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SUMMARY
This paper aims to develop a complete algorithm to
determine the robot motion and the scene structure using a
monocular vision system. It is based on straight lines and
significant points extracted on them. In this way, an
agreement between the problems to extract or to match
points and the limitations of infinite lines to compute
structure and motion is established. Many geometrical
relations of the lines in the scene are exploited to clear up
the coupling between the rotation and the translation of the
camera. Several real images have been used to validate the
proposed method. The algorithm has been considered for
navigation of a mobile robot moving in man-made environ-
ments.

KEYWORDS: Robot vision; Visual motion; Motion estimation;
Robot navigation; Motion and structure.

1. INTRODUCTION
Mobile autonomous robots are actually able to execute tasks
indoors, where the ground is assumed to be horizontal and
the robot localization is obtained using specific landmarks.
However, without these assumptions, powerful perception
systems to estimate the 3D motion of the robot and the
scene structure are required. Vision is a sensor widely
used.

The methods to recover structure and motion from vision
have been widely studied and revised in the last years.1 Two
types of methods have been proposed: optical flow-based
and correspondence-based. The methods based on corre-
spondences allow higher disparities between images and
solve the problem in a better conditioned way. The infinite
line is a feature broadly used to compute motion.2–4 Working
with lines, three images at least are needed to obtain both
the camera motion and the 3D scene structure. Other
attempts explicitly consider points to compute motion.5

Corresponding points allow us to solve motion and structure
problem more easily than corresponding lines, but extract-
ing and matching points is normally more difficult. In our
paper points are used, though associated with lines. In this
way, an agreement is established between the problems to
extract or to match points and the limitations of infinite lines
to compute structure and motion.6

In real situations, where noise is present, it is difficult to
obtain good solutions, but the best is obtained with many
features and some global nonlinear optimization.7 As
mentioned above, points along lines are used in our work.

We propose an anisotropic noise model for the location of
the point that takes into account the noise of the projected
line (the location error of the point is higher along the line
than across it). We have considered a nonlinear optimization
to obtain the motion assuming rigidity of the scene. The
proposed model allows to weigh the measures taking into
account the point and its line support in the image. As in
other papers,8 a vertical cue is also considered to try to
provide relevant qualitative information about the structure
of the scene to recover structure and motion robustly. This
significant information allows to clear up the problem of
coupling between translations along and rotations around
axes parallel to the image plane. This assumption has been
previously exploited.4 However, in our work the motion is
globally computed using not only lines, but also character-
istic points on them.

In our paper, a complete chain to obtain motion and
structure from a camera on a mobile robot is presented. In
the technical literature the aspects involved in this problem
(extraction of features, matching, motion and structure
computation, etc) have been treated in a separate way. We
use a single camera without a geometric map of the scene.
Only some assumptions about the general aspect of the
environment are taken into account. Thus, straight lines are
expected to be abundant and the 3D lines are supposed to be
mainly vertical and horizontal, which are reasonable
assumptions in man made environments. 

The process starts with the extraction and matching of
lines and characteristic points along them (§2). After that,
the representation of the features used to compute 3D
information is presented (§3). In §4 an estimation of the 3D
direction of significant lines is obtained. Afterwards, in §5
the 3D motion of the camera and the structure of the
environment of the robot are computed. The method uses
significant lines and points in two images. Experimental
examples using real images to support the algorithm are also
presented in the paper.

2. EXTRACTION AND MATCHING OF FEATURES
In a correspondence-based approach the features must be
extracted from the images, and the correspondences must be
computed. We use lines and characteristic points on them,
that have been extracted and matched as explained below.

2.1 Extraction of lines
Once the image is acquired, straight lines are extracted
using our implementation of the method proposed by
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Burns.9 This method computes spatial brightness gradients
to segment the image. Pixels having a gradient magnitude
larger than a threshold are grouped into regions of similar
direction of brightness gradient. These groups are named
line-support regions (LSR). A planar brightness surface is
fitted to each LSR by a least-squares approach, by
predicting the brightness in function of the image coor-
dinates. The line is obtained as the intersection of this
brightness plane and an horizontal plane of mean brightness
in the LSR. The parameters of the line in the image are
obtained with subpixel accuracy.

Using this line detector, we obtain in addition to the
geometrical parameters of the lines, some attributes related
to their brightness (contrast, average gray level, steepness)
and some quality attributes (deviation from straightness).
These attributes provide very useful information to select
and identify them. After the extraction, the lines are selected
in function of its length, its contrast and its deviation from
straightness in order to have few though good lines. 

2.2 Extraction of characteristic points
Characteristic points are usually attached to some edge. So,
focusing the search of points on the extracted lines turns out
to be easier than searching points on the whole image. In a
first approach, the tips obtained by the extractor of lines
could be used as characteristic points. However, they are not
good enough because edge detectors do not work properly
to obtain points.10 Besides that, there are tips of lines that
correspond with well-defined points, but in other cases the
tips are not clear.

There are two kinds of methods to obtain points11: In the
first class, points with a maximum curvature on an edge
chain are searched. In the second class, points are searched
on the intensity image by using heuristic techniques such as
the Moravec operator12 or by measuring brightness varia-
tions.13 Normally, the later methods have a higher
computational cost,14 but higher precision.

We obtain the points from brightness variations, but we
search points along the line. In this way, the computational
cost is drastically reduced, and isolated noise points are

avoided. We consider as characteristic points those whose
gradient multiplied by the curvature is a maximum.13

Taking the derivative of the orientation of the gradient
(Ex, Ey), in the direction orthogonal to the gradient n', we
have
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where each subindex indicates a spatial derivative.
The measure of cornerness is obtained multiplying the

above expression by the modulus of the gradient

K =
2 Exy Ex Ey 2E 2

y Exx 2E 2
x Eyy

(E 2
x +E 2

y)
(1)

We search along the straight lines for points with
maximum K. The cornerness operator K supplies (with little
computational cost) a quantitative measurement of point
goodness.

In Figure 1 one can see the extracted lines and the points
selected along them from a scene of our laboratory. In
Figure 2 examples of the cornerness measurement K along
two straight lines in a real image are represented. The K
operator is null on straight lines, and some maximum values
of K can be observed, which are related to well-defined
points.

2.3 Matching
The algorithm proposed in this paper solves motion and
structure from at least two images and needs the correspon-
dence of features between them. To make easier the
matching problem, some intermediate images are taken. We
have treated the correspondence problem by tracking
straight lines in the image with a predict-match-update loop
by using a Kalman filter.15 A constant velocity model has
been heuristically selected to predict the features representa-
tion in the following image. Like Deriche,16 we have
developed a nearest neighbor tracking.17 However, besides

Fig. 1. a.-Image of the laboratory with the lines extracted (filtered in gradient and length ). b.-Characteristic points selected along the
lines.
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the classical location values, two image brightness attributes
of the line are used in the tracking process. These attributes
are the average gray level and the mean contrast. The bright
attributes are crucial to match lines when neither the
structure nor the camera motion are known, because
geometrical constraints are only valid locally and they must
be imposed in a heuristic way. Besides that, the matching
using these bright attributes is made nearly in parallel to the
geometrical one. More details about this tracker are given in
a previous paper.18

We show in Figure 3 an example of corresponding lines
in two images using the proposed algorithm. The computa-

tion of corresponding straight lines gives indirectly
corresponding points on them.

3. GEOMETRIC REPRESENTATION OF THE
FEATURES
To compute the camera motion and the scene structure, the
projected features must be represented and related to the 3D
space according to the projective nature of the vision
process. A classical pinhole camera model is assumed. The
origin of the camera reference system is on the projection
center. The Z axis is aligned with the focal axis and the focal
length is considered to be the unit. In this way, a normalized

Fig. 2. Examples of the K measurement along two lines in a real image. In the first example two points are easily selected. In the second
one, three characteristic points are obtained.

Fig. 3. Example of matched straight lines in two images. In this case, six intermediate images have been used to track them.
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retina (located in front of the camera) is defined. The
location of a feature in the digitalized image can be easily
transformed into the normalized retina from the parameters
obtained in the camera calibration process.19

We represent a infinite line in the image with two
parameters (Figure 4). These are the f l and u l angles
defining the normal n of the projection plane of the line,

n = (cosf lcosu l, sinf lcosu l, 2sinu l)
T

The angle f l describes the orientation of the line with
respect to y axis of the normalized retina. As the focal length
is the unit, the distance in the normalized retina from the
origin to the line can be expressed as tanu l.

Another parameter c i for each characteristic point (i)
defines its location along its associated line, in such a way
that the unit vector in the direction of the projection line of
the point, expressed in the camera reference system is

pi =
cosf lsinu lcosci +sinf lsinci

sinf lsinu lcosci 2cosf lsinci

cosu lcosc i

From this representation, if a point (with coordinates xi

and yi in the normalized retina) belongs to a projected line
(with parameters f l and u l), we have

xi cosf l +yi sinf l 2 tanu l =0

that is the equation of the line applied to the point. The
parameter that we use to represent the location of the point
along the line can be obtained as,

ci =atan2 xi sinf l 2yicosf l, 
1

cosu l

We take fl in the 2p range in such a way that the normal
to the plane of projection (n) goes towards the direction of
the spatial brightness gradient, from dark to light. The angle
u l takes values from 2 p

2 to + p
2. As real cameras have a small

field of view, the angle u l will be small for all lines that
appear in the image. The angle c i P [2

p
2 , + p

2] and it will
also be less than the camera field of view. The sole

singularity of this representation appears when u l =± p
2, and

therefore we are far from the singularities with lines and
points that can appear in the image.

4. DIRECTION OF SIGNIFICANT LINES
The vertical cue provides information which gives robust-
ness to the computation of motion and structure.8 We look
for a good vertical cue making simple assumptions about
the environment. Normally in man-made environments
vertical and horizontal lines are dominant. So, once the lines
are extracted and matched, an initial classification of lines
as vertical and horizontal is carried out, using the supposed
vertical direction.

A rotation with two degrees of freedom is computed to
estimate the vertical direction. The rotation Rrc =Rot
(z, fr

z)·Rot(x, cr
x) is obtained using the supposed vertical

lines, in such a way that the supposed vertical lines would
appear in a rectified image as parallel and vertical (in the
direction of the y axis). We compute the angles fr

z, c
r
x that

minimize

OjPvert

[ŷ · Rrcn j]
2 (2)

where ŷ=(0, 1, 0)T, · is the dot product between vectors, and
n j is the normal to the plane of projection of each supposed
vertical line.

After that, a vertical rectification of the projected features
is carried out (Figure 5). The rectification is made rotating
(by Rrc) the n j and p i vectors, that represent the projected
features in the camera reference system. This rectification
will be used to make robust the computation of the 3D
direction of each significant line.

Once the rectified image has been obtained, the line of the
horizon will be horizontal and it will be on the image center
(Figure 5). The final aim of this process is to provide the
vanishing point of the significant lines. Using the line

Fig. 4. Representation of a projected line with a characteristic
point on it.

Fig. 5. The rectification process transforms a general view in a
vertical image, in which the line of the horizon is in the image
center and all projected vertical lines appear parallel, also being
perpendicular to the line of the horizon.
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representation in the rectified image, an estimate of the 3D
direction of each significant line is obtained (Figure 6). The
vertical lines vanish in d j = ŷ. For horizontal lines the
vanishing point is obtained as the intersection of the
projected line and the line of the horizon. Thus, taking the
representation of the line in the rectified image, the 3D
direction can be estimated as

d j =
ŷ3 n j

i ŷ3 n j i

where 3 is the cross product of vectors.

5. MOTION AND STRUCTURE COMPUTATION
As mentioned above, we compute motion using identified
points along lines. In this way, an agreement between the
problems to extract or to match points and the limitations of
infinite lines to compute structure and motion is estab-
lished.6 An anisotropic noise model for the location of the
point that takes into account the noise of the projected line
has also been proposed.20

Besides that, to have information of relative depth, the
constraints in the direction of significant lines provided by
the previous process (§4) are considered. This information
allows us to uncouple translations along an axis with
rotations around its perpendicular axis in the image plane.
This is very important because a small error in the rotation

computation causes large errors in the computation of
structure and translation.

5.1 Motion computation
We take the first camera reference system as the basic
reference system. The matrix of rotation from the first to the
second camera reference system is named R. The vector t
expresses the translation of the camera from the first camera
location to the second.

The problem is posed as the estimation of the camera
motion given a discrete description of the image deforma-
tion from one image to the next. The corresponding features
in two images previously computed, are used as the
description of the image changes due to motion. The image
measurements are complemented by a measurement of their
uncertainty. The location uncertainty of a point (i) along a
line (l ) is represented by a covariance matrix. It is composed
of the line orientation covariance s2

fl
, the line position

covariance s2
ul
, and the location covariance of the point

along the line s2
ci

which is supposed to be the biggest.
From two corresponding points in two images the

epipolar constraint can be formulated.21 If we express it in
the first reference system, we can write for each point (i),

p1i·(t3 R p2i)=0 (3)

where the subscripts 1 or 2 indicate the first or second image
frame. This equation assumes that the translation vector
must be coplanar with the two projection lines of the point

Fig. 6. The intersections of significant lines and the line of the horizon provide an estimation of their 3D direction.
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in both images (Figure 7).
Hypotheses of direction for several lines in each image

have been made, and therefore a second constraint which
affects to the direction of these significant lines and to the
camera rotation can be considered. Thus, the normal to the
projection plane of a line in one image must be perpendicu-
lar to the hypothesized 3D direction of the line in the other
image. For the ideal case it can be expressed as

d1j·Rn2j =0; d2j·R
T n1j =0 (4)

where d1j and d2j are the direction in each image of the j-th
line, obtained in §4.

It is clear that in the presence of noise there is no set of
motion parameters (R, t) that can exactly satisfy these
constraints for all the features. So, we try to find a correction
for the given observations in such a way that the points
satisfy the epipolar constraint (3), and the significant lines
satisfy the direction estimate (4). This correction is
minimized taking into account the weighing of different
errors. We formulate a constrained least-squares, that can be
solved using Lagrangian multipliers:22

J d = S i, j dpT
1i G

21
dp1i

dp1i +dpT
2i G

21
dp2i

dp2i

+ li(p1i +dp1i)·(t3 R(p2i +dp2i)) (5)
+ dnT

1j G
21
dn1j

dn1j +l1j d2j·R
T(n1j +dn1j)

+ dnT
2j G

21
dn2j

dn2j +l2j d1j·R(n2j +dn2j)

where G correspond with the covariance matrix of the
observations uncertainty (Appendix).

Setting the derivatives of this expression equal to zero for
the unknowns, and solving the set of equations to eliminate
the local variables l i, l j, dp1i, dp2i, dn1j, dn2j, an equivalent
expression, depending only on the motion parameters, can
be obtained. There are nonlinearities and the results are too
complicated to do anything useful with them. Like in
Spetsakis,23 the second order terms of the noise are
eliminated and then the derivatives are taken. In this way,
the proposed expression to minimize in function of the
motion parameters is

Jd = S i,j

(p1i·(t3 Rp2i))
2

qT
1i Gdq1i

q1i +qT
2i Gdq2i

q2i

+
(d2j·R

Tn1j)
2

(Rd2j)
T Gdn1j

Rd2j

(6)

+
(d1j)·Rn2j)

2

(RTd1j)
TGdn2j

RTd1j

where

q1i = t3 Rp2i; q2i =RT(t3 p1i)

Iterated methods22 allow us to solve the motion with a
scale factor for translations. We have used an estimation
method such as Levenberg-Marquardt.24 The proposed
algorithm needs an initial guess of camera motion to solve
the problem. We take the motion guess from odometry. We
eliminate the scale factor considering the length advanced
by the robot also from odometry. As it is known, odometry
provides quite satisfactorily the length advanced by the
robot, but the orientation and heading are not robust
sufficient.4

5.2 Structure computation
Once the camera motion is computed, the structure is easily
obtained by triangulation, obtaining each 3D line as the
intersection of its two projection planes. The 3D direction of
each line can be obtained as

n1j3 Rn2j

in1j3 Rn2j i
(7)

A 3D point (i) of the j-th line has been obtained as the
intersection of the projection line of the point in the first
image with the projection plane of the line in the second
image. Thus the distance Di from the first camera to the 3D
point is evaluated (Figure 7), and therefore the coordinates
of the 3D point are

Fig. 7. The translation of the camera and the lines of projection of two corresponding points must be coplanar to satisfy the epipolar
constraint.
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Dip1i =
t·Rn2j

p1i·Rn2j

p1i (8)

However, bad results of structure are obtained when the
projection plane of a line is nearly parallel to the translation
vector, because the two projecting planes of the line are
nearly parallel. In this case, it is better to obtain the structure
using the points directly. The distance from the origin of the
first frame to the 3D point can be evaluated, and therefore
the coordinates of the 3D point are

Dip1i =
(t3 Rp2i)·(p1i3 Rp2i)

ip1i3 Rp2i i2 p1i (9)

6. EXPERIMENTS
At the end of each section we have presented experimental
results with several images showing the most relevant ideas
involved in each step. The proposed method is aimed to help
our mobile robot to navigate. We have mounted on a
Labmate robot a ring of ultrasound sensors, a scanner laser,
and three cameras with and acquisition and preprocessing
board (Figure 8). The computational resource is based on a
SPARC computer which is also aboard and it is connected
by ethernet via radio.

In this section we obtain a reconstruction of a real scene
(Figure 9) from lines with points and a translation motion.
We show the reconstructed structure applying the algorithm
proposed. The results of intermediate steps are not quoted to

Fig. 8. Mobile robot in its actual configuration.
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emphasize the final result.
A good guess of the camera rotation is needed to make

the motion algorithm to converge. It has been observed that
the translation obtained is usually deviated towards the focal
axis. The rotation computation is a very critical step,
because a little error in rotation causes translation and
structure to degenerate. When constraints about line orienta-
tion are not used, the algorithm has some problems to
distinguish rotations around the vertical direction from
translations along the horizontal axis parallel to the image
plane. Using the direction constraints with lines nearly
parallel to the focal axis, results improve. In Table I an
example of the motion computed is given.

A reconstruction of the larger lines of the scene, projected
in the first camera reference system, can be seen in Figure
10. The top view of this reconstruction is shown in Figure
11. In this case we have a good reconstruction. The lines in
the wall are approximately in a plane and the big table is
reconstructed nearly perpendicular to the wall. However, the
two lines of the little table in front of the wall are difficult
to reconstruct, because their planes of projection are nearly
parallel to the camera translation; they must be recon-
structed using two characteristic points. As the table is
obscured by the stool, the depth of the points on that side is
not accurate.

In the previous experiment a pure translational motion
has been commanded. The method also works when there is
rotation of the camera, but the translation must be enough
large. When the translation is small the motion and depth
results are not valid.

With respect to the computation time required by the
different steps of the algorithm, the most critical steps are
the extraction of the features in the images (which takes
about 1 second per image) and the solution of the nonlinear
least-squares problem. Due to the characteristics of this last
problem, the computation time depends on its conditioning,
initial guess and tolerances. The matching and other steps
like reconstruction take short time (about 0.1 seconds),
which also depend on the number of features.

As mentioned above, we have solved the problem for five
motion parameters; three of them represent the camera
rotation and two of them represent the direction of
translation (the scale factor u t u is obtained from odometry).
If we know the vertical direction very well, two degrees of
freedom will be reduced using rectified images to make
easier the convergence of the algorithm (the rotation (R)
will only be around the y axis).

7. CONCLUSIONS
We have presented a complete algorithm to obtain the
camera motion and the scene structure using straight lines
with points. It has been assumed that the lines are vertical
and horizontal. This assumption is normally achieved in
man-made environments.

The motion computation algorithm uses lines and
characteristic points on them. A noise model that considers
the point to belong to the line has been proposed. To
improve its robustness a hypothesized 3D direction of some
significant lines is used. This leads to a partial correction of
the coupling between the rotation and the translation in the

Fig. 9. Scene of our laboratory used to compute motion and structure.

Table I. Deviation angle between computed and commanded translation (a),
and rotation computed (Wx, Wy, Wz) in one experiment. In the first case the
direction constraints have been used, in the second case they have not been

considered. The values are expressed in degrees.

a Wx Wy Wz

Commanded – 0.0 0.0 0.0
With Direction Constraints 8.25 28.86E–3 4.79E–1 23.69E–1
Without Direction Constraints 31.38 9.79E–1 1.48E–1 27.72E–1
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computation of motion. When motion is computed the 3D
localization of the features is obtained.

The experiments have pointed out the difficulties of the
complete motion and structure paradigm in real situations,
but partial interesting conclusions have been obtained. The
extractor of straight lines works well. However, sometimes
the lines are broken and there exist some difficulties in
regions with specular reflections. The cornerness operator
combined with the extractor of lines allows one to obtain
points associated with them with a small computational
cost. The correspondence problem has been solved by

tracking. As it is based on an extended description of the
feature, the results are good enough, specially when
intermediate and close images are used. The rectification
and vanishing point detection works correctly when a good
vertical cue is available. The motion and structure computa-
tion needs a good rotation guess to converge, because a
nonlinear minimization must be solved. When there are
spurious matched features or the scene is all far away from
the camera the results are not good. Nevertheless, it has
been proved that significant information allows one to make
clear the coupling between rotation and translation. Besides
that, it has been showed that motion and structure can be
automatically computed from at least two images of man
made environments, and this information can be used for
navigation of a mobile robot.

APPENDIX
Small errors are assumed and therefore we can consider the
first order approximation to obtain the covarianze of the
errors of the projecting vectors. Therefore, the covarianze
matrix of the point and the line vectors can be expressed as

G dpi
= J dpi

ci, ul, fl

s2
ci

0
0

0
s2

ul

0

0
0

s2
fl

Jdpi
ci, ul, fl

T

G dnj
= J dnj

ul, fl

s2
ul

0
0

s2
fl

Jdnj
ul, fl

T

where

J dpi
ci, ul, fl

=
2ox

2oy

2oz

nxcosc i

nycosc i

nzcosc i

2ay

ax

0

J dnj
ul, fl

=
2nxtanu l

2nytanu l

2cosu l

2ny

2nx

0

Fig. 10. Reconstructed features projected in the first camera location.

Fig. 11. Reconstruction from the motion computed. Top view.
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being

nx

ny

nz

ox

oy

oz

ax

ay

az

=Rot(z, f l)Rot(y, u l)Rot(x, c i )
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