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A GENERALIZED PORTMANTEAU
GOODNESS-OF-FIT TEST FOR
TIME SERIES MODELS
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We present a goodness-of-fit test for time series models based on the discrete
spectral average estimattinlike current tests of goodness of, fihe asymptotic
distribution of our test statistic allows the null hypothesis to be either a short- or
long-range dependence modé€lur test is in the frequency domaiis easy to
compute and does not require the calculation of residuals from the fitted model
This is especially advantageous when the fitted model is not a finite-order auto-
regressive modelrhe test statistic is a frequency domain analogue of the test by
Hong (1996 Econometricab4, 837—864, which is a generalization of the Box
and Pierce(197Q Journal of the American Statistical Associati®é®, 1509—
1526 test statisticA simulation study shows that our test has power comparable
to that of Hong’s test and superior to that of another frequency domain test by
Milhoj (1981 Biometrika68, 177-187.

1. INTRODUCTION

Most conventional goodness-of-fit tests for time series models are based on the
autocorrelations of residuals from the fitted madeékamples of such tests
include the portmanteau statistic of Box and Piett®70 and its generaliza-
tion, based on arbitrary kernel functiarisy Hong(1996. The Box—Pierce sta-
tistic is obtained as a particular case of the Hong statistic by using the truncated
uniform kernel Simulations by Hong show that his statistic computed using
kernels other than the truncated uniform kernel gives better power than the Box—
Pierce statistic against autoregressi¥eR) processes and fractionally inte-
grated processes

Box and Pierc€1970 derive the null distribution of their test for autoregres-
sive moving averagéARMA) models and Hong derives the null distribution
only for finite-order autoregressive modeBoth these results require assump-
tions that rule out long memory processes that have hyperbolically decaying
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correlation functions and spectral densities unbounded at the oFgnther-
more both tests requires the computation of residuals from the fitted model
which can be quite tedious when the model does not have a finite-order auto-
regressive representatiofilso, in such casesthe residuals are not uniquely
defined

A test statistic that circumvents the computation of residuals from the fitted
model is proposed by Milhoj1981). To test the hypothesis that the observa-
tions x;, t = 1,...,n, are from a process with spectral densiiy\), he sug-
gests the test statistibd = {Z[°1V,} 23" V;2 where V; = 1())/f(A)),

[(A) = (2an) 2L, x, e *|? is the periodogram of the observatigrand

Aj = 2mj/nis thejth Fourier frequencyThough Milhoj's test statistic is eas-

ily computed his theoretical results are restricted to short memory time series
models with bounded spectral densitidéssuming GaussianifyBeran (1992
extends Milhoj's results to long memory time series models that have unbounded
spectral densities at the origiExamples of long memory processes are the
autoregressive fractionally integrated moving aver@gRFIMA) procesgsee
Hosking 1981). Beran states that the null distribution B¢ in the presence

of long memory is the same as that derived by Millipp81) in the case of
short memoryBeran obtains his results by claiming thdf' is asymptotically
equivalent to its integral versioM, = {27 V(A) dA} 22" V2(A) dA where
V(A) = 1(A)/F(A).

However Deo and Chel(2000 show that even in the case of Gaussian white
noise M¢ and M,, do not have the same asymptotic distribution and that the
variance of the asymptotic distribution bf, is two-thirds that of the variance
of the asymptotic distribution of1¢. Thus the asymptotic distribution of1d
in the long memory case is still an open question

In this paperwe introduce a test statistic that is a frequency domain ana-
logue of Hong's statisticWe derive the asymptotic null distribution for both
short memory models and long memory moddgcause our test does not
require the calculation of residualé can be easily applied to long memory
processes such as the ARFIMA models that do not possess finite-order AR rep-
resentationsOur test delivers uniformly better power than the periodogram-
based tesM? of Milhoj.

In the next sectionwe define our test statistic and provide the theoretical
results on its asymptotic null distribution for short and long memory models
The power properties of our test are studied in Section 3 through simulations
The proofs are relegated to the Appendix

2. THE TEST STATISTIC
To motivate our test statistigt is instructive to consider Hong'’s statistic to

test the null hypothesis that the observationst = 1,2,...,n, are from an
AR(p) process X, = ag + aiX—1 + -+ + apX—p + &, Whereg, are zero
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mean white noiselLet e be the residuals from the fitted model = x, —
Qg — A1X—1 — -+ — QpX;_p, Wheredy, &y, .., &, are the estimates of the param-
etersag, ay,...,a,. The test statistic of Hongl996 is

n—1
Hy= > k*(i/pa) P},
j=1
wherek(-) is a suitable kernel function such th&t0) = 1, pej = Ve j/Veo0

are the sample autocorrelations of the residuated y.; are their sample
autocovariances

?e,i= E (e—@&(e ;-8 j=0%1..,£(n-12).

N [j|+1

By Parseval’s identityH, can be written as

1
H, = _< 2 kz(J/pn)pe] >
j

2

=—(n—1)
1 2 R -2 2 R
= E{Uo f.(A) d/\> <27Tf0 £2()) d/\> —1}, 1)
where
fAe()\) a_ Z k(]/pn)')’ej e . 2

[jl<n

The kernel functiork here is also called the lag window afidA) is the lag-
weights spectral density estimataet I, . be the mean corrected periodogram
of the residuals given by

2

In,e()\) = - é)eii)‘t

2mn t=1

Using the relation

2 o
’}A/e,j :f ln,e(w)elwJ dw’
0

we have an equivalent form &f(A) in the frequency domaijn
27

fo(A) = i W(A — )1, o(w) do, (3)
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whereW, the spectral window corresponding to the lag windgus its Fourier
transform

1 .
W) = >— > k(h/p,)e ™. (4)

[h|<n

Expressiong1) and(3) provide the motivation for our test statisti€o test a
general null hypothesis that the observatignare from a process with spectral
densityf(-), we propose the following test statistic

277_ n—1 N -2 277_ n—1 .
= {_ 2 fe()‘(’)} {_ 2 fez()%)}, (5)
N ¢=o N ¢=o
where
2 WA — A)1(A)
fin =~ z 0

andl is the periodogram of the observations. .., x,. Note thatf, is a discrete
version off, in (3) with In,e replaced byl/f. Thus we whiten the process in the
frequency domain instead of in the time domadihis not only avoids the com-
putation of residuals but also allows one to easily test for arbitrary spectral
densities FurthermoreT, is obtained by discretizing the integral () with f;
replaced byf.. Also note thafT, is mean invariant becauggis evaluated only

at Fourier frequencied his is especially favorable in the presence of long mem-
ory, because the sample mean is not fully efficient in that ¢ase Beran1994

p. 6).

Hong (1996 establishes the asymptotic normality lf for AR models We
show thafT, is asymptotically normal under a null hypothesis that can be either
short memory or long memory if the process is Gaussldre properties of a
long memory process differ substantially from those of a short memory pro-
cess and hence the proof of the asymptotic results for long memory models
requires a more delicate approach than that for short memory matelsow
state the assumptions we make and our main results

Throughout the rest of this papeve assume thdtx;} is a stationary linear
process of the form

=M + Zol/lj 81_]‘, (6)
i=

where the innovations; satisfy the following assumption

Assumption 1 The seriege, }is independently and identically distributed with
mean zerpvariances ?, andE(ef) < co.
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We also make the following assumptions about the kekggland the band-
width pp.

Assumption 2a The kernel functiork: R — [—1,1] is a symmetric function
that is continuous at zero and at all but a finite number of ppimith k(0) = 1.
Furthermoreassume that for som&= 1, z°|k(z)| < o0 asz — co.

Assumption 3 The bandwidthp, satisfies lo§n/p, — 0 andp??/n — 0.

As can be seen from the proof of Lemma 2 in the Appendix Assumption 3
on the maximum rate of increase of the bandwigltlis made merely to ensure
that our test statistic has the same limiting distribution as Hong’s test statistic
If we were to relax this assumptipwe would get a slightly different mean and
variance for the limiting distribution of our test statistitis also worth noting
that all the kernels used in practice satisfy AssumptionT2ee next theorem
states the asymptotic distribution §f when{x,} is a short memory process

THEOREM 1 Let x,,..., X, be n observations from a stationary linear pro-
cess defined by (6) with coefficientssuch that>”,|;|j /? < oo and inno-
vationsg, satisfying Assumption 1. Let-j be the spectral density of the process
such thatinf, f(A) > 0. Let T, be as in (5) and W be defined by (4) with kernel
function k satisfying Assumption 2a and bandwidisatisfying Assumption 3.
Then

n(Tn B Cn(k))

bz~ NOD

in distribution as n— oo, where
1 n—1 ] - 1
Co(k) = — > (1= j/MK?(j/py) + s—
nm >3 2

and

n—-2

2
Dn(k) = —3 1{(l—J'/ﬂ)(l— (1 + D/nk*(i/py)-

j=

It can be shown that a process satisfying the assumptions in Theorem 1 has
bounded spectral density and autocovariances that are absolutely summable
(Brockwell and Davis1996 ex 3.9). Such a process is a short memory pro-
cess an example of which is the ARMA modeThe assumptions on the pro-
cess{x;} of Theorem 1 are satisfied by a broad range of short memory models
whereas the asymptotic theory lf, is established only for AR models

To establish the asymptotic normality §f when the process is a long mem-
ory processwe restrict the process;} to be GaussianVe also require addi-
tional assumptions ok, which we state next
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Assumption 2b In addition to Assumption 2ahe kernel functiork is dif-
ferentiable almost everywhere and satisffék’(z)k(z)| dz < oo.

All the kernels used in practice satisfy Assumption ¥¥e now state the
asymptotic distribution of, when{x;} is a long memory procesEor the long
memory casewe make the extra assumption that the proogss Gaussian
We feel that this assumption can be relaxed just as in the short memory case in
Theorem 1though at the expense of much greater complexity in the proof

THEOREM 2 Let x,...,X, be n observations from a stationary Gauss-
ian linear process defined by (6) that has a spectral density & A~29g*()),
d € (0,0.5) and g*(-) is an even differentiable function da-7,7]. Also let
the spectral density satisinf, f(A) > 0. Let T, be defined as in Theorem 1
with kernel function k satisfying Assumption 2b and bandwigtlsagiisfying
Assumption 3. Then

n(Tn B Cn(k))

D. (k)2 — N(0,1)

in distribution as n— oo, where G(k) and D,(k) are as in Theorem 1.

A stationary linear process that has a spectral density satisfying the assump-
tion of Theorem 2 is a long memory proce$iscan be shown that the auto-
covariances decay to zero hyperbolically and are not summable for such a
procesgZygmund 1959 Theorem 24). Examples of long memory processes
satisfying the assumptions of Theorem 2 are ARFIMA mod&sanger and
Joyeux 198Q Hosking 1981) and fractional Gaussian noig®andelbrot and
Van Ness1968.

In applications the null hypothesis of interest is the composite hypothesis
that the process has spectral den§it,-) for some unknowrd in the param-
eter spac®. Under this composite nylthe test statistic becomes

R 2 "t 2(2F Y
Tn(o) = {T fe(o’Af)] {_ fez(ev /\6)}’ (7)

2 TEWA = A) 1))

n & f(6,1))
and@ is some estimator of based on the sample,..., X,. Under certain addi-
tional assumptionsve show in the next two theorems that the asymptotic null

distribution of T,(8) remains the same as thatBfin Theorem 1 and in Theo-
rem 2 We first state the additional assumptions we need

Assumption 4 Let ®, be a compact subset @&, where ® is a finite-
dimensional parameter spadeet the spectral density of the process} be
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f(8o,-), where@, is the true parameter vector that lies in the interiorGpf
Assume that the estimatére © satisfies|6 — 6o = O,(n~V/?).

The following is an assumption on the spectral density for short memory
process

Assumption 5 The spectral densitf/(8, A) satisfies the following conditions
for (,1) € © X [0,27]:

(i) f(@, 1) andf ~1(@, ) are continuous at allg, A) .
(ii) a/06;f ~1(6,1) anda?/96,06,f ~(8, 1) are continuous and finite at &9, A).

It is very easy to establish that Assumptions 4 and 5 are sati§fied by all ARMA
models The next theorem states the asymptotic distributiom.,66) when{x}
is a short memory process

THEOREM 3 Let x,..., X, be n observations from a stationary linear pro-
cess satisfying the same assumptions as those of Theorem 1. Let the estimated
parameter vectod satisfy Assumption 4 and the spectral density of the process
{x.} satisfy Assumption 5. Also let(®) be defined by (7) with kernel function
k and bandwidth psatisfying the same assumptions as those of Theorem 1.

Then
T.(6) — C,(k
n( é)(k)l/z( ) LN

in distribution as n— oo, where G(k) and D,(k) are defined as in Theorem 1.

To establish the asymptotic distributionT){(é) when{x,} is a long memory
processwe need the following assumption érand the spectral densify®,-).

Assumption 6 Let ®; be a compact subset @, where © is a finite-
dimensional parameter spacedirf for some positive integes. Let the spectral
density of the processx;} bef(6y,A) = f*(dy, A)g*(Bo, A), wheref* andg*
are even functions op—mr, 7], f*(d, A) ~ agA=24 asA — 0 for someay > 0,
g*(B, A) is differentiable orf—, 7], and8, = (Bo,dy)’ is the true parameter
vector that lies in the interior o). Furthermorgeassume that theth compo-
nent of @, is contained in the segmefh#,,0.5 — §,] for some 0< §; < 0.25
and that there exists an estimaeE 0, that satisfiegd — 6| = O,(n~¥2).

Assumption 7 Let 6 = (B,d)’, where(B,d) € ©,. For anys > 0, the spec-
tral densityf (8, A) satisfies the following conditions

(i) f(@,2) is continuous at all@, ) exceptA = 0, f ~(8, A) is continuous at all
(@,1), and

sup sup|A|?9f(8,A) = A for some 0< A < co.

A BEG,
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(i) 9/06;f (6, 1) anda?/a6,06,f ~1(8, A) are continuous at allg, A) and

sup sup|A|—2d+e

Jd
Ef‘l((),)\)‘ = A forsome 0< A < oo,
i

A 6€0,
82
supsup|A| 724t ——f71(9,A)| =A for some 0< A < co.
A 6E€6, 36, 00,

(iii) There exists a constaftt with

|f(017 )‘) - f(027)\)| = C”01 - 02“ f(OZ’A)

uniformly for all A and all@; = (B4,d;)’ andé, = (B»,d>)’ such thatd; < d,.

All the conditions of Assumptions 6 and 7 are satisfied by fractional Gauss-
ian noise and ARFIMA processésee Dahlhaysi989. We now state the asymp-
totic distribution ofT,(8) when{x,} is a long memory process

THEOREM 4 Let x,..., X, be n observations from a stationary Gaussian
linear process satisfying the same assumptions as those of Theorem 2. Let the
estimated parameter vectérsatisfy Assumption 6 and the spectral density of
{x.} satisfy Assumption 7. Also let(®) be defined by (7) with kernel function
k and bandwidth p satisfying the same assumptions as those of Theorem 2.

Then
T.(6) — Ch(k
n( |(:))(k)1/2( ) L NO.1)

in distribution as n— oo, where G(k) and D,(k) are defined as in Theorem 1.

The theoretical results that we have presented all address the asymptotic
behavior of the test statistic when the null hypothesis is correctly speciied
additional question of interest is the power property of the test statistic when
the spectral density given by the null hypothesis is actually misspecified
both the true model and also the misspecified model under the null hypothesis
are short memory modelg can be shown quite easily that the statiskjcis
consistentWe do not include the proof for this statement because it is simply
tedious but does not have any technical hurdt&mswvever in the long memory
case establishing consistency is a more complicated profilam complexity
of the problem arises because of the fact that when a model is misspecified for
a long memory serigshe rate of convergence of the parameter estimates of the
misspecified model need not bfn-consistent and need not even be asymptot-
ically normal For exampleit is known (see Yajima1993 that when an ARL)
model is fit to a long memory process with memory paramdter (0.25,0.5),
the estimate of the AR) parameter converges to the population lag 1 auto-
correlation at a rate®>~ 9 and has an asymptotic distribution that is not Gauss-
ian but is instead the Rosenblatt proce$dus the “usual” behavior of
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estimators of parameters of a misspecified model is not obtaareta careful
analysis has to be carried out on the behavior of goodness-of-fit tests under
such misspecification¥Ve leave this problem of consistency for future research
Another interesting problem for further research is the behavior of the test under
local alternativeswhere the spectral density under the alternative hypothesis
approaches the spectral density under the null hypothesis at some, r#e
pointed out earlierthe rate of convergence of the estimators of the null hypoth-
esis model when the alternative is true dependsl.ddence we would expect
that the ratea, at which the test will have nontrivial local power will depend
on d, unlike the result obtained in Theorem 4 of HofP96 for the short
memory caseHowever we are currently unable to conjecture exactly hay
will depend ond, and we leave that question for future work

An additional question of interest is the choiceppf BecauseC, (k) ~ 1/(27)
and D,(k) ~ Ap, for some constanf, we would expect based on our pre-
ceeding resultsthat under a misspecified modehe rate at whichr,, would
diverge from ¥(27) would ben/p¥2. Thus one would expect in general that
the slowerp, grows the more powerful the test would be though no optimal
choice ofp, can be stated

In our next section we study the finite-sample performance of our test through
Monte Carlo simulations

3. SIMULATION STUDIES

We generated,B00 replications of Gaussian series of lengtlk 128 and 512
from a variety of AR and ARFIMA processe$he algorithm of Davies and
Harte (1987 was used in the data generation of ARFIMA moddisr each
series we computed the three test statisti@$ Our statisticT,,. (i) Hong's sta-

tistic H,,. (iii ) The Milhoj statisticM,,. The statistics were suitably normalized

so that they would have an asymptotic standard normal distribution under the
null. For T,, andH,, we used the following three kernels

(i) Bartlettk(z) =1—1z|, |z] =1,
= 0 otherwise
(i) Tukeyk(z) = 3(codzm) + 1), |z| =1,
=0 otherwise

(iii) Quadratic spectrdQ9), k(z) =

25 < sin(67z/5)

1272 6mz/5 COS(67TZ/5)>, Z € (—o0,00).

For computingT, andH,,, we used three bandwidthg, = [3n®2], [3n®3],
and[3n%4]. Note that there is no bandwidth involved in computivig.

In Tables 1 and 2we report the sizes of the three tests under the compos-
ite null hypothesis of an ARL) and an ARFIMAQO,d,0), respectively
The true AR1) parameter was set ta8) and the true long memory parameter
d in the ARFIMA(O,d,0) was set at @. Because the null hypothesis was a
composite ongwe had to estimate the parameters of the(Rnodel and the
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TABLE 1. Rejection rates in percentage under an(ARmodel

n 128 512
Pn 13 21 11 20 37
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
T BAR 3.08 502 404 612 490 7.80 382 582 432 698 506 802
TUK 3.04 496 404 612 630 968 398 582 456 710 516 840
Qs 364 564 452 690 504 7.74 406 652 474 7.64 558 926
Hp BAR 3.30 508 382 582 426 676 362 572 420 654 476 7.34
TUK 3.16 490 378 592 446 696 376 578 426 6.84 488 748
Qs 352 552 422 644 482 740 402 620 436 712 508 836
M, 4.34 at 5% 712 at 10% 514 at 5% 888 at 10%

Note: Model x; — 0.8%;_1 &, & ~ N(0,1).
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TABLE 2. Rejection rates in percentage under an ARFIK0Ad,0) model

n 128 512
Pn 13 21 11 20 37
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

T BAR 2.62 408 352 528 490 7.42 264 460 374 600 480 820
TUK 252 400 346 558 496 750 292 478 386 614 510 842
Qs 322 498 434 678 662 960 330 574 440 7.06 558 208

Hy BAR 2.28 376 302 486 354 588 256 442 342 586 422 7.00
TUK 220 352 320 510 390 588 312 532 414 652 470 7.86
Qs 282 446 366 536 410 7.04 272 454 370 598 444 7.44

M, 4.70 at 5% 758 at 10% 40 at 5% 818 at 10%

Note: Model x; = (1 — B)%4g,, & ~ N(0,1).
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TABLE 3. Rejection rates in percentage under an(ARmodel with innovations fron distribution

n 128 512
Pn 13 21 11 20 37
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
T BAR 2.90 466 328 542 398 664 342 516 388 608 476 812
TUK 292 450 336 540 398 684 352 528 400 614 490 802
QS 320 514 344 608 536 852 360 576 432 690 574 896
Hp BAR 3.10 476 332 520 334 588 322 492 366 560 448 7.08
TUK  3.08 490 324 526 352 594 328 520 368 582 456 732
QS 320 514 332 554 400 638 338 542 384 634 486 826
M, 3.80 at 5% 626 at 10% 460 at 5% 848 at 10%

Note: Model x; — 0.8%,_; = &, & ~ tg.
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TABLE 4. Rejection rates in percentage under an ARFINAD,0) model with innovations fron distribution

n 128 512
Pn 13 21 11 20 37
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
T BAR 2.16 350 302 500 428 654 266 410 344 564 432 7.24
TUK 2.08 356 308 500 446 678 286 430 364 604 446 752
Qs 266 440 392 606 558 884 312 512 390 6.64 510 866
Hp BAR 1.86 330 264 474 348 560 270 418 324 532 400 678
TUK 1.96 328 266 490 366 588 286 442 346 586 410 718
Qs 230 424 352 544 408 658 320 516 372 636 466 7.60
M, 3.94 at 5% 704 at 10% 2 at 5% 856 at 10%

Note: Model x, = (1 — B) %%, & ~ to.
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TABLE 5. Rejection rates in percentage under (@Ralternative fitting model ARL)

n 128 512
Pn 13 21 11 20 37
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
T BAR 2248 2860 2292 2904 2288 2962 8018 8496 7602 8164 6854 7574
TUK 2194 2816 2280 2858 2240 2876 7996 8218 7476 8106 6566 7326
Qs 2244 2864 2280 2896 2274 2974 7820 8342 7056 7768 6104 6996
H, BAR 2358 3022 2342 2966 2242 2870 8062 8546 7584 8186 6824 7526
TUK 2318 2936 2322 2942 2198 2822 8032 8524 7490 8090 6502 7266
Qs 2328 2990 2276 2854 2112 2740 7834 8396 7046 7714 5360 6888
M, 8.84 at 5% 1378 at 10% 1778 at 5% 2596 at 10%

Note: Model x; — 0.8%;_; + 0.15%,_, = &, & ~ N(0,1).
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TABLE 6. Rejection rates in percentage under ARMAL) alternative fitting model ARIMA1,d,0)

n 128 512
Pn 13 21 11 20 37
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
T BAR 950 1338 844 1258 896 1304 3184 4074 2836 3656 2510 3424
TUK 7.24 1128 804 1206 880 1280 3134 4054 2694 3512 2336 3248
Qs 874 1226 804 1202 1004 1474 2920 3780 2500 3362 2278 3150
H, BAR 1268 1704 1128 1552 892 1320 3302 4228 2894 3736 2482 3370
TUK 7.98 1212 820 1232 866 1296 3266 4188 2770 3572 2312 3188
Qs 1148 1570 1018 1440 906 1368 3032 3870 2530 3372 2178  3Q10
M, 5.42 at 5% 876 at 10% 644 at 5% 1088 at 10%

Note: Model x; = 0.8%,_; + & + 0.2g_1, & ~ N(0,1).


https://doi.org/10.1017/S0266466604202067

ssaud Alssanun sbprique) Ag auljuo paysiiand £9020270999¥99205/£101°0L/B1010p//:sd1y

L6E

TABLE 7. Rejection rates in percentage under ARFIK0A],0) alternative fitting model ARMAL,1)

n 128 512
Pn 13 21 11 20 37
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
T BAR  6.46 938 750 1110 890 1330 3728 4478 3854 4616 3702 4506
TUK 654 910 750 1132 868 1314 3806 4520 3914 4674 3620 4442
Qs 720 1022 824 1256 1044 1534 3970 4654 3790 4572 3436 4300
H, BAR 526 754 622 890 684 1034 3614 4338 3728 4480 3500 4288
TUK  5.32 748 646 912 692 1054 3716 4408 3790 4546 3422 4236
Qs 604 864 668 1018 732 1078 3842 4556 3672 4456 3226  4Q10
M, 5.34 at 5% 892 at 10% 1156 at 5% 1796 at 10%

Note: Model x; = (1 — B)%4g,, & ~ N(0,1).
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TABLE 8. Rejection rates in percentage under ARFIMAJ,0) alternative fitting model ARFIMAQO, d,0)

n 128 512
Pn
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
Ta BAR 8.52 1248 876 1268 968 1416 1692 2242 1494 2114 1332 1942
TUK 8.16 1210 810 1214 910 1360 1626 2178 1450 2050 1280 1832
QS 824 1174 882 1286 1088 1554 1576 2134 1316 1922 1262 1824
Hn BAR 7.54 1084 754 1142 7.98 1156 1622 2178 1422 2014 1232 1774
TUK 7.36 1068 7.26 1106 7.60 1136 1528 2038 1252 1814 1088 1632
QS 732 1Q70 7.32 1134 812 1153 1584 2098 1388 1968 1160 1682
Mn 6.14 at 5% 992 at 10% 682 at 5% 1140 at 10%

Note: Model x; — 0.1%,_, = (1 — B) %% g, & ~ N(0,1).
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ARFIMA (0,d,0) model which was done using the Whittle likelihood in the
frequency domainFrom Tables 1 and,at can be seen that for both modgels
all three statistics are undersized at both the 5% and 10% |éMe¢ésamount
by which they are undersized decreases as the bandwjdthcreasesThe
M,-statistic is least undersizedhereas the sizes @f, are comparable to those
of H,.

Though our theory on the asymptotic distribution of the test statigtitas
been established only under the assumption of Gaussianity for the case of long
memory serieswe believe that our result would still hold for non-Gaussian
innovations that have a finite eighth momeHence we simulated both a non-
Gaussian ARL) process and a non-Gaussian ARFIK0Ad,0) process in which
the innovations came fromtalistribution with 9 degrees of freedohe AR(1)
parameter was set ta&) and the long memory paramefgivas set to & as in
the earlier simulation for Gaussian dafables 3 and 4 present the sizes of
the three tests under the composite null hypothesis of afilARnd an
ARFIMA (0, d,0), respectivelyfor the case of distributed innovationsOn com-
paring Tables 3 and 4 with Tables 1 andtds seen that the performance of the
tests with respect to size in the case distributed innovations is very similar
to that of the tests when the data are Gaussian

To compare the power of the testge considered the following four cases
(a) fitting an AR(1) to data generated by an AR, x; = 0.8X;_1 — 0.1%,_» +
g. (b) fitting an ARFIMA(1,d,0) to data generated by an ARMAL), x; =
0.8%-1 + & + 0.2g,4. (c) fitting an ARMA(1,1) to data generated by an
ARFIMA (0,d,0), (1 — B)%%x, = & where B denotes the backshift operator
(d) fitting an ARFIMA(0,d,0) to data generated by an ARFIMA d,0),

(1 - B)%4(1 — 0.1B)x; = &. The results are reported in Tables& 7, and §
respectivelyIn all casesthe null hypotheses were composiéand the param-
eters of the model under the null hypothesis were estimated using the Whittle
likelihood.

It is seen that both the testg andH, have significantly higher power than
M, in all the alternatives considerethis is not surprisingbecause the tesTy
andH, give decreasing weights to higher lag sample correlatiohereasv,
gives uniform weight at all lagst might be tempting to believe that this prop-
erty of M, may be useful in detecting long memory alternativEsis belief is
however belied by Table, where we fit a short memory model to a long mem-
ory series and yeM,, is outperformed by a wide margin by both of the other
tests On the other handt is seen that the power df, is very similar to the
power ofH,, with neither test outperforming the other significantly in any sit-
uation considered
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APPENDIX: PROOFS

We will only provide the proofs for long memory modeEhe proofs for short memory
models are similar though much simpler and are available from the authohnss Appen-
dix, we will often use the following decomposition bfA):

L) = [ (VP10 + 1) = [g(V)]21,.(),

wherey (A) = D oe™ ' andl(A) is the periodogram of the innovatioesin (6).

Then

M=2—7T| (A) + R(A) (A1)

f(A) o2 ° ’ '

where

R(/\)=M—2—WI (A) (A.2)
f(A) o277 '
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Let ,,; be thejth sample covariance of the given byy, j = n"* 3 ;,1(g — &) X
(8- — &), for|j|=n—1

Proof of Theorem 2. Let I.(A) = (2#n)* |2, . €*|2 be the periodogram of
the innovationss; without mean correctiari-or the Fourier frequenciea,, k= 1,...,
(n—1), we havel(Ay) = I, .(Ax), Wherel,, . is the periodogram of the mean corrected
innovationse; — &. Also define

. 27 =1
foa(d) = — 2 WA = A)1(4).
n =1
In Lemmas 1-3which follow, we show that

27 " - 472
%{7 ;O<fe2<m - fsdun)} = oD,

n—1

n - 2
—/{7” ) Ui 200 -5 3 kzu/pms,j} - 0,1,

j=—(n=1

n 27 21 2 2 2
? [{? ZO fe()\()} - (? 'f’s,o> :| = Op(l).

Also, by Lemma 3 {(27/n) 272527/ ) f, 4(A)}2 = 4m%a*) 72, and Vn (9,0 —
o?) = Op(1). The theorem now follows by Theorem 1 of HofitP96 and the fact that
P iDL (k) — D(k) = [, k*(2) dz < o0 asn — oo by Assumption 2a u

Proof of Theorem 4. By Theorem 2 it suffices to show that

53 (To(6) ~ To(8) = 0,0 A3)

which we do by establishing that

n (27" U
1/2{ S (f2(60.00) - fezw,m} = 0,(1) (r4)
and
2 nfl‘“ 2 2701 2
o HT > fe<oo,m} - {7 ) few,m} } - 0,0 (A5)
n €=0 =

We will prove only(A.4) because the proof dfA.5) is similar Let

1 1
fo(A)) fo(An)’

ga(Ajy Ah) =
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Then the LHS of(A.4) is

n 2mnctf 2mnd ) 27 1(x)

py? n M< o 2 WO ')foom) <n 2 Wke- ”um)
(277_2n 1n-1

= > > WA WA ) EADT(A) (Goy(Ajs ) — GalAj, Ap)).

12
n?py/? ¢ —0j,h=1

By a similar argument of derivingA.25) in the proof of Lemma J1which follows the
RHS of the preceding equation is

2
npﬁ/z e 21 I ()‘ ) ()lh)(gao()lp)\h) gé()‘jy/\h))’cn()‘j—h)y (A.6)
where
n—1 _ n—1 _
Ka(dg) = > k2e™sP+ 23 K k,_,esP. (A.7)
p=—(n—1) p=1

For every); and A, we have by a Taylor series expansion
g()\j P /\h7 00) - g(/\j ) )‘h» é)

1 of (A, 6) 1 af (A, 0 .
IERd¢] + ( h 0) (Hu—ﬁou)
foo()‘h) aeu foo()‘j) aHu

Y

9%G(Aj, A, 0)

1.
+ 5 (6= 00 —— T (6 6y)

whereé;, = 8, + a;jn(8 — 6,) for some 0< a;, < 1 and

9°G(Aj,An,0) 1 9% H(A;,0) N af ~H(A;,0) of 1(A,,0) "
202  f(A) 202 00 06
1 0% (A,,0) of 1(A,,0) of 1(A,0)’
(h)Jr (An,0) (4,6) A8)
fo(A;) 002 00 00
To prove(A.4), we will show that(A.6) is 0,(1) by verifying, for eachu,
27 1 of "(An,60) \ -

(A ) (A - A_p) = 1 A.9
RN m(rM) s, ) B BN =0p(D) (A9)
and

27 ! . , 92G(Aj, Ap, 0)
ij‘hzzll()\j”(/\h)(o_oo) T(a 00) Kn(Aj_p) = 0,(D). (A.10)
We first show(A.9). Let
alnf(A,6,)
9N = —— == (A11)
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then
1 of XA, 00) 1
ot o g(Ap).
foo()\j) Cwu foo(/\j) fﬂo()‘h)

Becaused — 6, = O,(n~2), (A.9) is true if

“il LA 1(Ay)

in=1 foo(Aj) fa(An)

(AR Kn(Aj_n) = 0,(n¥?py/?).

By (A.1), it is thus enough to show that

n—1

2 1)1 (An)IAKn(A;-n) = 0p(n¥2p/2), (A.12)
=
n—1
hE L (A))Rao (AR 9(AR) KCr (A ) = Op(ns/zp%/z), (A.13)
j,h=1
and
S R () R An)GOK (A1) = 05(07 7). (A14)
j,h=1

Becausey(A) = O(A~?) by Assumption 7(A.13) and(A.14) can be shown by an argu-
ment similar to that used to establi§h.26) and (A.27) in the proof of Lemma 1To
show(A.12), we let

n—1
= > g(Ap)e MM
h=1

Using the fact thaE”,lle""Jp =(n—-1DI(p=0) —U(p+#0),the LHS of(A.12) is

n—1 n—1 n—1
> Is(/\j)ls(/\h)g()\h)< > kzei-nP + 2 > KpKn—pe' hp)
j,h=1 p=1

p=—(n-1)
1 n—1 n—1
— 5 k2 E £58 84 E, E g(A )e iAp(u—v—p) 2 e iAj(s—t+p)
(27rn) p=—(n-1)  stuyv =1

2
(zn Epnpz88(83Eg()L)th(uvp)Eem(SHm

stuuv

1 n—1 n—1
= 477_2”( > kZE Ay—y—pEtEt—p&usy +22 Ky Kn— pE Ay y—pEi&i— p8u8>

p=—(n—-1) t,u,v t,u,v

p=—(n—1) s tu,v s t,u,v

1 n—1 n—1
— m( 2 k2 2 Q- p—pEsEtEUEy +22 KoKn—p 2 ay_, pesstsue>
(A.15)
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We will show that both terms of the last expression{An15) have second moments of
ordero(n®p,). By the Cauchy—Schwarz inequalitye have

1 n—1 n—1 2
E< 2 ké 2 aufu—pstat—pausv +2 2 I(pkn—p E aufufpstEt—p‘gugu
p=1

2
4m°n p=—(n—1) t,uv t,u,v

1 n—1
— 21,2
=0 < E kp1 sz Z Auy—03-py Qup—vo-p2

4.2
167"n p1, P2=—(n—1) ty, tp, U, Up, 01,02

X E(Sll Et, 81—y Etp—p Eus Bup €0y Euy )

1 n—1
P 2 2
+0 ( 2 k”*Pl kn* P2 2 aUl*U1* P1 aU2*02*02

4.2
167"n P1, P2=—(n—1) ty, tp, U, Uz, 01,02
X E(SllStzStl—plstz—Pzeulauzsvlsvz )

Becauses; are independent with zero meahe preceding expectation is positive only
when the random variables inside the parentheses consist of products of even powers of
the &;. Thus the preceding expression is dominated by two caeas is whenp; =

p. = 0, u; = u,, andv; = v,, and the other is whep; = p, = 0, u; = v1, andu, = v-.

Using Lemma 6which follows the order of these two cases is

O<n‘2 > ai ., +n? > aé)

3, 13, Ug, Up t, tp, Uy, Up
_ O(n—2n5+25 + n—2n4+25)
= O(nspn)-
It can be shown that the second moment of the second ter.ib) is also of order
o(n3p,) by similar argumentsWe have thus establishéd.9).

Next, we establisHA.10). Let AUU()\J-,/\h,o]-h) denote the€u,v)th element of the matrix

92G(Aj, A, 0;)
062 '

Then by (A.8) and Assumption ;7

| A7 290 0290 A2 A A, (A), A, 8,)| = A for some 0< A < oo with probability 1,

(A.16)
where 8, = (Bjn, djn)". Becaused — 8y = O,(n~Y2), (A.10) will follow if for every
(u,v)

n—1 B
E FADTAR) A (A, An, 0 K (A ) = Op(nzp&/z)'
j,h=1
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To show this it suffices by (A.1), to prove that

n—1
2 f(OO,/\j)f(GO,/\h)ls()\j)IE(/\h)AUU(/\j,Ah,éjh)/Cn()\j,h) = Op(nzp,%/z), (A.17)
j,h=1
n—1 5
2 (6o, Aj)f(OOa/\h)la(/\j)Roo()\h)Auu()‘j’Ah50jh)lcn(Aj—h) = Op(nzpnl/z)’
j,h=1
and
n—1 B
E (00, A;) T (00, Ap) Ry () Ry, (An) Ay, (Af, A, 0i0) (A ) = Op(n2p%/2).
j,h=1

We will prove only the first of thesebecause the proof for the other two is similar

Letting
n—1 B
Yo = 2 f(007)\j)f(907/\h)lg()‘j)ls(/\h)Auv()\j,)\h,ojh)lcn()\j—h),
j.h=1
we have
Y,=1(d=dy)Y,+1(d<dy)Y,. (A.18)
First consided = d,. Thend”1 = dy for all j, h. Hence by Assumption 7 andA.16), we
have
‘ f(007 /\j)f(007)‘h)“4uv()\j, )\h7 6]h)‘ = AATB/\EB (Alg)

with probability 1 for some 0< A < oo for all j,h . Also, by the Cauchy-Schwarz
inequality sup hE|l:(A))1.(An)| < K < oo, and it follows from(A.19) and (A.28) in
the proof of Lemma 1 that

Ell(d=do)Y,| = E( i AN ARG =) # h) +pl (= h)}|g<)\j)|s(/\h)|)

j,h=1

n—1
= O( > AN —h) U (j#h) +p,l(j= h)}> = 0(n?logn)

j,h=1

= o(n?p¥?). (A.20)

Now considerd < do. Then 0< éljh < do for all j, h. By part (iii) of Assumption 7 we
get that

f (00, A)) F (B0, An) f 72 (0n, A 71 (B, An) = (L+A)(1+ Ay),
where

|Aj] = K6 — 6] A; % (A.21)
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for all j. Furthermore
‘ f(éjhy )\] )f(éjhr )lh)Auv()\j ) Ah5 éjh)l = AATS /\ES (A22)

with probability 1 for some 0< A < oo by (A.16). Using these bounds an@.28)
we get

n—1
Hd<dy)Yal= X AL+ AD @+ A AT AR (A ) [ (A1 (AR)

j,h=1

n—1

= E AAJ_B)\ESUCn(A]—h)‘ |s()\])|s(/\h)

i»h=1

n—1

+2 D A AT AR KA ) [ (A 1 (Ap)
j,h=1

n—1
+ D AN AR (A ) [ 1 (A) 1 (Ay)
j,h=1
=T+ T+ T

From (A.20) we have thafl; = 0,(npy/?). Also, by (A.21),

n—1

=AI0 =0 > A2 A0 K a(A ) 1 (A1 (Ap).
j,h=1

An argument similar to that in(A.20) shows that 313 A; 2% 2A02 X
(A=) [T (X)) 1 (Ay) = Op(nzlog n) and becausdd — 6| = O (n’l/z), we get
T, = p(n3/zlog n) = 0,(n?py/?). Arguing in the same veinwe establish thall; =
I(do < )Op(nlogn) + 1 (dg = 3)O0,(n*®*2° logn) = 0,(n?py/?). These bounds ofy,
T,, and T3 yield

[1(d < do) Yy| = 0,(np/2). (A.23)
Thus (A.17) follows from (A.18), (A.20), and (A.23). n
LEMMA 1. Under the assumptions in Theorem 2,
n (27 "2/ . 472
1/2{7 > <fe2(M) -— fﬁd(/\e)>} = 0p(1). (A.24)
n =0 g

Proof. The LHS of(A.24) is
n 2’7Tnil 27Tn:L I()\) 277'277“1 2
S S ) - (F S )|
(2,77.)3 n—1 n—1

= ZOJZ_lW()\e PDWA ) {1 (A)R(A) + L (A)R(A;) + R(A)R(AR)}

Lettlng ks = k(S/pn) and q)(/\J,)th) = Is()\])R(Ah) + |5(/\h)R()\J) + R()\J)R(/\h), the
last line of the preceding equation becomes
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2 n—1 n—-1 n—1

W«E h2 2( )kpkqefiwf'p“““q)q’(’\w\h)
n (=0j,h=1p,g=—(n—1

2 n—1 n—1 n—1
=— > > kpkqe‘("l p+/\hq)q)()\j,)\h) > e ir(pra)
h €=0

2hK1/2
n%py’? | "21pa=—tn-1)

2 n—1 n—1 ) n—1 '
@( > fb(A;,m( > kiehP 423 kpknpe'“""»- (A.25)
h=1 p=1

ih= p=—(n—1)

We will show that(A.25) is 0,(1) by verifying

n—1

E hE RO (AR Ka(Aj ) | = o(npy/?) (A.26)
j,h=1

and
n—1

E lhle()‘j)R(/‘h)K:n()‘jfh) = o(npy’?), (A.27)
ih=

where/C,(A;_p) is defined in(A.7). To prove the preceding two equatiomse will need
a bound fork,(As). We first note that from page 2 of Zygmuri@i977)

b b b
> e = cosal +i >, sinAl
=1 =1 (=1
sin(b + 2)A
T2 sinA/2

1 cosA/2—cogb+ 1)A
— - i , =0(1"Y)
2 2sinA/2

uniformly in b for 0 < A < ar. Using this boundin conjunction with the fact that
P, 1 2|k,| = O(1) and by applying summation by parts and by Assumption fab
s # 0 we obtain

n—1

n—1
> kiehP =2 21 kZcos(Agp) +1
-

p=—(n-1)

n—2 P n—1
=22 (k32— k2.1) X cos(Au) + 2kZ_; > cos(Agu) + 1
p=1 u=1 u=1
n—-2 P
=23 (ky— ko 1) (K, + Ky q) S cos(Agu) + O(1)
p=1 u=1

n—2 1 p
= O< > p— kp(ky + Kpi1) cos(/\su)>
n u=1

m=1
= 0(A5h),

wherep < p < p + 1. Similarly,

n—1
2 kpkyp€7sP = O(ASY),
p=1
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and hence
Kn(As) = O(AsH1(s# 0) + O(py) 1 (s=0). (A.28)

We shall only derive(A.26) and (A.27) whenj # h, because the proofs fgr= h are
similar and simplerTo prove(A.26) we note that the LHS ofA.26) is bounded by

log?n n—1 log?n
El| X D RULADK.A ) | +2E| 2 X RAPDIL(ARKA(Aj_p)
j=1 h#j j=log?n+1 h=1
n-1 n—1
+E 2 E R(/\j)lg(/\h)lcn(/\j—h) .

j=log?n+1 h=log?n+1

Using the Cauchy—Schwarz inequalityemma 5 equation(A.28), and the fact that
max E(If()\j )) < oo, the first term and second term of the preceding equation are of
the order

log?n n—-1  log®n
O< > DKl + Y X Kn(/\jh)|>

j=1 h#j j=log?n+1 h=1
log®n n-1 log®n
— -1 -1
=0 2 XAttt X XA,
j=1 h#j j=log?n+1 h=1
= O(nlog®n).

To verify the third term iso(np2/?), we will show that

n—1 n-1 2

E E 2 ROANDLADK(An) | = o(n?py).

j=log?n+1 j#h=log?n+1

By Assumption 3Lemma 4 andA.28),

n—1 n—1 2

E[| = > ROADLAWDK(A-p)

j=log?n+1 j#h=log?n+1

n-1 h;—1 n—1 h,—1
=2 2 > > 2 ERA)LAn)RML)L(A,)
hi=log?n+1 j;=log?n+1 h,=log?n+1 j,=log?n+1
X Ky ) a4, 1)
n—1 n—1 n—1 n—1
t2 X X XY X ERO)LARAL)L(AL,)
hi=log?n+1 j;=h;+1 hy=log?n+1 j2=hx+1
X Kn(Aj—n) Kn(=Aj,n,)
n—1 hy n—1 hy
=0 X > > > rh{T hg T oghy log ho Ay AT,

hi=log?n+1 j;=log?n+1 h,=log?n+1 j,=log?n+1

= 0(n?log® n) = o(n?p,).

Thus(A.26) is proved The proof of(A.27) is similar to that of(A.26). u
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LEMMA 2. Under Assumptions 1, 2a, and 3,

n (27 "tanr? 27 3
— — — {2, — — k2(j 520 = 0o (1).
[1_/2{ n ZO 0_4 a,d( {) 0_4 j:7%71) (]/pn)y‘e,J} Op( )

Proof. Becausd,(A;) = I, .(4;) andl, .(0) = 0, we have

n—1

1 )
(X)) = > Fene MM forj=1,...,(n-1).
277 h=—(n—1)

Now
2 n—1
— fA (A
27\ 1 -l -t ) . . )
- <_ m E 2 kplkpz’i/&hly&hzeﬂ/\e nPrghte-iaPee™ N Nighian2
n 70" €,j1,02=0 p1.p2.hy hp=—(n—1)
2 n—1 n—1 n—1 n—1
— A € A A
= 3 2 E kplkpz')/E hl'yg hzz e i P1—p2 E e i hi— PlJl E e —i ho— PzJZ
n“o PLPthJ,hz:*(" 1) j1=0 j2=0
20 2} 8 -

Z kp 78 p E (kz +k kn p)7£ p'}’s n—|p| + 2 (k + 2kpknfp)')73,p-

4
0 p=-(n-1

Hence to show Lemma 2it is sufficient to prove that

n—1
z (k + K I(n p)')’s p Op(n p /2) (A29)
p=1
and
n—1
Z (kg + kpkn*|p\)’§/£,p’f/s,n*\p\ = op(nilpr}/z)- (A30)
p=1

In the steps that folloywve will assume thak has unbounded suppott k has bounded
support all terms involvingk,kn— || are zero in bott{A.29) and(A.30) and the proof is
extremely simpleBy Assumptions 2a and, 3

n n—1 ) ) 1 n—1 )
El =53 > (ki-p + KoKn—p) V2 p 12 1/2 > pks
pn p=1 n p= nn'\ =1
n & -p_ P
= e 2ok »'( %)

n

n/2 rI?/Z
2 St eo(E) o
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because, 31/ |k,| = O(1). We now verify equatior{A.30).
n—1 2
E< E (kg + kpkn|p)’?s,p’9€,np>
p=1
=3 (kK2 + KoKy 1p)2E(92 0920 p)
p
+ gq(kg + kpkn—\p|)(kg + qun—\q\)E(i’g,p‘i’s,nfpi’s,qi/s,nfq)‘ (A31)

By Lemma 1 on page 186 of Grenander and Rosenled67), E(32,72,p) =
O(n~2) and E(§¢, pPe,n—pPe.qF¥e.n—q) = O(N~3). Hence by Assumption 2athe first
term of (A.31) is

1 Pn
O<Z(ks+kpknp)2 2) :O( 2)’
; n n

and the second term ¢A.31) is
L 2 2 P

Op 3 2 (kp + kpkn,‘p‘)(kq + qun—\q\) = op =,
N” pzq

and the lemma is established |
LEMMA 3. Under the assumptions in Theorem 2,

{1 i e(Af)} —((2;> $20 = 0,(n"*log®n) (A.32)

n ¢=o

and

{ i gdw)} = 52,

Proof. The proof of the second claim of the lemma is contained in the proof of the
first claim, which we show subsequentiy (A.1),

2m L 2m L 277' 2
2 )= X S L)+ ER(A)
N ¢=o n j=1
Let I, . be the mean corrected periodogram &f Then I.(Aj)) = In.(}) =
(1/2m) > 9, ne " andl, .(0) = 0. We have the first term of the last line
2 2o "L 27 27 1} n? .
TS =TS S et
j N 0% 27 Son="(n-1
127 n—1 n—1 )
= _2 2 ’)A/s,h E eil/\Jh
N o* h="(n-1 j=0
27 |
= ; 75,0
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Thus the LHS of(A.32) is
2 27 21 27 21 2

2-— «98,0(— > R(AJ)> + (— > R(A,-)). (A.33)
g n j=1 n j=1

We will show that the second term@;,(n~2log*n). It follows by Chebyshev’s inequal-
ity and the fact thap, o = Op(1) that the first term i<Op(n~*log?n). Now

n—1 2 log®n 2 log?n  n—-1
E<21 R(/\j)) = E( 21 R(AJ-)> +2E< > > R(/\j)R()\h)>
1= 1=

j=1 h=log?n
n—1 2
+E< > R(/\j)>.
j=log?n

By Lemma 5 which follows the first term isO(log?n), the second term i®(log*n),
and the third term i©(log*n), and henc&A.33) is O,(n~*log?n). u

LEMMA 4. Under the assumptions in Theorem 2,

E[RAN1 (A RA)I(A)] = O(j%h9 k99 *loghlog ¢) (A.34)
and
E[R(A))R(A,)R(AIR(A,)] = O(j " 1k=9¢% tloghlog ¢) (A.35)

uniformly forlog?n=j <h=n,log?n=k<{=n.

Proof. The development of this proof closely matches that of Lemma 2 of Hurvich
Deq and Brodsky(1998. We shall use the following notation

=10y), f=f), andl;=1(A).

The LHS of(A.34) is

I ) I )
E[| - =270 2l |len| 7 — 270 2l | 1o
fj fk
| i B .
= ——1-2r0 2l + 1)l = —1-2m0 Pl + 1)l
f] fk
l; I _ I
=E - -1 Ieh ——1 |€€ - E (2770' zlej_l)lsh ——1 Isf
fj fk fk
|
- E|:<f_J - 1> |€h(2,n-0-*2|sk7 1)|sf:|
i

+ E[(2’7TO'72|S]- =Dl Qmo 2l — Dl ]. (A.36)
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Note that the last expectation 04.36) is zera Let

l; |
E[<f—J 1) |5h<f_k - 1) ls(fj| = E(féndiée)
f k

and

- Ay By 2w N2m Ay By Vom \/2778 '
fjl/z’ fj1/27 o eh» o =14

— ’
- (v17 VU, VU3, Uy, Us, Vg, U7, US) )

where

1 n 1 n
A, = a; Cog(A; t), B, = a, sin(A; t).
aj 27Tn[:21t QI) aj \Im;t (J)

The vectorv has a eight-dimensional multivariate Gaussian distribution with mean zero
and covariance matri¥. Define ¥ = 3~1 Partition3 and¥ as

s = 211 2:L2 and ¥ = Wll W12
221 222 WZl TZZ ’

wheres; and¥; are 4X 4 matrices By the formulas for the inverse of a partitioned
matrix,

W, =307+ 3130530 — 3513713 15) T30 30T,
Vo= =353 — 25,311 %0,) Y

and

Voo = (S — 351371 31,) -

Letting V, = Ay Or Byj, we have from Lemma 4 of Moulines and Souli@©99

Vi Vx .
E(fl);Jz f1/;> = O(j~*k“ *logk) (A.37)
i Tk

for 1 = j < k = n/2. Following arguments similar to those in this lemnilacan be
shown that for I= j < k=n/2

2\ 1 L
E T )73 + O(jtlogj), (A.38)
]

E(VS] VXk) =0(j %" 'logk) and E(VX] V“) =0(j %% logk).  (A.39)
fk1/2 fjl/2 ‘ "
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Letting
R*E—}I B Ri1 R
-7 27 \Ra Ry
wherel g is a 8% 8 identity matrix we see fronm(A.37)—(A.39) thatR = o(1) for log®n <

j <h=n/2,log?n < k < € = n/2. By the fact that(l + A)™* =1 — (1 + A)"*A, we
get¥ = 2lg — 2R(lg+ 2R)™* = O(1). Let

A Tll o
‘\II =
0o ¥,
and define? = ¥ — V. We have

E(jéndiée) = (277)4‘11"1/2J"“févjfh{kf(ee(il/z)",w" dv
= (2m)*| |2 f fgj Enlfo e V2V gy (A.40)

+ (277.)4”,‘1/2 f févjghgkgee(—1/2)u'~irv{e(—1/2)v'irv _ 1} dv.

(A.41)
Let v jny) = (v1,v2,v3,v4), vy = (Us, v6,v7,0g)"; the first term of the preceding equa-
tion is
(277.)4”,‘1/2 ffffg] fh e(—l/z)v(jh)*lfuv(m) d”(jh) ffffgka/ e(—1/2)u;k,,,~1122u(ke) dv(k(?)-

(A.42)
The first quadruple integral dfA.42) is

J:[[J(] &n e(*1/2)"(Ih)zfll"(m)e(*l/Z)V(m)M11"(|h) dv(jh): (A.43)

where

\UEPIED PED TPL0 PP PHD TED FPY ) PHD Fr

Let 71, be the largest absolute entry Mif,,. Becausge" — 1| = |ulelY! for all u,
e(-1/2v{mMuvn = 1 4 O{TnHv(jh)Hze<3/2>711”"‘1“‘”2}.

Thus(A.43) is equal to

ffff{] &, e(~V2)v(jn 21 v dvjpn
+0 { ﬂﬂ\{, Enlmaallv jh)”Ze(fl/z)v(im(EI}ﬂHl'”"”“’ dv(jn } . (A.44)
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The second term i©(r11) = O(] 2929 2log?Kkl(j<x, + K™ 2%2%72log?Kl(j~K) by
(A.37)—(A.39). Note that

St =21,— 2Ry (I, + 2Ry =21, + o(1).

Let 511 be the largest absolute entry dR2 (14 + 2R11) %,

e(l/Z)VEjh)(ZRu('aJr 2R10) v — 1+ O{nlluv(jh)HZe(3/2)7711HV(jh)\|2}'

Thus the first term ofA.44) is

—1/2)v) 12l 4w
ﬂﬂfj EneTYAVINavan du )
2A(1/2)v); 2—3 | i
+ O{ ﬂf ‘Zl é‘:h'nlle(jh)H e( /2)v( jny (( 1111 2)V(jn) dv(jh)}

= ffg] e(—l/2)v'(j)2|2v(j) dv(j)f é/] e(—l/Z)u[h)lev(m d‘U(h)

+ o{fﬂ £, €nl M2l v |26/ 2% (@3 v dv(jh)}'

The first term of the RHS of the preceding equation is zero because the first double
integral is the expectation af assuming the covariance matrix issl,. The second
term isO(n11) = O(j~9h9 tlogh). We have shown that the first quadruple integral of
(A42) is O( j 7dhdillog h + j72d|(2d72 |Og2 kl(jgk) + j2d72k72d |ngj1(ksj)). It can
be shown in the same fashion that the second quadruple integréh.dR) is
O(k_d€d_1 logf¢ + j ~2d2d-2 |ng kl(jgk) + 2d=2y—2d |ngj1(j>k)). Hence (A.40) is
O(j~9h9=1k=9¢9=loghlog¢).

Now we considefA.41). By the mean value theorgre" — 1 — u| = 3u?elYl for all
u. Thus

e(—l/Z)U'i'v —1= _% vli,v + O(TZHU||4eZTH‘UH2)’

wherer is the largest absolute entry @. Note thatr? = O( | ~29%k2972]og? k1 +
j29-2%k2910g?j1k=j)). Hence(A.41) is

1 _ -
(277)4|1F‘l/2 f fé/jfhgkf(’_ Ev"\yue(—l/Z)u T dv

+0{72 [-] |;j§hzk§e|uv|4e<1/2>"’<”'s>"dv}.

The second term i®(72). The first term is the linear combination & [ nliée A A,
EeljéndkéAiBil, EaldénduéeAjAL, ExljénlkéeABe], ... etc, whereEg denotes
the expectation assuming thatis multivariate normal with mean zero and covariance
matrix ¥. Note that covv) = ¥ implies that the vectoréA;, B;, An, B), (Ax, B, A, B¢)

are independenThus for example Eg[jéndké ¢ Aj Al = Esl[jénA 1Es[{écAxl, and
both of these expectations are zero because/thie and (&, are even functions of
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(A, B;,An,By), respectively and because the densities foA;,B;,A,,By) and
(A, B, A¢,By) are also even functiondVe have shown thatA.41) is O(7?) =
O(j =229 2log?Kl(j=k) + j 2972k 2%l0g?j1(=j)). Hence

l; |
N ORRTE) B —
j k

It can be shown in a similar way that the rest of the second and the third expectations of
(A.36) are bothO(j9hd9~tk=9¢9=1loghlog¢) uniformly in log?n < j < h < n/2,

log?n = k < € = n/2. The order in(A.35) can be derived following the same lines as
previously n

LEMMA 5. Under the assumptions of Theorem 2,
E[R(A;)R(A)] = O(j*h~tloghlogj +j 2?h2%~2log? h)
and
E[R?(A))] = O(j~*logj)
uniformly forlog®n = j < h = n. Alsomax <j=nE[R?(4;)] < oo.

The proof of the first two bounds stated in this lemma is similar to that of Lemma 4
The last bound is obtained by using the bou@s37)—(A.39) and the Gaussianity of
the observations

LEMMA 6. Let g(A) be defined as (A.11). Then, under Assumption 7,

n—1

S g(Ap)e MM = 0(n®) ifm=0,
h=1

=0(n*°m™1) ifm#0.
Proof. We shall prove the lemma by showing that

a -l )
o > g(Ap)e MM =0(n"1*?) ifm=0,
h=1
=0(Mm) ifm#0 and |m/=n. (A.45)

We first derive the result fom = 0. Note that

2m

g(A) dA = 0.

0

Hence the LHS of (A.45) is

277. n—1 277_ n—1 2
o > 9(A) = <— >0 = g dA)
h=1 N p=1 0
n—1 An An
=3 [ () — g da - f g(h) dA
h=1 JAp_1 An-1
n—1 Ah Ag
= g g'(Aﬁ)J A= dA—| g(a)da,
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whereAn—; < Af < Ap and we use the fact thaf(A) is symmetric aroundr/2. By
Assumption 7 the last equation is

n 1/2 2
o( > Ao <—7T> + ,\115> = 0O(n~'*).
h=1 2\ n
Form # 0, we have by summation by parts
2 "} _
=L glagenm
N p=1

n—1

2w 2 h 2 )
=— > (0(An) = 9(Aps1) X €M+ —g(A,q) D eHem
N p=1 ¢ n =1

=1
T2 h 2

— 29 AR Ap = Apey) X €M™+ —g(A,_1)(=1).
N h=1 =1 n

Because>?_,er = 3P eirl — 33 1eidl = O()~1) uniformly in a andb for 0 <
A < 7 (see the proof of Lemma)lthis is

1n72 1 né
ol - ARt oA A+ =0l — ). n
(R st ) =o(5)
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