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We define a sequence of tree-indexed processes closely related to the operation of the

QuickSelect search algorithm (also known as Find) for all the various values of n (the

number of input keys) and m (the rank of the desired order statistic among the keys). As

a ‘master theorem’ we establish convergence of these processes in a certain Banach space,

from which known distributional convergence results as n → ∞ about

(1) the number of key comparisons required

are easily recovered

(a) when m/n → α ∈ [0, 1], and

(b) in the worst case over the choice of m.

From the master theorem it is also easy, for distributional convergence of

(2) the number of symbol comparisons required,

both to recover the known result in the case (a) of fixed quantile α and to establish our

main new result in the case (b) of worst-case Find.

Our techniques allow us to unify the treatment of cases (1) and (2) and indeed to

consider many other cost functions as well. Further, all our results provide a stronger

mode of convergence (namely, convergence in Lp or almost surely) than convergence in

distribution. Extensions to MultipleQuickSelect are discussed briefly.
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1. Introduction

QuickSelect (also known as Find), introduced by Hoare [11], is a randomized algorithm

for selecting a specified order statistic from an input sequence of objects, or rather their

identifying labels usually known as keys. The keys can be numeric or symbol strings,

or indeed any labels drawn from a given linearly ordered set. Suppose we are given

keys y1, . . . , yn and we want to find the mth smallest among them. The algorithm first

selects a key (called the pivot) uniformly at random. It then compares every other key

to the pivot, thereby determining the rank (call it r) of the pivot among the n keys. If

r = m, then the algorithm terminates, returning the pivot key as output. If r > m, then the

algorithm is applied recursively to the keys smaller than the pivot to find the mth smallest

among those; while if r < m, then the algorithm is applied recursively to the keys larger

than the pivot to find the (m − r)th smallest among those. More formal descriptions of

QuickSelect can be found in [11] and [13], for example.

Observe that, for fixed n and a given sequence (y1, . . . , yn) of keys, it is possible to build

the randomness needed to run QuickSelect for every value of m ∈ {1, . . . , n} on a single

probability space, as follows. Let π denote a uniformly random permutation of {1, . . . , n},
and consider the sequence (z1, . . . , zn) with zi := yπi for i = 1, . . . , n. Regardless of the value

of m, choose z1 as the initial pivot, and when the algorithm is applied recursively, apply

it to the appropriate sequence of zi-values listed in the same relative order as within

(z1, . . . , zn).

The cost of running QuickSelect can be measured by assessing the cost of comparing

keys. We assume that every comparison of two (distinct) keys costs some amount that is

perhaps dependent on the values of the keys, and then the cost of the algorithm is the

sum of the comparison costs.

Until recently, it has been customary to assign unit cost to each comparison of two

keys, irrespective of their values. We denote the (random) key-comparisons-count cost for

QuickSelect by Kn,m. As we have explained, for fixed n one can use a single uniformly

random permutation of {1, . . . , n} to build a single probability space on which all of the

random variables Kn,m with 1 � m � n are defined. (Note also that the joint distribution of

Kn,1, . . . , Kn,n does not depend on the initial sequence (y1, . . . , yn) of distinct keys.) Among

other things, this opens up the possibility of studying the distribution of maxm Kn,m, the

cost of so-called ‘worst-case Find’, in which an adversary is allowed to choose the rank

of the key sought by the QuickSelect algorithm. Our motivation for this paper was to

investigate the large-n behaviour of worst-case Find for more general cost functions.

There have been many studies of the random variables Kn,m, including [2], [17], [10],

[14], [9], [3], [12], [4], and [6], and several corresponding studies, including [19], [15],

and [16], of the number(s) of key comparisons for an extension of QuickSelect called

MultipleQuickSelect that searches simultaneously for multiple order statistics. Grübel

and Rösler [10] analysed a modified version of QuickSelect that splits the collection

of keys into two sets, those smaller than the pivot and those greater than or equal to

the pivot, rather than into three sets (one of which has the pivot as its only element)

as considered in this paper. They studied (see especially their Theorem 4) the limiting

behaviour of this modified QuickSelect through the convergence (in distribution, in the
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Skorokhod topology on the space D[0, 1] of càdlàg functions on the unit interval [0, 1]) of

a sequence X1, X2, . . . of stochastic processes defined by Xn(α) := n−1Kn,�nα�+1 for α ∈ [0, 1)

and Xn(1) := n−1Kn,n. Rüschendorf [14, Examples 4.1–4.2] utilized the contraction method

to prove that the scale-normalized key-comparisons-count cost n−1 maxm Kn,m of worst-

case Find (the version considered in this paper) converges in distribution. Devroye [3]

presented an alternative proof of the latter result.

But unit cost is not always a reasonable model for comparing two keys. For example, if

each key is a string of symbols, then a more realistic model for the cost of comparing two

keys is the value of the first index at which the two symbol strings differ. To date, only

a few papers ([21], [7], and [8]) have considered QuickSelect from this more realistic

symbol-comparisons perspective. As in [8], in this paper we will treat a rather general class

of cost functions that includes both key-comparisons cost and symbol-comparisons cost.

In our set-up (to be described in detail in Section 2) for this paper, we will consider

a variety of probabilistic models (called probabilistic sources) for how a key is generated

as an infinite-length string of symbols, but we will always assume that the keys form

an infinite sequence of independent and identically distributed and almost surely distinct

symbol strings. This gives us, on a single probability space, all the randomness needed

to run QuickSelect for every value of n and every value of m ∈ {1, . . . , n} by always

choosing the first key in the sequence as the pivot (and maintaining initial relative order

of keys when the algorithm is applied recursively); this is what is meant by the natural

coupling (see [5, Section 1]) of the runs of the algorithm for varying n and m. As explained

in [5, Section 1], the coupling allows us to consider stronger forms of convergence than

convergence in distribution, such as almost sure convergence and convergence in Lp.

Whatever cost function is used for comparisons of two keys, let FIND(n, m) denote the

corresponding total cost of QuickSelect (under the natural coupling) in selecting the

mth-order statistic from the first n keys. Let mn ∈ {1, . . . , n} for every n, and suppose that

mn/n → α ∈ [0, 1]. Fill and Nakama [8] prove, under certain ‘tameness’ conditions (to

be reviewed later) on the probabilistic source and the cost function, that n−1FIND(n, mn)

converges both in Lp and almost surely to a limiting random variable. We complement

their result by proving analogous results for the cost of worst-case Find, namely,

max1�m�n FIND(n, m). Our new results and (under somewhat stronger hypotheses than

assumed in [8]) the results of Fill and Nakama [8] are both obtained rather effortlessly

from a ‘master theorem’, Theorem 4.1, which establishes convergence in a certain Banach

space of a certain sequence of tree-indexed processes closely related to the operation of

QuickSelect for all the various values of n and m.

An outline for this paper is as follows. First, in Section 2, we carefully describe our set-

up and, in some detail, discuss probabilistic sources, cost functions, and tameness; we also

discuss the idea of seeds, which allow us a unified treatment of all sources. In Section 3

we state and prove a number of useful lemmas. In Section 4 (specifically, our master

Theorem 4.1) we prove that the ‘QuickSelect tree processes’ to which we alluded in the

preceding paragraph converge in a certain Banach space (described in Definition 3.10

and Proposition 3.11). Some consequences of Theorem 4.1 are provided in Section 5; the

highlight is Corollary 5.4, which gives sufficient conditions for Lp-convergence of the cost

of worst-case Find. In Section 6, we use Theorem 4.1 to provide (under an additional
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restriction) very simple proofs of Theorems 3.1 and 4.1 in [8]; the latter concerns Lp-

convergence of the cost of QuickSelect for fixed α. Finally, in Section 7, we complement

the Lp-convergence result of Corollary 5.4 for the cost of worst-case Find by providing a

tameness condition under which the scale-normalized cost of worst-case Find converges

almost surely.

Remark 1.1. As recalled from [8] at the end of our Section 2.1, many common sources,

including memoryless and Markov sources, have the property that the source-specific

cost function β corresponding to the symbol-comparisons cost for comparing keys is

ε-tame for every ε > 0. Thus, for such sources, the conclusions of our two main results,

Theorem 4.1 and Corollary 5.4, hold for every p ∈ [2,∞), and the almost-sure convergence

theorem (Theorem 7.1) for worst-case Find also applies to all such sources.

2. Set-up

2.1. Probabilistic sources

Let us define the fundamental probabilistic structure underlying the analysis of Quick-

Select. We assume that keys arrive independently and with the same distribution and

that each key is composed of a sequence of symbols from some finite or countably infinite

alphabet. Let Σ be this alphabet (which we assume is totally ordered by �). Then a

key is an element of Σ∞ (ordered by the lexicographic order, call it �, corresponding to

(Σ,�)) and a probabilistic source is a stochastic process W = (W1,W2,W3, . . .) such that,

for each i, the random variable Wi takes values in Σ. We will impose restrictions on the

distribution of W that will have as a consequence that (with probability one) all keys are

distinct.

We denote the cost (assumed to be non-negative) of comparing two keys w,w′ by

cost(w,w′). As two examples, the choice cost(w,w′) ≡ 1 gives rise to a key-comparisons

analysis, whereas if words are symbol strings then a symbol-comparisons analysis is

obtained by letting cost(w,w′) be the first index at which w and w′ disagree.

Since Σ∞ is totally ordered, a probabilistic source W is governed by a distribution

function F defined for w ∈ Σ∞ by

F(w) := P(W � w).

Then the corresponding inverse probability transform M, defined by

M(u) := inf{w ∈ Σ∞ : u � F(w)},

has the property that if U ∼ uniform(0, 1), then M(U) has the same distribution as W .

We refer to such uniform random variables U as seeds.

Using this technique we can define a source-specific cost function

β : (0, 1) × (0, 1) → [0,∞)

by β(u, v) := cost(M(u),M(v)).
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Definition 2.1. Let 0 < c < ∞ and 0 < ε < ∞. A source-specific cost function β is said to

be (c, ε)-tame if for 0 < u < t < 1 we have

β(u, t) � c (t − u)−ε,

and is said to be ε-tame if it is (c, ε)-tame for some c.

For further important background on sources, cost functions, and tameness, we refer

the reader to Section 2.1 (see especially Definitions 2.3–2.4 and Remark 2.5) in Fill and

Nakama [8]. Note in particular that many common sources, including memoryless and

Markov sources, have the property that the source-specific cost function β corresponding

to symbol-comparisons cost for comparing keys is ε-tame for every ε > 0.

2.2. Tree of seeds and the QuickSelect tree processes

Let T be the collection of (finite or infinite) rooted ordered binary trees (whenever we refer

to a binary tree we will assume it is of this variety) and let T ∈ T be the complete infinite

binary tree. We will label each node θ in such a tree by a binary sequence representing

the path from the root to θ, where 0 corresponds to taking the left child and 1 to taking

the right. We consider the set of real-valued stochastic processes each with index set equal

to some T ∈ T . For such a process, we extend the index set to T by defining Xθ = 0

for θ ∈ T \ T . This convention allows us to define addition of any two such processes

componentwise, as well as scalar multiplication componentwise. In doing so, we obtain a

vector space B of such processes. We will have need for the following definition of levels

of a binary tree.

Definition 2.2. For 0 � k < ∞, we define the kth level Λk of a binary tree as the collection

of vertices that are at distance k from the root.

Let

Θ =
⋃

0�k<∞
{0, 1}k

be the set of all finite-length binary strings, where {0, 1}0 = {ε} with ε denoting the empty

string. Set Lε := 0, Rε := 1, and τε := 1. Then, for θ ∈ Θ, we define |θ| to be the length

of the string θ, and υθ(n) to be the size (through the arrival of the nth key) of the subtree

rooted at node θ. Given a sequence of independent and identically distributed (i.i.d.) seeds

U1, U2, U3, . . . , we recursively define

τθ := inf{i : Lθ < Ui < Rθ},
Lθ0 := Lθ, Lθ1 := Uτθ ,

Rθ0 := Uτθ , Rθ1 := Rθ,
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where θ1θ2 denotes the concatenation of θ1, θ2 ∈ Θ. For a source-specific cost function β

and 0 � p < ∞ we define

Sn,θ :=
∑

τθ<i�n

1(Lθ < Ui < Rθ)β(Ui,Uτθ ),

Ip(x, a, b) :=

∫ b

a

βp(u, x) du,

Ip,θ := Ip(Uτθ , Lθ, Rθ),

Iθ := I1,θ,

Cθ := (τθ, Uτθ , Lθ, Rθ).

In some later definitions we will make use of the positive part function defined as usual

by x+ := x1(x > 0). Given a source-specific cost function β and the seeds U1, U2, U3, . . . ,

we define the nth QuickSelect seed process as the n-nodes binary tree indexed stochastic

process obtained by successive insertions of U1, . . . , Un into an initially empty binary

search tree.

Before we use these random variables, we supply some understanding of them for

the reader. The arrival time τθ is the index of the seed that is slotted into node θ in

the construction of the QuickSelect seed process. Note that for each θ ∈ Θ we have

P (τθ < ∞) = 1. The interval (Lθ, Rθ) provides sharp bounds for all seeds arriving after

time τθ that interact with Uτθ in the sense of being placed in the subtree rooted at Uτθ . A

crucial observation is that, conditioned on Cθ , the sequence of seeds Uτθ+1, Uτθ+2, . . . are

i.i.d. uniform(0, 1); thus, again conditioned on Cθ , the sum Sn,θ is the sum of (n − τθ)
+ i.i.d.

random variables. Note that when n � τθ the sum defining Sn,θ is empty and so Sn,θ = 0;

in this case we shall conveniently interpret Sn,θ/(n − τθ)
+ = 0/0 as 0. The random variable

Sn,θ is the total cost of comparing the key with seed Uτθ with keys (among the first n to

arrive) whose seeds fall in the interval (Lθ, Rθ), and Ip,θ is the conditional pth moment of

one such comparison: If we let U ∼ uniform(0, 1) independent of Cθ , then

Ip,θ = E
[
1(Lθ < U < Rθ)β

p(U,Uτθ ) | Cθ

]
.

Conditioned on Cθ , the term Sn,θ is the sum of (n − τθ)
+ i.i.d. random variables with pth

moment Ip,θ .

We define the nth QuickSelect tree process as the binary-tree-indexed stochastic process

Sn = (Sn,θ)θ∈Θ and the limit QuickSelect tree process (so called in light of Theorem 4.1)

by I = (Iθ)θ∈Θ.

3. Preliminaries

We first prove some elementary lemmas that will be integral to the arguments used in

the remainder of the paper. An important technique that will prove effective will be to

bound moments of Is,θ where θ ∈ Λk by an expression with geometric decrease in k. The

following lemma provides such a bound in the case of an ε-tame source.
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Lemma 3.1. If β is (c, ε)-tame with 0 � ε < 1/s, then for each fixed node θ ∈ Λk and 0 �
r < ∞ we have

EIrs,θ �
(

2sεcs

1 − sε

)r(
1

r + 1 − rsε

)k

.

Proof. By ε-tameness and concavity of the (1 − sε)-power function,

Is,θ � cs
∫ Rθ

Lθ

|u − Uτθ |−sε du

=
cs

1 − sε

[(
Rθ − Uτθ

)1−sε

+

(
Uτθ − Lθ

)1−sε]

� 2sεcs

1 − sε
(Rθ − Lθ)

1−sε.

Since Rθ − Lθ is distributed as the product of k independent uniform(0, 1) random

variables, taking rth moments gives the desired bound.

As a consequence of Lemma 3.1, we have

Lemma 3.2. Let 1 � p < ∞ and consider a fixed node θ. If the source-specific cost func-

tion β is ε-tame for some 0 � ε < 1/p, then as n → ∞ we have

Sn,θ

n

Lp

−→ Iθ.

Proof. The proof essentially repeats an argument within the proof of Theorem 3.1 in Fill

and Nakama [8]. Conditioned on Cθ , the random variable Sn,θ is the sum of (n − τθ)
+

i.i.d. non-negative random variables with expectation Iθ and pth moment Ip,θ . The Lp law

of large numbers (LpLLN) applies almost surely because EIp,θ < ∞ by Lemma 3.1 and

hence Ip,θ < ∞ almost surely. The LpLLN gives

E

[∣∣∣∣ Sn,θ

(n − τθ)+
− Iθ

∣∣∣∣p
∣∣∣∣Cθ

]
→ 0 a.s. (3.1)

By convexity of the pth-power function,

E

[∣∣∣∣ Sn,θ

(n − τθ)+
− Iθ

∣∣∣∣p
∣∣∣∣Cθ

]
� 2p−1

{
E

[(
Sn,θ

(n − τθ)+

)p ∣∣∣∣Cθ

]
+ I

p
θ

}

and also (
Sn,θ

(n − τθ)+

)p

� 1

(n − τθ)+

∑
i:τθ<i�n

1(Lθ < Ui < Rθ)β
p(Ui,Uτθ ),

which implies

E

[(
Sn,θ

(n − τθ)+

)p ∣∣∣∣Cθ

]
� Ip,θ.
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Therefore, we have the following bound:

E

[∣∣∣∣ Sn,θ

(n − τθ)+
− Iθ

∣∣∣∣p
∣∣∣∣Cθ

]
� 2p−1

(
Ip,θ + I

p
θ

)
� 2pIp,θ. (3.2)

Recall that Lemma 3.1 implies that EIp,θ < ∞. Therefore, by (3.1)–(3.2) and the dominated

convergence theorem,

E

∣∣∣∣ Sn,θ

(n − τθ)+
− Iθ

∣∣∣∣p → 0.

Now to complete the proof of the lemma we show that

E

∣∣∣∣Sn,θn − Sn,θ

(n − τθ)+

∣∣∣∣p → 0.

By our convention for Sn,θ/(n − τθ)
+ when n � τθ , we have∣∣∣∣Sn,θn − Sn,θ

(n − τθ)+

∣∣∣∣p =

∣∣∣∣Sn,θn − Sn,θ

(n − τθ)+

∣∣∣∣p1(τθ < n).

By a simple calculation, ∣∣∣∣Sn,θn − Sn,θ

(n − τθ)+

∣∣∣∣p =

∣∣∣∣τθn
∣∣∣∣p

∣∣∣∣ Sn,θ

(n − τθ)+

∣∣∣∣p.
Taking expectations conditioned on Cθ gives

E

[∣∣∣∣Sn,θn − Sn,θ

(n − τθ)+

∣∣∣∣p1(τθ < n)

∣∣∣∣Cθ

]
= 1(τθ < n)

(
τθ

n

)p

E

[∣∣∣∣ Sn,θ

(n − τθ)+

∣∣∣∣p
∣∣∣∣Cθ

]

� 1(τθ < n)

(
τθ

n

)p

Ip,θ � Ip,θ,

and, in particular,

E

[∣∣∣∣Sn,θn − Sn,θ

(n − τθ)+

∣∣∣∣p
∣∣∣∣Cθ

]
→ 0 a.s.

Thus, again by the dominated convergence theorem,

E

∣∣∣∣Sn,θn − Sn,θ

(n − τθ)+

∣∣∣∣p → 0.

A Poisson binomial sum is a generalization of a binomial distributed random variable.

Let Xi ∼ Bern(pi), i = 1, 2, . . . , n, be independent, where Bern(p) denotes the Bernoulli

distribution with success probability p. Then we say that X :=
∑

i Xi is a Poisson binomial

sum. The following lemma is a restatement of Theorem 4.4 (part 1) in [18]; we include a

proof for completeness.

Lemma 3.3. Let X =
∑

i Xi be a Poisson binomial sum with

Xi ∼ Bern(pi) and EX =
∑
i

pi =: μ.
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Then, for any β � 0 we have

P(X � (1 + β)μ) �
[

eβ

(1 + β)1+β

]μ

.

Proof. The result is trivial for β = 0, so suppose β > 0. For any t > 0, by Markov’s

inequality

P(X � (1 + β)μ) = P(etX � et(1+β)μ) � e−t(1+β)μ
EetX.

Since X =
∑

i Xi and the Xi are independent,

EetX =

n∏
i=1

EetXi =

n∏
i=1

[
1 + pi(e

t − 1)
]

�
n∏

i=1

exp
[
pi(e

t − 1)
]

= exp
[
μ(et − 1)

]
.

Combining these two inequalities and choosing t = ln(1 + β) > 0 produces the desired

bound.

Lemma 3.4. Let Hm :=
∑m

i=1 i
−1, the mth harmonic number. If θ ∈ Λk with k > Hm, then

P(τθ � m) �
(
eHm

k

)k

e−Hm.

Proof. By symmetry, it suffices to consider θ = 0k (the leftmost node of the binary

tree at level k). Then τθ is the arrival time of the kth record-smallest seed. If Rm is

the number of seeds among the first m to be record-smallest upon arrival, then we

have P (τθ � m) = P (Rm � k). It is well known that Rm has the distribution of a Poisson

binomial sum:

Rm
L
=

m∑
i=1

Xi,

where Xi ∼ Bern(1/i), i = 1, . . . , m, are independent and
L
= denotes equality in law.

(Consult, for example, [1, Problem 20.9].) This implies that

μ := ERm =

m∑
i=1

i−1 = Hm.

Thus, for β = (k/Hm) − 1 > 0, applying Lemma 3.3 gives

P(τθ � m) = P(Rm � k) = P(Rm � (1 + β)μ)

�
[

eβ

(1 + β)1+β

]μ

=

(
eHm

k

)k

e−Hm.

In the context of Lemma 3.4, we will use the following standard bound on harmonic

numbers to approximate Hn by ln n up to a constant term.
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Lemma 3.5. Let γ be Euler’s constant. Then, for n = 1, 2, . . . we have

γ � Hn − ln n � 1.

The next lemma uses Lemma 3.1 in its proof and can be seen to generalize Lemma 3.1

(by letting a → 0 and then w → 1).

Lemma 3.6. Consider a fixed node θ ∈ Λk , and let 0 � r < ∞ and 0 < a < ∞ be constants.

Let the source-specific cost function β be (c, ε)-tame with 0 � ε < 1/s. Then, for any v, w ∈
(1,∞) such that v−1 + w−1 = 1, we have

E
(
τθ

−aIrs,θ
)

�
(

2sεcs

1 − sε

)r(
1

wr + 1 − wrsε

)k/w

×
{(

2vak

∫ e−δk

1

[
e ln α + δk

α1+va

]k

dα

)1/v

+ (e − δk)
−ak

}
,

where δk = e/k.

Proof. By Hölder’s inequality,

E
(
τ−a
θ Irs,θ

)
� ‖τ−a

θ ‖v‖Irs,θ‖w.

We can use Lemma 3.1 to bound the second factor. To treat the first factor, we express

the expectation as an integral of tail probabilities, which we bound using Chernoff’s

inequality. Write

Eτ−va
θ =

∫ ∞

0

P(τ−va
θ � t) dt

=

∫ ∞

0

P(τθ � �t−1/(va)�) dt =: J.

Using the change-of-variables αk = t−1/(va), we get

J =

∫ ∞

0

P(τθ � �αk�)(vak)α−vak−1 dα. (3.3)

The next step is to use Lemma 3.4 to bound P(τθ � �αk�). However, we need to check

that the hypothesis of Lemma 3.4 that

k � H�αk� (3.4)

is satisfied. By Lemma 3.5 we have the upper bound

H�αk� � ln�αk� + 1 � k ln α + 1,

so α � e1−(1/k) is sufficient for (3.4), as therefore is α � e[1 − (1/k)]. Writing δk = e/k, we

decompose the integral
∫ ∞

0 in (3.3) for J into∫ 1

0

+

∫ e−δk

1

+

∫ ∞

e−δk

.
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When 0 � α < 1, we have P(τθ � �αk�) = 0 since τθ � 1. For the second integral we bound

this probability using Lemma 3.4, and for the third integral we use the bound 1:

J �
∫ e−δk

1

(
eH�αk�

k

)k

e
−H�αk� (vak)α−vak−1 dα +

∫ ∞

e−δk

(vak)α−vak−1 dα

=

∫ e−δk

1

(
eH�αk�

k

)k

e
−H�αk� (vak)α−vak−1 dα + (e − δk)

−vak.

By Lemma 3.5, (
eH�αk�

k

)k

e
−H�αk� �

(
e(ln�αk� + 1)

k

)k

e− ln�αk�

�
[
e

(
ln α +

1

k

)]k(
1

�αk�

)

� 2

[
e ln α + δk

α

]k

,

where in the last inequality we have used the fact that 2�x� � x for x � 1. Thus∫ e−δk

1

(
eH�αk�

k

)k

e
−H�αk�(vak)α−vak−1 dα � 2vak

∫ e−δk

1

[
e ln α + δk

α1+va

]k

dα. (3.5)

Bounding ‖Irs,θ‖w using Lemma 3.1 gives

‖Irs,θ‖w �
(

2sεcs

1 − sε

)r(
1

wr + 1 − wrsε

)k/w

. (3.6)

Combining (3.5) and (3.6) and using (x + y)1/v � x1/v + y1/v for x, y � 0 proves the lemma.

The following elementary calculus lemma will prove useful in the proof of Theorem 4.1.

Lemma 3.7. The function f(x) := ex−1 ln x has a unique maximum for x ∈ (0,∞), at x̂ = e

with value f(x̂) = 1.

The following simple consequence of the triangle inequality will be used in the proof of

Corollary 5.3.

Lemma 3.8. Let (xi)i∈I and (yi)i∈I be two collections of non-negative real numbers indexed

by a common set I . Then

|sup
i∈I

xi − sup
i∈I

yi| � sup
i∈I

|xi − yi|,

provided that at least one of the suprema on the left is finite (so that the difference of them

is well defined ).

Our next lemma is a simple bound, used in the proofs of Theorem 6.3 and Lemma 7.4,

on the Lp-norm of a maximum of a finite collection of non-negative random variables.
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Lemma 3.9 (Max Lemma). Consider random variables Xm � 0, m = 1, . . . ,M, and let 1 �
p < ∞. Then

‖max
m

Xm‖p � M1/p max
m

‖Xm‖p.

Proof. The key to the proof is to bound the maximum of the M random variables Xp
m

by their sum and then the sum of their pth moments by M times the maximum of the

pth moments:

‖max
m

Xm‖pp = E
(
max
m

Xm

)p
= E max

m
Xp

m

�
∑
m

EXp
m � M max

m
EXp

m

= M max
m

‖Xm‖pp.

Recall from the first paragraph of Section 2.2 the definition of the vector space B.

Given any sequence of positive real numbers (ak) and any 1 � p � ∞, we can define a

very useful functional on B as follows.

Definition 3.10. We define a real-valued function ‖|·|‖p on the vector space B of binary

tree indexed stochastic processes (Xθ) by setting

‖|X|‖p :=

∞∑
k=0

ak max
θ∈Λk

‖Xθ‖p.

Let

B(p) := {X ∈ B : ‖|X|‖p < ∞}; in typical fashion, we identify two processes X and Y in

B(p)if ‖|X − Y |‖p = 0.

Proposition 3.11. B(p) is a Banach space with the norm ‖|·|‖p.

Proof. It is easily verified that B(p) is a vector subspace of B and that ‖|·|‖p is a norm on

B(p). What remains is to establish that the vector space B(p) is complete with respect to the

metric induced by ‖|·|‖p. Our proof of this is adapted from Section 6.10 in [22]. Suppose

X(n) ∈ B(p) form a Cauchy sequence with respect to the norm ‖|·|‖p. Choose a sequence

�n → ∞ as n → ∞ such that for m1, m2 � �n we have

‖|X(m1) − X(m2)|‖p � 2−n.

This implies that for each θ ∈ Θ, the random variables X
(n)
θ form a Cauchy sequence in

Lp, and for m � �n and t � n we have

‖|X(m) − X(�t)|‖p =

∞∑
k=0

ak max
θ∈Λk

‖X(m)
θ − X

(�t)
θ ‖p � 2−n.
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For each θ, let Xθ be the Lp limit of X(n)
θ . For m fixed and k = 1, 2, . . . , define

ft(k) := max
θ∈Λk

‖X(m)
θ − X

(�t)
θ ‖p,

and

f(k) := max
θ∈Λk

‖X(m)
θ − Xθ‖p.

Since for every θ we have X
(n)
θ

Lp

−→ Xθ , for each k we have ft(k) → f(k) as t → ∞. Let μ

be the counting measure induced by (ak) on Z+, i.e., μ({k}) = ak for every k ∈ Z+. Then

by Fatou’s lemma, ∫
lim inf
t→∞

ft dμ � lim inf
t→∞

∫
ft dμ,

which, in the case of m � �n, simplifies to

‖|X(m) − X|‖p � lim inf
t→∞

‖|X(m) − X(kt)|‖p � 2−n,

where X ∈ B(p) is the process of the Xθ . Since this inequality holds for all m � �n, we get

‖|X(m) − X|‖p → 0.

4. Process convergence

Our main result is to show that the normalized QuickSelect tree process Sn/n = (Sn,θ/n)

converges to a limit, namely, I = (Iθ), in the Banach space (B(p), ‖|·|‖p) described in

Proposition 3.11.

Theorem 4.1 (Master Theorem). For 2 � p < ∞ and ε-tame source-specific cost function β

with 0 � ε < 1/p, as n → ∞ we have∥∥∥∥
∣∣∣∣Snn − I

∣∣∣∣
∥∥∥∥
p

→ 0,

with ak ≡ ak,p ≡ 2k/p in the definition of ‖|·|‖p.

Proof. By Lemma 3.2, for each θ in the infinite binary tree, ‖(Sn,θ/n) − Iθ‖p → 0, so that

by the dominated convergence theorem it suffices to find a sequence (bk) such that

(i) for θ ∈ Λk we have ‖(Sn,θ/n) − Iθ‖p � bk , and

(ii)
∑∞

k=0 2k/pbk < ∞.

Decomposing Iθ into Iθ1(τθ < n) + Iθ1(τθ � n) gives∣∣∣∣Sn,θn − Iθ

∣∣∣∣ =

∣∣∣∣
(
Sn,θ

n
− n − τθ

n
Iθ

)
1(τθ < n) − τθ

n
Iθ1(τθ < n) − Iθ1(τθ � n)

∣∣∣∣ (4.1)

� 1

n
|Sn,θ − (n − τθ)Iθ|1(τθ < n) + Iθ, (4.2)
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so that ∥∥∥∥Sn,θn − Iθ

∥∥∥∥
p

�
∥∥∥∥1

n
|Sn,θ − (n − τθ)Iθ|1(τθ < n)

∥∥∥∥
p

+ ‖Iθ‖p. (4.3)

Recall that, conditionally given Cθ = (τθ, Lθ, Rθ, Uτθ ), the random variable Sn,θ is the i.i.d.

sum of (n − τθ)
+ random variables with mean Iθ . If we let U ∼ uniform(0, 1) independent

of Cθ and define Xθ := 1(Lθ � U � Rθ)β(U,Uτθ ), then by Rosenthal’s inequality [20] there

exists a constant cp depending only on p such that

E

[
1

np
|Sn,θ − (n − τθ)Iθ|p1(τθ < n)

∣∣∣∣Cθ

]

� cp
1

np
1(τθ < n){(n − τθ)E

[
|Xθ − Iθ|p | Cθ

]
+ (n − τθ)

p/2
(
Var

[
Xθ | Cθ

])p/2}

� cp1(τθ < n)

{
1

np−1
E

[
|Xθ − Iθ|p | Cθ

]
+

1

np/2

(
Var

[
Xθ | Cθ

])p/2}
.

However, by convexity of the pth-power function,

E
[
|Xθ − Iθ|p | Cθ

]
� 2p−1

(
E

[
X

p
θ | Cθ

]
+ I

p
θ

)
= 2p−1

(
Ip,θ + I

p
θ

)
� 2pIp,θ,

and Var
[
Xθ | Cθ

]
� I2,θ . Thus, utilizing the factor 1(τθ < n) gives

E

[
1

np
|Sn,θ − (n − τθ)Iθ|p1(τθ < n)

∣∣∣∣Cθ

]
� cp2

p
(
τ

−(p−1)
θ Ip,θ + τ

−p/2
θ I

p/2
2,θ

)
.

Taking expectations yields∥∥∥∥1

n
|Sn,θ − (n − τθ)Iθ|1(τθ < n)

∥∥∥∥p

p

� cp2
p
(
E

[
τ

−(p−1)
θ Ip,θ

]
+ E

[
τ

−p/2
θ I

p/2
2,θ

])
. (4.4)

From (4.3), (4.4), and Lemma 3.1 (with s = 1 and r = p), we get∥∥∥∥Sn,θn − Iθ

∥∥∥∥p

p

�
[∥∥∥∥1

n
|Sn,θ − (n − τθ)Iθ|1(τθ < n)

∥∥∥∥
p

+ ‖Iθ‖p
]p

� 2p−1

[∥∥∥∥1

n
|Sn,θ − (n − τθ)Iθ|1(τθ < n)

∥∥∥∥p

p

+ ‖Iθ‖pp
]

� 2p−1

[
cp2

p
(
E

[
τ

−(p−1)
θ Ip,θ

]
+ E

[
τ

−p/2
θ I

p/2
2,θ

])
+

(
2εc

1 − ε

)p

(p + 1 − pε)−k

]
. (4.5)

Because p + 1 − pε > p � 2, it suffices to prove geometric decay at a rate faster than 2−k

for each of the two expectations in (4.5). (Note that when p = 2, the two expectations are

equal, so we can and do restrict to p > 2 in considering the first expectation but allow

p = 2 in considering the second.)
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To establish this geometric decay, consider E
[
τ

−(p−1)
θ Ip,θ

]
first. For any v, w ∈ (1,∞)

satisfying v−1 + w−1 = 1, applying Lemma 3.6 gives

E
[
τ

−(p−1)
θ Ip,θ

]
�

(
2pεcp

1 − pε

)(
1

w + 1 − wpε

)k/w

×
{(

2v(p − 1)k

∫ e−δk

1

[
e ln α + δk

α1+v(p−1)

]k

dα

)1/v

+ (e − δk)
−(p−1)k

}
.

The factor (w + 1 − wpε)k/w here is bounded by unity, and the term involving (e −
δk)

−(p−1)k in the bound on E
[
τ

−(p−1)
θ Ip,θ

]
decays at a geometric rate faster than 2−k . So it

suffices to show that there exist v > 1 and η > 0 (each of which may depend on p, but

not on k or α ∈ (1, e − δk)) such that

2v
[
e ln α + δk

α1+v(p−1)

]
� 1 − η (4.6)

for all large k. Since δk/α
1+v(p−1) � δk → 0 as k → ∞, it suffices to establish (4.6) with δk

replaced by 0. By Lemma 3.7, we have

2v
(

e ln α

α1+v(p−1)

)
� 2v

1 + v(p − 1)
,

and the bound here is strictly less than 1 precisely when

p > 1 +
2v − 1

v
. (4.7)

Since 1 + v−1(2v − 1) → 2 as v → 1, for any p > 2 a value of v > 1 can be found satisfying

(4.7).

Now consider E
[
τθ

−p/2I
p/2
2,θ

]
. Applying Lemma 3.6 gives

Eτθ
−p/2I

p/2
2,θ �

(
22εc2

1 − 2ε

)p/2(
1

(wp/2) + 1 − wpε

)k/w

×
{(

vpk

∫ e−δk

1

[
e ln α + δk

α1+(vp/2)

]k

dα

)1/v

+ (e − δk)
−pk/2

}
.

As before, the term involving (e − δk)
−pk/2 poses no problem. It is therefore sufficient to

show that we have geometric decay in k for the following expression:

2kv
(

1

(wp/2) + 1 − wpε

)kv/w ∫ e−δk

1

[
e ln α + δk

α1+(vp/2)

]k

dα.

When p > 2, arguing as before we need only find v and w satisfying v−1 + w−1 = 1 such

that the following expression is bounded by 1 − η for some η > 0:

2ve ln α

α1+(vp/2)

1

[w((p/2) − 1) + 1]v/w
� 2v

(vp/2) + 1

1

[w((p/2) − 1) + 1]v/w
.

However, as v → 1 and w → ∞ we have

2v

(vp/2) + 1

1

[w((p/2) − 1) + 1]v/w
→ 4

p + 2
,
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which for p > 2 is strictly less than 1. When p = 2 and 0 � ε < 1/2 is given, it suffices to

find a value of v > 1 such that

2v

v + 1

1[
v

v−1
(1 − 2ε) + 1

]v−1
< 1. (4.8)

When v = (3/2) − ε, the expression in (4.8) becomes

2(5/2)−ε

5 − 2ε
(4 − 2ε)ε−(1/2) =

4

5 − 2ε
(2 − ε)−[(1/2)−ε] =: f(ε).

One can easily check that f(1/2) = 1 and that f is strictly increasing on [0, 1/2]; therefore,

together they imply that (4.8) is satisfied when v = (3/2) − ε.

5. Consequences of process convergence

Let Γ be the collection of all non-empty paths (finite or infinite) from the root of the

infinite binary tree. For any path γ ∈ Γ, define |γ| ∈ {1, 2, . . .} ∪ {∞} to be the number of

levels visited by γ, and let

Sn,γ :=
∑
θ∈γ

Sn,θ and Iγ :=
∑
θ∈γ

Iθ.

Let p ∈ [1,∞), and let ak ≡ ak,p ≡ 2k/p be used in the definition of ‖|·|‖p.

Proposition 5.1. Let 1 � p < ∞ and suppose that∥∥∥∥
∣∣∣∣Snn − I

∣∣∣∣
∥∥∥∥
p

→ 0.

Then as n → ∞ we have the Lp-convergence∥∥∥∥ sup
γ∈Γ

∣∣∣∣Sn,γn − Iγ

∣∣∣∣
∥∥∥∥
p

→ 0.

Proof. Consider a path γ ∈ Γ and let γ = (θ0, θ1, . . . , θ|γ|−1) if |γ| < ∞ and γ = (θ0, θ1, . . .)

if |γ| = ∞. Then ∣∣∣∣Sn,γn − Iγ

∣∣∣∣ =

∣∣∣∣ ∑
0�k<|γ|

(
Sn,θk
n

− Iθk

)∣∣∣∣
=

∣∣∣∣ ∑
0�k<∞

1(k < |γ|)
(
Sn,θk
n

− Iθk

)∣∣∣∣
�

∑
0�k<∞

1(k < |γ|)
∣∣∣∣Sn,θkn

− Iθk

∣∣∣∣, (5.1)

where θk is defined arbitrarily for k � |γ| if |γ| < ∞. Moreover, for any k we have∣∣∣∣Sn,θkn
− Iθk

∣∣∣∣ �
(∑

θ∈Λk

∣∣∣∣Sn,θn − Iθ

∣∣∣∣p
)1/p

. (5.2)
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Note that the bound in (5.2) does not depend on which path γ ∈ Γ was chosen. By

combining (5.1)–(5.2), we get the following bound:∥∥∥∥ sup
γ∈Γ

∣∣∣∣Sn,γn − Iγ

∣∣∣∣
∥∥∥∥
p

�
∥∥∥∥ ∑

0�k<∞

(∑
θ∈Λk

∣∣∣∣Sn,θn − Iθ

∣∣∣∣p
)1/p∥∥∥∥

p

�
∑

0�k<∞

∥∥∥∥
(∑

θ∈Λk

∣∣∣∣Sn,θn − Iθ

∣∣∣∣p
)1/p∥∥∥∥

p

=
∑

0�k<∞

(∑
θ∈Λk

∥∥∥∥Sn,θn − Iθ

∥∥∥∥p

p

)1/p

�
∑

0�k<∞
2k/p max

θ∈Λk

∥∥∥∥Sn,θn − Iθ

∥∥∥∥
p

=

∥∥∥∥
∣∣∣∣Snn − I

∣∣∣∣
∥∥∥∥
p

.

Remark 5.2. The same proof shows that Proposition 5.1 continues to hold when Γ is

enlarged to include all random paths defined on the same probability space as the seeds Ui.

We now focus our attention on the analysis of worst-case QuickSelect. Let

Tn := n−1 max
1�m�n

FIND(n, m), (5.3)

where FIND(n, m) is the cost for QuickSelect to find the mth smallest element of the first

n keys. Note that Tn has the following representation:

Tn = sup
γ∈Γ

Sn,γ

n
= sup

γ∈Γ

∑
θ∈γ

Sn,θ

n
. (5.4)

Define

T := sup
γ∈Γ

Iγ. (5.5)

Corollary 5.3. Suppose that ∥∥∥∥
∣∣∣∣Snn − I

∣∣∣∣
∥∥∥∥
p

→ 0.

Then as n → ∞ we have

Tn
Lp

−→ T .

Proof. By Lemma 3.8, we have

‖Tn − T‖p =

∥∥∥∥sup
γ∈Γ

Sn,γ

n
− sup

γ∈Γ
Iγ

∥∥∥∥
p

�
∥∥∥∥ sup

γ∈Γ

∣∣∣∣Sn,γn − Iγ

∣∣∣∣
∥∥∥∥
p

,

and the result follows from Proposition 5.1.
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Corollary 5.4 (Lp-convergence for worst-case Find). Let 2 � p < ∞, and suppose that the

source-specific cost function β is ε-tame with 0 � ε < 1/p. Then, recalling (5.3)–(5.5), the

scale-normalized cost Tn of worst-case Find satisfies

Tn
Lp

−→ T .

Proof. Combine Theorem 4.1 and Corollary 5.3.

6. QuickSelect for fixed quantile(s)

6.1. QuickVal and QuickQuant

Fix α ∈ [0, 1] and let (mn) be any sequence of integers satisfying 1 � mn � n for every n

and mn/n → α as n → ∞. Consider the algorithm QuickQuant(n, α), defined as Quick-

Select(n, mn) applied to the first n keys. Vallée, Clément, Fill and Flajolet [21] introduced,

and Fill and Nakama [8] further studied, an algorithm QuickVal(n, α), closely related to

QuickQuant, described briefly as follows (see, e.g., [8, Section 2.3] for a fuller description).

While QuickQuant(n, α) searches successfully for the sample α-quantile among the first n

seeds U1, . . . , Un, the algorithm QuickVal(n, α) searches (unsuccessfully, with probability 1)

through the seeds U1, . . . , Un for the value α.

Let γ(α) ∈ Γ be the infinite path from the root seed to seed α in the infinite binary

search tree of seeds. By combining Theorem 4.1 and Remark 5.2, we obtain the following

result.

Proposition 6.1 (Lp-convergence for QuickVal). Let 2 � p < ∞, and assume the source-

specific cost function β is ε-tame with 0 � ε < 1/p. Then the cost Vn of QuickVal(n, α)

satisfies

Vn

n

Lp

−→ Iγ(α) as n → ∞.

Remark 6.2. (a) This result is obtained effortlessly from our master Theorem 4.1 but is

slightly weaker than Theorem 3.1 in [8] in two ways. First, we require p � 2, whereas only

p � 1 is assumed in [8]. Second, our tameness hypothesis of 0 � ε < 1/p is sufficient (but

not necessary) for the hypothesis ∑
k�1

(EIp,θk )
1/p < ∞

of [8, Theorem 3.1], γ(α) = (θ1, θ2, . . . ) being the random path traversed by QuickVal(n, α).

(Note the adjustment in indices needed to align notation with [8].) This sufficiency can be

proved as follows. As argued at the start of the proof of Lemma 3.1,

Ip,θk � 2pεcp

1 − pε
(Rθk − Lθk )

1−pε.
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But according to [8, Lemma 3.5] we have

E(Rθk − Lθk )
1−pε �

(
2 − 2−(1−pε)

2 − pε

)k

,

and the fraction [2 − 2−(1−pε)]/(2 − pε) here is strictly smaller than 1.

(b) Similarly, the next result is Theorem 4.1 in [8], but is proved there assuming only

p � 1.

Theorem 6.3 (Lp-convergence for QuickQuant). Let 2 � p < ∞, and assume the source-

specific cost function β is ε-tame with 0 � ε < 1/p. Then the cost Qn of QuickQuant(n, α)

satisfies

Qn

n

Lp

−→ Iγ(α) as n → ∞.

Proof. For each n, let γn ≡ γn(α) = (θn,0, θn,1, θn,2, . . . , θn,|γn|) be the random path taken

by QuickQuant(n, α) and let γ ≡ γ(α) = (θ0, θ1, . . .) be the random path taken by Quick-

Val(n, α). It follows from the random-paths extension of Proposition 5.1 mentioned in

Remark 5.2 that ∥∥∥∥Qn

n
− Iγn

∥∥∥∥
p

→ 0.

Therefore, by the triangle inequality for Lp-norm, it suffices to show that

‖Iγn − Iγ‖p �
∞∑
k=0

‖1(k < |γn|)Iθn,k − Iθk‖p → 0.

As an easy consequence of the strong law of large numbers, for each k we have almost

surely that

1(k < |γn|)Iθn,k − Iθk = 0 for all large n.

Therefore by applying the dominated convergence theorem twice (first for expectation

and then for counting measure), we finish the proof. It suffices to show that the upper

bound in the inequality

‖1(k < |γn|)Iθn,k − Iθk‖p � 2‖max
θ∈Λk

Iθ‖p

is summable over k. Indeed, by applying Lemmas 3.9 and 3.1 we get the bound

‖max
θ∈Λk

Iθ‖p � 2k/p max
θ∈Λk

‖Iθ‖p �
(

c2ε

1 − ε

)(
p + 1 − pε

2

)−k/p

.

Since ε < 1/p and p � 2, we have that p + 1 − pε > 2, which ensures summability over k.
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6.2. MultipleQuickQuant

We will be very brief in this subsection. Consult, for example, [16] for a description of

the algorithm MultipleQuickSelect(n;m1, . . . , mt) for finding simultaneously the keys of

rank m1, . . . , mt in an input sequence of length n.

Now fix a positive integer t and, for i = 1, . . . , t, values αi ∈ [0, 1] and sequences (mi
n)

of integers satisfying 1 � mi
n � n and mi

n/n → αi as n → ∞. Consider the algorithm

MultipleQuickQuant(n; α1, . . . , αt), defined as MultipleQuickSelect(n; m1
n, . . . , m

t
n) ap-

plied to the first n keys. Let γ ≡ γ(α1, . . . , αt) be the union of the sets γ(αi) described just

before Proposition 6.1, and let Iγ :=
∑

θ∈γ Iθ . The next theorem generalizes Theorem 6.3.

Theorem 6.4 (Lp-convergence for MultipleQuickQuant). Let 2 � p < ∞, and assume the

source-specific cost function β is ε-tame with 0 � ε < 1/p. Then the cost Mn of Multiple-

QuickQuant(n; α1, . . . , αt) satisfies

Mn

n

Lp

−→ Iγ as n → ∞.

In the interest of brevity, the proof is omitted. We also leave the statement (which by

now should be rather obvious) and proof of Lp-convergence for worst-case Multiple-

QuickSelect to the reader.

7. Almost-sure convergence for worst-case Find

Theorem 7.1 (almost sure convergence for worst-case Find). If the source-specific cost

function β is ε-tame with 0 � ε < 1/4, then, recalling (5.3)–(5.5), the scale-normalized cost

Tn of worst-case Find satisfies

Tn → T a.s. as n → ∞.

Remark 7.2. Devroye [3] proved this almost sure convergence in the special case β ≡ 1

of key comparisons.

Proof of Theorem 7.1. For 0 � � < ∞, let Γ(�) be the set of 2� paths from the root to

a node at level �. For 0 � � < ∞, define

T (�) := max
γ∈Γ(�)

Iγ, V (�) :=
∑
k>�

max
θ∈Λk

Iθ,

Tn(�) := max
γ∈Γ(�)

Sn,γ

n
, Vn(�) :=

∑
k>�

max
θ∈Λk

Sn,θ

n
.

Then we have the following inequalities for T and Tn:

Tn(�) � Tn � Tn(�) + Vn(�),

T (�) � T � T (�) + V (�),
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and hence

|Tn − T | � |Tn − Tn(�)| + |Tn(�) − T (�)| + |T (�) − T |
� Vn(�) + |Tn(�) − T (�)| + V (�).

We prove that Tn → T almost surely in three steps. First, we show for each fixed �

that Tn(�) → T (�) a.s. as n → ∞, then we show that V (�) → 0 a.s. as � → ∞, and lastly

we show that lim sup�→∞ lim supn→∞ Vn(�) = 0 almost surely. Therefore the result follows

from Lemmas 7.3–7.5.

Lemma 7.3. We have

Tn(�) → T (l) a.s. as n → ∞.

Proof. Let θ ∈ Θ. Condition on the random vector Cθ; recall that Sn,θ is then the sum

of n − τθ i.i.d. random variables and hence

Sn,θ

n
→ Iθ a.s. (7.1)

Since (7.1) holds conditionally for (almost) every value of Cθ , it also holds unconditionally,

by Tonelli’s theorem. Therefore (summing over θ ∈ γ), Sn,γ/n → Iγ a.s. for each path

γ ∈ Γ(�) because each such path is finite. Then, taking the maximum over the finite set of

such paths, we conclude the desired result.

Lemma 7.4. If β is ε-tame with 0 < ε < 1, then

V (�) → 0 a.s. as � → ∞.

Proof. Let p ∈ [1,∞). Using Markov’s inequality, for any η > 0 we have P(V (�) � η) �
EV (�)p/ηp. Therefore, by the first Borel–Cantelli lemma, it suffices to show that

∞∑
�=0

EV (�)p < ∞.

However, applying the definition of V (�), the triangle inequality for (and continuity of)

‖·‖p, the Max Lemma (Lemma 3.9), and Lemma 3.1, we find

‖V (�)‖p � C
∑
k>�

(
2

p + 1 − pε

)k/p

,

for a constant C not depending on �. This implies that

∞∑
�=0

EV (�)p � Cp

∞∑
�=0

[(
2

p + 1 − pε

)�/p ∞∑
k=1

(
2

p + 1 − pε

)k/p]p

= Cp

[ ∞∑
�=0

(
2

p + 1 − pε

)�][ ∞∑
k=1

(
2

p + 1 − pε

)k/p]p

.

https://doi.org/10.1017/S0963548314000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000121


826 J. A. Fill and J. Matterer

Choosing p so that ε < (p − 1)/p, we have∑
�

EV (�)p < ∞.

Lemma 7.5. If β is ε-tame with 0 � ε < 1/4, then

lim sup
�→∞

lim sup
n→∞

Vn(�) = 0 a.s.

Proof. First observe that Vn(�) � V (�) + Ṽn(�), with

Ṽn(�) :=
∑
k>�

max
θ∈Λk

[∣∣∣∣Sn,θn −
(
n − τθ

n

)
Iθ

∣∣∣∣1(τθ < n)

]
.

In light of Lemma 7.4, it is sufficient to prove that lim sup�→∞ lim supn→∞ Ṽn(�) vanishes

almost surely. In fact we will prove the stronger result that Ṽn(�) → 0 a.s. as n → ∞ for

each �. Using the technique of Markov’s inequality and first Borel–Cantelli lemma as in

Lemma 7.4, it suffices to show that for some 2 � p < ∞ we have

∞∑
n=1

E Ṽn(�)
p < ∞.

Arguing as in the proof of Lemma 7.4, we have the following bound for any p ∈
[2,∞):

EṼn(�)
p �

[∑
k>�

2k/p max
θ∈Λk

h(n, p, θ)

]p

,

where h(n, p, θ) is the first term on the right in inequality (4.3). By the arguments

following (4.3) in the proof of Theorem 4.1, we have the following bound on h(n, p, θ):

h(n, p, θ)p � cp E

[
1(τθ < n)

(
2pIp,θ
np−1

+
I
p/2
2,θ

np/2

)]
.

So we have the following bound:

EṼn(�)
p � cp

[∑
k>�

(
2k E

[
1(τθk < n)

(
2pIp,θk
np−1

+
I
p/2
2,θk

np/2

)])1/p]p

,

where θk ∈ Λk is chosen arbitrarily for each k. Choose p such that ε < 1/p < 1/4 and

then a such that 1 < a < (p/2) − 1. After factoring out n−a, we are left with the following

bound for EṼn(�)
p:

EṼn(�)
p � cpn

−a

[∑
k>�

(
2k E

[
2pIp,θk

τ
p−1−a
θk

+
I
p/2
2,θk

τ
(p/2)−a
θk

])1/p]p

. (7.2)

Note that the only dependence on n in this bound for EṼn(�)
p is in the factor n−a.

Therefore, since a > 1 it suffices to prove that, for any �, the sum over k in (7.2) is finite.
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This can be done by two applications of Lemma 3.6, just as in the proof of Theorem 4.1;

the remaining details are routine and omitted.

Note that the tameness condition ε < 1/4 imposed on β for almost sure convergence

of worst-case QuickSelect in Theorem 7.1 matches the condition imposed for almost

sure convergence of QuickVal proved by Fill and Nakama in [8, Theorem 3.4] for fixed

quantile α.
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