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Abstract The minimal ramification problem may be considered as a quantitative version of the inverse

Galois problem. For a nontrivial finite group G, let m(G) be the minimal integer m for which there exists a
G-Galois extension N/Q that is ramified at exactly m primes (including the infinite one). So, the problem

is to compute or to bound m(G).
In this paper, we bound the ramification of extensions N/Q obtained as a specialization of a branched

covering φ : C → P1
Q. This leads to novel upper bounds on m(G), for finite groups G that are realizable

as the Galois group of a branched covering. Some instances of our general results are:

1 6 m(Sk ) 6 4 and n 6 m(Sn
k ) 6 n+ 4,

for all n, k > 0. Here Sk denotes the symmetric group on k letters, and Sn
k is the direct product of n copies

of Sk . We also get the correct asymptotic of m(Gn), as n→∞ for a certain class of groups G.

Our methods are based on sieve theory results, in particular on the Green–Tao–Ziegler theorem on

prime values of linear forms in two variables, on the theory of specialization in arithmetic geometry, and
on finite group theory.
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1. Introduction

This study is motivated by a problem in inverse Galois theory. We first describe the

problem and the new results we obtain. Then we discuss the methods that needed to be

developed which are of interest by themselves.

1.1. The minimal ramification problem

The inverse Galois problem, which is one of the central problems in Galois theory, asks

whether every finite group G can be realized as the Galois group G ∼= Gal(N/Q) of

a Galois extension N of Q. This problem is widely open. There are several different

approaches to attack this problem that yield realizations of certain families of groups.

The three main approaches found in the literature are:
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(I) Specializations of geometrically irreducible branched coverings of P1
Q using Hilbert’s

irreducibility theorem; see [18, 26, 28].

(II) Class field theory; see [26, § 2.1.1] or [22, § 9.6.1].

(III) Galois representations; see [26, § 5] or [14, 29, 30] for some recent results.

The minimal ramification problem is a quantitative version of the inverse Galois

problem: For a nontrivial finite group G, let m(G) be the minimal integer m for which

there exists a Galois extension N/Q that is ramified at exactly m primes such that

Gal(N/Q) ∼= G. If no such N exists, put m(G) = ∞. Here, we include the infinite prime,

and the extension is unramified at infinity if and only if it is totally real.

The minimal ramification problem asks to calculate or to bound m(G). Boston and

Markin [2, Theorem 1.1] prove that if G 6= 1 is abelian, then m(G) = d(G), where d(G)
is the minimal number of generators of G. It is convenient to put d(1) = 1, and then

since Q has no unramified extensions, one gets the lower bound

m(G) > d(Gab), (1)

for any nontrivial G, where Gab
= G/[G,G] is the abelianization of G. Boston and

Markin [2] conjecture that equality actually holds:

Conjecture 1.1 (Boston–Markin). m(G) = d(Gab) for all nontrivial finite groups G.

This conjecture has a lot of evidence in the literature mostly for solvable groups; for

example, Jones and Roberts [13] build certain number fields ramified at one prime.

For solvable groups G, one can use Approach II, to obtain upper bounds on m(G) and

for some subclasses of solvable groups, the full conjecture, see [2, 15, 16, 20, 23, 24].

For example, Kisilevsky, Neftin, and Sonn [15] establish the conjecture for semi-abelian

p-groups. However, to date, the conjecture is widely open for p-groups.

For linear groups, Approach III is very effective in giving bounds on ramification. For

example, for every prime p > 5, Zywina [30] realizes PSL2(Fp) with ramification {2, p}.
(This work is the first realization of these groups as Galois groups for all p.)

For the special case, G = Sk , the symmetric group, the literature contains both

theoretical and computational bounds on m(Sk) using Approach I: Plans [24,

Remark 3.10] remarks that under the deep conjecture in number theory, the Schinzel

Hypothesis H, m(Sk) = 1, as the conjecture predicts; however, an unconditional uniform

bound for m(Sk) does not seem to be in the literature. Malle and Roberts [19] construct

Sk-extensions that are unramified outside {2, 3} for some k’s between 9 and 33.

An analogue of the minimal ramification problem for function fields; that is, when one

replaces Q by Fq(T ) is also treated in the literature; see e.g., [3, 12]. In this case, it closely

relates to the Abhyankar conjecture about the finite quotients of the étale fundamental

group of an affine curve over an algebraically closed field of positive characteristic that

was resolved by Harbater [10] and Raynaud [25].

The methods used for non-solvable groups that were discussed above yield a specific

extension that realizes the group with a few ramified primes. This is reflected by the fact

that proving the conjecture for G and H does not yield a solution for G× H . We propose
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to study the conjecture, in the following asymptotical formulation:

m(Gn) =

 d(Gab) · n, Gab
6= 1

1, Gab
= 1.

(2)

To the best of our knowledge, there is no strong evidence for the case of perfect G and

large n.

In this work we propose an attack on the minimal ramification problem using

Approach I. Our method produces novel results for groups having a realization as the

Galois group of a branched covering and it may be applied to direct products; hence in the

asymptotic formulation (2) we get new strong upper bounds, and sometimes asymptotic

formulas. The results are discussed in detail below. This attack necessitates developing

the theory of specializations, and combining it with sieve theory results on prime values

of polynomials, such as combinatorial sieve [9] and the Green–Tao–Ziegler theorem [8].

1.2. Statement of main results

Here we gather our results on the minimal ramification problem, the proofs of which

appear in § 7. Recall that a group G is said to be regularly realizable if it is isomorphic

to the Galois group of a geometrically irreducible branched covering φ : C → P1
Q defined

over Q.

Theorem 1.2. Let G be a regularly realizable group. Then

m(Gn) = O(n), n→∞. (3)

The implied constant in (3) is given explicitly in terms of the underlying branched

covering φ.

If G is not perfect, then by the simple observation (1) one gets that (3) gives the correct

order of magnitude in the sense that

m(Gn) = 2(n).

Here, for non-negative functions f, g, we write f (n) = 2(g(n)) if and only if there are

constants 0 < c 6 C such that cg(n) 6 f (n) 6 Cg(n) for all n sufficiently large.

When the ramification locus is rational (i.e., the branch points are in P1(Q)), we have

a more explicit bound:

Theorem 1.3. Assume G is the Galois group of a geometrically irreducible branched

covering φ : C → P1
Q defined over Q. Assume that the branch locus of φ consists of r

rational points. Then

m(Gn) 6 (r − 1)n+ O(1), n→∞. (4)

We get a better bound if our group G satisfies the so called E(p)-condition for some

prime number p: all the nontrivial simple quotients of G are p-groups, but none of the

quotients of the commutator [G,G] are (see Definition 6.2 and the examples that follow;

e.g., the symmetric group is E(2)).
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Theorem 1.4. Let G, φ, and r be as in Theorem 1.3. Assume G is E(p) and that d(Gab) 6
r − 2. Then

d(Gab) · n 6 m(Gn) 6 (r − 2)n+ O(1), n→∞. (5)

In the special case when G = Sk , which is of particular interest, we can find φ with

r = 3 so that (1) and (5) give n 6 m(Sn
k ) 6 n+ O(1). With more work we can obtain a

sharper result:

Theorem 1.5. We have

n 6 m(Sn
k ) 6 n+ 4, ∀n > 1, k > 0 (6)

and

m(Sk) 6 4, ∀m > 0. (7)

Thus we immediately obtain the following

Corollary 1.6. m(Sk) is bounded.

We emphasize that in (6) and (7) the infinite prime is ramified; that is to say, the

minimal number of prime numbers that ramify in Sn
k and Sk extensions is at most n+ 3

and 3, respectively.

Our bounds in (6) and (7) are independent of k and are unconditional. This comes

in contrast to the hitherto known results [24] that were conditional on the Schinzel

Hypothesis H and restricted to n = 1.

In general, constructing branched covering φ : C → P1
Q with specific Galois group G is

notoriously difficult. The classical method of rigidity, reduces this problem to the group

theoretical problem of finding a rigid tuple; see § 6.1 or the books [18, 26, 28].

Theorem 1.7. Assume G has a rational rigid r-tuple. Then

m(G) 6 r + #(Prms(|G|)∪ {p 6 r}). (8)

Here Prms(|G|) denotes the set of prime divisors of the order of G.

If in addition G satisfies the E(p)-condition, then d((Gn)ab) = d(Gab)n and we obtain

a sharp asymptotic formula:

Theorem 1.8. Let G be an E(p) group that has a rational rigid r-tuple. Then

m(Gn) = d(Gab) · n+ O
(

n
log(n)

)
. (9)

Finally we remark that the methods for the results above work also for general direct

products of groups and we have restricted the discussion to direct powers merely for

simplicity of presentation. For example, the same proof of (6) gives that

m

( n∏
i=1

Smi

)
6 n+ 4.
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1.3. Methods

We always write elements of P1(Q) as pairs [a : b] with a, b ∈ Z relatively prime. This

presentation is unique up to a sign. For us a prime p denotes either a prime number or

the infinite prime of Q. The completion at p is denoted by Qp, so in particular, Q∞ = R.

Every finite set of primes S defines the S-adic topology on P1(Q) induced by the diagonal

embedding P1(Q)→
∏

p∈S P1(Qp). For a finite set of primes S that contains ∞ and for

an integer n ∈ Z we denote

PrmsS(n) = {p : p | n}r S. (10)

The following function plays a key role in the investigation.

Definition 1.9. Let D1, . . . , Dr ∈ Z[t, s] be non-associate irreducible homogeneous

polynomials and D =
∏

i Di . We defined B(D1, . . . , Dr ) to be the minimal positive integer

B for which there exists a finite set of primes S0 = S0(B) that contains ∞ such that for

every finite set of primes S0 ⊆ S and a nonempty S-adic open set VS ⊆ P1(Q) there exists

[a : b] ∈ VS such that

#PrmsS(D(a, b)) 6 B.

It follows that there exist infinitely many such [a : b] in each VS .

For an r -tuple d = (d1, . . . , dr ) of positive integers, we let

B(d) = max
(D1,...,Dr )

B(D1, . . . , Dr ), (11)

where (D1, . . . , Dr ) runs over all non-associate irreducible homogeneous polynomials of

degrees deg Di = di .

It is far from being obvious that B(d) is finite. However sieve methods may be used to

derive effective bounds in terms of r and d =
∑

i di .

From [9, Theorem 10.11] the general bound

B(d) 6 d − 1+ r
r∑

j=1

1
j
+ r log

(
2d
r
+

1
r + 1

)
(12)

may be derived. Schinzel Hypothesis H on prime values of polynomials implies

B(d) 6 r. (13)

When all di = 1, the Green–Tao–Ziegler theorem [8] achieves this bound:

B(1, . . . , 1) 6 r. (14)

The formal derivations of all of these results appear in § 4.

Another key notion is the universally ramified primes: Let φ : C → P1
Q be a

geometrically irreducible branched covering. For each point [a : b] ∈ P1(Q), we let Aφ
[a:b]

be the specialized algebra at [a : b] which is defined by

φ−1([a : b]) = Spec(Aφ
[a:b]).
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Note that Aφ
[a:b] is a finite Q-algebra of degree [Aφ

[a:b] : Q] = degφ and it is étale resp. a

field if and only if [a : b] is not a branch point of φ resp. φ−1([a : b]) is Q-irreducible.

The set of universally ramified primes is defined as

U = U (φ) =
⋂

[a:b]∈P1(Q)

Ram(Aφ
[a:b]/Q),

where for a finite Q-algebra A we let Ram(A/Q) = {p | A⊗Qur
p 6
∼= (Qur

p )
n
}. Here Qur

p is

the maximal unramified extension of Qp, where for the infinite prime we set Qur
∞ = R,

i.e., we consider C/R as ramified. We also write

RamS(A/Q) = Ram(A/Q)r S,

where S is a finite set of primes. We have that p 6∈ Ram(A/Q) if and only if A is isomorphic

to a product of number fields that are unramified at p. Thus U is the set of the primes that

ramify under every specialization. In practice it is easy to bound U from above, simply by

taking some arbitrarily chosen points [a : b] ∈ P1(Q) and calculating the greatest common

divisor of the discriminants of the specialized algebras Aφ
[a:b]/Q. However, to calculate U

exactly, may be difficult.

We denote by Branch(φ) ⊂ P1
Q the closed subscheme of branch points of φ. So Branch(φ)

is the zero locus of some nonzero homogeneous polynomial D(t, s) ∈ Z[t, s].

Definition 1.10. Let G be a finite group, U a finite set of primes of Q and d = (d1, . . . , dr )

a tuple of positive integers. We say that G has (U ;d) realization if there exists a

geometrically irreducible branched covering φ : C → P1
Q such that

• Q(C)/Q(P1) is Galois with Galois group G,

• U (φ) ⊆ U ,

• Branch(φ) = {(D1), . . . , (Dr )} with Di (t, s) ∈ Z[t, s] homogeneous of degree di .

The key technical tool in proving the results mentioned above is a bound on m(G) in

terms of U and B(d):

Proposition 1.11. Let G be a finite group that has a (U ;d) realization and let L/Q be

a finite extension. Then there exists a Galois extension N/Q with Galois group G such

that N ∩ L = Q and #RamU (N/Q) 6 B(d), where B(d) is defined in (11). In particular,

m(G) 6 B(d)+ #U.

The proof of Proposition 1.11 is based on the existence of many good specializations.

To formally state this we introduce the notion of thin sets [26] in the sense of Serre: A thin

set of type 1 in P1(Q) is a finite set. A thin set of type 2 is φ(C(Q)), where φ : C → P1
Q

is an irreducible branched covering of degree > 2. A thin set in P1(Q) is a set contained

in a finite union of thin sets of types 1 and 2. The Hilbert irreducibility theorem is the

statement that P1(Q) is not thin.
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Theorem 1.12. Let φ : C → P1
Q be a geometrically irreducible branched covering. Let U =

U (φ) be the set of universally ramified primes and Branch(φ) = {(D1), . . . , (Dr )} ⊆ P1
Q

be the branch locus of φ, where Di ∈ Z[t, s] are non-associate homogeneous irreducible

polynomials. Then the set � of all [a : b] ∈ P1(Q) such that #RamU (A
φ
[a:b]/Q) 6

B(D1, . . . , Dr ) is not thin.

Theorem 1.12 follows from a strong version of Hilbert’s irreducibility theorem and the

following result on ramification under specialization.

Theorem 1.13. Under the notation of Theorem 1.12 and with D = D1 · · · Dr there exists

a finite set of primes Tφ containing U ∪ {∞} such that for every finite set of primes S
with Tφ ⊆ S there exists a nonempty S-adic open set VS of P1(Q) satisfying the following

property: For every [a : b] ∈ VS we have

(1) Ram(Aφ
[a:b]/Q)∩ S = U .

(2) RamS(A
φ
[a:b]/Q) ⊆ PrmsS(D(a, b)).

Outline of The Paper

In § 2 we discuss the universally ramified primes and obtain some auxiliary results that

are then used in § 3 to prove Proposition 1.11 and Theorems 1.12 and 1.13.

Then we develop the necessary machinery in order to apply Proposition 1.11 to the

minimal ramification problem: In § 4, we establish the above bounds on B(d) and in §§ 5

and 6, we construct covers φ with small U (φ).
Finally, in § 7, we prove the results stated in § 1.2.

2. Universally ramified primes

2.1. Preliminaries in commutative algebra

We start with some notation: Recall that by [a : b] ∈ P1(Q), we always mean that a and

b are co-prime integers and that this uniquely defines the pair a, b, up to a sign. Given

a homogeneous ideal I �Z[t, s] and [a : b] ∈ P1(Q), we denote

I ([a : b]) = { f (a, b) : f ∈ I }�Z

which is an ideal in Z. For a prime number p we denote by vp(n) the p-adic valuation

of n. We extend the functions vp(•) and PrmsS(•) (defined in (10)) from the integers to

ideals in the obvious way: If J = (n)�Z, then

PrmsS(J ) = PrmsS(n),

and

vp(J ) = vp(n).

For a prime p of Q, recall that Qur
p denotes the maximal unramified extension of Qp

with Qur
∞ = R. If p is a prime number, then Zur

p denotes the integral closure of Zp in Qur
p ;

i.e., the subring of elements with non-negative valuation (w.r.t. the unique lifting of vp
to Qur

p ).

The following technical lemma is needed in the proof of Theorem 1.13.
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Lemma 2.1. Let I � Z[t, s] be a nonzero homogeneous ideal and let D(t, s) ∈ Z[t, s] be

a homogeneous polynomial such that DQ[t, s] = IQ[t, s]. Then, there exists a finite set

of primes S that contains the infinite prime such that for every [a : b] ∈ P1(Q) and for

every p 6∈ S we have vp(I (a, b)) = vp(D(a, b)).

Proof. The ideal I is generated by finitely many homogeneous polynomials, say

I =
∑k

i=1 giZ[t, s]. Thus DQ[t, s] =
∑k

i=1 giQ[t, s], which implies that there exist

homogeneous polynomials

c1(t, s), . . . , ck(t, s), d1(t, s), . . . , dk(t, s) ∈ Q[t, s]

such that gi = ci D, i = 1, . . . , k and D =
∑k

i=1 di gi . Let S′ be the set of primes dividing

the denominators of the coefficients of c1, . . . , ck, d1, . . . , dk . Let S := S′ ∪ {∞}. Then, for

[a : b] ∈ P1(Q) and p /∈ S, we have that ci , di ∈ Zp[t, s] for all 1 6 i 6 k; thus IZp[t, s] =
DZp[t, s]. For every [a : b] ∈ P1(Q) we thus have Zp I (a, b) = Zp(D(a, b)), hence the

desired assertion.

2.2. Unramified specializations

The goal of this section is to give two results about unramified specializations. The first

shows that there are specializations which are unramified in a finite set of non-universally

ramified primes.

Lemma 2.2. Let φ : C → P1
Q be a branched covering, and let S be a finite set of primes.

Then there exists a nonempty S-adic open set VS of P1(Q) such that for every ζ ∈ VS we

have Ram(Aφζ /Q)∩ S ⊆ U (φ).

Proof. By the Chinese Remainder Theorem, if S1 ∩ S2 = ∅ and if VSi is a nonempty open

Si -adic open set, i = 1, 2, then VS1 ∩ VS2 is a nonempty S1 ∪ S2-adic set. Thus it suffices

to consider the case where S = {p}; i.e., S contains only one prime.

If p ∈ U (φ), then the assertion is trivial. Otherwise, there exists ζ ∈ P1(Q) such that

Aφζ is unramified at p. In particular, Aφζ is reduced, so ζ 6∈ Branch(φ). Consider the map

φQur
p
: C(Qur

p )→ P1(Qur
p ).

Since ζ is not a branch point, #φ−1
Qur

p
(ζ )(Qur

p ) = degφ, and so as Qur
p is Henselian, by

the inverse function theorem (see e.g. [5, Corollary 9.5]) there exists some p-adic

neighborhood V of ζ such that for every ζ ′ ∈ V

#φ−1
Qur

p
(ζ ′)(Qur

p ) = #φ−1
Qur

p
(ζ )(Qur

p ) = degφ.

The proof is done with VS = V ∩P1(Q).
For the second result we need some preparations.

Lemma 2.3. Let p be a finite prime and let

φ : F → SpecZur
p

be an étale map of degree n. Then F ∼= Spec(Zur
p )

n.
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Proof. The ring Zur
p is a Henselian ring with algebraically closed residue field. Thus the

assertion follows from [21, Proposition I.4.4].

Let φ : C → P1
Q be a branched covering. The branch locus Branch(φ) ⊂ P1

Q is a closed

subscheme of dimension 0, so Branch(φ) is the zero locus of some nonzero homogeneous

polynomial D(t, s) ∈ Z[t, s].
The following fact on the closeness of the branch locus over Z is well known. We include

a proof of it for the reader’s convenient.

Lemma 2.4. Let φZ : C→ P1
Z be the normalization of P1

Z in the generic point of C via φ.

Then, the branch locus Rφ ⊂ P1
Z of φZ is closed.

Proof. Since P1
Z is Nagata [27, Tag 035B], hence universally Japanese [27, Tag 033Z], and

since P1
Z is integral, it is Japanese which means by definition that φZ is finite. Thus, by

[27, Tag 024P], the ramification locus consists of all x at which the stalk of the coherent

sheaf �C/P1
Z

is nontrivial. The sheaf �C/P1
Z

is locally of finite type by [27, Tag 01V2] hence

[27, Tag 01BA] implies that the ramification locus is closed. Thus we conclude that the

branch locus Rφ , which is the image of the ramification locus under φZ is closed in P1
Z

as finite morphisms are closed.

Away from Rφ , the morphism φZ is étale. We denote by dφ,Z�Z[t, s] the homogeneous

ideal that defines Rφ . We have:

dφ,ZQ[t, s] = D(t, s)Q[t, s]. (15)

Now we are ready for the second result of the section:

Proposition 2.5. Let φ : C → P1
Q be a branched covering, let [a : b] ∈ P1(Q), and let p be

a prime number. Assume that vp(dφ,Z(a, b)) = 0. Then Aφ
[a:b] is unramified at p.

Proof. We identify P1
Fp
= P1

Z×Z Fp and P1
Q = P1

Z×ZQ as subschemes of P1
Z: the special

and the generic fibers, respectively. Write ζ = [a : b] ∈ P1
Q and ζp = [ā : b̄] ∈ P1

Fp
, where

the overline denotes reduction modulo p. By assumption, there exists f ∈ dφ,Z such that

f (a, b) 6≡ 0 mod p, which implies that

ζp 6∈ Rφ .

So φZ is étale at ζp. We base change with Zur
p to get the following diagram:

Fζ

��

// CZur
p

φZur
p

��

// C

φZ
��

SpecZur
p

ζ // P1
Zur

p
// P1

Z

Since φZur
p

is étale in a neighborhood of ζp, the fiber Fζ is étale over SpecZur
p . By

Lemma 2.3,

Fζ ∼= Spec(Zur
p )

degφ
;
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so

Spec(Aφζ ⊗ZQur
p ) = Fζ ×Spec(Zur

p )
Spec(Qur

p ) = Spec(Qur
p )

degφ .

This implies that Aφζ is unramified at p, as needed.

2.3. Universally and Vertically Ramified Primes

We keep the notation of the previous section. We say that a prime number p is vertically

ramified in φ if

P1
Fp
⊂ Rφ ⊂ P1

Z

(under the natural embedding induced from Z→ Fp). This notion is consistent with

the one in [17]. We denote the set of vertically ramified primes by V (φ). We use that

the property of being unramified is preserved under fiber products. In particular, for

φi : Ci → P1(Q), i = 1, 2, we have

V (φ1×P1 φ2) = V (φ1)∪ V (φ2). (16)

Let Branch(φ) = {(D1), . . . , (Dr )} and let B(φ) be the set of prime numbers p for which

for every [a : b] ∈ P1(Fp) there is i with Di (a, b) = 0 (in Fp). Since the Di are not the

zero polynomials modulo p, for all p, we get that

p ∈ B(φ)⇒ p+ 1 6 deg(Branch(φ)) :=
r∑

i=1

deg Di . (17)

In general, we conclude

U∞(φ) ⊆ V (φ)∪ B(φ), (18)

see [17, Specialization Inertia Theorem (1)].

3. Proofs for the methods

In this section, we prove Proposition 1.11 and Theorems 1.12 and 1.13.

Proof of Theorem 1.13. Recall that we are given a geometrically irreducible branched

covering φ : C → P1
Q with U = U (φ) the set of universally ramified primes and with

branch locus Branch(φ) = {(D1), . . . , (Dr )}. Put D = D1 · · · Dr . We have to find a finite

set of primes Tφ that contains U ∪ {∞} such that for every finite set of primes S containing

Tφ there exists nonempty S-adic open set VS with properties 1 and 2 of the theorem.

Let I = dφ,Z�Z[t, s]. Since DQ[t, s] = IQ[t, s], by Lemma 2.1 there exists a finite set

of primes S1 such that for all p 6∈ S1 and for all [a : b] ∈ P1(Q) we have

vp(I (a, b)) = vp(D(a, b)). (19)

Let Tφ = S1 ∪U ∪ {∞} and let S be a finite set of primes containing Tφ . By Lemma 2.2,

there exists a nonempty S-adic open set VS of P1(Q) such that for all ζ ∈ VS we have

Ram(Aφζ /Q)∩ S ⊆ U , so Ram(Aφζ /Q)∩ S = U .

Let ζ = [a : b] ∈ VS , let p 6∈ S, hence p 6∈ S1, and assume that p - D(a, b). By (19),

we have vp(I (a, b)) = vp(D(a, b)) = 0, so p is prime to I (a, b). This implies, by

Proposition 2.5, that p 6∈ Ram(Aφζ /Q).
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In order to prove Theorem 1.12 we need the following strong variant of Hilbert’s

irreducibility theorem that gives a nonempty S′-adic open set in the complement of

any thin set:

Lemma 3.1. Let Z be a thin set in P1(Q). For every finite set of primes S there exist

a finite set of primes S′ and a nonempty S′-adic open set VS′ such that S ∩ S′ = ∅ and

Z ∩ VS′ = ∅.

Proof. By [26, Theorem 3.5.3] there exists S′ with S′ ∩ S = ∅ such that Z is not S′-adic

dense in
∏

p∈S′ P1(Qp). So there exists an open subset U of
∏

p∈S′ P1(Qp) with Z ∩U = ∅.
Since P1

Q has the weak approximation property (p. 30 in loc.cit.) VS′ := U ∩P1(Q) 6= ∅,
as needed.

Proof of Theorem 1.12. Recall that � is the set of [a : b] ∈ P1(Q) such that

#RamU (A
φ
[a:b]/Q) 6 B(D1, . . . , Dr ) and it suffices to show that � is not contained in any

thin set Z . Put B = B(D1, . . . , Dr ), and let Tφ be as in Theorem 1.13. Let S0 = S0(B) be

the set of primes from Definition 1.9. By Theorem 1.13, for S1 = Tφ ∪ S0, there exists a

nonempty S1-adic open set VS1 such that for every ζ = [a : b] ∈ VS1 we have

#RamU (A
φ
ζ ) = #RamS1(A

φ
ζ ) 6 #PrmsS1(D(a, b)). (20)

By Lemma 3.1 there exists a finite set of primes S′1 such that S1 ∩ S′1 = ∅ and there

exists a nonempty S′1-adic open set VS′1
such that VS′1

∩ Z = ∅. Thus VS = VS1 ∩ VS′1
is an

S-adic open set, for S = S1 ∪ S′1 which is nonempty by the Chinese Remainder Theorem

and that satisfies

VS ∩ Z = ∅. (21)

Since S0 ⊆ S, by Definition 1.9 and by (20), there exists ζ ∈ VS such that

#RamU (A
φ
ζ ) 6 B.

This together with (21) implies that ζ ∈ �r Z , so � 6⊆ Z .

Now we are ready to the

Proof of Proposition 1.11. Let φ : C → P1(Q) be a branched covering from Definition 1.10

and let Z be the set of [a : b] ∈ P1(Q) such that Aφ
[a:b]⊗ L is not a field. Then Z is thin

(see [4, Corollary 12.2.3] and note that a subset of Q is thin if and only if its complement

contains a Hilbert set by Lemma 13.1.2 in loc.cit.). By Theorem 1.12 and by (11), there

exists [a : b] ∈ P1(Q)r Z such that for N = Aφ
[a:b] we have

#RamU (N/Q) 6 B(D1, . . . , Dr ) 6 B(d).

As N ⊗ L is a field, it follows that N is a field that is linearly disjoint from L, and so

N ∩ L = Q. Clearly N/Q is Galois with Galois group G.

Remark 3.2. The proof above allows us to choose the primes in RamU (N/Q) to be disjoint

from any chosen finite set (indeed, the primes one gets from sieve methods are big, since

we sieve out the small primes). In particular, we can make the ramification at the primes
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in RamU (N/Q) to be tame by avoiding the primes smaller than deg(φ). Our analysis does

not give any control on the tameness of the ramification of the primes in U . However, in

some cases this suffices, for example, if our branched covering φ is Galois of degree |G|
and all the primes in U (φ) do not divide |G|, then our specialized extensions are tame.

In our construction of Sk
n , this happens, because the only universally ramified prime is

the infinite one.

Similarly, if ∞ 6∈ U (φ), then the extension we get in the theorem can be made totally

real.

4. Prime values of polynomials

The goal of this section is to formally deduce the bounds (12) and (14) from sieve

theoretical results and (13) conditionally on Schinzel Hypothesis H. These bounds are

needed in order to apply Proposition 1.11 to the minimal ramification problem.

4.1. Local obstructions

Since many of the results in this theory are stated in the literature for univariate

polynomials we first deal with those, and then move to bivariate homogeneous

polynomials.

We say that f (x) ∈ Z[x] has a local obstruction at p if p divides f (n) for all n ∈ Z. We

denote the set of primes at which there is a local obstruction by O f .

Lemma 4.1. If f is primitive (i.e., the greatest common divisor of its coefficients is 1),

then p 6 deg f for all p ∈ O f .

Proof. By assumption f mod p ∈ Fp[x] is not the zero polynomial, hence has at most

deg f roots modulo p.

Definition 4.2. Let d1, . . . , dr be positive integers. Define

B0 = B0(d1, . . . , dr )

to be the minimum positive integer B0 such that for every f = f1 · · · fr , with fi (x) ∈
Z[x] irreducible of degree di with O f = ∅ there exist infinitely many n > 0 such that

#Prms( f (n)) 6 B0.

Sieve methods are effective in bounding B0 in terms of r and d =
∑r

i=1 di : By the

beta-sieve, [9, Theorem 10.11] we have

B0(d1, . . . , dr ) 6 b (22)

for every

b > d − 1+ r
r∑

j=1

1
j
+ r log

(
2d
r
+

1
r + 1

)
.

Schinzel Hypothesis H is the conjecture that says that if f1, . . . , fr are non-associate

irreducible polynomials with O f1··· fr = ∅, then there are infinitely many n with
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f1(n), . . . , fr (n) being simultaneously prime. In particular, it implies that

B0(d1, . . . , dr ) 6 r.

(Note that one cannot do better.) Hence to obtain (12) and (13) it suffices to prove that

B(d) 6 B0(d), (23)

which we now pursue. First we remove the restriction of having no local obstructions:

Lemma 4.3. Let f1, . . . , fr ∈ Z[x] be irreducible polynomials of positive leading

coefficients and of respective degrees d1, . . . , dr , f = f1 · · · fr , and S a finite set of primes

such that f has no local obstructions outside of S. Then, there exist infinitely many n
such that #PrmsS( f (n)) 6 B0(d1, . . . , dr ).

Proof. For each p ∈ S let αp be the maximal non-negative integer such that the function

n 7→ f (n) mod pαp is the zero function. Put N =
∏

p pαp and choose an integer ap such

that f (ap) 6≡ 0 mod pαp+1. By the Chinese Remainder Theorem, we have an integer a
with a ≡ ap (mod pαp+1) for all p ∈ S and let g(y) = f (N y+a)

N .

We claim that g(y) is an integral polynomial with no local obstructions. Indeed,

since (x − a) divides f (x)− f (a) in Z[x] we get, by substitution x = N y+ a, that

N y divides f (N y+ a)− f (a) in Z[y]. Since N | f (a), N divides the coefficients of

f (N y+ a) = ( f (N y+ a)− f (a))+ f (a), so g(y) ∈ Z[y]. To show that g(y) has no local

obstruction at a prime p, we note that if p ∈ S, then g(0) 6≡ 0 mod p and if p 6∈ S, then

f does not have local obstruction at p, hence there exists m with f (m) 6≡ 0 (mod p),
and since p - N , there is n such that m ≡ Nn+ a (mod p), hence g(n) 6≡ 0 (mod p).

Next we apply the definition of B0 = B0(d1, . . . , dr ) to g (which has the same

factorization type as f ) and the trivial observation that PrmsS( f (Nn+ a)) = PrmsS(g(n))
to conclude that for infinitely many n we have

#PrmsS( f (Nn+ a)) 6 #Prms(g(n)) 6 B0,

as needed.

Let N be a positive integer and S := Prms(N )∪ {∞} we define VN to be the following

S-adic neighborhood of [1 : 0] ∈ P1(Q):

VN :=

{
[a : bN ] ∈ P1(Q) : a, b ∈ Z and

∣∣∣∣bN
a

∣∣∣∣ 6 1
N

}
. (24)

Note that by our notational agreement, gcd(a, bN ) = 1.

Lemma 4.4. For every D = D1 · · · Dr with D1, . . . , Dr ∈ Z[t, s] homogeneous irreducible

polynomials of respective positive degrees d1, . . . , dr , there exists a finite set of primes

S0 = S0(d1, . . . , dr ) depending only on d1, . . . , dr such that for every positive integer N
there exists [a : b] ∈ VN such that

#PrmsS(D(a, b)) 6 B0(d1, . . . , dr ), S = S0 ∪Prms(N ).
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Proof. Let S0 be the set of all primes p such that p 6 deg D. If p - N , then

{[1+ x N : N ] ∈ P1(Fp) | x ∈ Fp} = A1(Fp).

Thus if D(1+ x N , N ) ≡ 0 (mod p) for all x , then p ∈ S0 by Lemma 4.1 (note that D is

primitive as the product of irreducible polynomials in Z[t, s]). Therefore for p 6∈ S, the

function n 7→ D(1+ nN , N ) (mod p) is nonzero.

Denote gi (x) = Di (1+ x N , N ). If Di (t, s) 6= s, then gi is an irreducible polynomial of

degree di in Q[x]. Moreover, we may write gi (x) = ci fi (x), where ci ∈ Z and fi (x) ∈ Z[x]
is irreducible. By the above Prms(ci ) ⊆ S. If Di (t, s) = s, we denote fi (x) = x .

Now f1, . . . , fr are irreducible in Z[x], f = f1 . . . fr has no local obstruction outside

of S, and deg fi = deg Di . By Lemma 4.3, there exists n > N such that #PrmsS( f (n)) 6
B0(d1, . . . , dr ). This finishes the proof since N

1+nN < 1
N , so [1+ nN : N ] ∈ VN .

Note that GL2(Z) acts transitively on P1(Q) by(
x1 x2
y1 y2

)
[a : b] = [x1a+ x2b : y1a+ y2b]. (25)

Lemma 4.5. Let S be a finite set of primes containing the infinite prime and let VS be a

nonempty S-adic open set. Then, there exist a positive integer N and a matrix g ∈ GL2(Z)
such that gVN ⊆ VS.

Proof. Let [a : b] ∈ VS and choose g ∈ GLn(Z) such that g[1 : 0] = [a : b]. Then g−1(VS)

is a neighborhood of [1 : 0]. Hence there exists N with Prms(N ) ⊆ S such that VN ⊆

g−1VS , so gVN ⊆ VS .

Proof of (23). Let D1, . . . , Dr ∈ Z[t, s] be non-associate irreducible homogeneous

polynomials of positive degrees d1, . . . , dr . Let S0 = S0(d1, . . . , dr ) be as in Lemma 4.4.

Let S be a finite set of primes containing S0 and VS a nonempty S-adic open set. By

Lemma 4.5, there exists N with Prms(N ) ⊆ S and g ∈ GL2(Z) such that gVN ⊆ VS .

We let D′i = Di ◦ g and D′ = D′1 · · · D
′
r . Then each D′i is irreducible of degree di . By

Lemma 4.4, there exists [a′ : b′] ∈ VN with #PrmsS(D′(a′, b′)) 6 B0(d1, . . . , dr ) (note

that S = S ∪Prms(N )). Therefore, for [a : b] = g[a′ : b′] we get that #PrmsS(D(a, b)) 6
B0(d1, . . . , dr ), which proves (23) by the definition of B.

Equation (14) immediately follows from the following form of [8, Corollary 1.9] (which

essentially appears in Proposition [11, Proposition 1.2]).

Proposition 4.6. Let L i (s, t) = βi t −αi s be distinct primitive integral linear forms, i =
1, . . . , r . Let S be a finite set of primes containing all primes p 6 r and let VS be a

nonempty S-adic open set. Then there exists [a : b] ∈ VS such that for all i = 1, . . . , r the

value L i (a, b) as an element of Z[S−1
] is either a prime or a unit.

Proof. As r = 1 follows from Dirichlet’s theorem on primes in arithmetic progressions, we

may assume w.l.o.g. that r > 2. By Lemma 4.5, it suffices to show the following assertion:

Let L i (s, t) = βi t −αi s be distinct primitive integral linear forms, i = 1, . . . , r . Let S0 be

the set of primes p 6 r . Then, for every positive integer N there exists [a : b] ∈ VN such
that #PrmsS(L i (a, b)) 6 1, for all 1 6 i 6 r , with S = S0 ∪Prms(N ).
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Let N be a positive integer and S = S0 ∪Prms(N ). For every p ∈ S, we let

ap := max
i,βi 6=0

vp(βi )

and

C :=
∏
p∈S

pap+1.

For every 1 6 i 6 r , we set ci := gcd(βi ,C) and

Mi (t, s) =
βi t −αi C Ns

ci

if L i (t, s) 6= ±s, and

Mi (t, s) = s

if L i (t, s) = ±s.

We claim that there are no local obstructions; namely, for every prime p there exists

[a : b] ∈ P1(Q) such that for all 1 6 i 6 r we have p - Mi (a, b). Indeed, if p 6∈ S, then

deg
∏

Mi = r < p+ 1, so such [a : b] exists. Otherwise, we take a = b = 1.

Let

K :=
{
(x, y) ∈ R2

∣∣∣0 < y <
x

C N 2

}
.

The convex set K and the linear forms Mi (t, s) satisfy the conditions of a theorem of

Green–Tao–Ziegler [6, Cor 1.9]1 (after replacing Mi by −Mi is necessary). So, we have

infinitely many (a, b) ∈ Z2
∩ K such that Mi (a, b) is prime for every 1 6 i 6 r . Since S is

finite, we may choose (a, b) such that Mi (a, b) is also not in S. This implies that a has

no prime factors from S. Thus gcd(a, N ) = 1. Let γ = gcd(a, NCb) = gcd(a,Cb). So

[a/γ : NCb/γ ] ∈ VN .

Note that

L i (a/γ, NCb/γ ) = ci/γMi (a, b).

As ci is a unit in Z[S−1
] and Mi (a, b) is a prime in Z[S−1

], we get that L i (a/γ, NCb/γ )
divides a prime and so either a prime or a unit in Z[S−1

].

5. Universally ramified primes in fiber products

5.1. The action of GL2(Q)
Recall that we view an element g of GL2(Q) as an automorphism g : P1

Q→ P1
Q via the

action (25). Given φ : C → P1
Q denote by φg

: C → P1
Q the composition g ◦φ. If φ is

generically Galois, then so is φg, and

Gal(φ) ∼= Gal(φg).

1This theorem is stated in [6, Cor 1.9] conditionally on two conjectures, one of which is proved in [7]
and the other in [8].
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From its definition, the set of universally ramified primes is stable under the action of

GL2(Q), that is, for all g ∈ GL2(Q)

U (φg) = U (φ).

However, the branch locus is not invariant:

Branch(φg) = g ·Branch(φ). (26)

We set

U∞(φ) = U (φ)r {∞}.
Let g ∈ GL2(Zp). As an automorphism of P1

Zp
, it follows that

p ∈ V (φ)⇐⇒ p ∈ V (φg), if g ∈ GL2(Zp)∩GL2(Q). (27)

However, for general g ∈ GL2(Q) it may happen that V (φ) 6= V (φg).

5.2. Constructions of Fiber Products

For the applications to the minimal ramification problem, we are especially interested in

controlling the universally ramified primes in fiber products. For an element x ∈ Q×, we

let

gx× :=

(
x 0
0 1

)
∈ GL2(Q) and φx× := φgx× .

For an element b ∈ Q, we let

gb+ :=

(
1 b
0 1

)
∈ GL2(Q) and φb+ := φgb+ .

Lemma 5.1. Let φ : C → P1 be a branched covering and let p 6= q be prime numbers such

that p 6∈ U (φ).

(1) There exists a positive integer A such that for every sequence of integers k1, . . . , kr

that are multiples of A we have that p 6∈ U (
∏

P1 φ(q
ki )×).

(2) There exists a positive integer B such that for every sequence of integers k1, . . . , kr
that are multiples of B, we have p 6∈ U (

∏
P1 φki+).

Proof. By Lemma 2.2 with S = {p}, there exists a nonempty p-adic open set V such that

p is unramified in Aφζ , for all ζ ∈ V . Fix some ζ ∈ V . By the p-adic continuity of the

action of GL2(Qp) on P1(Qp), there exists a neighborhood W ⊂ GL2(Qp) of the identity

matrix I such that for any g ∈ W ∩GL2(Q) we have that gζ ∈ V . In particular, p is

unramified at φg(ζ ). Since unramification is preserved in fiber products, given any set of

elements g1, . . . , gn ∈ W , p is unramified at ψ−1(ζ ), for

ψ =
∏
P1

φgi .

Thus, for (1), it suffices to find a positive integer A such that if k is a multiple of A,

then g(q
k )× ∈ W . For this we take A = (p− 1)pm for a sufficiently large m.

Similarly, for (2), it suffices to find a positive integer B such that if k is a multiple of

B, then gk+ ∈ W . For this we take B = p` for a sufficiently large `.
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Lemma 5.2. Let φ : C → P1 be a branched covering with rational branch locus. Let n >
1 be an integer and S a finite set of primes. Then, there exist a sequence of integers

k1, . . . , kn such that

Branch(φki+)∩Branch(φk j+) ⊂ {∞}, for i 6= j, (28)

U
(∏

P1

φki+

)
∩ S ⊂ U (φ). (29)

Proof. Let R ⊂ Q = P1(Q)r {∞} be the finite branch points and

M = max R−min R

the diameter of R. As the set of finite branch points of φk+i is R+ ki , to obtain (28), it

suffices to take the ki ’s such that ki − ki−1 > M .

For every p ∈ S rU (φ), we let Bp be the constant from Lemma 5.1(2) (applied to φ and

p). Then, to obtain (29), it suffices to take the ki ’s to be multiples of B0 =
∏

p∈SrU (φ) Bp.

Clearly, these two sufficient conditions can be simultaneously satisfied; e.g., take ki = i B,

where B is a multiple of B0 that is larger than M .

Lemma 5.3. Let φ : C → P1 be a branched covering with rational branch locus and let

n > 1 be an integer. Then there exists a sequence of integers k1, . . . , kn such that both

(28) and

U∞

(∏
P1

φki+

)
⊂ U∞(φ) (30)

hold true.

Proof. Denote

d = #Branch(φ)

and let S be a finite set of primes that contains V (φ) and all the prime numbers p 6 nd.

Now choose k1, . . . , kn as in Lemma 5.2 and denote

ψ =
∏
P1

φki+ .

Thus (28) holds true.

By (29) to obtain (30), it suffices to show that

p 6∈ S H⇒ p 6∈ U∞(ψ).

Indeed, given p 6∈ S, as p > nd > #Branch(ψ), by (17) we have p 6∈ B(ψ). Thus, by (18)

it remains to show that p 6∈ V (ψ): By (16),

V (ψ) =
⋃

V (φki+)

and since p 6∈ V (φ) and

gki+ ∈ GL2(Z) ⊆ GL2(Zp)∩GL2(Q),

we also have p 6∈ V (φki+) by (27). Therefore, p 6∈ V (ψ) and by (18) p 6∈ U∞(ψ).
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Lemma 5.4. Let φ : C → P1 be a dominant map of curves with rational branch locus. Let

n > 1 be an integer, q a rational prime, and S be finite set of primes not containing q.

Then, there exists a sequence of integers k1, . . . , kn such that

Branch(φqki
×)∩Branch(φqk j

×) ⊂ {0,∞}, for i 6= j, (31)

U
(∏

P1

φqki
×

)
∩ S ⊂ U (φ). (32)

Proof. Denote by R ⊂ Q× = P1(Q)r {0,∞} the finite nonzero branch points and set

M = max
x∈R

logq |x | −min
x∈R

logq |x |.

By (26), (31) would follow if ki − ki−1 > M .

For every p ∈ S rU (φ), we let Ap = A be the constant from Lemma 5.1(1) (applied to

φ and p 6= q). Then, (32) would follow if the ki ’s to be multiples of A0 :=
∏

p∈SrU (φ) Ap.

We thus put ki = i · A, where A is a multiple of A0 that is larger than M to finish the

proof.

Lemma 5.5. Let φ : C → P1 be a dominant map of curves with branch locus defined over

Q, let n > 1 be an integer, and let q be a rational prime. Then, there exists a sequence

of integers k1, . . . , kn such that both (31) and

U∞

(∏
P1

φqki
×

)
⊂ U∞(φ)∪ {q} (33)

hold true.

Proof. Denote

d = #Branch(φ).

Let S be a finite set of primes 6= q that contains V (φ)∪ {p 6 nd}r {q}. Take k1, . . . , kn
as in Lemma 5.4 and denote

ψ =
∏
P1

φqki
× .

As (31) holds true, it suffices to prove (33). For this, by (32), it suffices to show that if

p 6∈ S and p 6= q, then

p 6∈ U∞(ψ).

Indeed, given p 6∈ S and p 6= q, we have p > nd > #Branch(ψ), so by (17), p 6∈ B(ψ).
By (16),

V (ψ) =
⋃

V (φqki
×).

As p 6∈ V (φ) and

gqki
×
∈ GL2(Zp)∩GL2(Q),

(27) gives that p 6∈ V (φ(q
ki )×), so by (18), p 6∈ U∞(ψ), as needed.
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6. Irreducibility of fiber products and group theory

We shall use the following function field criterion for irreducibility: Let φ1 : C1 → P1
Q

and φ2 : C2 → P1
Q be geometrically irreducible branched coverings with function field

extensions F1/Q(T ) and F2/Q(T ), respectively, in some fixed algebraically closed field of

Q(T ). The fiber product C1×P1
Q

C2 is irreducible (respectively geometrically irreducible)

if and only if F1, F2 are linearly disjoint over Q(T ) (respectively F1Q̄ and F2Q̄ are linearly

disjoint over Q̄(T )).

Lemma 6.1. Let φi : Ci → P1
Q be a geometrically irreducible branched covering, i = 1, 2.

Assume that Branch(φ1)∩Branch(φ2) ⊆ {α} for some α ∈ P1(Q). Then C1×P1 C2 is

geometrically irreducible.

Proof. Let F1/Q(T ) and F2/Q(T ) be the function fields extensions corresponding to

φ1, φ2 in some algebraic closure of Q(T ). Let Ei = Fi Q̄ be the base change to an algebraic

closure Q̄ of Q and let Ni be the Galois closure of Ei over Q̄(T ), i = 1, 2.

Since unramification is preserved under compositions, Ni has the same branch locus as

Fi , and so N1 ∩ N2 is ramified at Branch(φ1)∩Branch(φ2) which consists, by assumption,

of at most one point. By the Riemann–Hurwitz formula, N1 ∩ N2 = Q̄(T ).
Thus N1, N2 are linearly disjoint over Q̄(T ), which implies that the subextensions E1, E2

are also linearly disjoint. Thus, C1×P1
Q

C2 is geometrically irreducible.

In the applications below, we need to relax the condition of Lemma 6.1 that the branch

loci of φ1 and of φ2 have at most one rational point in common. For this we need some

group theory.

Definition 6.2. For a prime number p, we say that a finite group G satisfies

condition-E(p) if all the nontrivial simple quotients of G are of order p, but none of

the quotients of the commutator [G,G] are.

We give a few examples and basic properties and we omit the details:

(1) Let G be an E(p)-group. Then G is a p-group if and only if G is abelian.

(2) The symmetric group Sk is E(2).

(3) Let m be a positive integer with v2(m) 6 1. Then, the Dihedral group Dm of order

2m is E(2).

(4) If G, H satisfy condition-E(p), then so does G× H .

(5) Let G be a group satisfying condition-E(p) and N a normal subgroup. Then G/N
satisfies condition-E(p). (Indeed, [G/N ,G/N ] = [G,G]N/N .)

(6) Let G be an E(p)-group and H a perfect group, then the wreath product H oG
satisfies E(p). The proof of this fact is slightly involved, but we omit it, as we do

not use it.

We study irreducibility of fiber products of covers with E(p)-Galois groups. For this

we need an auxiliary result from group theory.
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Lemma 6.3. Let p be a prime, G1, . . . ,Gn groups that satisfy condition-E(p), put

8(Gi ) := G p
i [Gi ,Gi ] and

ψ : G1× · · ·×Gn → (G1/8(G1))× · · ·× (Gn/8(Gn))

the quotient map. Let H 6 G1× · · ·×Gn be such that the restriction of the projection

on the i-th coordinate to H , πi : H → Gi is surjective, for every i = 1, . . . , n and the

restriction of ψ to H is surjective. Then H = G1× · · ·×Gn.

Proof. Since the family of finite groups satisfying condition-E(p) is close under direct

products and since 8 respects direct products, by induction argument, we may assume

that n = 2. Let Ki = kerπi and Ci = π
−1
i ([Gi ,Gi ]), i = 1, 2. Note that Ki 6 Ci are

normal in H and that H/Ki ∼= Gi and Ci/Ki = [H/Ki : H/Ki ]. Let

ρ : G1×G2 → Gab
1 ×Gab

2

be the abelianization map. We break the proof into several parts.

Part 1 : ρ|H is surjective. Indeed, by assumption, 8(Gi )/[Gi ,Gi ] is the Frattini subgroup

of Gab
i . Thus the assumption gives that ρ(H) generates Gab

1 ×Gab
2 modulo the Frattini

subgroup; hence ρ(H) = Gab
1 ×Gab

2 .

Part 2 : C1C2 = H . Indeed, it is immediate that C1 = ρ|
−1
H (1×Gab

2 ) and C2 = ρ|
−1
H (Gab

1 ×

1). Hence, as ρ|H is surjective, C1C2 = ρ|
−1
H (Gab

1 ×Gab
2 ) = H .

Part 3 : H = K1C2. Indeed, as H = C1C2 = C1(K1C2), the second isomorphism theorem

gives that

H/K1C2 ∼= C1/C1 ∩ (K1C2).

Assume by contradiction that H/K1C2 is nontrivial; then H/K1C2 has a simple quotient

S. As H/K1C2 is a quotient of H/C2 ∼= Gab
2 , S is of order p. On the other hand, C1/C1 ∩

(K1C2) is a quotient of C1/K1 ∼= [G1,G1], which contradicts the assumption that G
satisfies condition-E(p).

Part 4 : H = K1 K2. We argue in a similar fashion as in Part 3: As H = K1C2 = (K1 K2)C2,

the second isomorphism theorem gives that

H/K1 K2 = C2/(C2 ∩ K1 K2).

Assume by contradiction that H/K1 K2 is nontrivial, then it has a simple quotient S.

Since H/K1 K2 is a quotient of H/K2 ∼= G2 and G2 satisfies condition-E(p), the order

of S is p. On the other hand, C2/(C2 ∩ K1 K2) is quotient of C2/K2 ∼= [G2,G2], which

contradicts the assumption that G2 satisfies condition-E(p).

Conclusion of the proof: Since H = K1 K2 and K1 ∩ K2 = 1, we get that

H ∼= K2× K1 ∼= H/K1× H/K2 ∼= G1×G2,

as needed.
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Lemma 6.4. Let p be a prime and for each i = 1, . . . , n let φi : Ci → P1
Q be a geometrically

irreducible branched covering that is generically Galois with Galois group Gi . Let Di =

Ci/8(Gi ), where 8(Gi ) = G p
i [Gi ,Gi ]. Assume that Gi satisfies condition-E(p) for all i

and that
∏

P1
Q

Di is geometrically irreducible. Then
∏

P1
Q

Ci is geometrically irreducible.

Proof. For each i , let Q̄(T ) ⊆ Ei ⊆ Fi be the function field extensions corresponding to

the maps P1
Q̄← (Di )Q̄← (Ci )Q̄. Since (Ci )Q̄ is irreducible by assumption, it follows that

(Di )Q̄ is also irreducible. Hence by Galois correspondence and since 8(Gi )�Gi it follows

that these extensions are Galois with Galois groups

Gal(Fi/Q̄(T )) = Gi , Gal(Fi/Ei ) = 8(Gi ), Gal(Ei/Q̄(T )) ∼= Gi/8(Gi ).

Let E = E1 · · · En be the composition of the Ei , i = 1, . . . , n. The assumption that∏
Q(T ) Di is absolutely irreducible, implies that

[E : Q̄(T )] =
∏
[Ei : Q̄(T )] =

∏
[Gi : 8(Gi )].

Hence, Gal(E/Q̄(T )) ∼=
∏

i Gi/8(Gi ). We put F = F1 · · · Fn . We summarize the above in

Diagram 1.

Diagram 1. Function fields and Galois groups.

Let H = Gal(F/Q̄(T )). Then H embeds into
∏

i Gi via the restriction maps; namely,

σ 7→ (σ |Fi )i . The restriction of the projection onto the jth coordinate
∏

i Gi → G j to

H is surjective for every j . Also, by Galois correspondence, the image of H under

the quotient map
∏

i Gi →
∏

i Gi/8(Gi ) is Gal(E/Q̄(T )) =
∏

i Gi/8(Gi ). Thus the

conditions of Lemma 6.3 are satisfied, so H =
∏

i Gi . This implies that, [F : Q̄(T )] =
degφ1×P1

Q
· · · ×P1

Q
φn , so C1×P1

Q
· · · ×P1

Q
Cn is geometrically irreducible.

6.1. The E(p)-condition and rational rigid tuples

Let G be a finite group. We say that a k-tuple g = (g1, . . . , gk) ∈ Gk is a good generating

k-tuple for G if G is generated by g1, . . . , gk and g1 · · · gk = 1. Two good generating

k-tuples g = (g1, . . . , gk) and g′ = (g′1, . . . , g′k) for G are semi-conjugate if for every 1 6

i 6 k there exists hi ∈ G such that g′i = h−1
i gi hi . We say that g and g′ are conjugate if

there exists h ∈ G such that g′i = h−1gi h for all 1 6 i 6 k.

Let G be a finite group, a k-tuple g = (g1, . . . , gk) ∈ Gk is called rigid if the following

conditions hold:

(1) G has a trivial center.

(2) g is a good generating tuple.

(3) Every good generating k-tuple g′ which is semi-conjugate to g is conjugate to g.
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Recall that an element g in a group G is called rational if for every integer n which is

relatively prime to the order of G, gn is conjugated to g. A rigid tuple is called rational

rigid if in addition:

(4) Every gi is rational.

Lemma 6.5. If g = (g1, . . . , gk) is a rational rigid k-tuple for G, then g′ = (g1, . . . , gi ,

1, gi+1, . . . , gk) is a rational rigid k+ 1-tuple.

Proof. Clear.

Lemma 6.6. Let G and H be finite groups. Let g = (g1, . . . , gk) be a rational rigid k-tuple

for G and h = (h1, . . . , hk) be a rational rigid k-tuple for H . Assume that the collection of

elements (gi , hi ) ∈ G× H generates G× H . Then g×h = ((g1, h1), . . . , (gk, hk)) ∈ (G×
H)k is a rational rigid k-tuple for G× H .

Proof. The rationality is clear. Condition (1) is clear since the center of a product is the

product of centers. Condition (2) holds true by assumption.

Hence it suffices to show Condition (3): Indeed, let g′×h′ ∈ (G× H)k be a good

generating tuple which is semi-conjugate to g×h. Then g′ is a good generating tuple

which is semi-conjugate to g and h′ is a good generating tuple which is semi-conjugate to

h. Thus, g′ is conjugate to g and h′ is conjugate to h. This implies that g′×h′ is conjugate

to g×h.

Proposition 6.7. Let G1,G2 be groups satisfying the E(p)-condition. Assume that Gi
admits a rational rigid ki -tuple for each i = 1, 2. Let di = d(Gab

i ). Then G1×G2 admits

a rational rigid s-tuple, for s = d1+ d2+max(k1− d1, k2− d2).

Proof. Since Gi is E(p) we have that Gab
i is a p-group and Gi/8(Gi ) = Gi/G p

i [Gi ,Gi ] =

(Z/pZ)di . Let

ρi : Gi → Gi/8(Gi ) = (Z/pZ)di

be the quotient map. By Lemma 6.5, we may assume w.l.o.g. that r := k1− d1 = k2− d2,

so s = d1+ d2+ r . Let g(i) = (g(i)1 , . . . , g(i)ki
) be a rational rigid ki -tuple for Gi . Let Ai ⊂

{1, . . . , ki } be a set of size di = |Ai | such that {ρi (g
(i)
a ) : a ∈ Ai } generates Gi/8(Gi ) and

Bi = {1, . . . , ki }r Ai the complement. Write the elements of Bi as

bi,1 < bi,2 < . . . < bi,r .

Consider the set V of all the pairs

va = (g(1)a , 1), v′a′ = (1, g(2)a′ ), w j = (g
(1)
b1, j
, g(2)b2, j

),

for a ∈ A1, a′ ∈ A2, and j = 1, . . . , r . One may order them such that the resulting s-tuple

of elements in (G1×G2)
s has the property that the projection to each of the coordinates

Gi gives the original tuple diluted by 1’s.

Let H 6 G1×G2 be the subgroup generated by V . By Lemma 6.6, it suffices to show

that H = G1×G2. Indeed, on the one hand, H maps onto each of the Gi ’s. On the other

hand, by the construction of V , (ρ1× ρ2)(V ) contains a basis of G1/8(G1)×G2/8(G2),

so by Lemma 6.3, H = G1×G2, as needed for rigidity. The rationality is immediate.
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Applying the previous proposition repeatedly gives:

Corollary 6.8. Let G be a group satisfying the E(p)-condition, d = d(Gab), and n > 1.

Assume that G admits a rational rigid r-tuple. Then Gn admits a rational rigid s-tuple,

for s = (n− 1)d + r .

7. The minimal ramification problem

In this section, we use the methods developed so far and prove the bounds on m(G)
stated in § 1.2.

Proof of Theorem 1.2. Let G be a regularly realizable group, which in terms of

Definition 1.10 means that G has a (U ;d) realization for some U,d. We claim that

we can realize Gn with at most B(d)n ramified primes outside of U . And indeed,

assume by induction that Gn−1
= Gal(L/Q) and #RamU (L/Q) 6 B(d)(n− 1). Then by

Proposition 1.11 we have a Galois extension N/Q with Galois group G such that

N ∩ L = Q and #RamU (N/Q) 6 B(d), so N L/Q is a Galois extension with Galois group

Gn
= G×Gn−1 and

#RamU (N L/Q) = #RamU (N/Q)+ #RamU (L/Q)
6 B(d)+ B(d)(n− 1) = B(d)n.

In particular we have

m(Gn) 6 B(d)n+ #U = O(n), (34)

as needed.

If G has a (U ;d) realization with d = 1r =

r times︷ ︸︸ ︷
(1, . . . , 1), then since B(d) 6 r by (14), the

inequality (34) immediately gives that

m(Gn) 6 rn+ O(1).

However this is not sufficient for Theorem 1.3, as we need to reduce r to r − 1. So one

requires an extra construction:

Proposition 7.1. Let 1r = (1, . . . , 1) be an r-tuple of ones, let G 6= 1 be a finite group

having a (U ;d) realization, and let n > 1 be an integer. Then Gn has a (U, 1R) realization,
where R = (r − 1)n+ 1.

Proof. Let φ : C → P1 be the (U ;d) realization of G with Branch(φ) = {(D1), . . . , (Dr )},

deg Di = 1. Since G 6= 1, the morphism φ must be ramified, so r > 1. Without loss of

generality we may assume that ∞ is a branch point (otherwise we compose φ with a

matrix in GL2(Q) that maps a branch point to infinity).

Put S = V (φ)∪ {p 6 R} ∪ {∞}, where V (φ) is the set of vertically ramified primes of

a model of φ over Z. We apply Lemma 5.2 to get integers k1, . . . , kn satisfying (28) and

(29). Put φ̂ =
∏

P1 φki+ : Ĉ → P1
Q.

By (26), Branch(φki+) = {∞, p1,i , . . . , pr−1,i }. By (28), p j,i 6= p j ′,i ′ for all ( j, i) 6=
( j ′, i ′). Since unramification is preserved in fiber products, we conclude that Branch(φ̂) =
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{∞, p1,1, . . . , pr−1,n}. In particular, φ̂ has exactly R branch points which are all

Q-rational.

The conditions of Lemma 6.1 are satisfied by (28), thus the curve Ĉ is geometrically

irreducible. This in particular implies that the extensions Ei/Q(P1) defined by φki+ are

linearly disjoint Galois extensions of Q(P1), and so the Galois group of Q(Ĉ) =
∏

Ei over

Q(P1) is the direct product of the Galois groups of the extensions; i.e., Gn .

By (27), V (φki+) = V (φ); so by (16) we have

V (φ̂) = V (φ) ⊆ S. (35)

By (17), B(φ̂) ⊆ {p 6 R} ⊆ S. Together with (35) and (18) this gives that

U (φ̂) ⊆ S.

Since U (φ) ⊆ U and by (29) we conclude that

U (φ̂) = U (φ̂)∩ S ⊆ U (φ)∩ S ⊆ U,

and so φ̂ is a (U, 1R) realization of Gn , as needed.

Proof of Theorem 1.3. Assume G has a (U ; 1r ) realization. Then by Proposition 7.1, Gn

has a (U ; 1R), R = (r − 1)n+ 1 realization. By Proposition 1.11 and the bound (14) we

get

m(Gn) 6 #U + B(1R) 6 R+ #U 6 (r − 1)n+ #U + 1 = (r − 1)n+ O(1).

This finishes the proof.

Next we prove Theorem 1.5, which reduces the number of ramification to (r − 2)n under

certain group theoretical conditions.

Proof of Theorem 1.4. Let φ : C → P1
Q be a non-constant map of smooth connected

projective Q-curves that is generically Galois with group G. Assume that the branch locus

consists of r rational points. We assume that [G,G] is simple non-abelian, d = d(Gab) 6
r − 2, and that there exists a prime number p such that every maximal normal subgroup

has index p. This implies that d(Gab) is a p-group, and that G satisfies condition

E(p). We note that in this case the Frattini quotient of Gab is G/M(G) ∼= (Z/pZ)d
with M(G) = G p

[G,G]; and thus a subgroup H 6 Gn maps onto (Gab)n if and only if it

maps onto (G/M(G))n .

We let CM = C/M(G); so φM : CM → G is Galois with Galois group (Z/pZ)d . Choose

d branch points x1, . . . , xd , such that the inertia groups above the xi ’s generate (Z/pZ)d .

By assumption, there exist at least two other branch points y1, y2. By applying a Mobius

transformation, we may assume w.l.o.g. that y1 = [0 : 1] and y2 = [1 : 0].
We pick an auxiliary prime q. By Lemma 5.5 there exist k1, . . . , kn such that if we write

Ci = C and φi = φ
qki
× : Ci → P1

Q, then we have (for i 6= j)

Branch(φi )∩Branch(φ j ) ⊆ {0,∞} and U∞

(∏
P1

φi

)
⊆ U∞(φ)∪ {q}.

Let Fi/Q(x) be the function field extension corresponding to φi : C → P1
Q, i = 1, . . . , n.

Then G ∼= Gal(Fi/Q(x)); denote by L i and L ′i the fixed fields of [G,G] and G p
[G,G]
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(respectively) in Fi . Since each Gal(L ′i/Q(x)) is generated by the inertia groups over

distinct points, the L ′i are linearly disjoint over Q(x). By Lemma 6.4, Ĉ =
∏

P1 Ci is

geometrically irreducible. Now, as we chose the ki as in Lemma 5.5, we have that

U∞(
∏

P1 φi ) ⊆ U∞(φ)∪ {q}. By construction, the branch locus of φ̂ consists of (r − 2)n+ 2
rational branch points. So, if we put U = U∞(φ)∪ {q} ∪ {∞} and s = (r − 2)n+ 2, we have

obtained a

(U ; 1s)

realization of Gn . By (14) and Proposition 1.11,

m(Gn) 6 s+ #U 6 (r − 2)n+ #U∞(φ)+ 4 = (r − 2)n+ O(1),

which proves (5).

Now we consider the special case G = Sk and we prove Theorem 1.5, that is m(Sn
k ) 6

n+ 4 and m(Sk) 6 4. For this we first need to recall a concrete realization of Sk over P1
Q.

Lemma 7.2. Let a, b, c ∈ P1(Q) be distinct and m > 3. There exists a cover φ : C → P1
Q

with Galois group Sk such that Branch(φ) = {a, b, c} and the inertia groups at a, b, c are

generated by cycles of length n, n− 1, 2 respectively and U (φ) = {∞}.

Proof. By applying Mobius transformation, we see that it suffices to find φ for one

triplet (a, b, c). Consider P1
→ P1 given by x 7→ xm

− xm−1, i.e., generated by f (X, Y ) =
Xm
− Xm−1

− Y , let F be the splitting field of f over Q(Y ), and let φ : C → P1
Q be the

branch covering corresponding to F/Q(Y ). It is an exercise to show that the Galois group

is Sk and that ramification points are 0, u,∞, with u = m−1
m and that the inertia groups

are generated by cycles of lengths 2, n− 1, n, respectively. For details see [26, p. 42].

It now remains to calculate U = U (φ). For any y ∈ Qr {0, u}, let Ay be the algebra at

y. Since the X -derivative of f (X, y) has only 2 roots (0 and u), f (X, y) has at most 3
real roots. Thus Ay has at most three embeddings into R, which implies as m > 3 that

Ay ⊗R 6∼= R3. Thus ∞ ∈ U .

A direct application of the discriminant formula disc f = ±mm ∏ f (α), where α runs

on the set of zeros of f ′ with multiplication, shows that

disc f (X, y) = ±Y m((m− 1)m−1
+mmY

)
.

Let p be a prime; we show that there exists y ∈ Z with p - disc f (X, y), and thus p 6∈ U .

This will show that U = {∞}. If p - m and p > 2, then mm ym takes p− 1 > 1 values

for y 6≡ 0 (mod p), and so we can take y ∈ Z with mm y 6≡ −(m− 1)m−1, 0 mod p; so

p - disc f (X, y), as needed. If p | m, then p - disc f (X, 1). We are left with the case p = 2
and m odd; then p | m− 1, so p - disc f (X, 1).

Proof of Theorem 1.5. We just apply the construction appeared in the proof of

Theorem 1.4 to the cover φ : C → P1 given in Lemma 7.2 that is ramified at (∞, 0, 1)
with the inertia group at 1 being generated by a transposition.

This gives a (U,dn+2) realization of Sn
k , with U = {∞} if n = 1 and U ⊆ {∞, q} if n > 2.

Thus by (14), Proposition 1.11 gives that

m(Sn
k ) 6 n+ 4,

https://doi.org/10.1017/S1474748018000257 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000257


944 L. Bary-Soroker and T. M. Schlank

as needed for (6), and that

m(Sk) 6 4,

as needed for (7).

We conclude by proving our results for rational rigid groups.

Proof of (8). Let G be a group with a rational rigid r -tuple. By [26, Theorem 8.1.1],

there exists a geometrically irreducible branched covering φ : C → P1
Q with Branch(φ) =

{1, . . . , r}. Let T = {p 6 r} ∪Prms(|G|). If p 6∈ T , by [1, Theorem 1.2], p is unramified at

Aφr+1, r + 1 ∈ A1(Q) ⊆ P1(Q). So U (φ) ⊆ T . Now Proposition 1.11 and (14) immediately

give m(G) 6 r + #T .

Proof of Theorem 9. By Corollary 6.8, Gn has a rational rigid s-tuple with s =
d(Gab)(n− 1)+ r = d(Gab)n+ O(1). Note that by the prime number theorem #{p 6 s} =
O(n/ log n) and that Prms(|G|n) = Prms(|G|) = O(1). Hence (8) gives that

m(G) 6 d(Gab)n+ O
(

n
log(n)

)
.

As needed.
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