + λ)π2(t). (A.5)

Equation (A.3) implies that the ratio z(s, t)/(1 − u(s, t))h(s, t) is independent of s and
equation (A.5) implies thatu(s, t) is independent of s. Consequently, the ratio z(s, t)/h(s, t)
is independent of s. Conveniently, we denote z̃(t) ≡ z(s, t)/(1 − u(s, t))h(s, t).

From (A.1) and (A.4), we obtain

ċ(s, t) = [r(t)− �]c(s, t). (4)

Equations (A.2) and (A.3) give

z̃(t) = δ

1 − δ
w(t). (5)

And from equations (A.2) and (A.5),

π̇2(t)

π2(t)
= � + λ− B [1 − δ] z̃(t)δ.

Differentiating (A.3) with respect to time, we obtain

π̇1(t)

π1(t)
+ ẇ(t)

w(t)
= π̇2(t)

π2(t)
+ δ

˙̃z(t)
z̃(t)

.

Replacing with the expressions of π̇1(t)/π1(t) and π̇2(t)/π2(t) gives

ẇ(t)

w(t)
− δ

˙̃z(t)
z̃(t)

+ B(1 − δ)z̃(t)δ = r(t)+ λ,

which means that the returns to education must be equal to the returns to physical capital.
We can rewrite this relation in terms of w(t) and r(t):

(1 − δ)
ẇ(t)

w(t)
+ B(1 − δ)1−δδδw(t)δ = r(t)+ λ. (6)
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From equations (10) and (5), it is possible to express z̃(t) in terms of Y (t):

z̃(t) = δ

1 − δ
(1 − α)

Y (t)

u(t)H(t)
.

Now, we can write that the amount of final output used as educational good is

Z(t)≡
∫ t

−∞
z(s, t)λe−λ(t−s)ds=

∫ t

−∞

{
z(s, t)

[1 − u(s, t)]h(s, t)

}
[1 − u(s, t)]h(s, t)λe−λ(t−s)ds

= z̃(t)[1 − u(t)]
∫ t

−∞
h(s, t)λe−λ(t−s)ds = z̃(t)[1 − u(t)]H(t).

Consequently

Z(t) = δ(1 − α)

1 − δ

[
1 − u(t)

u(t)

]
Y (t).

The market-clearing condition is written as{
1 + (1 − α)δ

1 − δ

[
1 − 1

u(t)

]}
Y (t) = K̇(t)+ C(t)+�(τ)K(t),

and the aggregate accumulation of human capital is

Ḣ (t) = {B[1 − u(t)]z̃(t)δ − (1 − η)λ}H(t). (13)

Finally, from equations (6) and (10) and the fact that
∫ t

−∞ u(s, t)h(s, t)λe
−λ(t−s)ds =

u(t)H(t) because u(s, t) = u(t), we obtain

u̇(t)

u(t)
= K̇(t)

K(t)
− Ḣ (t)

H(t)
− α−1{r(t)+ λ− B(1 − δ)1−δδδ[b(t)u(t)]−αδ}.

Therefore, the dynamical system is summarized by

ẋ(t) =
[(
α −

{
1 −�

[
1

u(t)
− 1

]} )
[b(t)u(t)]1−α − �−(1 − η)λ

− ηλ(� + λ)x(t)−1 + x(t)

]
x(t),

ḃ(t) =
(

[1 − u(t)]B�δ[b(t)u(t)]−αδ

− (1 − η)λ+ x(t)+�(τ)−
{

1 −�

[
1

u(t)
− 1

]}
[b(t)u(t)]1−α

)
b(t),

u̇(t) =
(

[α−1 − 1 + u(t)]B�δ[b(t)u(t)]−αδ + {[α(1 − δ)]−1 − 1}�(τ)

− �

{[
1

u(t)
− 1

]
+ 1

1 − α

}
[b(t)u(t)]1−α

− {
[α(1 − δ)]−1 + η − 1

}
λ− x(t)

)
u(t), (A.6)

with � ≡ (1 − α)δ/(1 − δ).
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The two last equations of the dynamical system (A.6) evaluated in the steady state
(ḃ(t) = 0 and u̇(t) = 0) give b�u� as the solution of the equation

(1 − δ)B�δ(b�u�)−αδ = α(b�u�)1−α −�(τ)+ λ, (16)

where the left-hand side is the returns to human capital accumulation along the BGP and
the right-hand side is the effective interest rate [the returns to physical capital accumulation;
see equation (6)],18 both evaluated along the BGP.

When δ ∈]0, 1[, the left-hand side is a decreasing function of b�u� ∈]0,+∞[ with
limb�u�→0 LHS = +∞ and limb�u�→+∞ LHS = 0, and the right-hand side is an increas-
ing function of b�u� with limb�u�→0 RHS = λ − �(τ) and limb�u�→+∞ RHS = +∞.
Consequently, the equation (16) defines a unique b�u� ∈]0,+∞[. Because δ ∈]0, 1[
and d�(τ)/dτ > 0, it is straightforward, using the theorem of the implict function,
that b�u� is an increasing function of τ and B. When δ = 0, equation (16) becomes
B = α(b�u�)1−α −�(τ)+ λ and defines an explicit expression for b�u�:

b�u� =
[
B − λ+�(τ)

α

]1/(1−α)
.

b�u� is always an increasing function ofB and τ and is positive under the sufficient condition
that the returns to education B corrected by the probability of death λ are positive:

B − λ > 0. (A.7)

For convenience, we denote as R(B, τ) the solution b�u� of equation (16), with
dR(B, τ)/dτ > 0 and dR(B, τ)/dB > 0 for δ ∈ [0, 1[.

Along the BGP, ẋ = ḃ = 0 defines x� as follows:

x� = ηλ(� + λ)

αR(B, τ)1−α −�(τ)− � − (1 − u�)B�δR(B, τ)−αδ . (A.8)

Using equation (16), we can rewrite (from the previous expression) x� as a function
X1(u

�, τ ):

x� = X1(u
�, τ ) ≡ ηλ(� + λ)

(u� − δ)B�δR(B, τ)−αδ − λ− �
.

To obtain x� > 0, we impose that

(u� − δ)B�δR(B, τ)−αδ > � + λ, (A.9)

ensuring that human capital will not be fully invested in human capital accumulation along
the balanced growth path:

u� > uδ, with uδ ≡ δ + � + λ

B�δR(B, τ)−αδ ∈]0, 1[. (C1)

This condition ensures that the growth rate of human capital does not exceed the maximum
feasible rate (when the total amount of human capital is allocated to education).

We also assume that the balanced growth path rate of growth g� must be positive; that is
[from equation (13)],

(1 − u�)B�δR(B, τ)−αδ > (1 − η)λ. (A.10)
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This assumption imposes that the investment in education is positive [from equation (13)]:19

u� < ūδ, with ūδ ≡ 1 − (1 − η)λ

B�δR(B, τ)−αδ ∈]0, 1[. (C2)

Under conditions (C1) and (C2) the following inequality holds [by summing (A.9) and
(A.10)]:

(1 − δ)B�δR(B, τ)−αδ > � + (2 − η)λ, for δ ∈ [0, 1[. (A.11)

It enables us to demonstrate that uδ < ūδ .
Because η ∈]0, 1], conditions (C1) and (C2) impose (1 − δ)B�δR(B, τ)−αδ > �+λ >

(1−η)λ (from the inequality (A.11)); that is, they imply a positive growth rate of individual
consumption c(s, t) [see equations (4) and (16)]. Finally, condition (A.7) is verified under
conditions (C1) and (C2) [from the inequality (A.11)]. Furthermore, limu�→uδ

χ1(u
�; τ) =

+∞ and limu�→ūδ χ1(u
�; τ) = ηλ(� + λ)/[(1 − δ)B�δR(B, τ)−αδ − (2 − η)λ− �] > 0.

From u̇(t) = 0, we can also define x� as follows:

x� = [α−1 − 1 + u�]B�δR(B, τ)−αδ + Aδ�(τ)−�

(
α

1 − α
+ 1

u�

)
R(B, τ)1−α

− (Aδ + η) λ (A.12)

with � ≡ (1 − α)δ/(1 − δ) and Aδ ≡ (α(1 − δ))−1 − 1 > 0, ∀δ ∈ [0, 1[. Using (16) and
simplifying, we can express x� as a function X2(u

�, τ ):

x� = X2(u
�, τ ) ≡ (u� − δ)B�δR(B, τ)−αδ − ηλ+ (1 − α)(u� − δ)

(1 − δ)u�
R(B, τ)1−α.

(A.13)

It is straightforward that χ2(u
�; τ) is an increasing function of u� and χ2(u

�; τ) > 0 for all
u� ∈]uδ, ūδ[ and δ ∈ [0, 1[. When δ = 0, it is straightforward that χ2(u

�; τ) is an increasing
function of τ , but for δ ∈]0, 1[, the influence of τ is unclear.

The BGP equilibrium is defined by χ1(u
�; τ) = χ2(u

�; τ) for u� ∈]uδ, ūδ[. That is, there
exists, for δ ∈ [0, 1[, a unique u� ∈]uδ, ūδ[, solution of �δ(u; τ) = 0 with

�δ(u; τ) ≡ [(u− δ)B�δR(B, τ)−αδ − λ− �]

×
[
(u− δ)B�δR(B, τ)−αδ − ηλ+ (1 − α)(u� − δ)

(1 − δ)u
R(B, τ)1−α

]
− ηλ(� + λ),

(A.14)

and R(B, τ) is defined by equation (16).
It is straightforward that, for u� ∈]uδ, ūδ[ [see conditions (C1) and (C2)], �δ(uδ; τ) =

−ηλ(� + λ) < 0, and �δ(ūδ; τ) > 0.20 Because in the interval ]uδ, ūδ[, �δ(u; τ) is
a monotonic increasing function of u, the u� solution of �δ(u; τ) = 0 is unique. The
influence of τ on u� is not clear except when δ = 0.

A.1. THE CASE δ = 0

When δ = 0, we have � = 0 and �δR(B, τ)−αδ = 1. Conditions (C1) and (C2) hold
[with δ = 0 and �δR(B, τ)−αδ = 1] and there exists a unique u� ∈]u0, ū0[ solution of
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�(u; τ) = 0, where �(u; τ) is defined, from equation (A.14) with δ = 0, as follows:

�(u; τ) ≡ [Bu− λ− �] × [(A0 + u)B + A0�(τ)− (A0 + η)λ] − ηλ(� + λ) = 0

(18)

with �(u0; τ) = −ηλ(� + λ) < 0 and �(ū0; τ) = [B − (2 − η)λ− �] × [α−1(B − λ)+
A0�(τ)] − ηλ(� + λ) > 0.21 From the implicit function theorem, the influence of τ on
u� is given by u� ′ = −[∂�(u; τ)/∂τ ]/[∂�(u; τ)/∂u]. Denoting �(u; τ) = �1(u; τ) ×
�2(u; τ) − ηλ(� + λ), with �1(u; τ) ≡ Bu� − λ − � > 0 and �2(u; τ) ≡ (A0 + u)B +
A0�(τ)− (A0 + η)λ > 0, we obtain u� ′ = −A�′(τ )�1(u; τ)/B[�1(u; τ)+ �2(u; τ)] is
negative and u� is a decreasing function of τ .

If we denote g� ′ ≡ dg�/dτ = −Bu� ′, the effect of the environmental policy on growth
with respect to the horizon is given by dg� ′/dλ. Because g� ′ = A�′(τ )[1 + �2(u; τ)/
�1(u; τ)]−1, ∂u�/∂λ = [�2(u; τ)+ (A0 + η)�1(u; τ)]/B[�1(u; τ)+ �2(u; τ)] > 0,
and ∂�1(u; τ)/∂λ = (α−1 − 2 + η)�1(u; τ)/[�1(u; τ)+ �2(u; τ)] > 0 [under the
realistic sufficient condition α < 1/(2 − η)] and ∂�2(u; τ)/∂λ = −(α−1 − 2 +
η)�2(u; τ)/[�1(u; τ)+ �2(u; τ)] < 0, we obtain that ∂�2(u;τ )/�1(u;τ )

∂λ
= −2(α−1 − 2 +

η)�2(u; τ)/�1(u; τ) < 0; that is, ∂g�
′
/∂λ > 0.

When λ = 0, equation (18) gives the solution of the Lucas (1988) model with logarithmic
utility: u� = �/B and g� = B − �.

A.2. THE CASE δ > 0 AND λ = 0

When δ > 0 and λ = 0, the dynamical system (A.6) becomes

ẋ(t) =
[(
α −

{
1 +�

[
1 − 1

u(t)

]} )
[b(t)u(t)]1−α − � + x(t)

]
x(t),

ḃ(t) =
(

[1 − u(t)]B�δ[b(t)u(t)]−αδ + x(t)+�(τ)

−
{

1 +�

[
1 − 1

u(t)

]}
[b(t)u(t)]1−α

)
b(t),

u̇(t) =
(

[α−1 − 1 + u(t)]B�δ[b(t)u(t)]−αδ + {[α(1 − δ)]−1 − 1}�(τ)− x(t)

+ �

{[
1 − 1

u(t)

]
− 1

1 − α

}
[b(t)u(t)]1−α

)
u(t).

From u̇ = 0 and ḃ = 0, we obtain the equality between the returns to investment,

(1 − δ)B�δ(b�u�)−αδ = α(b�u�)1−α −�(τ),

which defines b�u� as an increasing function of τ denoted R(B, τ) | λ=0 (with
∂R(B, τ) | λ=0 /∂τ > 0). Using ẋ = ḃ = 0, we obtain the expression for u�,

u� = δ + �

B�δ[R(B, τ) | λ=0]−αδ
,
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which is increasing in τ . The growth rate along the BGP is

g� = (1 − δ)B�δ[R(B, τ) | λ=0]−αδ − �.

Therefore, with δ > 0 and λ = 0, we have ∂g�/∂τ < 0.

APPENDIX B
In this Appendix, we investigate the stability properties of the BGP equilibrium for δ ≥ 0.

The dynamical system (A.6) may be linearized around the steady state and
becomes ⎡

⎣ ẋ(t)ḃ(t)

u̇(t)

⎤
⎦ = J ×

⎡
⎣ x(t)− x�

b(t)− b�

u(t)− u�

⎤
⎦,

where J is the Jacobian matrix evaluated in the neighborhood of the steady state:

J ≡
⎛
⎝ J11 J12 J13

J21 J22 J23

J31 J32 J33

⎞
⎠,

with

J11 = ηλ(� + λ)x�−1 + x� > 0

J12 = −(1−α)2(u�−δ)
(1−δ)u� R(B, τ)1−αx�/b� < 0

J13 = −(1 − α)R(B, τ)1−α
[
(1−α)u�+αδ
u�(1−δ)

]
x�/u� < 0

J21 = b� > 0
J22 = −αδ(1 − u�)B�δR(B, τ)−αδ − (1 − α)

[
1 −�

(
1
u�

− 1
)]R(B, τ)1−α < 0

J23 = − [1 +αδ(1/u�−1)]B�δR(B, τ)−αδb� − [
1+αδ (

1
u�

− 1
)] [

1−α
1−δ

]R(B, τ)1−αb�/u�<0
J31 = −u� < 0
J32 = −u�/b� {

αδ(α−1 −1+u�)B�δR(B, τ)−αδ− �

u�
[1−α(1 − u�)]R(B, τ)1−α}

< 0
J33 = B�δR(B, τ)−αδ [u� − δ + αδ(1 − u�)] + α�

(
1
u�

− 1
)R(B, τ)1−α > 0.

The determinant of the Jacobian matrix is

det(J ) = − [
(1 − α +�)R(B, τ)1−α + δB�δR(B, τ)−αδ]

×
[
�

u�x�
ηλ(λ+ �)R(B, τ)1−α + u�B�δR(B, τ)−αδ (

x� + ηλ(� + λ)x�−1
)]
< 0.

And the trace of the Jacobian matrix is

Trace(J ) = J11 + J22 + J33 = (u� − δ)�δR(B, τ)−αδ + ηλ(� + λ)x�−1 + x�

− (1 − α)(u� − δ)

(1 − δ)u�
R(B, τ)1−α.
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From equation (A.13) we have

x� − (1 − α)(u� − δ)

(1 − δ)u�
R(B, τ)1−α = (u� − δ)B�δR(B, τ)−αδ − ηλ > 0;

therefore the trace of the Jacobian matrix is positive.
Because there are two control variables (u and x) and one state variable (b), the negative

determinant and the positive trace of the Jacobian matrix imply that there are two positive
eigenvalues and one negative eigenvalue. Therefore, the equilibrium is saddle-path stable.

Note that when δ = 0, we obtain

det(J ) = −(1 − α)α−1Bu� [B +�(τ)− λ] [x� + ηλ(� + λ)x�−1] < 0

and, using equation (A.13) and the inequality (A.11),

Trace(J ) = 2Bu� − ηλ+ ηλ(� + λ)x�−1 > 0.
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