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Abstract

Computer-based shape grammar implementations aim to support creative design exploration
by automating rule-application. This paper reviews existing shape grammar implementations
in terms of their algorithmic complexity, extends the definition of shape grammars with sets
of transformations for rule application, categorizes (parametric and non-parametric) sets of
transformations, and analyses these categories in terms of the resulting algorithmic complex-
ity. Specifically, it describes how different sets of transformations admit different numbers of
targets (i.e., potential inputs) for rule application. In the non-parametric case, this number is
quadratic or cubic, while in the parametric case, it can be non-polynomial, depending on the
size of the target shape. The analysis thus yields lower bounds for the algorithmic complexity
of shape grammar implementations that hold independently of the employed algorithm
or data structure. Based on these bounds, we propose novel matching algorithms for non-
parametric and parametric shape grammar implementation and analyze their complexity.
The results provide guidance for future, general-purpose shape grammar implementations
for design exploration.

Introduction

Shape grammars are formal descriptions of visual design processes that have been especially
successful in terms of recreating a corpus of existing designs in a systematic, rule-based fashion
(e.g., Stiny, 1977; Duarte, 2001). More recently, Stiny (2006) has reemphasized that shape
grammars can also be used for creative design exploration, a process he calls “visual
calculating”.

Computer-based shape grammar implementations aim to support such visual calculation
processes by automating rule-application (e.g., Tapia, 1999; Trescak et al., 2012; Grasl &
Economou, 2013; Strobbe et al., 2015). However, although such efforts have been ongoing
for more than three decades – Krishnamurti (1981) proposed the first algorithm – shape
grammar implementations are hardly used in actual design processes. One explanation for
this limited use are the limited capabilities of existing implementations (see section ”Shape
grammar implementations: the state of the art”) and the computational difficulty of expanding
these capabilities (Yue & Krishnamurti, 2013).

The paper reviews some existing shape grammar implementations in terms of their algo-
rithmic complexity, extends the definition of shape grammars with sets of transformations
for rule-application, and categorizes sets of transformations. It describes how different sets
of (parametric and non-parametric) transformations result in different numbers of potential
targets for rule application. In the parametric case, this number depends on the size of the
individual target. The analysis yields lower bounds that hold independent of the employed
algorithm and data structure. Based on these bounds, we propose novel matching algorithms
for non-parametric and parametric shape grammar implementation and analyze their
complexity.

Background

This section reviews shape grammars and shape grammar implementations, introduces the
sub-shape detection problem, introduces algorithmic complexity, and discusses existing imple-
mentations in terms of this complexity.

Shape grammars

There are various grammar formalisms for design, with different requirements for the repre-
sentation, interpretation, and generation of entities. Most examples of shape grammars rely on
labeled shapes, a combination of – often two-dimensional – line segments and labeled points
(Stiny, 1980). Stiny (1992) proposes numeric weights as attributes to denote line thicknesses or
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surface tones. Knight (1989, 1993) considers a variety of qualita-
tive aspects of design as shape attributes. Stiny (1981) proposes to
augment shape grammars with description functions in order to
enable the construction of verbal descriptions of designs. Stouffs
and Krishnamurti (2002) propose sortal grammars using a com-
positional approach to the representational structures underlying
(augmented) shape grammars, allowing the definition and
exploration of a variety of grammar formalisms.

Stouffs (2018) addresses the problem of implementing a shape
grammar interpreter that supports varying shape grammar form-
alisms. He proposes an algebraic treatment that facilitates a mod-
ular approach based on a connection between algebraic
abstraction and procedural abstraction (Frank, 1999). However,
he does not address parametric shape grammars and only touches
upon transformations other than similarity. Nevertheless, his
approach could include parametric shape grammars and shape
grammars allowing for arbitrary transformations as well. In this
paper, we address the algorithmic complexity of implementing
such transformations.

Shape grammar implementations: the state of the art

Ideally, a shape grammar implementation should: (1) support
visual computing, (2) allow emergence, (3) not rely on pre-
defined parts, and (4) be parametric (Gips, 1999).

Shapes have explicit definitions, but indefinitely many “touch-
able” parts, all of which can become a focus of design intent.
These parts emerge under the part relation, regardless of whether
they were originally envisioned as such. The concept of emergent
shapes describes creative design activities, in the sense that look-
ing at a design provides new insights that lead to a new inter-
pretation of existing design elements. Continuity of visual
computations requires an anticipation of the structures that are
to be changed (Krishnamurti & Stouffs, 1997), but creativity is
devoid of anticipation and instead relies on a restructuring of
information. The concept of emergent shapes thus is highly rele-
vant for design search (Mitchell, 1993; Stiny, 1994). Emergence is
challenging to implement, however, which is why many imple-
mentations do not support it (Chau et al., 2004).

A corollary to supporting emergence is that an implementa-
tion cannot rely on pre-defined geometrical parts since it is
impossible to predict which parts of a shape a designer might
choose to develop further. Employing pre-defined parts thus
involves assumptions about what a designer might want to do.
For example, the geometric primitives provided in CAD programs
make certain shapes easier to draw and manipulate than others.
Shape grammars eliminate hierarchies and overlaps between
parts and allow arbitrary de- and recomposition (Stiny, 1994).

Parametric shape grammars allow more flexible rule applica-
tions compared with non-parametric ones. As discussed in the
section “Sets of transformations”, the distinction between para-
metric and non-parametric grammars can be understood as a spe-
cial case of the type of transformations under which a visual
calculation accepts shapes as isomorphic.

Non-parametric shape grammar implementation is well
researched, with a successful implementation presented by
Tapia (1999). Current research focuses on parametric shape
grammar implementations based on graphs (Grasl &
Economou, 2013; Wortmann, 2013; Yue & Krishnamurti, 2013;
Strobbe et al., 2015), since graphs avoid pre-defined parts and
provide the needed flexibility to support both emergence and
parametric transformations.

The subshape detection problem

The central problem for shape grammar implementations that
support emergence is the matching problem. This problem is
termed subshape detection. A solution to this problem consists
of finding a correspondence between the spatial elements in the
left-hand side of a shape rule (the input shape) and a part of a
given design (the target shape) and of determining the transfor-
mation (matrix) that represents this correspondence. If such a
correspondence is found, the input shape and the target shape
are isomorphic to each other.

The equivalent problems for set and graph grammars, termed
subset and subgraph detection, consist of searching for either a
single entity or a group of entities within a set or graph. This
search is straightforward – it requires a one-to-one matching of
entities that are identical under a certain transformation – but
not always computationally efficient. The subgraph isomorphism
problem, for example, is NP-complete (Garey & Johnson, 1979),
which means that there is no known algorithm that can solve
problems of this type efficiently, i.e., in polynomial time. But
the ability to replace spatially any subshape of a shape is a
prime requirement for visual calculations.

Algorithmic complexity

A fundamental issue for shape grammar implementations is algo-
rithmic complexity, which is a measure of the number of steps
required by an algorithm. Algorithmic complexity measures this
number of steps not directly, but asymptotically, that is, it
describes the type of growth of this number as the size of the
input for the algorithm increases. [Algorithmic complexity is
indicated in Big-O notation (Cormen et al., 2009), with O(nk)
indicating an upper and Ω(nj) a lower bound. In other words,
for inputs of size n, the algorithm that takes at most nk and at
least nj steps.]

A problem is tractable when an algorithm with polynomial
complexity is available (i.e., the number of steps is bounded by
some nk, where n is the size of the input and k is a constant)
and intractable when there is none. Intractable problems –
which often also are NP-complete or NP-hard – can be very
slow, or even impossible, to compute. In practice, such problems
are solved by approximation algorithms, but such approximations
might not be acceptable in terms of the envisioned use of shape
grammar implementations. For example, a designer might want
to see all ways to apply a rule, and not only some, or even require
the full enumeration of a grammar. Tractability thus is a key con-
sideration for interactive shape grammar implementations which
aim to provide quick feedback to designers.

Even for tractable problems, it is important whether their algo-
rithmic complexity is constant [O(1)], linear [O(n)], linearithmic
[O(n log n)], or another polynomial such as [O(nk)]. Note that
polynomial algorithms can still be slow, especially for larger
inputs n and values of k >2.

Algorithmic complexity of shape grammar implementations

Despite the great relevance of algorithmic complexity, the litera-
ture on shape grammar implementations discusses it only rarely.
For subshape detection for non-parametric shape grammars,
Krishnamurti (1981) provides a polynomial algorithm that tests
matches between the target shape and the design in terms of com-
paring triplets of intersection points. For n maximal elements,

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 139

https://doi.org/10.1017/S0890060417000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000440


this algorithm tests O(n4) triplets (actually, combinations of two
intersection points with the third point constructed from these
two points) drawn from O(n2) intersection points. Trescak et al.
(2012) propose an improved version of this algorithm that sorts
the triplets in terms of their angles, which avoids more time-
intensive tests but does not improve algorithmic complexity.

The parametric shape grammar implementation of Grasl and
Economou (2013) achieves subshape detection through non-
planar subgraph matching, which is NP-complete. Yue and
Krishnamurti (2013) argue that subshape detection for para-
metric shape grammars is NP-complete in general. Their proof
rests on the claim that – by converting a graph into a shape –
one could use a hypothetical, polynomial-time subshape detection
algorithm for subgraph matching. But the existence of such an
algorithm would contradict the fact that subgraph matching is
NP-complete. However, subgraph matching is NP-complete
only for non-planar graphs (Dorn, 2010). For planar graphs, it
is linear in the size of the graph and exponential in the size of
the subgraph, or 2O(k)n. One could thus use the hypothetical,
polynomial-time subshape detection algorithm for planar sub-
graph detection without contradiction. In other words, we
hypothesize that there is no bijective mapping between graphs
and shapes: for shapes, intersection points are an inevitable result
of intersecting maximal elements, while for graphs, intersecting
edges does not result in a new vertex (Wortmann, 2013). This
paper presents a subshape detection algorithm whose complexity
is similar to the result for subgraph isomorphism by Dorn (2010).

Beyond subshape detection, Yue and Krishnamurti (2013)
identify three factors influencing the tractability – and thus algo-
rithmic complexity – of shape grammar implementations: opera-
tions on shapes, the potential number of matching instances
where a rule can be applied, and indeterminacy of rule applica-
tion. Another factor for the algorithmic complexity of shape
grammar implementations is the data structure used for repre-
senting shapes. In the analysis by Wortmann (2013) of different
graph data structures used for shapes, the smallest representations
are quadratic, or Θ(n2). This paper discusses the algorithmic com-
plexity of the number of matching instances in terms of different
sets of (parametric and non-parametric) transformations.

Shape grammars as sets of rules and transformations

According to Stiny (1980), a shape grammar consists of a set of
shapes S, a set of labels L, a set of shape rules R and a starting
design I (I can be the empty shape). However, as shown below,
to apply the shape rules in R one also needs a set of admissible
transformations T.

Although Stiny (ibid.) briefly discusses Euclidian and iso-
metric transformations, these transformations are not an explicit
part of his definition. This omission is typical of many shape
grammars. Such grammars define the shape rules and starting

design explicitly, but define the set of transformations only impli-
citly, either by example or by constraining shape rule application
with labels. However, as discussed in the section “Lower bounds
on the algorithmic complexity of shape grammars”, the set of
admissible transformations is a determining factor for the
algorithmic complexity of shape grammar implementations.
Additionally, most examples of shape grammars are expressed
as parametric shape grammars, although shape grammar imple-
mentations often avoid the issue of parametric shape rules.

Shapes consist of maximal elements. In the most common
case, the maximal elements are non-overlapping line segments
in the plane (overlapping line segments are not maximal and
are combined into one maximal element), and a shape is a set
of maximal elements. Often, a shape is a closed polygon, or a
combination of closed polygons. A shape rule r can be understood
as a function with an input shape x and an output shape y:

r(x) = y, r [ R.

Designers apply a shape rule by identifying an instance of the
input shape x in a design D, and replacing this target shape s
with the output shape y. Often, the target shape s is a subshape,
in other words, it is a part of a larger design D. Formally, one
identifies a target (sub-)shape by defining an admissible transfor-
mation that maps the input shape onto a part of the design, that
is, a target shape. When there is an admissible transformation
between an input and a target shape they are isomorphic to
each other (see Fig. 1).

t(x) = s, s [ D, t [ T.

One applies the shape rule by subtracting the target shape from
the design and adding the transformed output shape.

D′ = D− s+ t(y), t [ T.

This formalization of shape grammars clarifies the importance of
admissible transformations for shape isomorphism, shape rule
application, and shape grammar implementation. [Note that
beyond their application to target shapes, shape rules also involve
a transformation (or mutation) that maps the input onto the out-
put shape (Stiny, 2011).] The following sections categorize admis-
sible sets of transformations used in shape grammars and analyze
these categories in terms of their algorithmic complexity.

Sets of transformations

Existing shape grammars apply different sets of transformations
to map input to target shapes, for example, non-parametric,
and parametric transformations (Stiny, 1980). The authors of

Fig. 1. Examples of quadrilaterals that are isomorphic under different sets of transformations: translated, isometric, similar, matrix (affine and projective), and two
arbitrary transformations of shapes with four maximal elements. The fourth shape maintains convexity as an invariant, the fifth shape the topology of links and
intersections, and the sixth shape only the number of maximal elements.
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this paper are not aware of an established categorization of these
transformations. To analyze the impact of different sets of trans-
formations on the algorithmic complexity of shape grammar
implementations, this paper proposes the following categories,
listed from simple to complex: translated, isometric (Euclidean),
similar, matrix (including affine and projective) and arbitrary
(see Table 1 for an overview of these transformations). Note
that every set of transformations also includes the ones from
the preceding sets.

Translated

In this category, the only allowed transformation is a translation.
In other words, a shape can only be moved, but not rotated or mir-
rored. Consequently, there is only one way in which a rule that
copies and moves a square diagonally can apply to the squares
of the translated derivation in Figure 2, resulting in a purely diag-
onal arrangement. In practice, translation-only shape grammars
are rare, most likely due to their limited formal possibilities.

Isometric

The isometric, or Euclidean, transformations include translation,
rotation, and reflection. As implied by the term “rigid”, these
transformations preserve a shape’s size, proportions, and angles,
though not necessarily its orientation. The isometric derivation
in Figure 2 applies the rule as the translated derivation, but in dif-
ferent orientations. However, the rule cannot apply to the smaller
and larger squares that emerge from the overlap of the original
ones, since isometry does not include scaling.

Although one can achieve the formal possibilities of an iso-
metric shape grammar also within a translated one (by adding
individual rules for symmetries and rotations), isometric shape
grammars allow geometric precision with a more economical
set of rules. This precision makes them especially applicable to
traditional architectural designs methods that emphasize propor-
tions and measurements. A classic example of an isometric gram-
mar is the Palladian Grammar (Stiny & Mitchell, 1978b). [Note
that the Palladian grammar, in principle, allows for (non-
uniform) scaling, as the size of the grid cell may vary.]

Similar

Similarity transformations include uniform scaling in addition to
the Euclidean transformations. Uniform scaling preserves a shape’s

proportions and angles, but not its size, as is visible in the similar
derivation in Figure 2. In contrast to isometry, in this case, the same
rule can apply to different-sized squares. Like fractal patterns,
similarity-based shape grammars operate on different scales.
Accordingly, they are suitable for abstract, scale-less pattern designs
such as the Sierpinski gasket (Yue & Krishnamurti, 2014).

Matrix

This category includes all transformations that can be expressed
as a transformation matrix, such as affine and projective transfor-
mations (transformation matrices are convenient for computer
implementation). Matrix transformations include translation, iso-
metry, and similarity, as well as linear transformations. Linear
transformations include both affine and projective transforma-
tions. Projective transformations, for example, perspective projec-
tions, do not preserve the angles and proportions of a shape, in
contrast to more general characteristics, like maximal elements,
intersections, and convexity. Affine transformations preserve par-
allel lines and ratios of distances as well. In the projective (matrix)
derivation in Figure 2, starting with an initial shape including
only horizontal and vertical lines, and applying a shape rule
that adds only parallel lines, the derivation also includes only hor-
izontal and vertical lines.

Matrix-based shape grammars are parametric in the sense that
they guide rule-application not with numerical criteria such as
lengths and angles, but with topological criteria such as the num-
ber of maximal elements, closure, convexity, etc. Stiny (1980)
refers to such grammars as having open terms. For example,
Tapia (1992) implements the ice ray grammar of Chinese lattice
designs (Stiny, 1977) as a parametric grammar that allows trian-
gles of any kind as inputs and preserves not the proportions, but
only the number of sides of output shapes.

Arbitrary

This last category includes all transformations, including ones that
transformation matrices cannot express. Stiny (1990) discusses
the application of visual rules in terms of arbitrary transforma-
tions t. For example, shape isomorphism can be defined topologi-
cally based on relations of connectivity between maximal
elements. One can also preserve other characteristics such as the
convexity or number of sides of a shape. Other possibilities
include basing shape isomorphism on the area enclosed by a
shape, or the fact that a shape is a polygon, etc. To analyze the

Table 1. The columns in this table represent the five sets of transformations

Translated Isometric Similar Matrix Arbitrary

Translation Translation Translation Translation Translation

Rotation Rotation Rotation Rotation

Reflection Reflection Reflection Reflection

Uniform scaling Uniform scaling Uniform scaling

Linear transformations Linear transformations

Everything else

Non-parametric Parametric

Each row represents an individual transformation. Note how each set contains progressively more transformations. Also, note the distinction between non-parametric and parametric
(i.e., non-similar) sets of transformations.
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algorithmic complexity of different sets of transformations, this
paper examines only cases where the number of maximal ele-
ments is invariant.

With this flexibility of rule application, Stiny (2011) intends to
preserve a maximum of design freedom. Per this view, shape
grammars are a special case of calculating with visual rules, in
that they restrict visual calculations to a set of rules and transfor-
mations. As a general design method, visual calculating does not
require such restrictions. However, the next section shows how
the increasing computational complexity of the sets of transfor-
mations results in algorithmic restrictions in terms of generalized
shape grammar implementations.

Lower bounds on the algorithmic complexity of shape
grammars

The existing literature discusses the algorithmic complexity of
shape grammar implementations primarily in terms of the algo-
rithms for subshape detection. This paper proposes a different
perspective: considering algorithmic complexity in terms of the
number of potential target shapes.

If a general shape grammar implementation should allow
rule-application for all target shapes, this potential number of
shapes provides lower bounds for shape grammar implementa-
tions. In other words, the algorithmic complexity of a shape
grammar implementation cannot be smaller than the largest
number of potential target shapes it intends to present to the
user for potential rule application.

The ability to find all potential target shapes – and thus all
possibilities for rule application – in a reasonable amount of
time is fundamental for shape grammar implementations in
terms of securing the design freedom envisioned by Stiny
(2011). This ability is for example necessary to let a user choose
where to apply a rule based on a visual preview or to automate
the enumeration of the complete design space of a specific gram-
mar (Stiny & Mitchell, 1978a).

Table 2 presents the simple case of finding all quadrilaterals in
a grid under different sets of transformations (see Fig. 3). The
results represent upper bounds in the sense that they represent
the largest number of subshapes we might want to find in such
a case, even if some might consider it pathological. They represent
a lower bound for shape grammar implementation in the sense
that even with a linear time subshape detection algorithm, we
would at least need that many steps to find all possibilities to
apply a shape rule.

The following sections show that the number of potential tar-
get shapes depends on the set of admissible transformations for
mapping input shapes onto target shapes, with more flexible
transformations leading to higher algorithmic complexity.
Although from a practical standpoint, the number of potential
target shapes can be limited by asking the user to preselect an
area for rule-application, this increasing algorithmic complexity
remains a challenge for shape grammar implementations that
intend to preserve as many design possibilities as possible.

Limitations

The analysis has two limitations: (1) It assumes that, in the para-
metric case, all maximal elements intersect each other and (2)
only considers closed quadrilaterals as target shapes. For the para-
metric case, the analysis generalizes to target shapes with arbitrary
numbers of maximal elements. These limitations are justifiable in
terms of proving lower bounds for algorithmic complexity
because removing them would only increase this complexity
and makes implementation more challenging. For example,
graph-based shape grammar implementations often represent
maximal line segments as portions of infinite lines. In this case,
non-closed shapes become a special case of closed ones. In addi-
tion, note that the resulting bounds do not consider the complex-
ity of representing shapes (Wortmann, 2013) and the complexity
of subshape detection. (In other words, we consider how many
subshapes one would need to find, not how to find them.)

Fig. 2. Derivations based on the same initial shape
(a square) and the same shape rule applied under differ-
ent transformations: translated, isometric, similar, and
matrix (from left to right).

Table 2. The numbers of intersections and isomorphic quadrilaterals resulting from a rectangular grid of maximal elements in terms of different sets of
transformations as a function of the number of maximal elements

Maximal
elements

Intersections
(similar)

Intersections
(parametric)

Translated
quads

Isometric
quads

Similar
quads

Parametric
quads

n (n/2)2 (n2 − n)/2 Ω (n2) Ω (n2) Ω (n3) Ω (n4)

4 4 6 1 8 8 8

6 9 15 4 32 40 120

8 16 28 9 72 112 560

10 25 45 16 128 240 1.680

12 36 78 25 200 440 3.960

We motivate the asymptotic lower bounds below. Note that the numbers for non-similar intersections and parametric quadrilaterals assume that all maximal elements intersect each other.
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Nevertheless, the resulting bounds provide guidance for the
design of general shape grammar implementations.

Translated and isometric

Let n/2 parallel, equidistant, horizontal maximal elements inter-
sect with n/2 parallel, equidistant, vertical maximal elements.
Then the total number of maximal elements is n, and the largest
number of identical squares under translation is (n/2− 1)2 or n2/
4 − n + 1. Consequently, the algorithmic complexity to find all
target shapes for a rule having such a square as an input is Ω
(n2). For example, the 4 × 4 grid of eight lines in Figure 4a yields
two (vertical and horizontal) sets of 8/2− 1 = 3 columns, in
Figure 4b. Squaring, that is, intersecting the two sets of three col-
umns yields nine identical, translated squares. When isometry
also is admissible, every square can be rotated four times and mir-
rored, which yields eight target shapes per square. However, this
linear increase does not affect the quadratic bound already estab-
lished for translation.

Similar

Once one admits also similarity transformations, target shapes of
different sizes become targets for rule application. That is, we should
consider not only the (n/2− 1)2 squares in the original grid, but also
squares resulting from grids with a smaller number of maximal
elements, such as [(n− 2)/(2− 1)]2, [(n− 4)/(2− 1)]2, …,
[4/(2− 1)]2. In other words, one can combine different sets of
smaller squares into bigger squares. For example, the 4 × 4 grid of

eight lines in Figure 4a yields two (vertical and horizontal) sets of
(8− 2)/2− 1 = 2 overlapping columns, in Figure 4c. Squaring,
that is, intersecting the two sets of two columns yields four identical,
translated squares. Likewise, in Figure 4d, there are two sets of (8−
4)/2− 1 = 1 columns, which yield one square.

The resulting number of squares is a quadratic series. The sum
of such a series (Sloane & Arndt, 2010) – also known as the sum
of square pyramidal numbers – can be expressed like this:

12 + 22 + 32 + · · · +m2 =
∑m
1

k2 = m(m+ 1)(2m+ 1)
6

= m3

3
+ m2

2
+ m

6
.

Considered in terms of the number of maximal elements n, m =
n/2− 1. Asymptotically, the potential number of target shapes
under similarity transformations is cubic or Ω(n3).

Matrix and arbitrary

In the parametric case, any combination of four maximal ele-
ments forms a quadrilateral (if all maximal lines intersect each
other), and thus is a potential target for rule application.
Figure 4e shows how three intersecting lines always form a trian-
gle, and how the fourth line cuts this triangle into two smaller tri-
angles and one quadrilateral. In the worst case for affine
transformations, all quadrilaterals could also be isomorphic in
terms of affinity. An algorithm for subshape detection in the

Fig. 3. Grids consisting of even numbers of maximal elements.
The top row consists of parallel lines, resulting in different num-
bers of isomorphic quadrilaterals (i.e., squares) under-
translated, isometric, and similar transformations. The bottom
row consists of skewed grids, which result in a factorial number
of isomorphic quadrilaterals under affine and arbitrary (i.e.,
parametric) transformations. Table 2 tabulates the different
numbers of intersections and isomorphic quadrilaterals under
different sets of transformations.

Fig. 4. Diagrams illustrating the derivation of the lower bounds. Panels (a) and (b) illustrate translation and isometry, (a)–(d) similarity, and (e) matrix and arbitrary.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 143

https://doi.org/10.1017/S0890060417000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000440


affine case would thus have to test for every quadrilateral if there
exists an affine transformation matrix that maps it onto an input
shape.

Even under non-linear transformations, one might want to
retain the distinction between convex and concave shapes.
However, this distinction at best halves the number of potential
target shapes, and thus has no impact on algorithmic complexity.

If one retains the number of maximal elements k as an invar-
iant between input and target shapes, one can express the number
of potential target shapes for input shapes with n-maximal ele-
ments as a combination, multiplied by eight to account for rota-
tions and symmetry:

8
n
k

( )
= 8n!

k!(n− k)!
.

Asymptotically, for a quadrilateral input shape, the potential
number of target shapes is Ω(n4). In general, this expression is
Ω(nk). When k grows close to n/2, the expression becomes non-
polynomial. However, even in the polynomial case, one can
expect the performance of a parametric shape grammar imple-
mentation to deteriorate rapidly as input shapes become more
complicated and the overall design grows larger. Note that this
result is similar to the bound for planar subgraph isomorphism
by Dorn (2010).

Consequently, the most critical factor for the algorithmic com-
plexity of parametric shape grammar implementations is the size
of the input shapes. In the general case, parametric subshape rec-
ognition is non-polynomial, even with a hypothetical, linear time
subshape detection algorithm. One can limit combinatorial explo-
sion by introducing additional criteria for mapping shapes, such
as convexity, proportions, closure, etc. Nevertheless, this result
highlights an acute challenge.

Yue and Krishnamurti (2013) present a similar result in terms
of the open terms of parametric shape grammars and argue that
this number is “usually small enough for their time complexity to
be relatively inexpensive”. Indeed, for individual grammars, it is
often possible to design more efficient parametric implementa-
tions (Stouffs, 2017). However, one cannot assume such efficiency
for designers that use a parametric shape grammar implementa-
tion for design exploration. In this case, quite complex input
shapes might arise easily.

Grasl and Economou (2013) report benchmark results of their
parametric shape grammar implementation, searching for para-
metric quadrilaterals in a grid similar to the ones presented in
Figure 3. They employ the subgraph detection algorithm by
Batz (2006), which – in a square grid consisting of 22 maximal
elements – finds all 3.025 quadrilaterals in about 500 millise-
conds. However, for targets shapes with more than four maximal
elements, the number of targets would increase rapidly, which
would arguably affect the subgraph detection algorithm’s
performance.

Strobbe et al. (2015) employ a similar graph-matching algo-
rithm for subshape detection. They report a running time that
is exponential in terms of the size of the design but “reasonably
low (<2 s)” for a floorplan with about 30 rooms. However, they
also do not consider the size of the input shape, which again is
only a quadrilateral.

One should also note that both benchmarks only use two-
dimensional line segments. The impact of more complex geome-
tries on the performance of parametric grammar implementations

(Stouffs & Krishnamurti, 2006) would probably be considerable
and deserves further study.

Upper bounds on the algorithmic complexity of shape
grammars

The analysis in the previous section suggests novel, straightfor-
ward algorithms for non-parametric and parametric subshape
detection with an improved worst-case complexity. These upper
bounds complement the lower bounds presented above.

Non-parametric (translated, isometric, and similar)

In two dimensions, only two distinct points are needed to deter-
mine any similarity transformation, except for a reflection about
the axis connecting both points. For shapes made up only of k
line segments, as considered here, three infinite lines, not all par-
allel, result in at least two intersection points, yielding two (or
three) distinct points. Specifically, when no two lines are parallel,
there are three distinct intersection points. Otherwise, a third dis-
tinct point can always be constructed at a perpendicular angle
from the axis connecting both points and at a distance equal
between the two existing points (Krishnamurti, 1981). In both
cases, non-parametric subshape detection requires the matching
of three maximal lines with at least two intersections. Once a
similarity transformation is found, one can verify the matching
in O(k) steps. As such, the algorithm presented by Trescak
et al. (2012) considering triplets of intersection points, while
ordering them by angle and ratio of lengths, is unnecessarily com-
plex. Considering n maximal lines, the number of intersection
points is O(n2), and there are O(n6) triplets to be considered.
But the number of triplets of maximal elements is only O(n3)
and angles and ratios of lengths can still be used to quickly reduce
potential matches. Note that this is also the potential number of
target shapes under similarity transformations, providing a tight
bound.

Parametric (matrix and arbitrary)

With Ω(nk) as the lower bound for parametric target shapes estab-
lished in the section “Matrix and arbitrary”, one can sketch a sub-
shape detection algorithm and analyze its complexity: Given an
input shape s with k maximal elements, one can compare it
with a potential target shape t by a pairwise comparison of the
elements and their labels. Such labels can denote invariants
such as intersections with other elements, convexity, line seg-
ments, etc. (Wortmann, 2013). First, we compute the O(k2) inter-
sections for s and t. For every element of t, we then perform a
pairwise comparison with the elements of s. This comparison
verifies the connection between elements and matches between
labels. Using tree search to traverse t, each comparison would
take O(k2). These tree searches are easy to parallelize. Note that,
in this case, we do not search for emergent subshapes, but
check only whether two shapes are isomorphic, which is an easier
problem. To perform comparisons for all elements then takes O
(k3). We must perform this test for all candidate target shapes,
which yields a tight bound of O(nk). Note that, depending on
the size of k, this bound is exponential in the worst case, although
one can use labels to limit the combinatorial explosion. Note that
the above, non-parametric subshape detection algorithm is a spe-
cial case of the parametric one since both rest on the general
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principle of comparing combinations of maximal elements for
isomorphism.

A graph-based variant of this algorithm would convert s and t
into planar graphs. In this case, a planar graph representation is
possible, because the representation does not need to account
for emergent subshapes (Wortmann, 2013). Isomorphism for pla-
nar, connected, undirected, and unlabeled graphs is possible in O
(k3) as well (Kukluk et al., 2004), resulting in the same overall
complexity (since labels would decrease, rather than increase,
the complexity of the comparison).

Conclusion

This paper identifies sets of transformations as a crucial factor for
the algorithmic complexity of shape grammar implementations.
As we have seen, this algorithmic complexity increases from
cubic to non-polynomial as more transformations are allowed.
For parametric shape grammar implementations, the paper iden-
tifies the size of the input shape as a critical factor that limits the
capability of parametric shape grammar implementations in
terms of supporting design exploration with real-time feedback.
Nevertheless, we propose a subshape detection algorithm for
parametric transformations that is polynomial for small input
shapes.

As the lower bounds presented in this paper hold independent
of specific subshape detection algorithms or (graph-based) data
structures, parametric shape grammar implementations must
rely on faster processing speeds and parallelization to achieve
usable, interactive applications. One might also want to exploit
the fact that planar subgraph detection is polynomial, for example
by developing a planar graph representation for shapes. Even
then, many types of visual calculations probably remain out of
reach in terms of computer implementation, an assessment
shared by Yue and Krishnamurti (2013). Further research
would test implementations of the proposed algorithms and
extend the presented bounds and algorithms – which apply to
line segments in two dimensions – to higher dimensions and
other types of geometries.
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