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SUMMARY
In this paper, a novel optimal torque distribution method for
a redundantly actuated parallel robot is proposed. Geometric
analysis based on screw theory is performed to calculate the
stiffness matrix of a redundantly actuated 3-RRR parallel
robot. The analysis is performed based on statics focusing on
low-speed motions. The stiffness matrix consisting of passive
and active stiffness is also derived by the differentiation of
Jacobian matrix. Comparing two matrices, we found that
null-space vector is related to link geometry. The optimal
distribution torque is determined by adapting mean value
of minimum and maximum angles as direction angles of
null-space vector. The resulting algorithm is validated by
comparing the new method with the minimum-norm method
and the weighted pseudo-inverse method for two different
paths and force conditions. The proposed torque distribution
algorithm shows the characteristics of minimizing the
maximum torque.

KEYWORDS: Torque distribution; Redundantly actuation;
Parallel mechanism; Geometrical approach; Stiffness matrix,
Screw theory.

1. Introduction
Redundant parallel robots have advantages of singularity
avoidance and high stiffness compared with non-redundant
robots.1 Many redundant parallel robots have been proposed
for various applications.2–4 Kim et al.5 proposed a redundant
6-degree of freedom (DOF) Eclipse-II mechanism, and
actuator redundancy was used to avoid singularities inside
the workspace. Jeong et al.6 proposed a calibration algorithm
for redundant parallel mechanisms. Muller7 showed that
backlash could be avoided by using redundant actuation
based on inverse dynamics approach.

Since the number of actuators is greater than the number of
degrees of freedom of redundantly actuated robots, there is no
unique solution for actuator torques. Therefore, the actuator
torques should be optimized with respect to operating con-
ditions. There have been many studies of torque distribution
methodology.8–10 Kock and Schumacher11 separated the op-
eration torque into a minimum-norm torque and a null torque,
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and adjusted the null torque to change the system stiffness.
However, a weighting in the null torque was selected manu-
ally during the procedure. Park et al.12 applied a weighted
pseudo-inverse method to a five-bar redundant parallel robot
and obtained improved distribution results; however, the
weighting selection was performed by trial-and-error.

The analysis of a parallel robot in screw coordinates
has the advantages of geometric intuitiveness and produce
simple equations. Duffy13 and Griffis14 are pioneers in the
application of screw theory to parallel robots. They proposed
kinematic, static, and dynamic modeling of a non-redundant
parallel robot in screw coordinates. After reporting their
parallel robot analysis based on screw theory, many other
researchers, such as Mohamed and Gosselin,15 Zhang,16, and
Moon et al.17, proposed design methodologies for redundant
parallel robots, 6-DOF parallel robot designs, and error com-
pensation for parallel robots based on screw theory respect-
ively. However, it is important to note that most of these stud-
ies are limited to a parallel robot with active prismatic joints.

In this study, a new optimal torque distribution method for
a redundantly actuated parallel robot based on a geometric
approach using screw theory is proposed. A planar parallel
robot with three chains is composed of three revolute chains
(the robot is named as “3-RRR” in this paper). A geometrical
approach is introduced to set up the stiffness models of the
parallel robot with revolute joints, which is more complicated
to be analyzed than the parallel robot with prismatic joints.
Based on the stiffness model, a simple torque distribution
algorithm is proposed by considering geometrical
characteristics. The proposed algorithm was validated using
simulations on a circular path and a repeated linear path.

The rest of this paper is organized as follows. Section 2
describes the mechanism of the redundant 3-RRR parallel
robot, and derived the stiffness matrix based on screw theory.
Comparing with the stiffness matrix based on derivatives of
Jacobian matrix, a new optimal torque distribution algorithm
is proposed in Section 3. Section 4 presents simulation results
for linear and circular path conditions. Our conclusions are
presented in Section 5.

2. Stiffness Analysis of 3-RRR Parallel Robot

2.1. Mechanism description
Figure 1(a) shows the mechanism configurations of a 3-RRR
parallel robot. The robot is operated by three actuators at
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Fig. 1. (Colour online) Redundantly actuated 3-DOF planar parallel
robot based on 3-RRR chains. (a) Mechanism description. (b)
Schematic diagram of 3-RRR parallel robot. Ai and Bi denote
the positions of actuators and moving R-joint, respectively, and C
denotes the position of the end-effector. ai and bi denote the lengths
of lines AiBi and BiC respectively. ri denotes the perpendicular
distance from Ai to line BiC. θ i and ψi denote the angle of line AiBi

and the angle between lines AiBi and BiC (i = 1, 2, 3) respectively.

Fig. 2. (Colour online) Force lines in 3-RRR redundant parallel
robot.

the base, and the revolute (R) joint is used to move the end-
effector. This is a planar parallel mechanism whose mobility
is 2. This type of mechanism is called a redundant actuation
parallel mechanism. Figure 1(b) describes the parameters
used in stiffness analysis based on screw theory. A detailed
explanation of symbols is given along with the figure.

2.2. Stiffness analysis
The analysis is started by deriving wrench to the end-effector.
The wrench of the 3-RRR redundantly actuated parallel robot
is simply derived as follows13:

ŵ =
3∑

i=1

kθi(θi − θ0i)

ri

ŝi =
3∑

i=1

kθi(θi − θ0i)

ai sin ψi

ŝi, (1)

where ŝi denotes unit screw vector in the direction of line
BiC, kθi is the rotational stiffness coefficient of the actuator,
(θi − θ0i) is the rotary displacement in each actuator, and ψi

is the relative angle of the first link and the second link.
Next, the relation between the rotational stiffness

coefficient (kθi : the actuator stiffness coefficient) and the
linear stiffness coefficient (kli : the end-effector stiffness)
is determined. The set up used to calculate the relation is
shown in Fig. 2. The infinitesimal displacement in the linear
direction (δli) is expressed as follows:

δli = riδθi = ai sin ψiδθi. (2)

The relation between the force and the torque is given by

klir
2
i δθi = kθiδθi . (3)

From Eqs. (2) and (3), the relation between kθi and kli is
calculated as follows:

kli = kθi

(ai sin ψi)2
. (4)

Then, substituting Eqs. (2) and (4) into Eq. (1) yields

ŵ =
3∑

i=1

{kli (li − l0i) ŝi}, (5)

where l0i is the free length of the spring and li is the current
length of the spring. Differentiating and rearranging Eq. (5)
yields the following equation13:

δŵ =
3∑

i=1

{kliδli ŝi} +
3∑

i=1

{
kli (li − l0i)

(
dŝi

dθ1

)
δθ1

}

= [ ŝ1 ŝ2 ŝ3 ] [kl]

⎡
⎣ δl1

δl2
δl3

⎤
⎦

+ [ŝ1B ŝ2B ŝ3B] [kl(1 − ρ)]

⎡
⎣ l1δθ1

l2δθ2

l3δθ3

⎤
⎦

=
⎧⎨
⎩[ŝ1 ŝ2 ŝ3]

⎡
⎣ kl1 0 0

0 kl2 0
0 0 kl3

⎤
⎦

⎡
⎣ ŝ1

T

ŝ2
T

ŝ3
T

⎤
⎦ + [ ŝ1B ŝ2B ŝ3B ]

×
⎡
⎣kl1 (1−ρ1) 0 0

0 kl2 (1−ρ2) 0
0 0 kl3 (1−ρ2)

⎤
⎦

⎡
⎣ŝ1C

T

ŝ2C
T

ŝ3C
T

⎤
⎦

⎫⎬
⎭ δD̂.

(6)

where δli = ŝi
T δD̂, liδθi = ŝiC

T δD̂, and ŝiB and ŝiC (i =
1, 2, 3) denote the unit screw vectors that are perpendicular
to ŝi and are passing through joints B and C respectively.
Duffy13 (p. 148–152) explained in detail the description of
perpendicular screw vectors. ρi is the rational displacement
of l0i/ li , and δD̂ is the infinitesimal displacement of the
end-effector position C. Equation (6) can be simplified as
follows:

δŵ = {
J l [kl] JT

l + [B] [kl (1 − ρ)] [C]T
}
δD̂ = [K]δD̂,

(7)
where J l is a Jacobian matrix consisting of screw vectors
[ŝ1 ŝ2 ŝ3], [B] and [C] are matrices consisting of the vectors
[ ŝ1B ŝ2B ŝ3B ] and [ ŝ1C ŝ2C ŝ3C ], which are perpendicular to
ŝi in matrix J l . [kl] and [kl (1 − ρ)] are 3 × 3 diagonal
matrices of stiffness coefficients.13 In this study, since the
mechanism has only two translational mobility, J l , [B], and
[C] matrices are assumed as 2 × 3 matrices.
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3. Optimal Torque Distribution
In this section, the proposed optimal torque distribution
algorithm is described. First, the fundamental derivation of
the external force and the torques is presented. Then the
algorithm is derived based on screw theory.

3.1. Fundamentals of torque distribution
In redundant parallel robot systems, the force on the end-
effector ( �Fc) can be uniquely determined from the actuator
torques (�τA) as follows:

�Fc = JT �τA, (8)

where J is a 2 × 3 Jacobian matrix of the redundant system.
Note that J can be calculated from J l in Eq. (7) from the
definition of Jacobian as follows:

J =
⎡
⎣‖�a1 × �b1‖ 0 0

0 ‖�a2 × �b2‖ 0
0 0 ‖�a3 × �b3‖

⎤
⎦

−1 ⎡
⎣

�b1
T

�b2
T

�b3
T

⎤
⎦

=
⎡
⎣ r1 0 0

0 r2 0
0 0 r3

⎤
⎦

−1 ⎡
⎣

�b1
T

�b2
T

�b3
T

⎤
⎦ ≡ P−1 J l

T , (9)

where �ai and �bi denote Cartesian link vectors of links ai

and bi respectively. P is used for [diag(ri)], where ri is
a moment arm for the end-effector. Note that [�b1 �b2 �b3] is

equal to Jl(= [ ŝ1 ŝ2 ŝ3 ]). Note that �bi is the same as the
screw vector (ŝi), since �bi represents the directional vector
of last links. Here the torque distribution problem can be
determined to calculate proper �τA when �Fc is given. In Eq.
(8), the Jacobian matrix is not a square matrix in a redundant
system; therefore, there is no unique solution of �τA for a given
�Fc. The indefinite actuator torques are calculated as follows:

�τA = ( JT )+ �Fc + (I − ( JT )+ JT )Z, (10)

where ( JT )+ denotes the pseudo-inverse of JT , which is
equal to J( JT J)−1. I is the unit matrix and Z is an arbitrary
vector which can change torque without affecting the end-
effector force.

A. Minimum-norm torque distribution: The simplest way
to distribute torques in a redundant system is the minimum-
norm torque distribution method. First, the first term on the
right-hand side (RHS) of Eq. (10) is defined as the minimum-
norm torque, and the second term as the null-space torque.
The minimum-norm torque method only uses the minimum-
norm torque to control the redundant system. The proposed
method11 uses a pseudo-inverse least-squares method, and
has an advantage that the internal force between links can
be minimized. However, the drawback of this method is that
differences between the magnitudes of actuator torques are
increased.

B. Weighted pseudo-inverse method: The weighted
pseudo-inverse method12 applies a weighting factor to the
minimum-norm torque as follows:

�τAW = ( JT )W+ �Fc = W−1 J( JT W−1 J)−1 �Fc, (11)

where the weighting matrix (W ) is defined by a diagonal
matrix of each weight of diag(wi). The weighted pseudo-
inverse method gives better results than the minimum-
norm torque method by varying the weights. Various
studies have been performed by selecting weights with
the magnitude of minimum-norm torque or squares of
consumption coefficients.12–18 However, it is not clear which
value of weight gives the best performance for a redundant
system; thus, research is ongoing.

C. Null-space method: The null-space method is a torque-
distribution method11 that changes �τA by a null-space
torque of (I − ( JT )+ JT )Z. The method has more degrees
of freedom to control actuator torques by varying the
arbitrary vector Z. However, choosing the arbitrary vector
Z to improve the performance of a redundant system is
a remaining problem. Recently, Lee et al.8 selected the
null-space vector which can make the desired shape of a
compliance ellipsoid. Kim et al.19 selected the null-space
vector Z, which can generate arbitrarily reduced torque limit.
The algorithm used in our research is based on the null-space
method by choosing a proper vector Z. In this research, a
simple and efficient method is proposed to choose vector Z

by using a geometrical approach. The detailed procedure is
described in Section 3.2.

3.2. Torque distribution algorithm by geometrical approach
The stiffness matrix of a redundant mechanism is calculated
from actuator stiffness and torque. The relationship between
actuator torques and stiffness of the end-effector in task
coordinates is as follows11:

[K] = JT [ka] J + HT (�τm + β �τt ), (12)

where [ka] is a 3 × 3 diagonal matrix of actuator stiffness
of diag (ki), and H is a Hessian matrix defined by HT =
δ JT /δD (D is the displacement of end-effector). �τm is the
minimum-norm torque, and �τt is the null-space torque. In
redundant systems, the 2 × 2 stiffness matrix [K] can be
changed by changing the constant β. Changing stiffness
means that the actuator torques are changed without changing
the external force. In Eq. (12), the first term describes the
passive stiffness, which depends on the position of a link
and actuator stiffness. The second term describes the active
stiffness, which can be changed by an appropriate choice of
a null-space torque vector. Comparison of Eqs. (7) and (12)
reveals that the first term of [K] looks identical in form but
the second term of [K] looks different. If the second term of
[K] in Eq. (7) is converted to the same form as Eq. (13), the
second term of [K] in Eq. (12) can be divided into minimum-
norm torque and a null-space torque terms. The second term
of [K] in Eq. (7) can be expanded as
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[B] [kl (1 − ρ)] [C]T

= [ ŝ1B ŝ2B ŝ3B ]

×
⎡
⎣ kl1 (1 − ρ1) 0 0

0 kl2 (1 − ρ2) 0
0 0 kl3 (1 − ρ2)

⎤
⎦

⎡
⎣ ŝ1C

T

ŝ2C
T

ŝ3C
T

⎤
⎦ (13)

= ŝ1Bkl1 (1 − ρ1) ŝ1C
T + ŝ2Bkl2 (1 − ρ2) ŝ2C

T

+ ŝ3Bkl3 (1 − ρ3) ŝ3C
T

= kl1ŝ1Bŝ1C
T + kl2ŝ2Bŝ2C

T + kl3ŝ3Bŝ3C
T − ρ1kl1ŝ1Bŝ1C

T

− ρ2kl2ŝ2Bŝ2C
T − ρ3kl3ŝ3Bŝ3C

T ,

where kli ŝiB ŝiC
T and ρikli ŝiB ŝiC

T (i = 1, 2, 3) are calculated
as follows:

kli ŝiB ŝiC
T = kli

δŝi

δθi

liδθi

δD
= kli li

δŝi

δD
,

and

kliρi ŝiB ŝiC
T = kli

l0i

li

δŝi

δθi

liδθi

δD
= kli l0i

δŝi

δD
. (14)

Inserting results of Eq. (14) in Eq. (13) yields

[B] [kl (1 − ρ)] [C]T =
3∑

i=1

δŝi

δD
(kli li − kli l0i)

= δ

δD
[ŝ1 ŝ2 ŝ3]

⎡
⎣kl1l1 − kl1l01

kl2l2 − kl2l02

kl3li3 − kl3l03

⎤
⎦

= δ J l

δD
[kli li − kli l0i]. (15)

Finally, from the definition of Hessian matrix δ JT

δD
= HT

and J = P−1 JT
l in Eq. (9), [K] in Eq. (7) can be written in

a form similar to that of Eq. (12) as follows:

[K] = J l [kl] JT
l + [B] [kl (1 − ρ)] [C]T (16)

= JT PT [kl] P J + δ JT [ri]T

δD
[−kli l0i + kli li]

= JT PT [kl] P J + HT [−kli l0iri + kli liri]

≡ JT [ka] J + HT (�τ l0i + �τ li).

Comparing Eq. (16) with Eq. (12) yields information about
the torques. �τl0i in Eq. (16) represents the nominal torque
from the position of the end-effector, which is the same as
the minimum-norm torque �τm in Eq. (12). �τli in Eq. (16)
corresponds to the null-space torque β �τt in Eq. (12) since
term kli liri cannot affect the end-effector force. Therefore,
in a geometric sense, the null-space torque can be changed
by li and ri since kli is a constant. From Eq. (2), li is

Fc
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Fig. 3. (Colour online) Relationship between the force line and the
generated torque.
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Fig. 4. (Colour online) Kinematic parameters of a redundant 3-RRR
parallel robot to be used in simulation.

also a dependent parameter of ri ; therefore, the null-space
torque can be considered to be a torque that depends on
the magnitude of ri . The geometrical meaning of ri is a
perpendicular distance from the actuation point to the second
link as shown in Fig. 3.

Assume that r2 is the maximum value and r1 is the
minimum value among three distances in Fig. 3. The actuator
torques are determined by the end-effector force �Fc. In order
to make the magnitude of torques to have less difference
between each other, the maximum actuator torque τ2 must
be decreased and the minimum actuator torque τ1 must be
increased. Here the key idea is the changing of directions of
ŝ1 and ŝ2 to make r1 equal to r2; the mean value of ψ1 and
ψ2 is the new direction of screw vector ŝn. By this process,
the new direction of the screw vector ŝn is selected as the
null-space vector Z in Eq. (10). It is important to note that
changing direction of the screw coordinate does not mean
changing the actual link geometry; rather, it means changing
the virtual link geometry for torque distribution with a smaller
deviation.

4. Simulations
The proposed torque distribution algorithm was validated
by simulation using MATLAB R© software (Version R2009b,
MathWorks, Natick, MA, USA). The dimensions of the 3-
RRR redundant parallel mechanism for the simulation are
shown in Fig. 4. The results of the minimum-norm method,11

the weighted pseudo-inverse method,12 and the proposed
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Fig. 5. (Colour online) (a) Circular path trajectory, (b) operation torques of each actuator, and (c) minmax value.

method based on a geometrical approach were compared. In
order to calculate torques of each actuator, the minimum-
norm torque method used τm = (J T )+ �Fc from Eq. (10).
The weighted pseudo-inverse method used Eq. (11) with
minimum-norm torques as weighting matrix. The proposed
method used Eq. (10) with new null-space vector Z, which
is obtained from angle ψvirtual = (ψmax + ψmin)/2. Since
there are three actuators, the minimum values of maximum
torque are compared because the deviation of maximum and
minimum values of torques should be reduced,

minmax (τi) = min(max(|τ1| , |τ2| , |τ3|). (17)

4.1. Circular path
First, the results of the minimum-norm method,11 the
weighted pseudo-inverse method,12 and the proposed method
based on a geometrical approach along a circular path were
compared. The analysis was performed based on statics,
and the dynamic effects were not considered. Each actuator
torque was calculated while an external force is applied to
the end-effector along pre-defined path of the end-effector.
As the end-effector moved along a circular path with a
diameter of 100 mm, an external force of Fc = [11] N was
applied to the end-effector. Figure 5(a) shows the circular
path trajectory. Figure 5(b) shows the calculated torques of
each actuator for the minimum-norm method, the weighted
pseudo-inverse method, and the proposed method based on
the geometrical approach. Figure 5(c) shows the minmax (τi)

value of each method. The proposed method (shown by the
red solid line) generated the most regulated torque among
three methods.

4.2. Repeated linear path
This 3-RRR mechanism can be used for the mechanism of an
automobile haptic shift.20 Repeated linear path resembles an
automobile shift path. In this case, the external force direction
is different for each path as Fc1 = [10] N, Fc2 = [0 − 1] N,
Fc3 = [−10] N, and Fc4 = [0 − 1] N. Figure 6(a) shows the
repeated linear path trajectory of simulation, and Figs. 6(b)
and (c) show the results of simulation. The analysis was also
performed based on static relation in Section 3. As expected,
the proposed method based on the geometrical approach gave
the best results among the three methods.

4.3. Simulation results
The simulation results of the three methods are compared
and summarized in Table I. The proposed methods show
improvement of 14.05% and 27.04% compared with the
minimum-norm method, and improvement of 6.85% and
2.97% compared with the weighted pseudo-inverse method
for circular and linear paths respectively. The results show
that the proposed algorithm had a good effect on minimizing
the maximum torque to follow the trajectory. The results
also show that the proposed method based on the geometrical
approach gives a torque profile of lower deviation for various
user conditions as shown in Figs. 5 and 6.

In ref. [21], many other cases that include different paths
and link configurations are simulated. The result was that
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Fig. 6. (Colour online) (a) Repeated linear path trajectory, (b) operation torques of each actuator, and (c) minmax value.
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Table I. Comparison of minmax values by minimum-norm method, weighted pseudo-inverse method, and proposed method based on
geometrical approach (unit: N·mm).

Minimum-norm Weighted pseudo-inverse Proposed method

Circular path 316.36 291.93 271.94
Repeated linear path 440.79 357.59 346.97

the proposed method shows the least maximum torque. The
torque minimization methodology is useful for the prevention
of actuator saturation and actuator downsizing.

5. Conclusion
A redundantly actuated parallel robot has the infinite torque
set for the same work. The minimum-norm torque which
uses pseudo-inverse of Jacobian matrix minimizes the
Euclidian norm of all actuator torques but makes large
deviation between maximum and minimum torques. Through
redistribution of the maximum torque, we can use a small
motor for economic efficiency. Torque distribution method
is closely related to stiffness matrix manipulation method.
Stiffness matrix is derived by screw vectors. This paper
shows that stiffness matrix based on screw geometry has
analogy to stiffness matrix based on derivatives of Jacobian
matrix. Stiffness matrix-based derivatives of Jacobian matrix
consist of passive stiffness, which depends on the position
of link and actuator stiffness and the active stiffness which
can be changed by an appropriate choice of a null-space
torque vector. This paper shows that a null-space torque
vector is geometrically related to ri , which is a perpendicular
distance from actuator to line vector of the second link. The
proposed algorithm is geometrically intuitive and there is no
need for selection of arbitrary constants, which are the main
drawbacks of previous algorithms. Simulations with different
paths and forces were performed to validate the proposed
algorithm. The maximum torque is decreased at most by
27% compared with the minimum-norm method, and by 6%
compared with the weighted pseudo-inverse method.

The proposed method is applied to a planar mechanism.
To extend this algorithm to a spatial mechanism, geometrical
characteristics of spatial mechanisms should be clearly
defined. This research remains as a future work for the
proposed algorithm.
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