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We present a goodness-of-fit test for time series models based on the discrete
spectral average estimator+ Unlike current tests of goodness of fit, the asymptotic
distribution of our test statistic allows the null hypothesis to be either a short- or
long-range dependence model+ Our test is in the frequency domain, is easy to
compute, and does not require the calculation of residuals from the fitted model+
This is especially advantageous when the fitted model is not a finite-order auto-
regressive model+ The test statistic is a frequency domain analogue of the test by
Hong ~1996, Econometrica64, 837–864!, which is a generalization of the Box
and Pierce~1970, Journal of the American Statistical Association65, 1509–
1526! test statistic+ A simulation study shows that our test has power comparable
to that of Hong’s test and superior to that of another frequency domain test by
Milhoj ~1981, Biometrika68, 177–187!+

1. INTRODUCTION

Most conventional goodness-of-fit tests for time series models are based on the
autocorrelations of residuals from the fitted model+ Examples of such tests
include the portmanteau statistic of Box and Pierce~1970! and its generaliza-
tion, based on arbitrary kernel functions, by Hong~1996!+ The Box–Pierce sta-
tistic is obtained as a particular case of the Hong statistic by using the truncated
uniform kernel+ Simulations by Hong show that his statistic computed using
kernels other than the truncated uniform kernel gives better power than the Box–
Pierce statistic against autoregressive~AR! processes and fractionally inte-
grated processes+

Box and Pierce~1970! derive the null distribution of their test for autoregres-
sive moving average~ARMA ! models, and Hong derives the null distribution
only for finite-order autoregressive models+ Both these results require assump-
tions that rule out long memory processes that have hyperbolically decaying
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correlation functions and spectral densities unbounded at the origin+ Further-
more, both tests requires the computation of residuals from the fitted model,
which can be quite tedious when the model does not have a finite-order auto-
regressive representation+ Also, in such cases, the residuals are not uniquely
defined+

A test statistic that circumvents the computation of residuals from the fitted
model is proposed by Milhoj~1981!+ To test the hypothesis that the observa-
tions xt , t 5 1, + + + , n, are from a process with spectral densityf ~l!, he sug-
gests the test statisticMn

d 5 $(j51
n21 Vj %

22 (j51
n21 Vj

2 where Vj 5 I ~l j !0f ~l j !,
I ~l! 5 ~2pn!21 6(t51

n xt e
2ilt 62 is the periodogram of the observations, and

l j 5 2pj0n is the j th Fourier frequency+ Though Milhoj’s test statistic is eas-
ily computed, his theoretical results are restricted to short memory time series
models with bounded spectral densities+ Assuming Gaussianity, Beran~1992!
extends Milhoj’s results to long memory time series models that have unbounded
spectral densities at the origin+ Examples of long memory processes are the
autoregressive fractionally integrated moving average~ARFIMA ! process~see
Hosking, 1981!+ Beran states that the null distribution ofMn

d in the presence
of long memory is the same as that derived by Milhoj~1981! in the case of
short memory+ Beran obtains his results by claiming thatMn

d is asymptotically
equivalent to its integral versionMn 5 $*0

2p V~l! dl%22*0
2p V 2~l! dl where

V~l! 5 I ~l!0f ~l!+
However, Deo and Chen~2000! show that even in the case of Gaussian white

noise, Mn
d and Mn do not have the same asymptotic distribution and that the

variance of the asymptotic distribution ofMn is two-thirds that of the variance
of the asymptotic distribution ofMn

d+ Thus, the asymptotic distribution ofMn
d

in the long memory case is still an open question+
In this paper, we introduce a test statistic that is a frequency domain ana-

logue of Hong’s statistic+ We derive the asymptotic null distribution for both
short memory models and long memory models+ Because our test does not
require the calculation of residuals, it can be easily applied to long memory
processes such as the ARFIMA models that do not possess finite-order AR rep-
resentations+ Our test delivers uniformly better power than the periodogram-
based testMn

d of Milhoj +
In the next section, we define our test statistic and provide the theoretical

results on its asymptotic null distribution for short and long memory models+
The power properties of our test are studied in Section 3 through simulations+
The proofs are relegated to the Appendix+

2. THE TEST STATISTIC

To motivate our test statistic, it is instructive to consider Hong’s statistic to
test the null hypothesis that the observations, xt , t 5 1,2, + + + , n, are from an
AR~ p! process, xt 5 a0 1 a1xt21 1 {{{ 1 apxt2p 1 «t , where «t are zero
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mean white noise+ Let et be the residuals from the fitted model, et 5 xt 2
[a0 2 [a1xt21 2 {{{ 2 [apxt2p, where [a0, [a1, + + , [ap are the estimates of the param-

etersa0,a1, + + + ,ap+ The test statistic of Hong~1996! is

Hn 5 (
j51

n21

k2~ j0pn! [re, j
2 ,

where k~{! is a suitable kernel function such thatk~0! 5 1, [re, j 5 [ge, j 0 [ge,0

are the sample autocorrelations of the residuals, and [ge, j are their sample
autocovariances,

[ge, j 5
1

n (
t56 j 611

n

~et 2 Se!~et26 j 62 Se!, j 5 0,61, + + + ,6~n 2 1!+

By Parseval’s identity, Hn can be written as

Hn 5
1

2S (
j52~n21!

n21

k2~ j0pn! [rej
2 2 1D

5
1

2 HSE0

2p

Zfe~l! dlD22S2pE
0

2p

Zfe2~l! dlD2 1J , (1)

where

Zfe~l! 5
1

2p (
6 j 6,n

k~ j0pn! [ge, j e
2ilj+ (2)

The kernel functionk here is also called the lag window andZfe~l! is the lag-
weights spectral density estimator+ Let In,e be the mean corrected periodogram
of the residuals given by

In,e~l! 5
1

2pn *(t51

n

~et 2 Se!e2ilt*
2

+

Using the relation

[ge, j 5E
0

2p

In,e~v!eivj dv,

we have an equivalent form ofZfe~l! in the frequency domain,

Zfe~l! 5E
0

2p

W~l 2 v! In,e~v! dv, (3)
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whereW, the spectral window corresponding to the lag windowk, is its Fourier
transform

W~l! 5
1

2p (
6h6,n

k~h0pn!e2ihl+ (4)

Expressions~1! and ~3! provide the motivation for our test statistic+ To test a
general null hypothesis that the observationsxt are from a process with spectral
densityf ~{!, we propose the following test statistic:

Tn 5 H 2p

n (
,50

n21

Dfe~l, !J22 H 2p

n (
,50

n21

Dfe2~l, !J , (5)

where

Dfe~l! 5
2p

n (
j51

n21 W~l 2 l j ! I ~l j !

f ~l j !

andI is the periodogram of the observationsx1, + + + , xn+ Note that Dfe is a discrete
version of Zfe in ~3! with In,e replaced byI0f+ Thus, we whiten the process in the
frequency domain instead of in the time domain+ This not only avoids the com-
putation of residuals but also allows one to easily test for arbitrary spectral
densities+ Furthermore, Tn is obtained by discretizing the integral in~1! with Zfe
replaced by Dfe+ Also note thatTn is mean invariant becauseDfe is evaluated only
at Fourier frequencies+ This is especially favorable in the presence of long mem-
ory, because the sample mean is not fully efficient in that case~see Beran, 1994,
p+ 6!+

Hong ~1996! establishes the asymptotic normality ofHn for AR models+ We
show thatTn is asymptotically normal under a null hypothesis that can be either
short memory or long memory if the process is Gaussian+ The properties of a
long memory process differ substantially from those of a short memory pro-
cess, and hence the proof of the asymptotic results for long memory models
requires a more delicate approach than that for short memory models+We now
state the assumptions we make and our main results+

Throughout the rest of this paper, we assume that$xt % is a stationary linear
process of the form

xt 5 m 1 (
j50

`

cj «t2j , (6)

where the innovations«t satisfy the following assumption+

Assumption 1+ The series$«t % is independently and identically distributed with
mean zero, variances2, andE~«t

8! , `+
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We also make the following assumptions about the kernelk~{! and the band-
width pn+

Assumption 2a+ The kernel functionk :Rr @21,1# is a symmetric function
that is continuous at zero and at all but a finite number of points, with k~0! 5 1+
Furthermore, assume that for somed $ 1, zd 6k~z!6 , ` asz r `+

Assumption 3+ The bandwidthpn satisfies log6 n0pn r 0 andpn
3020n r 0+

As can be seen from the proof of Lemma 2 in the Appendix Assumption 3
on the maximum rate of increase of the bandwidthpn is made merely to ensure
that our test statistic has the same limiting distribution as Hong’s test statistic+
If we were to relax this assumption, we would get a slightly different mean and
variance for the limiting distribution of our test statistic+ It is also worth noting
that all the kernels used in practice satisfy Assumption 2a+ The next theorem
states the asymptotic distribution ofTn when$xt % is a short memory process+

THEOREM 1+ Let x1, + + + , xn be n observations from a stationary linear pro-
cess defined by (6) with coefficientscj such that(j50

` 6cj 6 j 102 , ` and inno-
vations«t satisfying Assumption 1. Let f~{! be the spectral density of the process
such thatinfl f ~l! . 0. Let Tn be as in (5) and W be defined by (4) with kernel
function k satisfying Assumption 2a and bandwidth pn satisfying Assumption 3.
Then

n~Tn 2 Cn~k!!

Dn~k!102 r N~0,1!

in distribution as nr `, where

Cn~k! 5
1

np (
j51

n21

~12 j0n!k2~ j0pn! 1
1

2p

and

Dn~k! 5
2

p2 (
j51

n22

$~12 j0n!~12 ~ j 1 1!0n!%k4~ j0pn!+

It can be shown that a process satisfying the assumptions in Theorem 1 has
bounded spectral density and autocovariances that are absolutely summable
~Brockwell and Davis, 1996, ex+ 3+9!+ Such a process is a short memory pro-
cess, an example of which is the ARMA model+ The assumptions on the pro-
cess$xt % of Theorem 1 are satisfied by a broad range of short memory models,
whereas the asymptotic theory ofHn is established only for AR models+

To establish the asymptotic normality ofTn when the process is a long mem-
ory process, we restrict the process$xt % to be Gaussian+ We also require addi-
tional assumptions onk, which we state next+
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Assumption 2b+ In addition to Assumption 2a, the kernel functionk is dif-
ferentiable almost everywhere and satisfies*6k'~z!k~z!6 dz , `+

All the kernels used in practice satisfy Assumption 2b+ We now state the
asymptotic distribution ofTn when$xt % is a long memory process+ For the long
memory case, we make the extra assumption that the processxt is Gaussian+
We feel that this assumption can be relaxed just as in the short memory case in
Theorem 1, though at the expense of much greater complexity in the proof+

THEOREM 2+ Let x1, + + + , xn be n observations from a stationary Gauss-
ian linear process defined by (6) that has a spectral density f~l! 5 l22dg*~l!,
d [ ~0,0+5! and g*~{! is an even differentiable function on@2p,p# . Also let
the spectral density satisfyinfl f ~l! . 0. Let Tn be defined as in Theorem 1
with kernel function k satisfying Assumption 2b and bandwidth pn satisfying
Assumption 3. Then

n~Tn 2 Cn~k!!

Dn~k!102 r N~0,1!

in distribution as nr `, where Cn~k! and Dn~k! are as in Theorem 1.

A stationary linear process that has a spectral density satisfying the assump-
tion of Theorem 2 is a long memory process+ It can be shown that the auto-
covariances decay to zero hyperbolically and are not summable for such a
process~Zygmund, 1959, Theorem 2+24!+ Examples of long memory processes
satisfying the assumptions of Theorem 2 are ARFIMA models~Granger and
Joyeux, 1980; Hosking, 1981! and fractional Gaussian noise~Mandelbrot and
Van Ness, 1968!+

In applications, the null hypothesis of interest is the composite hypothesis
that the process has spectral densityf ~u,{! for some unknownu in the param-
eter spaceQ+ Under this composite null, the test statistic becomes

Tn~ Zu! 5 H 2p

n (
,50

n21

Dfe~ Zu,l, !J22 H 2p

n (
,50

n21

Dfe2~ Zu,l, !J , (7)

where

Dfe~ Zu,l! 5
2p

n (
j51

n21 W~l 2 l j ! I ~l j !

f ~ Zu,l j !

and Zu is some estimator ofu based on the samplex1, + + + , xn+ Under certain addi-
tional assumptions, we show in the next two theorems that the asymptotic null
distribution ofTn~ Zu! remains the same as that ofTn in Theorem 1 and in Theo-
rem 2+ We first state the additional assumptions we need+

Assumption 4+ Let Q0 be a compact subset ofQ, where Q is a finite-
dimensional parameter space+ Let the spectral density of the process$xt % be
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f ~u0,{!, whereu0 is the true parameter vector that lies in the interior ofQ0+
Assume that the estimatorZu [ Q satisfies7 Zu 2 u07 5 Op~n2102!+

The following is an assumption on the spectral density for short memory
process+

Assumption 5+ The spectral densityf ~u,l! satisfies the following conditions
for ~u,l! [ Q 3 @0,2p# :

~i! f ~u,l! and f 21~u,l! are continuous at all~u,l! +
~ii ! ]0]uj f 21~u,l! and]20]uj ]uk f 21~u,l! are continuous and finite at all~u,l!+

It is very easy to establish that Assumptions 4 and 5 are satisfied by all ARMA
models+ The next theorem states the asymptotic distribution ofTn~ Zu! when$xt %
is a short memory process+

THEOREM 3+ Let x1, + + + , xn be n observations from a stationary linear pro-
cess satisfying the same assumptions as those of Theorem 1. Let the estimated
parameter vector Zu satisfy Assumption 4 and the spectral density of the process
$xt % satisfy Assumption 5. Also let Tn~ Zu! be defined by (7) with kernel function
k and bandwidth pn satisfying the same assumptions as those of Theorem 1.
Then

n~Tn~ Zu! 2 Cn~k!!

Dn~k!102 r N~0,1!

in distribution as nr `, where Cn~k! and Dn~k! are defined as in Theorem 1.

To establish the asymptotic distribution ofTn~ Zu! when$xt % is a long memory
process, we need the following assumption onZu and the spectral densityf ~u,{!+

Assumption 6+ Let Q0 be a compact subset ofQ, where Q is a finite-
dimensional parameter space inRs for some positive integers+ Let the spectral
density of the process$xt % be f ~u0,l! 5 f *~d0,l!g*~b0,l!, where f * and g*

are even functions on@2p,p# , f *~d,l! ; ad l22d asl r 0 for somead . 0,
g*~b,l! is differentiable on@2p,p# , andu0 5 ~b0,d0!' is the true parameter
vector that lies in the interior ofQ0+ Furthermore, assume that thesth compo-
nent ofQ0 is contained in the segment@d1,0+5 2 d1# for some 0, d1 , 0+25
and that there exists an estimatorZu [ Q0 that satisfies7 Zu 2 u07 5 Op~n2102!+

Assumption 7+ Let u 5 ~b,d!', where~b,d! [ Q0+ For anyd . 0, the spec-
tral densityf ~u,l! satisfies the following conditions+

~i! f ~u,l! is continuous at all~u,l! exceptl 5 0, f 21~u,l! is continuous at all
~u,l!, and

sup
l

sup
u[Q0

6l 62df ~u,l! 5 A for some 0, A , `+
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~ii ! ]0]uj f 21~u,l! and]20]uj ]uk f 21~u,l! are continuous at all~u,l! and

sup
l

sup
u[Q0

6l 622d1d * ]

]uj

f 21~u,l!* 5 A for some 0, A , `,

sup
l

sup
u[Q0

6l 622d1d* ]2

]uj ]uk

f 21~u,l!*5 A for some 0, A , `+

~iii ! There exists a constantC with

6 f ~u1,l! 2 f ~u2,l!6 # C7u1 2 u27 f ~u2,l!

uniformly for all l and allu1 5 ~b1,d1!' andu2 5 ~b2,d2!' such thatd1 , d2+

All the conditions of Assumptions 6 and 7 are satisfied by fractional Gauss-
ian noise and ARFIMA processes~see Dahlhaus, 1989!+We now state the asymp-
totic distribution ofTn~ Zu! when$xt % is a long memory process+

THEOREM 4+ Let x1, + + + , xn be n observations from a stationary Gaussian
linear process satisfying the same assumptions as those of Theorem 2. Let the
estimated parameter vectorZu satisfy Assumption 6 and the spectral density of
$xt % satisfy Assumption 7. Also let Tn~ Zu! be defined by (7) with kernel function
k and bandwidth pn satisfying the same assumptions as those of Theorem 2.
Then

n~Tn~ Zu! 2 Cn~k!!

Dn~k!102 r N~0,1!

in distribution as nr `, where Cn~k! and Dn~k! are defined as in Theorem 1.

The theoretical results that we have presented all address the asymptotic
behavior of the test statistic when the null hypothesis is correctly specified+ An
additional question of interest is the power property of the test statistic when
the spectral density given by the null hypothesis is actually misspecified+ If
both the true model and also the misspecified model under the null hypothesis
are short memory models, it can be shown quite easily that the statisticTn is
consistent+ We do not include the proof for this statement because it is simply
tedious but does not have any technical hurdles+ However, in the long memory
case establishing consistency is a more complicated problem+ The complexity
of the problem arises because of the fact that when a model is misspecified for
a long memory series, the rate of convergence of the parameter estimates of the
misspecified model need not beMn-consistent and need not even be asymptot-
ically normal+ For example, it is known ~see Yajima, 1993! that when an AR~1!
model is fit to a long memory process with memory parameterd [ ~0+25,0+5!,
the estimate of the AR~1! parameter converges to the population lag 1 auto-
correlation at a raten0+52d and has an asymptotic distribution that is not Gauss-
ian but is instead the Rosenblatt process+ Thus, the “usual” behavior of
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estimators of parameters of a misspecified model is not obtained, and a careful
analysis has to be carried out on the behavior of goodness-of-fit tests under
such misspecifications+We leave this problem of consistency for future research+
Another interesting problem for further research is the behavior of the test under
local alternatives, where the spectral density under the alternative hypothesis
approaches the spectral density under the null hypothesis at some ratean+ As
pointed out earlier, the rate of convergence of the estimators of the null hypoth-
esis model when the alternative is true depends ond+ Hence, we would expect
that the ratean at which the test will have nontrivial local power will depend
on d, unlike the result obtained in Theorem 4 of Hong~1996! for the short
memory case+ However, we are currently unable to conjecture exactly howan

will depend ond, and we leave that question for future work+
An additional question of interest is the choice ofpn+ BecauseCn~k! ; 10~2p!

and Dn~k! ; Apn for some constantA, we would expect based on our pre-
ceeding results, that under a misspecified model, the rate at whichTn would
diverge from 10~2p! would ben0pn

102+ Thus, one would expect in general that
the slowerpn grows the more powerful the test would be though no optimal
choice ofpn can be stated+

In our next section we study the finite-sample performance of our test through
Monte Carlo simulations+

3. SIMULATION STUDIES

We generated 5,000 replications of Gaussian series of lengthn 5 128 and 512
from a variety of AR and ARFIMA processes+ The algorithm of Davies and
Harte ~1987! was used in the data generation of ARFIMA models+ For each
series, we computed the three test statistics: ~i! Our statisticTn+ ~ii ! Hong’s sta-
tistic Hn+ ~iii ! The Milhoj statisticMn+ The statistics were suitably normalized
so that they would have an asymptotic standard normal distribution under the
null+ For Tn andHn, we used the following three kernels+

~i! Bartlett k~z! 5 1 2 6z6, 6z6 # 1,
5 0 otherwise,

~ii ! Tukey k~z! 5 1
2
_~cos~zp! 1 1!, 6z6 # 1,

5 0 otherwise,

~iii ! Quadratic spectral~QS!, k~z! 5
25

12z2 S sin~6pz05!

6pz05
2 cos~6pz05!D, z [ ~2`,`!+

For computingTn andHn, we used three bandwidths, pn 5 @3n0+2# , @3n0+3# ,
and@3n0+4# + Note that there is no bandwidth involved in computingMn+

In Tables 1 and 2, we report the sizes of the three tests under the compos-
ite null hypothesis of an AR~1! and an ARFIMA~0,d,0!, respectively+
The true AR~1! parameter was set to 0+8, and the true long memory parameter
d in the ARFIMA~0,d,0! was set at 0+4+ Because the null hypothesis was a
composite one, we had to estimate the parameters of the AR~1! model and the
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Table 1. Rejection rates in percentage under an AR~1! model

n 128 512

pn 8 13 21 11 20 37

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Tn BAR 3+08 5+02 4+04 6+12 4+90 7+80 3+82 5+82 4+32 6+98 5+06 8+02
TUK 3+04 4+96 4+04 6+12 6+30 9+68 3+98 5+82 4+56 7+10 5+16 8+40
QS 3+64 5+64 4+52 6+90 5+04 7+74 4+06 6+52 4+74 7+64 5+58 9+26

Hn BAR 3+30 5+08 3+82 5+82 4+26 6+76 3+62 5+72 4+20 6+54 4+76 7+34
TUK 3+16 4+90 3+78 5+92 4+46 6+96 3+76 5+78 4+26 6+84 4+88 7+48
QS 3+52 5+52 4+22 6+44 4+82 7+40 4+02 6+20 4+36 7+12 5+08 8+36

Mn 4+34 at 5% 7+12 at 10% 5+14 at 5% 8+88 at 10%

Note: Model xt 2 0+8xt21«t , «t ; N~0,1!+

3
9

1
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Table 2. Rejection rates in percentage under an ARFIMA~0,d,0! model

n 128 512

pn 8 13 21 11 20 37

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Tn BAR 2+62 4+08 3+52 5+28 4+90 7+42 2+64 4+60 3+74 6+00 4+80 8+20
TUK 2+52 4+00 3+46 5+58 4+96 7+50 2+92 4+78 3+86 6+14 5+10 8+42
QS 3+22 4+98 4+34 6+78 6+62 9+60 3+30 5+74 4+40 7+06 5+58 9+08

Hn BAR 2+28 3+76 3+02 4+86 3+54 5+88 2+56 4+42 3+42 5+86 4+22 7+00
TUK 2+20 3+52 3+20 5+10 3+90 5+88 3+12 5+32 4+14 6+52 4+70 7+86
QS 2+82 4+46 3+66 5+36 4+10 7+04 2+72 4+54 3+70 5+98 4+44 7+44

Mn 4+70 at 5% 7+58 at 10% 4+50 at 5% 8+18 at 10%

Note: Model xt 5 ~1 2 B!20+4«t , «t ; N~0,1!+

3
9

2
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Table 3. Rejection rates in percentage under an AR~1! model with innovations fromt distribution

n 128 512

pn 8 13 21 11 20 37

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Tn BAR 2+90 4+66 3+28 5+42 3+98 6+64 3+42 5+16 3+88 6+08 4+76 8+12
TUK 2+92 4+50 3+36 5+40 3+98 6+84 3+52 5+28 4+00 6+14 4+90 8+02
QS 3+20 5+14 3+44 6+08 5+36 8+52 3+60 5+76 4+32 6+90 5+74 8+96

Hn BAR 3+10 4+76 3+32 5+20 3+34 5+88 3+22 4+92 3+66 5+60 4+48 7+08
TUK 3+08 4+90 3+24 5+26 3+52 5+94 3+28 5+20 3+68 5+82 4+56 7+32
QS 3+20 5+14 3+32 5+54 4+00 6+38 3+38 5+42 3+84 6+34 4+86 8+26

Mn 3+80 at 5% 6+26 at 10% 4+60 at 5% 8+48 at 10%

Note: Model xt 2 0+8xt21 5 «t , «t ; t9+

3
9

3
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Table 4. Rejection rates in percentage under an ARFIMA~0,d,0! model with innovations fromt distribution

n 128 512

pn 8 13 21 11 20 37

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Tn BAR 2+16 3+50 3+02 5+00 4+28 6+54 2+66 4+10 3+44 5+64 4+32 7+24
TUK 2+08 3+56 3+08 5+00 4+46 6+78 2+86 4+30 3+64 6+04 4+46 7+52
QS 2+66 4+40 3+92 6+06 5+58 8+84 3+12 5+12 3+90 6+64 5+10 8+66

Hn BAR 1+86 3+30 2+64 4+74 3+48 5+60 2+70 4+18 3+24 5+32 4+00 6+78
TUK 1+96 3+28 2+66 4+90 3+66 5+88 2+86 4+42 3+46 5+86 4+10 7+18
QS 2+30 4+24 3+52 5+44 4+08 6+58 3+20 5+16 3+72 6+36 4+66 7+60

Mn 3+94 at 5% 7+04 at 10% 4+92 at 5% 8+56 at 10%

Note: Model xt 5 ~1 2 B!20+4«t , «t ; t9+
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Table 5. Rejection rates in percentage under AR~2! alternative fitting model AR~1!

n 128 512

pn 8 13 21 11 20 37

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Tn BAR 22+48 28+60 22+92 29+04 22+88 29+62 80+18 84+96 76+02 81+64 68+54 75+74
TUK 21+94 28+16 22+80 28+58 22+40 28+76 79+96 82+18 74+76 81+06 65+66 73+26
QS 22+44 28+64 22+80 28+96 22+74 29+74 78+20 83+42 70+56 77+68 61+04 69+96

Hn BAR 23+58 30+22 23+42 29+66 22+42 28+70 80+62 85+46 75+84 81+86 68+24 75+26
TUK 23+18 29+36 23+22 29+42 21+98 28+22 80+32 85+24 74+90 80+90 65+02 72+66
QS 23+28 29+90 22+76 28+54 21+12 27+40 78+34 83+96 70+46 77+14 59+60 68+88

Mn 8+84 at 5% 13+78 at 10% 17+78 at 5% 25+96 at 10%

Note: Model xt 2 0+8xt21 1 0+15xt22 5 «t , «t ; N~0,1!+
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Table 6. Rejection rates in percentage under ARMA~1,1! alternative fitting model ARIMA~1,d,0!

n 128 512

pn 8 13 21 11 20 37

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Tn BAR 9+50 13+38 8+44 12+58 8+96 13+04 31+84 40+74 28+36 36+56 25+10 34+24
TUK 7+24 11+28 8+04 12+06 8+80 12+80 31+34 40+54 26+94 35+12 23+36 32+48
QS 8+74 12+26 8+04 12+02 10+04 14+74 29+20 37+80 25+00 33+62 22+78 31+50

Hn BAR 12+68 17+04 11+28 15+52 8+92 13+20 33+02 42+28 28+94 37+36 24+82 33+70
TUK 7+98 12+12 8+20 12+32 8+66 12+96 32+66 41+88 27+70 35+72 23+12 31+88
QS 11+48 15+70 10+18 14+40 9+06 13+68 30+32 38+70 25+30 33+72 21+78 30+10

Mn 5+42 at 5% 8+76 at 10% 6+44 at 5% 10+38 at 10%

Note: Model xt 5 0+8xt21 1 «t 1 0+2«t21, «t ; N~0,1!+
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Table 7. Rejection rates in percentage under ARFIMA~0,d,0! alternative fitting model ARMA~1,1!

n 128 512

pn 8 13 21 11 20 37

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Tn BAR 6+46 9+38 7+50 11+10 8+90 13+30 37+28 44+78 38+54 46+16 37+02 45+06
TUK 6+54 9+10 7+50 11+32 8+68 13+14 38+06 45+20 39+14 46+74 36+20 44+42
QS 7+20 10+22 8+24 12+56 10+44 15+34 39+70 46+54 37+90 45+72 34+36 43+00

Hn BAR 5+26 7+54 6+22 8+90 6+84 10+34 36+14 43+38 37+28 44+80 35+00 42+88
TUK 5+32 7+48 6+46 9+12 6+92 10+54 37+16 44+08 37+90 45+46 34+22 42+36
QS 6+04 8+64 6+68 10+18 7+32 10+78 38+42 45+56 36+72 44+56 32+26 40+10

Mn 5+34 at 5% 8+92 at 10% 11+56 at 5% 17+96 at 10%

Note: Model xt 5 ~1 2 B!20+4«t , «t ; N~0,1!+
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Table 8. Rejection rates in percentage under ARFIMA~1,d,0! alternative fitting model ARFIMA~0,d,0!

n 128 512

pn 8 13 21 11 20 37

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Tn BAR 8+52 12+48 8+76 12+68 9+68 14+16 16+92 22+42 14+94 21+14 13+32 19+42
TUK 8+16 12+10 8+10 12+14 9+10 13+60 16+26 21+78 14+50 20+50 12+80 18+32
QS 8+24 11+74 8+82 12+86 10+88 15+54 15+76 21+34 13+16 19+22 12+62 18+24

Hn BAR 7+54 10+84 7+54 11+42 7+98 11+56 16+22 21+78 14+22 20+14 12+32 17+74
TUK 7+36 10+68 7+26 11+06 7+60 11+36 15+28 20+38 12+52 18+14 10+88 16+32
QS 7+32 10+70 7+32 11+34 8+12 11+53 15+84 20+98 13+88 19+68 11+60 16+82

Mn 6+14 at 5% 9+92 at 10% 6+82 at 5% 11+40 at 10%

Note: Model xt 2 0+1xt21 5 ~1 2 B!20+4 «t , «t ; N~0,1!+
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ARFIMA ~0,d,0! model, which was done using the Whittle likelihood in the
frequency domain+ From Tables 1 and 2, it can be seen that for both models,
all three statistics are undersized at both the 5% and 10% levels+ The amount
by which they are undersized decreases as the bandwidthpn increases+ The
Mn-statistic is least undersized, whereas the sizes ofTn are comparable to those
of Hn+

Though our theory on the asymptotic distribution of the test statisticTn has
been established only under the assumption of Gaussianity for the case of long
memory series, we believe that our result would still hold for non-Gaussian
innovations that have a finite eighth moment+ Hence, we simulated both a non-
Gaussian AR~1! process and a non-Gaussian ARFIMA~0,d,0! process in which
the innovations came from at distribution with 9 degrees of freedom+ The AR~1!
parameter was set to 0+8, and the long memory parameterd was set to 0+4 as in
the earlier simulation for Gaussian data+ Tables 3 and 4 present the sizes of
the three tests under the composite null hypothesis of an AR~1! and an
ARFIMA ~0,d,0!, respectively, for the case oft distributed innovations+ On com-
paring Tables 3 and 4 with Tables 1 and 2, it is seen that the performance of the
tests with respect to size in the case oft distributed innovations is very similar
to that of the tests when the data are Gaussian+

To compare the power of the tests, we considered the following four cases:
~a! fitting an AR~1! to data generated by an AR~2!, xt 5 0+8xt21 2 0+1xt22 1
«t + ~b! fitting an ARFIMA~1,d,0! to data generated by an ARMA~1,1!, xt 5
0+8xt21 1 «t 1 0+2«t21+ ~c! fitting an ARMA~1,1! to data generated by an
ARFIMA ~0,d,0!, ~1 2 B!0+4xt 5 «t where B denotes the backshift operator+
~d! fitting an ARFIMA~0,d,0! to data generated by an ARFIMA~1,d,0!,
~1 2 B!0+4~1 2 0+1B!xt 5 «t + The results are reported in Tables 5, 6, 7, and 8,
respectively+ In all cases, the null hypotheses were composite, and the param-
eters of the model under the null hypothesis were estimated using the Whittle
likelihood+

It is seen that both the testsTn andHn have significantly higher power than
Mn in all the alternatives considered+ This is not surprising, because the testsTn

andHn give decreasing weights to higher lag sample correlations, whereasMn

gives uniform weight at all lags+ It might be tempting to believe that this prop-
erty of Mn may be useful in detecting long memory alternatives+ This belief is
however belied by Table 7, where we fit a short memory model to a long mem-
ory series and yetMn is outperformed by a wide margin by both of the other
tests+ On the other hand, it is seen that the power ofTn is very similar to the
power ofHn, with neither test outperforming the other significantly in any sit-
uation considered+
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APPENDIX: PROOFS

We will only provide the proofs for long memory models+ The proofs for short memory
models are similar though much simpler and are available from the authors+ In this Appen-
dix, we will often use the following decomposition ofI ~l!:

I ~l! 5 6c~l!62I«~l! 1 I ~l! 2 6c~l!62I«~l!,

wherec~l! 5 (k50
` cke2ilk and I«~l! is the periodogram of the innovations«t in ~6!+

Then

I ~l!

f ~l!
5

2p

s2 I«~l! 1 R~l!, (A.1)

where

R~l! 5
I ~l!

f ~l!
2

2p

s2 I«~l!+ (A.2)
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Let [g«, j be thej th sample covariance of the«t given by [g«, j 5 n21 (t56 j 611
n ~«t 2 S«! 3

~«t26 j 6 2 S«!, for 6 j 6 # n 2 1+

Proof of Theorem 2. Let I«~l! 5 ~2pn!21 6(t51
n «t eilt 62 be the periodogram of

the innovations«t without mean correction+ For the Fourier frequencies, lk, k 5 1, + + + ,
~n 2 1!, we haveI«~lk! 5 In,«~lk!, whereIn,« is the periodogram of the mean corrected
innovations«t 2 S«+ Also define

Zf«,d~l! 5
2p

n (
j51

n21

W~l 2 l j ! I«~l j !+

In Lemmas 1–3, which follow, we show that

n

pn
102 H 2p

n (
,50

n21S Dfe2~l, ! 2
4p2

s4 Zf«,d2 ~l, !DJ 5 op~1!,

n

pn
102 H 2p

n (
,50

n21 4p2

s4 Zf«,d2 ~l, ! 2
2p

s4 (
j52~n21!

n21

k2~ j0pn! [g«, j
2 J 5 op~1!,

and

n

pn
102 FH 2p

n (
,50

n21

Dfe~l, !J2

2S2p

s2 [g«,0D2G 5 op~1!+

Also, by Lemma 3, $~2p0n!(,50
n21~2p0s2! Zf«,d~l, !%2 5 ~4p20s4! [g«,0

2 andMn~ [g«,0 2
s2! 5 Op~1!+ The theorem now follows by Theorem 1 of Hong~1996! and the fact that
pn

21Dn~k! r D~k! [ *0
` k4~z! dz , ` asn r ` by Assumption 2a+ n

Proof of Theorem 4. By Theorem 2 it suffices to show that

n

pn
102 ~Tn~u0! 2 Tn~ Zu!! 5 op~1!, (A.3)

which we do by establishing that

n

pn
102 H 2p

n (
,50

n21

~ Dfe2~u0,l, ! 2 Dfe2~ Zu,l, !!J 5 op~1! (A.4)

and

n

pn
102 FH 2p

n (
,50

n21

Dfe~u0,l, !J2

2 H 2p

n (
,50

n21

Dfe~ Zu,l, !J2G 5 op~1!+ (A.5)

We will prove only~A+4! because the proof of~A+5! is similar+ Let

Gu~l j ,lh! 5
1

fu~l j !

1

fu~lh!
+
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Then the LHS of~A+4! is

n

pn
102

2p

n (
,50

n21S2p

n (
j51

n21

W~l,2j !
I ~l j !

fu0
~l j !

D2

2S2p

n (
j51

n21

W~l,2j !
I ~l j !

f Zu~l j !
D2

5
~2p!2

n2pn
102 (

,50

n21

(
j,h51

n21

W~l,2j !W~l,2h! I ~l j ! I ~lh!~Gu0
~l j ,lh! 2 G Zu~l j ,lh!!+

By a similar argument of deriving~A+25! in the proof of Lemma 1, which follows, the
RHS of the preceding equation is

2p

npn
102 (

j,h51

n21

I ~l j ! I ~lh!~Gu0
~l j ,lh! 2 G Zu~l j ,lh!!Kn~l j2h!, (A.6)

where

Kn~ls! 5 (
p52~n21!

n21

kp
2eilsp 1 2 (

p51

n21

kpkn2peilsp+ (A.7)

For everyl j andlh, we have by a Taylor series expansion,

G~l j ,lh,u0! 2 G~l j ,lh, Zu!

5 (
u
S 1

fu0
~lh!

]f 21~l j ,u0!

]uu

1
1

fu0
~l j !

]f 21~lh,u0!

]uu
D~ Zuu 2 u0u

!

1
1

2
~ Zu 2 u0!'

]2G~l j ,lh, Du!

]u2 ~ Zu 2 u0!,

where Dujh 5 u0 1 ajh~ Zu 2 u0! for some 0, ajh , 1 and

]2G~l j ,lh,u!

]u2 5
1

fu~lh!

]2f 21~l j ,u!

]u2 1
]f 21~l j ,u!

]u

]f 21~lh,u!

]u

'

3
1

fu~l j !

]2f 21~lh,u!

]u2 1
]f 21~lh,u!

]u

]f 21~l j ,u!

]u

'

(A.8)

To prove~A+4!, we will show that~A+6! is op~1! by verifying, for eachu,

2p

npn
102 (

j,h51

n21

I ~l j ! I ~lh!S 1

fu0
~l j !

]f 21~lh,u0!

]uu
D~ Zuu 2 u0u

!Kn~l j2h! 5 op~1! (A.9)

and

2p

npn
102 (

j,h51

n21

I ~l j ! I ~lh!~ Zu 2 u0!'
]2G~l j ,lh, Du!

]u2 ~ Zu 2 u0!Kn~l j2h! 5 op~1!+ (A.10)

We first show~A+9!+ Let

g~l! 5
] ln f ~l,u0!

]uu

; (A.11)
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then

1

fu0
~l j !

]f 21~lh,u0!

]uu

5 2
1

fu0
~l j !

1

fu0
~lh!

g~lh!+

Because Zu 2 u0 5 Op~n2102!, ~A+9! is true if

(
j,h51

n21 I ~l j !

fu0
~l j !

I ~lh!

fu0
~lh!

g~lh!Kn~l j2h! 5 op~n302pn
102!+

By ~A+1!, it is thus enough to show that

(
j,h51

n21

I«~l j ! I«~lh!g~lh!Kn~l j2h! 5 op~n302pn
102!, (A.12)

(
j,h51

n21

I«~l j !Ru0
~lh!g~lh!Kn~l j2h! 5 op~n302pn

102!, (A.13)

and

(
j,h51

n21

Ru0
~l j !Ru0

~lh!g~lh!Kn~l j2h! 5 op~n302pn
102!+ (A.14)

Becauseg~l! 5 O~l2d! by Assumption 7, ~A+13! and~A+14! can be shown by an argu-
ment similar to that used to establish~A+26! and ~A+27! in the proof of Lemma 1+ To
show~A+12!, we let

am 5 (
h51

n21

g~lh!e2ilhm+

Using the fact that(j51
n21 e2il j p 5 ~n 2 1! I ~ p 5 0! 2 1I ~ p Þ 0!, the LHS of~A+12! is

(
j,h51

n21

I«~l j ! I«~lh!g~lh!S (
p52~n21!

n21

kp
2eil j2hp 1 2 (

p51

n21

kpkn2peil j2hpD
5

1

~2pn!2 (
p52~n21!

n21

kp
2 (

s, t,u, v
«s«t «u«v (

h51

n21

g~lh!e2ilh~u2v2p! (
j51

n21

e2il j ~s2t1p!

1
2

~2pn!2 (
p51

n21

kpkn2p (
s, t,u, v

«s«t «u«v (
h51

n21

g~lh!e2ilh~u2v2p! (
j51

n21

e2il j ~s2t1p!

5
1

4p2nS (
p52~n21!

n21

kp
2 (

t,u, v
au2v2p«t «t2p«u«v1 2 (

p51

n21

kpkn2p (
t,u, v

au2v2p«t «t2p«u«vD
2

1

4p2n2 S (
p52~n21!

n21

kp
2 (

s, t,u, v
au2v2p«s«t «u«v1 2 (

p51

n21

kpkn2p (
s, t,u, v

au2v2p«s«t «u«vD+
(A.15)
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We will show that both terms of the last expression in~A+15! have second moments of
ordero~n3pn!+ By the Cauchy–Schwarz inequality, we have

ES 1

4p2n (
p52~n21!

n21

kp
2 (

t,u, v
au2v2p«t «t2p«u«v1 2 (

p51

n21

kpkn2p (
t,u, v

au2v2p«t «t2p«u«vD2

5 OS 1

16p4n2 (
p1, p252~n21!

n21

kp1

2 kp2

2 (
t1, t2,u1,u2, v1, v2

au12v12p1
au22v22p2

3 E~«t1«t2«t12p1
«t22p2

«u1
«u2

«v1«v2!D
1 OS 1

16p4n2 (
p1, p252~n21!

n21

kn2p1

2 kn2p2

2 (
t1, t2,u1,u2, v1, v2

au12v12p1
au22v22p2

3 E~«t1«t2«t12p1
«t22p2

«u1
«u2

«v1«v2!D+
Because«t are independent with zero mean, the preceding expectation is positive only
when the random variables inside the parentheses consist of products of even powers of
the «t + Thus, the preceding expression is dominated by two cases: one is whenp1 5
p2 5 0, u1 5 u2, andv1 5 v2, and the other is whenp1 5 p2 5 0, u1 5 v1, andu2 5 v2+
Using Lemma 6, which follows, the order of these two cases is

OSn22 (
t1, t2,u1,u2

au12u2

2 1 n22 (
t1, t2,u1,u2

a0
2D

5 O~n22n512d 1 n22n412d !

5 o~n3pn!+

It can be shown that the second moment of the second term in~A+15! is also of order
o~n3pn! by similar arguments+ We have thus established~A+9!+

Next, we establish~A+10!+ Let Auv~l j ,lh, Dujh! denote the~u, v! th element of the matrix

]2G~l j ,lh, Dujh !

]u2 +

Then, by ~A+8! and Assumption 7,

6l j
22 Ddjh lh

22 Ddjh l j
d lh

dAuv~l j ,lh, Dujh !6 # A for some 0, A , ` with probability 1,

(A.16)

where Dujh 5 ~ Ebjh, Ddjh!'+ Because Zu 2 u0 5 Op~n2102!, ~A+10! will follow if for every
~u, v!

(
j,h51

n21

I ~l j ! I ~lh!Auv~l j ,lh, Dujh !Kn~l j2h! 5 op~n2pn
102!+

404 WILLA W. CHEN AND ROHIT S. DEO

https://doi.org/10.1017/S0266466604202067 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604202067


To show this, it suffices, by ~A+1!, to prove that

(
j,h51

n21

f ~u0,l j ! f ~u0,lh! I«~l j ! I«~lh!Auv~l j ,lh, Dujh !Kn~l j2h! 5 op~n2pn
102!, (A.17)

(
j,h51

n21

f ~u0,l j ! f ~u0,lh! I«~l j !Ru0
~lh!Auv~l j ,lh, Dujh !Kn~l j2h! 5 op~n2pn

102!,

and

(
j,h51

n21

f ~u0,l j ! f ~u0,lh!Ru0
~l j !Ru0

~lh!Auv~l j ,lh, Dujh !Kn~l j2h! 5 op~n2pn
102!+

We will prove only the first of these, because the proof for the other two is similar+
Letting

Yn 5 (
j,h51

n21

f ~u0,l j ! f ~u0,lh! I«~l j ! I«~lh!Auv~l j ,lh, Dujh !Kn~l j2h!,

we have

Yn 5 I ~ Zd $ d0!Yn 1 I ~ Zd , d0!Yn+ (A.18)

First consider Zd $ d0+ Then Ddjh $ d0 for all j, h+ Hence, by Assumption 7 and~A+16!, we
have

6 f ~u0,l j ! f ~u0,lh!Auv~l j ,lh, Dujh !6 # Al j
2d lh

2d (A.19)

with probability 1 for some 0, A , ` for all j, h + Also, by the Cauchy–Schwarz
inequality, supj, hE6 I«~l j ! I«~lh!6 , K , `, and it follows from~A+19! and ~A+28! in
the proof of Lemma 1 that

E6 I ~ Zd $ d0!Yn6# ES (
j,h51

n21

Al j
2d lh

2d $n~ j 2 h!21I ~ j Þ h! 1 pnI ~ j 5 h!%6 I«~l j ! I«~lh!6D
5 OS (

j,h51

n21

l j
2d lh

2d $n~ j 2 h!21I ~ j Þ h! 1 pnI ~ j 5 h!%D5 O~n2 log n!

5 o~n2pn
102!+ (A.20)

Now consider Zd , d0+ Then 0, Ddjh , d0 for all j, h+ By part ~iii ! of Assumption 7 we
get that

f ~u0,l j ! f ~u0,lh! f 21~ Dujh ,l j ! f 21~ Dujh ,lh! 5 ~11 Dj !~11 Dh!,

where

6Dj 6 # K7 Zu 2 u07l j
22d0 (A.21)
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for all j+ Furthermore,

6 f ~ Dujh ,l j ! f ~ Dujh ,lh!Auv~l j ,lh, Dujh !6 # Al j
2d lh

2d (A.22)

with probability 1 for some 0, A , ` by ~A+16!+ Using these bounds and~A+28!
we get

6 I ~ Zd , d0!Yn6# (
j,h51

n21

A~11 Dj !~11 Dh!l j
2d lh

2d 6Kn~l j2h!6 I«~l j ! I«~lh!

5 (
j,h51

n21

Al j
2d lh

2d 6Kn~l j2h!6 I«~l j ! I«~lh!

1 2 (
j,h51

n21

ADj l j
2d lh

2d 6Kn~l j2h!6 I«~l j ! I«~lh!

1 (
j,h51

n21

ADj Dhl j
2d lh

2d 6Kn~l j2h!6 I«~l j ! I«~lh!

[ T1 1 T2 1 T3+

From ~A+20! we have thatT1 5 op~n2pn
102!+ Also, by ~A+21!,

T2 # A7 Zu 2 u07 (
j,h51

n21

l j
22d02d lh

2d 6Kn~l j2h!6 I«~l j ! I«~lh!+

An argument similar to that in ~A+20! shows that (j,h51
n21 l j

22d02d lh
2d 3

6Kn~l j2h!6 I«~l j ! I«~lh! 5 Op~n2 log n! and because7 Zu 2 u07 5 Op~n2102!, we get
T2 5 Op~n302 log n! 5 op~n2pn

102!+ Arguing in the same vein, we establish thatT3 5

I ~d0 , 1
4
_!Op~n log n! 1 I ~d0 $ 1

4
_!Op~n4d012d log n! 5 op~n2pn

102!+ These bounds onT1,
T2, andT3 yield

6 I ~ Zd , d0!Yn65 op~n2pn
102!+ (A.23)

Thus, ~A+17! follows from ~A+18!, ~A+20!, and~A+23!+ n

LEMMA 1 + Under the assumptions in Theorem 2,

n

pn
102 H 2p

n (
,50

n21S Dfe2~l, ! 2
4p2

s4 Zf«,d2 ~l, !DJ 5 op~1!+ (A.24)

Proof. The LHS of~A+24! is

n

pn
102

2p

n (
,50

n21FS2p

n (
j51

n21

W~l,2j !
I ~l j !

f ~l j !
D2

2S2p

s2

2p

n (
j51

n21

W~l,2j ! I«~l, !D2G
5

~2p!3

n2pn
102 (

,50

n21

(
j,h51

n21

W~l,2j !W~l,2h!$I«~l j !R~lh! 1 I«~lh!R~l j ! 1 R~l j !R~lh!%+

Letting ks 5 k~s0pn! and F~l j ,lh! 5 I«~l j !R~lh! 1 I«~lh!R~l j ! 1 R~l j !R~lh!, the
last line of the preceding equation becomes
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2p

n2pn
102 (

,50

n21

(
j,h51

n21

(
p,q52~n21!

n21

kpkqe2i ~l,2j p1l,2hq!F~l j ,lh!

5
2p

n2pn
102 (

j,h51

n21

(
p,q52~n21!

n21

kpkqei ~l j p1lhq!F~l j ,lh! (
,50

n21

e2il,~ p1q!

5
2p

npn
102S (

j,h51

n21

F~l j ,lh!S (
p52~n21!

n21

kp
2eil j2hp 1 2 (

p51

n21

kpkn2peil j2hpDD+ (A.25)

We will show that~A+25! is op~1! by verifying

E* (
j,h51

n21

R~l j ! I«~lh!Kn~l j2h!* 5 o~npn
102! (A.26)

and

E* (
j,h51

n21

R~l j !R~lh!Kn~l j2h!* 5 o~npn
102!, (A.27)

whereKn~l j2h! is defined in~A+7!+ To prove the preceding two equations, we will need
a bound forKn~ls!+ We first note that from page 2 of Zygmund~1977!

(
,51

b

eil, 5 (
,51

b

cosl, 1 i (
,51

b

sinl,

5
sin~b 1 2

1
2!l

2 sinl02
2

1

2
1 i

cosl02 2 cos~b 1 2
1
2!l

2 sinl02
5 O~l21!

uniformly in b for 0 , l , p+ Using this bound, in conjunction with the fact that
pn

21 (6kp6 5 O~1! and by applying summation by parts and by Assumption 2b, for
s Þ 0 we obtain

(
p52~n21!

n21

kp
2eilsp 5 2 (

p51

n21

kp
2 cos~lsp! 1 1

5 2 (
p51

n22

~kp
2 2 kp11

2 ! (
u51

p

cos~lsu! 1 2kn21
2 (

u51

n21

cos~lsu! 1 1

5 2 (
p51

n22

~kp 2 kp11!~kp 1 kp11! (
u51

p

cos~lsu! 1 O~1!

5 OS (
m51

n22 1

pn

k Ip
' ~kp 1 kp11! (

u51

p

cos~lsu!D
5 O~ls

21!,

wherep , Ip , p 1 1+ Similarly,

(
p51

n21

kpkn2peilsp 5 O~ls
21!,
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and hence

Kn~ls! 5 O~ls
21! I ~sÞ 0! 1 O~ pn! I ~s5 0!+ (A.28)

We shall only derive~A+26! and ~A+27! when j Þ h, because the proofs forj 5 h are
similar and simpler+ To prove~A+26! we note that the LHS of~A+26! is bounded by

E* (
j51

log2 n

(
hÞj

R~l j ! I«~lh!Kn~l j2h!*1 2E* (
j5log2 n11

n21

(
h51

log2 n

R~l j ! I«~lh!Kn~l j2h!*
1 E* (

j5log2 n11

n21

(
h5log2 n11

n21

R~l j ! I«~lh!Kn~l j2h!*+
Using the Cauchy–Schwarz inequality, Lemma 5, equation~A+28!, and the fact that
maxj E~I«

2~l j !! , `, the first term and second term of the preceding equation are of
the order

OS (
j51

log2 n

(
hÞj

6Kn~l j2h!61 (
j5log2 n11

n21

(
h51

log2 n

6Kn~l j2h!6D
5 OS (

j51

log2 n

(
hÞj

l j2h
21 1 (

j5log2 n11

n21

(
h51

log2 n

l j2h
21 D

5 O~n log3 n!+

To verify the third term iso~npn
102!, we will show that

E* (
j5log2 n11

n21

(
jÞh5log2 n11

n21

R~l j ! I«~lh!Kn~l j2h!*
2

5 o~n2pn!+

By Assumption 3, Lemma 4 and~A+28!,

E* (
j5log2 n11

n21

(
jÞh5log2 n11

n21

R~l j ! I«~lh!Kn~l j2h!*
2

5 2 (
h15log2 n11

n21

(
j15log2 n11

h121

(
h25log2 n11

n21

(
j25log2 n11

h221

E~R~l j1! I«~lh1
!R~l j2! I«~lh2

!!

3 Kn~l j12h1
!Kn~2l j22h2

!

1 2 (
h15log2 n11

n21

(
j15h111

n21

(
h25log2 n11

n21

(
j25h211

n21

E~R~l j1! I«~lh1
!R~l j2! I«~lh2

!!

3 Kn~l j12h1
!Kn~2l j22h2

!

5 OS (
h15log2 n11

n21

(
j15log2 n11

h1

(
h25log2 n11

n21

(
j25log2 n11

h2

j1
2dh1

d21 j2
2dh2

d21 log h1 log h2l j12h1

21 l j22h2

21 D
5 O~n2 log6 n! 5 o~n2pn!+

Thus~A+26! is proved+ The proof of~A+27! is similar to that of~A+26!+ n
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LEMMA 2 + Under Assumptions 1, 2a, and 3,

n

pn
102 H 2p

n (
,50

n21 4p2

s4 Zf«,d2 ~l, ! 2
2p

s4 (
j52~n21!

n21

k2~ j0pn! [g«, j
2 J 5 op~1!+

Proof. BecauseI«~l j ! 5 In,«~l j ! and In,«~0! 5 0, we have

I«~l j ! 5
1

2p (
h52~n21!

n21

[g«,he2il j h, for j 5 1, + + + , ~n 2 1!+

Now

2p

n (
,50

n21

Zf«,d2 ~l, !

5 S2p

n
D3 1

4p2s4 (
,, j1, j250

n21

(
p1, p2,h1,h252~n21!

n21

kp1
kp2
[g«,h1

[g«,h2
e2il,2j1 p1eil,2j2 p2e2il j1h1eil j2h2

5
2p

n3s4 (
p1, p2,h1,h252~n21!

n21

kp1
kp2
[g«,h1

[g«,h2 (
,50

n21

e2ilp12p2
, (

j150

n21

e2ilh12p1
j1 (

j250

n21

e2ilh22p2
j2

5
2p

s4 (
p52~n21!

n21

kp
2 [g«, p

2 1
8p

s4 (
p51

n21

~kp
2 1 kpkn2p! [g«, p [g«,n26p61

4p

s4 (
p51

n21

~kn2p
2 1 2kpkn2p! [g«, p

2 +

Hence, to show Lemma 2, it is sufficient to prove that

(
p51

n21

~kn2p
2 1 kpkn2p! [g«, p

2 5 op~n21pn
102! (A.29)

and

(
p51

n21

~kp
2 1 kpkn26p6 ! [g«, p [g«,n26p6 5 op~n21pn

102!+ (A.30)

In the steps that follow, we will assume thatk has unbounded support+ If k has bounded
support, all terms involvingkpkn26p6 are zero in both~A+29! and~A+30! and the proof is
extremely simple+ By Assumptions 2a and 3,

E* n

pn
102 (

p51

n21

~kn2p
2 1 kpkn2p! [g«, p

2 * #
n

pn
102 (

p51

n21

6kpkn2p6
n 2 p

n2 1
1

npn
102 (

p51

n21

pkp
2

#
n

pn
102 (

p51

n02

6kpkn2p6Sn 2 p

n2 1
p

n2D
1

1

npn
102S(

p51

pn

pkp
2 1 (

p5pn11

n21

pkp
2D

#
1

pn
102 (

p51

n02

6kp6
pn

d

~n 2 p!d
1 OS pn

302

n
D5 o~1!
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becausepn
21 (p51

n02 6kp6 5 O~1!+ We now verify equation~A+30!+

ES(
p51

n21

~kp
2 1 kpkn26p6 ! [g«, p [g«,n2pD2

5 (
p

~kp
2 1 kpkn26p6 !

2E~ [g«, p
2 [g«,n2p

2 !

1 (
pÞq

~kp
2 1 kpkn26p6 !~kq

2 1 kqkn26q6 !E~ [g«, p [g«,n2p [g«,q [g«,n2q!+ (A.31)

By Lemma 1 on page 186 of Grenander and Rosenblatt~1957!, E~ [g«, p
2 [g«,n2p

2 ! 5
O~n22! and E~ [g«, p [g«, n2p [g«,q [g«, n2q! 5 O~n23!+ Hence, by Assumption 2a, the first
term of ~A+31! is

OS(
p

~kp
2 1 kpkn26p6 !

2
1

n2D 5 OS pn

n2D,
and the second term of~A+31! is

OpS 1

n3 (
pÞq

~kp
2 1 kpkn26p6 !~kq

2 1 kqkn26q6 !D 5 OpS pn
2

n3D,
and the lemma is established+ n

LEMMA 3 + Under the assumptions in Theorem 2,

H 2p

n (
,50

n21

Dfe~l, !J2

2S2p

s2D2

[g«,0
2 5 Op~n21 log2 n! (A.32)

and

H 2p

n (
,50

n21

Zf«,d~l, !J2

5 [g«,0
2 +

Proof. The proof of the second claim of the lemma is contained in the proof of the
first claim, which we show subsequently+ By ~A+1!,

2p

n (
,50

n21

Dfe~l, ! 5
2p

n (
j51

n21 2p

s2 I«~l j ! 1
2p

n (
j51

n21

R~l j !+

Let In, « be the mean corrected periodogram of«t + Then I«~l j ! 5 In, «~l j ! 5
~102p!( [g«,he2il j h and In,«~0! 5 0+ We have the first term of the last line,

2p

n

2p

s2 (
j50

n21

In,«~l j ! 5
2p

n

2p

s2

1

2p (
j50

n21

(
h52~n21!

n21

[g«,he2il j h

5
1

n

2p

s2 (
h52~n21!

n21

[g«,h (
j50

n21

e2il j h

5
2p

s2 [g«,0+
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Thus, the LHS of~A+32! is

2{
2p

s2 [g«,0S2p

n (
j51

n21

R~l j !D1S2p

n (
j51

n21

R~l j !D2

+ (A.33)

We will show that the second term isOp~n22 log4 n!+ It follows by Chebyshev’s inequal-
ity and the fact that [g«,0 5 Op~1! that the first term isOp~n21 log2 n!+ Now

ES(
j51

n21

R~l j !D2

5 ES (
j51

log2 n

R~l j !D2

1 2ES (
j51

log2 n

(
h5log2 n

n21

R~l j !R~lh!D
1 ES (

j5log2 n

n21

R~l j !D2

+

By Lemma 5, which follows, the first term isO~ log2 n!, the second term isO~ log4 n!,
and the third term isO~ log4 n!, and hence~A+33! is Op~n21 log2 n!+ n

LEMMA 4 + Under the assumptions in Theorem 2,

E @R~l j ! I«~lh!R~lk! I«~l, !# 5 O~ j 2dhd21k2d,d21 log h log ,! (A.34)

and

E @R~l j !R~lh!R~lk!R~l, !# 5 O~ j 2dhd21k2d,d21 log h log ,! (A.35)

uniformly for log2 n # j , h # n, log2 n # k , , # n.

Proof. The development of this proof closely matches that of Lemma 2 of Hurvich,
Deo, and Brodsky~1998!+ We shall use the following notation:

Ij 5 I ~l j !, fj 5 f ~l j !, andI«j 5 I«~l j !+

The LHS of~A+34! is

EFS Ij

fj
2 2ps22I«jD I«hS Ik

fk
2 2ps22I«kD I«,G

5 EFS Ij

fj
2 1 2 2ps22I«j 1 1D I«hS Ik

fk
2 1 2 2ps22I«k 1 1D I«,G

5 EFS Ij

fj
2 1D I«hS Ik

fk
2 1D I«,G2 EF~2ps22I«j 2 1! I«hS Ik

fk
2 1D I«,G

2 EFS Ij

fj
2 1D I«h~2ps22I«k 2 1! I«,G

1 E @~2ps22I«j 2 1! I«h~2ps22I«k 2 1! I«, # + (A.36)
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Note that the last expectation of~A+36! is zero+ Let

EFS Ij

fj
2 1D I«hS Ik

fk
2 1D I«,G 5 E~zj jhzkj, !

and

y 5 S Axj

fj
102 ,

Bxj

fj
102 ,
M2p

s
A«h,
M2p

s
B«h,

Axk

fk
102 ,

Bxk

fk
102 ,
M2p

s
A«, ,
M2p

s
B«,D'

5 ~y1,y2,y3,y4,y5,y6,y7,y8!',

where

Aaj 5
1

M2pn (
t51

n

at cos~l j t !, Baj 5
1

M2pn (
t51

n

at sin~l j t !+

The vectory has a eight-dimensional multivariate Gaussian distribution with mean zero
and covariance matrixS+ Define C 5 S21+ PartitionS andC as

S 5 FS11 S12

S21 S22
G and C 5 FC11 C12

C21 C22
G ,

whereSij andCij are 43 4 matrices+ By the formulas for the inverse of a partitioned
matrix,

C11 5 S11
21 1 S11

21S12~S22 2 S21S11
21S12!21 S21S11

21,

C12 5 2S11
21S12~S22 2 S21S11

21S12!21,

and

C22 5 ~S22 2 S21S11
21S12!21+

Letting Vaj 5 Aaj or Baj , we have from Lemma 4 of Moulines and Soulier~1999!

ES Vxj

fj
102

Vxk

fk
102D 5 O~ j 2dkd21 log k! (A.37)

for 1 # j , k # n02+ Following arguments similar to those in this lemma, it can be
shown that for 1# j , k # n02

ESVxj
2

fj
D 5

1

2
1 O~ j 21 log j !, (A.38)

ESV«j Vxk

fk
102 D 5 O~ j 2dkd21 log k! and ESVxjV«k

fj
102 D5 O~ j 2dkd21 log k!+ (A.39)
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Letting

R 5 S 2
1

2
I 8 5SR11 R12

R21 R22
D,

whereI 8 is a 83 8 identity matrix, we see from~A+37!–~A+39! thatR 5 o~1! for log2 n ,
j , h # n02, log2 n , k , , # n02+ By the fact that~I 1 A!21 5 I 2 ~I 1 A!21A, we
get C 5 2I 8 2 2R~I 8 1 2R!21 5 O~1!+ Let

ZC 5 FC11 0

0 C22
G

and define PC 5 C 2 EC+ We have

E~zj jhzkj, ! 5 ~2p!4 6C6102 E + + + E zj jhzkj, e~2102!y'Cy dy

5 ~2p!4 6C6102 E + + + E zj jhzkj, e~2102!y' ZCy dy (A.40)

1 ~2p!4 6C6102 E + + + E zj jhzkj, e~2102!y' ZCy$e~2102!y' PCy 2 1% dy +

(A.41)

Let y~ jh! 5 ~y1,y2,y3,y4!', y~k,! 5 ~y5,y6,y7,y8!' ; the first term of the preceding equa-
tion is

~2p!4 6C6102EEEEzj jhe~2102!y~ jh!
' C11y~ jh! dy~ jh!EEEEzkj, e~2102!y~k,!

' C22y~k,! dy~k,! +

(A.42)

The first quadruple integral of~A+42! is

where

M 11 5 S11
21S12~S22 2 S21S11

21S12!21 S21S11
21+

Let t11 be the largest absolute entry ofM 11+ Because6eu 2 16 # 6u6e6u6 for all u,

e~2102!y~ jh!
' M 11y~ jh! 5 11 O$t117y~ jh!72e~302!t117y~ jh!7

2
%+

Thus~A+43! is equal to

EEEEzj jhe~2102!y~ jh!
' S11

21y~ jh!e~2102!y~ jh!
' M 11y~ jh! dy~ jh! , (A.43)

EEEEzj jhe~2102!y~ jh!
' S11

21y~ jh! dy~ jh!

1 O HEEEE6zj jh6t117y~ jh!72e~2102!y~ jh!
' ~S11

2123t11I 4!y~ jh! dy~ jh!J + (A.44)
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The second term isO~t11! 5 O~ j 22dk2d22 log2 k1~ j,k! 1 k22dj 2d22 log2 k1~ j.k!! by
~A+37!–~A+39!+ Note that

S11
21 5 2I 4 2 2R11~I 4 1 2R11!

21 5 2I 4 1 o~1!+

Let h11 be the largest absolute entry of 2R11~I 4 1 2R11!
21,

e~102!y~ jh!
' ~2R11~I 4 1 2R11!21!y~ jh! 5 11 O$h117y~ jh!72e~302!h117y~ jh!7

2
%+

Thus the first term of~A+44! is

The first term of the RHS of the preceding equation is zero because the first double
integral is the expectation ofzj assuming the covariance matrix is 0+5I 4+ The second
term isO~h11! 5 O~ j 2dhd21 log h!+ We have shown that the first quadruple integral of
~A+42! is O~ j 2dhd21 log h 1 j 22dk2d22 log2 k1~ j#k! 1 j 2d22k22d log2 j1~k#j !!+ It can
be shown in the same fashion that the second quadruple integral of~A +42! is
O~k2d,d21 log , 1 j 22dk2d22 log2 k1~ j#k! 1 j 2d22k22d log2 j1~ j.k!!+ Hence ~A+40! is
O~ j 2dhd21k2d,d21 log h log ,!+

Now we consider~A+41!+ By the mean value theorem, 6eu 2 1 2 u6 # 1
2
_ u2e6u6 for all

u+ Thus

e~2102!y' PCy 2 1 5 2
1

2
y' PCy 1 O~t27y74e2t7y72 !,

wheret is the largest absolute entry ofPC+ Note thatt2 5 O~ j 22dk2d22 log2 k1~ j#k! 1
j 2d22k22d log2 j1~k#j !!+ Hence~A+41! is

~2p!4 6C6102 E + + + E zj jhzkj, 2
1

2
y' PCye~2102!y' ECy dy

1 OHt2 E + + + E6zj jhzkj, 6 7y74e2~102!y'~ EC24tI 8!y dyJ +
The second term isO~t2!+ The first term is the linear combination ofE EC@zj jhzkj, Aj Ak# ,
E EC @zj jhzkj, Aj Bk# , E EC @zj jhzkj, Aj A,# , E EC @zj jhzkj, Aj B,# , + + + ,etc+, whereE EC denotes
the expectation assuming thaty is multivariate normal with mean zero and covariance
matrix EC+ Note that cov~y! 5 EC implies that the vectors~Aj ,Bj ,Ah,Bh!, ~Ak,Bk,A,,B,!
are independent+ Thus, for example, E EC @zj jhzkj, Aj Ak# 5 E EC @zj jhAj #E EC @zkj, Ak# , and
both of these expectations are zero because thezj jh and zkj, are even functions of

EEEEzj jhe~2102!y~ jh!
' 2I 4y~ jh! dy~ jh!

1 OHEEEE6zj jh6h117y~ jh!72e~102!y~ jh!
' ~~223h11!I 4!y~ jh! dy~ jh!J

5EEzj e
~2102!y~ j !

' 2I 2y~ j ! dy~ j !EEzj e
~2102!y~h!

' 2I 2y~h! dy~h!

1 OHEEEE6zj jh6h117y~ jh!72e~102!y~ jh!
' ~~223h11!I 4!y~ jh! dy~ jh!J +
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~Aj ,Bj ,Ah,Bh!, respectively, and because the densities for~Aj ,Bj ,Ah,Bh! and
~Ak,Bk,A, ,B,! are also even functions+ We have shown that~A +41! is O~t2! 5
O~ j 22dk2d22 log2 k1~ j#k! 1 j 2d22k22d log2 j1~k#j !!+ Hence

EFS Ij

fj
2 1D I«hS Ik

fk
2 1D I«,G 5 O~ j 2dhd21k2d,d21 log h log ,!+

It can be shown in a similar way that the rest of the second and the third expectations of
~A+36! are bothO~ j 2dhd21k2d,d21 log h log ,! uniformly in log2 n # j , h # n02,
log2 n # k , , # n02+ The order in~A+35! can be derived following the same lines as
previously+ n

LEMMA 5 + Under the assumptions of Theorem 2,

E @R~l j !R~lh!# 5 O~ j 21h21 log h log j 1 j 22dh2d22 log2 h!

and

E @R2~l j !# 5 O~ j 21 log j !

uniformly for log2 n # j , h # n. Alsomax1#j#n E @R2~l j !# , `.

The proof of the first two bounds stated in this lemma is similar to that of Lemma 4+
The last bound is obtained by using the bounds~A+37!–~A+39! and the Gaussianity of
the observations+

LEMMA 6 + Let g~l! be defined as (A.11). Then, under Assumption 7,

(
h51

n21

g~lh!e2ilhm 5 O~nd ! if m 5 0,

5 O~n11dm21! if m Þ 0+

Proof. We shall prove the lemma by showing that

2p

n (
h51

n21

g~lh!e2ilhm 5 O~n211d ! if m5 0,

5 O~ndm21! if mÞ 0 and 6m6# n+ (A.45)

We first derive the result form 5 0+ Note that

E
0

2p

g~l! dl 5 0+

Hence, the LHS of~A+45! is

2p

n (
h51

n21

g~lh! 5 S2p

n (
h51

n21

g~lh! 2E
0

2p

g~l! dlD
5 (

h51

n21 E
lh21

lh

~g~lh! 2 g~l!! dl 2E
ln21

ln

g~l! dl

5 (
h51

n21

g'~l Dh!E
lh21

lh

~lh 2 l! dl 2E
l0

l1

g~l! dl,
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wherelh21 , l Dh , lh and we use the fact thatg~l! is symmetric aroundp02+ By
Assumption 7, the last equation is

OS(
h51

n

lh
212d{

1

2S2p

n D2

1 l1
12dD 5 O~n211d !+

For m Þ 0, we have by summation by parts

2p

n (
h51

n21

g~lh!eilhm

5
2p

n (
h51

n22

~g~lh! 2 g~lh11!! (
,51

h

eil, m 1
2p

n
g~ln21! (

,51

n21

eil, m

5
2p

n (
h51

n22

g'~l Dh!~lh 2 lh11! (
,51

h

eil, m 1
2p

n
g~ln21!~21!+

Because(,5a
b eil, 5 (,51

b eil, 2 (,51
a21 eil, 5 O~l21! uniformly in a and b for 0 ,

l , p ~see the proof of Lemma 1!, this is

OS1

n (
h51

n22

lh
212d l1lm

21 1
1

n12dD 5 OSnd

mD+ n
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