
Math. Struct. in Comp. Science (2015), vol. 25, pp. 1339–1381. c© Cambridge University Press 2014

doi:10.1017/S096012951400005X First published online 14 November 2014

Sub-behaviour relations for session-based

client/server systems

FRANCO BARBANERA‡ and UGO DE’L IGUORO§,†

‡Dipartimento di Matematica e Informatica, University of Catania, Catania, Italy

Email: barba@dmi.unict.it.
§Dipartimento di Informatica, University of Torino, Torino, Italy

Email: ugo.deliguoro@unito.it.

Received 5 April 2013; revised 19 December 2013

We propose a refinement and a simplification of the behavioural semantics of session types,

based on the concepts of compliance and sub-behaviour from the theory of web contracts.

We introduce three relations on a suitable class of behaviours with higher-order input/

output, called ‘session behaviours’. Such relations, depending on each other, represent the

idea of sub-behaviour from the point of view of a client, a server or a peer, respectively. A

restriction of the intersection of the first two relations characterizes the ‘usual’ sub-behaviour

relation from the literature. We then device an algorithmic formal system for three subtyping

relations (dubbed CSP-subtyping) for session types that takes into account the role played

by a user of a channel during an interaction, so extending Gay and Hole subtyping theory.

We show that our session behaviours and sub-behaviour relations provide sound and

complete semantics for CSP-subtyping, and for Gay and Hole subtyping as a by-product.

1. Introduction

A great deal of work is presently devoted to the formalization of interaction through the

network, widening the research area on protocols and investigating its basic concepts.

This is motivated by the impressive growth of web-based systems and by the development

of service-oriented programming. In this scenario, programmers are expected to produce

modules heavily interacting with systems and programs written by third parties, of which

nothing is known except a generic and often informal description of their behaviour.

Session types and contracts are two formalisms used to study client/server protocols.

Session types have been introduced in Honda et al. (1998) as a tool for statically checking

safe message exchanges thorough channels. The basic concept is that of session , which

is a logic unit collecting and structuring messages exchanged among a set of agents,

sharing private channels to prevent interference by unchecked third parties. Session types

represent the usage of each session channel by means of regular trees of types (which are

themselves considered as a type), abstractly representing all sequences of actions of which

a typed channel is the ‘subject’ in the π-calculus jargon. In the theory of session types each

† This work was partly supported by COST Action IC1201 BETTY: Behavioural Types for Reliable Large-

Scale Software Systems and by Project MIUR-PRIN 2010/11 CINA: Compositionality, Interaction,

Negotiation, Autonomicity for the future ICT society.

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

F. Barbanera and U. de’Liguoro 1340

type has a dual, describing the same interaction from the point of view of the process

holding the opposite end of the channel; the exact correspondence of dual typings of the

same channel ensures error freeness (but not deadlock freeness: see (Dezani et al. 2008)).

Contract theory, as proposed in Carpineti et al. (2006); Laneve and Padovani (2007);

Castagna et al. (2009b), addresses the problem of abstractly describing behavioural

properties of systems by means of process algebra. In the case of first-order theory,

namely without input/output of non-atomic data, contracts are formalized by means of

a subset of CCS without τ terms from De Nicola and Hennessy (1987). These include,

beside prefixing and recursion, external and internal choice, denoted by σ + σ′ and σ ⊕ σ′

respectively, but not parallel composition, which has a computational meaning. Indeed

a contract is a static object, that is some kind of abstract interface offered by a server

to its possible clients, describing the server’s overall behaviour during an interaction. To

formally check whether a client will comply with the server, a dual contract can be used,

describing this time the client requests. This leads to an asymmetric view of client/server

interactions, because of a bias towards the client side: in any interaction with a server it

is only the client that is expected to complete, and not vice versa.

A benchmark for comparing the two approaches is flexibility. If a service is looked at in

a third party’s server, it is unlikely that anything will be found that perfectly matches the

query. Hence, criteria are needed to decide whether what is available from the server can

be safely used on the client side, without expecting the exact matching of descriptions in

the respective interfaces. Moreover, such criteria should be checked automatically, since

the request of a service might well occur at run time.

On the session-type side, a natural solution is polymorphism and more precisely

subtyping, first proposed in Gay and Hole (2005). This is an extension of input/output

subtyping from Pierce and Sangiorgi (1996), such that, e.g. the branching type &〈�1 : A〉 is

considered as a subtype of the larger &〈�1 : A, �2 : B〉 because anything offering the choice

between messages or data of type A and B via the options �1, �2 can safely masquerade,

either as a server or as a client, offering the option �1 only. Dually, the selection type

⊕〈�1 : A, �2 : B〉 signals the possibility of choosing among �1 and �2 without committing

to either of them; then this is a subtype of ⊕〈�1 : A〉 because any agent satisfying the

stronger constraint of choosing �1 will safely do in any environment correctly reacting to

both �1 and �2.

A concept of sub-contract can be defined by adapting the theory of testing from De

Nicola and Hennessy (1983). In Laneve and Padovani (2007) and Padovani (2009a), a

compliance relation ρ � σ is introduced which ensures that any request from the client

ρ is satisfied by the server σ, so that any possible interaction among ρ and σ will never

prevent the client from completing; this can be seen as the success condition of testing

σ against ρ. Compliance naturally induces a preorder, σ1 �s σ2 in our notation, which

corresponds to the inclusion Client(σ1) ⊆ Client(σ2), where Client(σ) = {ρ | ρ � σ}. We

call �s the server sub-behaviour relation, which essentially coincides with the sub-contract

relation in Laneve and Padovani (2007).

In Barbanera and de’Liguoro (2010), we pointed out that a dual notion can be

considered: ρ1 �c ρ2, corresponding to the inclusion Server(ρ1) ⊆ Server(ρ2), where

Server(ρ) = {σ | ρ � σ}. We call �c the client sub-behaviour relation.

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

Sub-behaviour relations for session-based client/server systems 1341

Actually, a third notion can be taken into account by considering interactions where

components have no commitments to each other. When no asymmetry is imposed on

interacting components they can then be looked at as peers. An orthogonality relation

⊥ formalizing this sort of interaction could hence be defined as � ∩ �, a relation strongly

related to the subsieve relation in Castagna et al. (2009a). Then, σ ⊥ σ′ holds if both σ

and σ′ complete in any terminating interaction among the two and induces a preorder �∗
corresponding to the inclusion Peer(σ1) ⊆ Peer(σ2), where Peer(σ) = {τ | τ ⊥ σ}, that is

the set of ‘peer’ behaviours w.r.t. σ.

The relations �c, �s and �∗ hence represent the notion of substitutability between,

respectively, clients, servers and peers in client/server-based distributed systems taking

into account the different roles a component plays in an interaction. Intuitively, if we

look at σ1 and σ2 as the behaviours of two servers, then, in case σ1 �s σ2 holds, σ2

represents the behaviour of a server offering richer services (which means also possibly

longer interactions) than the server described by σ1. In case, instead, we look at two

behaviours ρ1 and ρ2 as the descriptions of two clients, the relation ρ1 �c ρ2 states

that the client represented by ρ1 is less demanding (in the sense also of the number of

consecutive requests) than the client with behaviour ρ2. Whenever σ1 �∗ σ2, instead, a

component with behaviour σ2 can safely interact in a symmetric manner with at least all

the peers of σ1.

For what concerns the operators + and ⊕, the �∗ relation behaves the same as �p

for p = c, s, namely covariantly in the number of + summands and contravariantly in

the number of the ⊕-summands (and covariantly w.r.t. the respective continuations),

so that session behaviours and behavioural subtyping mirror branching and selection

session types w.r.t. (syntactic) subtyping, respectively. To these properties, however, the

sub-behaviour relations �c and �s add dual forms of subtyping in depth that do not hold

in the subtyping theory for session types deviced in Gay and Hole (2005).

In a first-order setting, i.e. where components themselves cannot be freely exchanged in

a system, the three sub-behaviour relations can be formalized independently. When higher

order is considered, however, they become intimately correlated, since also the exchanged

components can play a particular role in the system, not necessarily corresponding to the

role of the components that exchanged them, as we shall see later on in an example.

Turning back to the comparison of session types with contracts, there is a natural

interpretation of a first-order session type A into a contract [[A]], which interprets

branching types &〈· · ·〉 as external choices, and selection types ⊕〈· · ·〉 as internal choices.

However, as it has been observed in Laneve and Padovani (2008), such an interpretation

is unsound. Indeed, [[&〈�1 : end〉]] = �1.1 and [[&〈�1 : end, �2 : A〉]] = �1.1 + �2.τ, where

1 is the contract of completed processes and τ = [[A]]. Now, in the subtyping theory,

we have &〈�1 : end〉 � &〈�1 : end, �2 : A〉, but �1.1 ��∗ �1.1 + �2.τ (and this is the case

for �c and �s as well). In fact, if we take ρ = �1.1 + �2.σ, for any σ unrelated to τ,

then ρ ∈ Peer(�1.1) \ Peer(�1.1 + �2.τ). Problems arise also because of the admittance of

unguarded recursion, like rec x.x, in the contract syntax.

The conclusion we draw from the above remarks is that contracts are a larger and likely

more expressive formalism than session types. This does not rule out the possibility of

using contracts to give meaning to session types, which is what we shall begin the technical

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

F. Barbanera and U. de’Liguoro 1342

part of the present paper with: on the contract side we shall define a formal language of

session behaviours and denote it by SB. It can be looked at as the image of the session

types interpretation map, so that in
∑

i ai.σi and in
⊕

i ai.σi the ai are pairwise distinct and

names ai and co-names ai occur within sums + and ⊕ only, respectively. Besides, recursion

is assumed to be contractive. By doing so, we trim the non-determinism of the system so

that the previous example ceases to be problematic. In fact, now �1.1 �∗ �1.1 + �2.τ holds,

since ρ = �1.1 + �2.σ is ruled out from the set of possible clients (and hence of peers) of

�1.1, being syntactically incorrect. This implies, for instance, that also �1.1 �s �1.�31+ �2.τ

holds. The syntactical restriction we impose on session behaviours is tantamount to restrict

the non-determinism in their interactions, so that the choice among several continuations

in an interaction always depend on just one of the two actors.

Although session behaviours are isomorphic to session types, we keep them distinct

from types, because the former have an operational semantics. We shall describe such an

operational semantics by means of an labelled transition system (LTS) defining a reduction

relation among parallel composition of contracts, such that ρ‖σ =⇒ ρ′‖σ′ if ρ
α

=⇒ ρ′

and σ
α̃

=⇒ σ′, and α and α̃ are actions that synchronize with each other. The compliance

relation ρ � σ is then defined by the clause that, if ρ‖σ =⇒ ρ′‖σ′ �=⇒, then ρ′ = 1,

formally describing the fact that the ‘server’ σ has satisfied all the requests of the client ρ.

Notice that, according to our client/server/peer roles, σ does not need to ‘complete’ (i.e. to

reduce to 1) unless also ρ � σ holds; besides, we shall admit non-terminating complying

interactions as well.

We provide now more intuition of the intended meaning of the notions described above

by modifying an example sketched in Barbanera and de’Liguoro (2010) which, in turn,

is an adaptation of one in Laneve and Padovani (2008). Let us consider a Ballot-Service.

This service can receive a login and, if correct, it signals to the client (a voter), by means

of the message Ok, that it is enabled to vote for one of the candidates: A, B or C. After

that, the server offers also the possibility of voting for one of two possible vice-candidates.

In case the login is incorrect, instead, a message Wrong is issued to the client. By means

of recursion, a voter is allowed to retry the login action in case of a failure. The following

element of SB then abstractly describes the behaviour of the Ballot-Service:

BallotServiceBeh = rec x. Login.(Wrong.x ⊕ Ok.(VoteA.(Va1 + Va2)

+

VoteB.(Vb1 + Vb2))

+

VoteC.(Vc1 + Vc2))).

The following element of SB, instead, describes the behaviour of Voter1, a possible

client of our Ballot-Service:

Voter1Beh = Login.(Wrong + Ok.(VoteA ⊕ VoteB)).

As said before, the notion of compliance expresses the idea that a client is entitled to

abandon the interaction at any time, while a server is expected to react properly to all

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

Sub-behaviour relations for session-based client/server systems 1343

client requests. So we have that

Voter1Beh � BallotServiceBeh

Notice that Voter1 is not prepared to vote for vice-candidates and it is prepared to try and

login just once, notwithstanding the server admits repeated login actions after possible

failures.

Let us now consider a different Ballot Service, Ballot-Service-2, whose abstract behaviour

is described by the following element of SB:

BallotService2Beh = Login.(Wrong ⊕ Ok.(VoteA + VoteB)).

A voter that uses Ballot-Service-2 can just try once to login and she can vote for just

A or B, without choosing any vice-candidate. Intuitively, Ballot-Service offers a ‘richer’

service than Ballot-Service-2, and in any system designed to have Ballot-Service-2 as ballot

service, we can safely replace it by Ballot-Service. This safe-substitutability property is

guaranteed by the fact that, according to our sub-behaviour relations, we have

BallotService2Beh �s BallotServiceBeh

In fact, any voter complying with a ballot service allowing for just one login, two

candidates choices and no vice-candidates, will definitely comply with the more liberal

one that allows for more login attempts, an extra choice of candidates and also the

possibility of choosing a vice-candidate after the candidate choice.

In order to exemplify the �c relation, let us now consider another possible voter, Voter2,

who wishes to return a blank ballot, i.e. to participate to the ballot but without voting

for any candidate. The behaviour of Voter2 is described by the following element of SB:

Voter2Beh = Login.(Wrong + Ok).

According to the �c relation we have:

Voter1Beh �c Voter2Beh

because a voter described by Voter2Beh is less demanding than the one described by

Voter1Beh, that is a voter behaving as Voter2Beh complies with all the ballot servers that

voters described by Voter1Beh comply with. This implies that any voting system designed

to accommodate voters with the behaviour Voter1Beh can safely accommodate voters

having the behaviour Voter2Beh. An example of use of the relation �∗ will be provided

later on.

If, as in the examples above, only first-order session-behaviours were taken into account,

the relations �c, �s and �∗ would not be difficult to formalize and investigate. As we

shall see, difficulties arise, instead, when we wish to use our formalism to describe the

behaviour of components that have the possibility of exchanging among themselves

other components (with their corresponding behaviours), i.e. when we consider higher-

order session behaviours. In the context of session types, the exchange of components

corresponds to delegation, realized by means of channel passing, and it has been extensively

investigated since the very beginning of the development of session-types theory.

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

F. Barbanera and U. de’Liguoro 1344

In the present paper, we define the set SB of session behaviours also representing

higher-order behaviours, that is behaviours with higher-order input actions, ?(σp)σ′, and

higher-order output actions ![σp]σ′, where p is one of the three possible role played by

the sent/received behaviour σ: c (client), s (server) or ∗ (peer). Whereas in the context of

session types we can look at σ as the semantics of the type of a sent/received channel,

from a more general point of view we can look at it as the description of a sent/received

component.

The use of polarities as superscripts of received and sent contracts in SB is justified

by the asymmetry of the approach considered here: without marking received and sent

contracts with polarities, incorrect situations easily arise (see also Barbanera et al. (2009)).

For instance, let us assume that a communicating agent is waiting for a component

(or a channel) enabling an interaction as a client according to the behaviour σ. If it

actually receives a component conforming to τ and τ describes a more demanding client

behaviour, the received component could make requests that the server to which the agent

is connected (or will be connected) to is not able to satisfy. So the information that τ and

σ have to be confronted w.r.t. the relation �c is essential, and it is provided by the label c.

Symmetric examples involving the polarity s can be easily figured out.

Notice that the only possibility of avoiding the use of labels c or s in sent and received

behaviours is to force their contracts to coincide, or to be related by �∗. This, however,

would severely restrict the flexibility of our formalism.

Then, when we formally define the compliance relation �, we have to take into account

that the interaction with a higher-order session behaviour ![σc
1]σ2 can be triggered by any

?(τc1)τ2 such that τ1 �c σ1 and not just when τ1 coincides with σ1 or when τ1 �∗ σ1. A

similar motivation justifies the fact that ![σs
1]σ2 can be triggered by any ?(τs1)τ2 such that

τ1 �s σ1. In our formalism, we shall further ask received/sent behaviours not to contain

free variables, for reasons that will be clarified in the paper.

For the time being, let us consider a system where the Ballot-Service is modularized into

an Authentication-Service and a Vote-Bookkeeper service. The Authentication-Service checks

the right of the client to vote, and then passes to it the description of how the vote can

be expressed (this can be a channel through which the vote can be given, or a component

enabling the voter to transparently interact, as a client, with the Vote-Bookkeeper). The

behaviour of the Authentication-Service is described by the following higher-order element

of SB:

AuthServiceBeh =

rec x. Login. (Wrong. x

⊕
Ok. ![(VoteA.(Va1) ⊕ VoteB.(Vb1) ⊕ VoteC.(Vc1))c]),

⊕ ⊕ ⊕
Va2 Vb2 Vc2

whereas the Vote-Bookkeeper behaves according to:

VoteBookprBeh = VoteA.(Va1 + Va2) + VoteB.(Vb1 + Vb2) + VoteC.(Vc1 + Vc2).

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

Sub-behaviour relations for session-based client/server systems 1345

As said before, the use of polarities enables to exploit the flexibility of our sub-behaviour

relations also for sent/received behaviours. In AuthServiceBeh, by labelling with c the

behaviour

(VoteA.(Va1 ⊕ Va2) ⊕ VoteB.(Vb1 ⊕ Vb2) ⊕ VoteC.(Vc1 ⊕ Vc2)) (1)

it is stated that Vote-Bookkeeper can interact with any voter willing to express her vote

according to a behaviour τ such that

(VoteA.(Va1 ⊕ Va2) ⊕ VoteB.(Vb1 ⊕ Vb2) ⊕ VoteC.(Vc1 ⊕ Vc2)) �c τ. (2)

A possible τ in (2) could be, for instance,

(VoteA ⊕ VoteB)

so that if Voter3 is committed to behave according to

Voter3Beh = Login.(Wrong + Ok.?[(VoteA ⊕ VoteB)c])

then it is guaranteed to safely interact as a client with the modularized server Ballot-

Service. In fact, by the definition of �, we have:

Voter3Beh � AuthServiceBeh

To exemplify sent/received behaviours labelled by s, let us describe in the following the

service Authentication-Service-2, richer than Authentication-Service. Such a service, after

having sent the behaviour according to which its client can vote, can receive from the

voter a behaviour (a protocol) according to which the voter’s employer wishes to be

certified about its employee having voted (let us assume that the protocol enables the

choice among two sorts of certifications, C1 or C2, and for each of these certifications a

certification stamp can be issued, s1 or s2, respectively):

AuthService2Beh =

rec x.
Login.

(Wrong. x

⊕
Ok. ![(VoteA.(Va1) ⊕ VoteB.(Vb1) ⊕ VoteC.(Vc1))c]. ?((C1.s1 + C2.s2)s))

⊕ ⊕ ⊕
Va2 Vb2 Vc2

Then Authentication-Service-2 is guaranteed to safely interact with some Voter4 behaving

in accordance with:

Voter4Beh = Login.(Wrong + Ok.?((VoteA ⊕ VoteB)c).![(C1)s])

since

C1 �s (C1.s1 + C2.s2).

Behaviour C1 might look rather meaningless, but the voter could actually know in advance

that the employer will ask for the first certificate. Moreover, the voter could not wait for

the respective stamp.

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

F. Barbanera and U. de’Liguoro 1346

It is now natural to expect that, in case one implements an Authentication-Service-3

according to:

AuthService3Beh = rec x. Login.(Wrong. x

⊕
Ok. ![δ].?((C1.s1.d + C2.s2 + C3.s3)s)),

where C3 denotes another possible certification, d is an extra date-stamp for the certifica-

tion C1, and δ is (1) (or a greater behaviour w.r.t. �c), we obtain:

AuthService2Beh �s AuthService3Beh

This means that, in a system containing AuthService2Beh, such a service can be safely

replaced by AuthService3Beh since, for what concerns the higher-order input actions of

these behaviours, we have that:

(C1.s1 + C2.s2) �s (C1.s1.d + C2.s2 + C3.s3).

The above example also illustrates the use of the label ∗. Let us consider a Voter5 who

behaves the same as Voter4, but after sending the login, besides the ability of receiving

the information whether the login is ok or not, it can receive a Help message before the

description of the interaction with a PasswordsManager. The interaction protocol with the

PasswordsManager allows to retrieve a forgotten password by answering to one of two

possible questions: the name of the voter’s best friend or the date of the voter’s mother’s

birthday.

Voter5Beh = rec x. Login.

(Wrong.x

+

Ok. ![(VoteA ⊕ VoteB)
c]

+

Help. ?((nameRq.name.pw + dateRq.date.pw)
∗)).

We assume that the interaction between Voter5 and PasswordsManager cannot be

interrupted by any of the two participants. This accounts for the label ∗ on the received

behaviour (nameRq.name.pw + dateRq.date.pw). It follows that, given the behaviour:

Voter6Beh = rec x. Login. (Ok + Help. ?((nameRq + dateRq.date.pw)
∗))

we have that

Voter6Beh ��c Voter5Beh

since

(nameRq + dateRq.date.pw) ��∗ (nameRq.name.pw + dateRq.date.pw)

In fact nameRq is a peer of (nameRq + dateRq.date.pw), but not of (nameRq.name.pw +

dateRq.date.pw). We have instead:

Voter7Beh �c Voter5Beh

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

Sub-behaviour relations for session-based client/server systems 1347

for

Voter7Beh = rec x.Login. (Ok + Help. ?((dateRq.date.pw)
∗)).

As suggested before, the presence of sent/received behaviours makes the formalization

of sub-behaviour relations difficult. In particular because of a circularity problem. As

a matter of fact, in the formalization of the interaction between elements of SB, in

order to reflect the above discussed variance/contravariance property of input/output

sub-behaviour, we should postulate that in case σ
![ρ

p
1]−→ σ′ & τ

?(ρ
p
2)−→ τ′, the two interacting

behaviours σ‖τ synchronize (formally σ‖τ −→ σ′‖τ′) if and only if ρ1 �p ρ2. But �p

depends, via the concept of compliance, on the very same reduction relations, so making

the definitions circular.

By analogy with the similar case of Theorem 2.6 in Castagna et al. (2009a), the problem

can be solved by means of stratification, based on a suitable complexity measure. In

fact, in order to perform the input or the output of a ρp, any σ necessarily contains ρ

as a (proper) sub-expression. On passing, we observe that this is not true anymore if

sent/received behaviours are open expressions, namely if they contain some variable x.

The apparently simple formalization via stratification, however, has both conceptual

and technical difficulties. Conceptually, the LTS is not a formal system, at least at first

glance, since the logical complexity of the definition is Π0
2, so not even an r.e. relation.

Technically, defining the �p relations as the union of their stratified restrictions requires

a thorough study of the LTS before proving that they coincide with the inclusion of the

sets Client(σ), Server(ρ) and Peer(σ), as intended. Such a detailed study, together with

the �∗ relation, properly extends the work in Barbanera and de’Liguoro (2010).

Once we know that the three sub-behaviour relations over SB are well defined, their

coinductive characterization is the essential tool for their further investigation. This will

be achieved by a mutual coinductive construction, which we shall give in terms of the

behaviour syntax up to a notion of convergence, accounting for the unfolding of recursive

definitions and of the set of possible internal choices.

A first consequence is the proof that the defined relations �s, �c and �∗ on SB are

well-behaved with respect to duality, as it is induced by the notion of dual session types.

Moreover, it will be possible to show that �∗ is the intersection of server and client

sub-behaviours. A notion of semantic subtyping will also be defined as the restriction of

the �∗ relation to elements of SB containing only the label ∗.

We shall also present a client/server/peer subtyping system which simultaneously

axiomatizes three relations �c, �s and �∗ on session types, transparently corresponding

to �c, �s and �∗. The type syntax reflects the definition of SB in that input/output types

have the transmitted type A1 in ?(Ap
1)A2 and in ![Ap

1]A2 labelled by a polarity. We shall

require A1 to be a closed type, a restriction which was not present in Gay and Hole (2005),

that is necessary to define the syntactic dual of a recursive type unambiguously. Then,

to the unfolding rules of recursive μ-types and the coinductive rules treating each type

constructor but μ, we add the axioms A �c end, end �s A and end �∗ end for any A, the

first two accounting for the asymmetry of the client and server sub-behaviour relations.

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

F. Barbanera and U. de’Liguoro 1348

The typing system defines a set of derivable judgments Γ � A �p B, where Γ ∪ {A �p B}
is a set of inequalities among closed types. Its semantic counterpart is Γ |= A �p B, which

is defined as the usual conditional statement that if all the inequalities C �q D ∈ Γ are

true according to the definition |= C �q D ⇔ [[C]] �q [[D]], then |= A �p B holds as well.

The soundness theorem states that Γ � A �p B implies Γ |= A �p B; on the other hand the

opposite implication fails when �|= Γ, as it will be shown by a counterexample. In fact,

the best result one can establish is that if Γ |= A �p B then either �|= Γ or Γ � A �p B.

But this is enough to show that [[A]] �p [[B]] if and only if � � A �p B, for p = c, s, ∗.

Such a completeness result extends and completes the semantic investigation started in

Barbanera and de’Liguoro (2010), where just soundness was proved. A soundness and

completeness result is shown to also hold for Gay and Hole’s subtyping w.r.t. our semantic

subtyping. Moreover, since our subtyping system is shown to be decidable and behaviours

are bijective with session types, we also deduce from the completeness theorem that the

relations �c, �s and �∗ are decidable, and so that the LTS defining the operational

semantics of behaviours is a formal system in the usual sense.

The paper is organized as follows: in Section 2, we introduce session behaviours, the

LTS defining compliance and hence the server, client and peer sub-behaviour relations,

stratified w.r.t. the rank of behaviour expressions. We prove that the stratified definition

induces three chains of relations, whose unions coincide with the inclusion of clients,

servers and peers of each pair of related behaviours, respectively. In Section 3, we provide

a coinductive characterization of the sub-behaviour relations, which is entirely based

on the syntax of behaviour expressions, not on the LTS. By means of the coinductive

characterization, we shall be able to prove the apparently simple and natural property

that �∗ is the intersection of �c and �s. In Section 4, we define session types with

polarized higher-order input/output, dubbed CSP-session types, and a derivation system

axiomatizing client/server/peer subtyping (that we prove to be decidable), which includes

the Gay and Hole subtyping for session types. We then interpret, in Section 5, CSP-session

types into session behaviours and client/server/peer subtyping into the respective sub-

behaviour relations, proving soundness and completeness of the system. We derive also

that a suitable restriction of �∗ (the semantic subtyping) is a model for the Gay–Hole

subtyping relation. In Section 6, we refer to related works, and in Section 7 we conclude.

The present paper extends the systems and results of the preliminary paper (Barbanera

and de’Liguoro 2010), where only the client/server relations were taken into account

and where no full proof was provided. Here, we also provide a complete analysis of the

stratified definition of the sub-behaviour relations. Besides, in Barbanera and de’Liguoro

(2010), only soundness was shown for our subtyping system. The present paper also

provides the proof of decidability for the client/server/peer subtype relations, implying,

by completeness, the decidability of the sub-behaviour relations.

2. Session behaviours and client/server/peer sub-behaviour relations

A session behaviour can be looked at as an abstract description of the communication

actions by a process on one end of a bidirectional channel (or, from a more general

viewpoint, as an abstract description of the behaviour of a component) in a distributed

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

Sub-behaviour relations for session-based client/server systems 1349

system. We formalize session behaviours by means of a process calculus inspired by the

calculus of contracts (Carpineti et al. 2006; Laneve and Padovani 2007; Castagna et al.

2009b; Castagna and Padovani 2009) which, on one hand, we restrict w.r.t. the shape of

sub-terms of both external and internal choices, while, on the other hand, we extend in

order to model delegation (higher-order input and output.)

Definition 2.1 (session behaviours).

i. Let N be some countable set of symbols and N = {a | a ∈ N }, with N ∩ N = �.

The set BE of raw behaviour expressions is defined by the grammar:

σ, τ ::= 1 inaction

| a1.σ1 + · · · + an.σn external choice

| a1.σ1 ⊕ · · · ⊕ an.σn internal choice

| x variable

| rec x.σ recursion

| ?(σp)τ input p ∈ {s, c, ∗}
| ![σp]τ output

where

— n � 1 and ai ∈ N (hence ai ∈ N) for all 1 � i � n;

— x is a session behaviour variable out of a denumerable set and it is bound by the

rec operator; fv(σ) denotes, as usual, the set of free variables in σ.

ii. The set SB of session behaviours is the subset of closed raw behaviour expressions

such that:

— both in a1.σ1 + · · · + an.σn and in a1.σ1 ⊕ · · · ⊕ an.σn, the ai and ai are pairwise

distinct;

— in rec x.σ the expression σ is not a variable;

— in ?(σp)τ and ![σp]τ, the expression σ is closed, i.e. fv(σ) = �.

We abbreviate a1.σ1 + · · · + an.σn by
∑n

i=1 ai.σi, and a1.σ1 ⊕ · · · ⊕ an.σn by
⊕n

i=1 ai.σi.

We also use the notations
∑

i∈I ai.σi and
⊕

i∈I ai.σi, for finite and not empty I . The

trailing 1 is normally omitted: we write, e.g. a + b for a.1 + b.1.

Note that recursion in SB is guarded and hence contractive in the usual sense.

This definition follows similar constructions in Castagna et al. (2009a); Padovani

(2009b). A technical difference is the use of polarities; they have been introduced in

Gay and Hole (2005) and used in Yoshida and Vasconcelos (2007) to keep track of

the pairing of the two ends of private channels of sessions. We use here polarities to

distinguish among actions by a server (p = s), by a client (p = c) or by a peer (p = ∗).

We shall comment about the restriction that fv(σ) = � in ?(σp)τ and ![σp]τ in

Remark 2.4.

The operational semantics of session behaviours is given in terms of a labelled transition

system σ
α−→ σ′, where σ, σ′ ∈ SB and α belongs to an appropriate set of actions: Act. As

usual, N ∪ N ⊆ Act; in the present case, however, also the input/output of a behaviour

is an action so that, somehow, SB has to be included into Act.

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

F. Barbanera and U. de’Liguoro 1350

Definition 2.2 (behaviour LTS).

Define the set of actions Act0 = N ∪ N and

Act = Act0 ∪ {?(σp), ![σp] | σ ∈ SB, p ∈ {s, c, ∗}}.

Let ⊕, rec �∈ Act; define the LTS (SB,Act ∪ {⊕, rec },−→) by the rules:

a1.σ1 + · · · + an.σn
ak−→ σk a.σ

a−→ σ

a1.σ1 ⊕ · · · ⊕ an.σn
⊕−→ ak.σk rec x.σ

rec−→ σ{rec x.σ/x}

?(σp)τ
?(σp)
−→ τ ![σp]τ

![σp]
−→ τ

where 1 � k � n and σ
α−→ τ abbreviates (σ, α, τ) ∈ −→.

We abbreviate −→ =
⊕−→ ∪ rec−→. Note that neither ⊕ nor rec are actions, so that

they are unobservable and used just for technical reasons. As usual, we write =⇒=−→∗
,

α
=⇒=−→∗ α−→−→∗

for α ∈ Act, σ
s

=⇒ σ′ if s = α1 · · · αn and σ
α1

=⇒ · · · αn
=⇒ σ′. Also we

write σ −→ and σ
α−→ if there exists σ′ s.t. σ −→ σ′ and σ

α−→ σ′ respectively, and σ �−→
when ¬(σ −→).

A syntactical concept of duality on SB is obtained by interchanging a with a, + with

⊕ and ?(·) with ![·]. Being such a notion formally defined by structural induction on the

structure of (possibly open) expressions, we first consider raw behaviour expressions in

BE . Duality for elements in SB is then obtained by restricting to SB the duality defined

for elements of BE .

Definition 2.3 (syntactic duality).

i. Let σ be a raw behaviour expression, that is σ ∈ BE .

The syntactic dual σ of σ is defined by the following clauses:

1 = 1 x = x rec x.σ = rec x.σ

∑
i∈I ai.σi =

⊕
i∈I ai.σi

⊕
i∈I ai.σi =

∑
i∈I ai.σi

?(σp)τ =![σp]τ ![σp]τ =?(σp)τ

It is immediate to check that σ ∈ SB ⇐⇒ σ ∈ SB (#).

ii. We define (·) : SB → SB as the restriction to SB of the duality function of Item (i),

using the observation (#).

From now on, in order to avoid too cumbersome definitions, any time an inductive

definition on elements of SB is provided, it will be tacitely assumed to be actually the

restriction to SB of the corresponding inductive definition on BE .

Definition 2.3 closely mimics the duality operator on session types as defined e.g. in

Gay and Hole (2005).

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

Sub-behaviour relations for session-based client/server systems 1351

As expected, σ = σ for all σ. Note that the behaviour σ in ?(σp)τ, as well as its polarity

p, remains unaffected by the · operation, and similarly for ![σp]τ.

Remark 2.4. The restriction of input/output to closed behaviours comes from a difficulty

that was pointed out to us by Padovani (2011). By the fact that rec is not observable

and that rec x.σ
rec−→ σ{rec x.σ/x} is the unique possible reduction out of rec x.σ, the

behaviours rec x.σ and σ{rec x.σ/x} are observationally indistinguishable. So we expect

that both rec x.σ and σ{rec x.σ/x} are such. But this is false without the restriction we

impose on higher-order session-behaviours, namely that fv(σ) = � in ?(σp)τ and ![σp]τ.

Consider for example (with any p):

rec x.?(xp)
rec−→?(rec x.?(xp)p)

where rec x.?(xp) violates the constraint on input/output behaviours because, even if it is

closed, the x is free in the subexpression ?(xp). Then we have:

rec x.?(xp) = rec x.![xp]
rec−→![rec x.![xp]p].

But

?(rec x.?(xp)p) = ![rec x.?(xp)p] �= ![rec x.![xp]p].

2.1. Defining compliance and sub-behaviours relations by stratification

As discussed in the introduction, we intend to formalize three binary sub-behaviour

relations on SB that represent the notion of substitutability in client/server/peer systems

and that take into account the different roles of the interacting components in such

systems. The relation of client sub-behaviour, ρ1 �c ρ2, is defined as the subset relation

among the possible servers of ρ1 and ρ2; the relation of server sub-behaviour, σ1 �s σ2,

instead, is the subset relation among the possible clients of σ1 and σ2; finally, the relation

of peer sub-behaviour, σ1 �∗ σ2 is the subset relation among the possible peers of σ1 and

σ2.

All the notions of client, server and peer are formalized by introducing a relation of

compliance holding between two elements of SB, ρ � σ, whenever any action α on ρ’s

side (α can be looked at as a client request) is eventually matched by a correspondent

synchronizing co-action α̃ on σ’s side (then α̃ is a server response). We shall see that, as

exemplified in the examples of the introduction, α̃ does not need to be the syntactic dual

of α in case of higher-order actions.

As previously mentioned and further discussed later on, the presence of higher-order

actions makes the definition of action synchronization, and hence that of the relation �,

depend on all �c, �s, and �∗, so revealing a circularity.

However, thanks to the restriction that input/output behaviours cannot include any

free occurrence of variables, we can argue that the σ in ?(σp).τ and ![σp].τ is always

of lower complexity than the whole behaviour expression, so that we can stratify the

definition of SB w.r.t. the following notion of rank.

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

F. Barbanera and U. de’Liguoro 1352

Definition 2.5 (stratified session behaviours). Let us define by structural induction a rank

mapping rank : SB → N as follows:

rank(1) = rank(x) = 0

rank(rec x.σ) = rank(σ)

rank(
∑n

i=1 ai.σi) = rank(
⊕n

i=1 ai.σi) = max(rank(σ1), . . . , rank(σn))

rank(?(σp)τ) = rank(![σp]τ) = max(rank(σ) + 1, rank(τ))

Then, for any i ∈ N, we set SBi = {σ ∈ SB | rank(σ) � i}.

The number rank(σ) measures the maximal nesting of input/output actions in σ.

Since we forbid the input/output of open behaviours, we have that rank(rec x.σ) =

rank(σ{rec x.σ/x}) for any session behaviour rec x.σ. This is the consequence of the

following lemma and justifies the definition rank(x) = 0.

Lemma 2.6. For all σ, τ ∈ BE such that any input/output behaviour inside them is closed,

and for any variable x, we have:

rank(σ{τ/x}) =

{
max(rank(σ), rank(τ)) if x ∈ fv(σ)

rank(σ) otherwise.

It follows that rank(rec x.σ) = rank(σ{rec x.σ/x}) for any σ.

Proof. If x �∈ fv(σ) then obviously σ{τ/x} = σ and the thesis is trivial. Otherwise we

reason by induction over the structure of σ. If x ∈ fv(σ) then σ cannot be 1 nor any variable

different from x; if σ = x then σ{τ/x} = τ and rank(τ) � rank(x) = 0. If σ is either an

internal or an external choice the thesis follows by the induction hypothesis. The relevant

cases are when σ =?(σp
0)σ1 or σ =![σp

0]σ1. Then e.g. (?(σp
0)σ1){τ/x} =?(σp

0)(σ1{τ/x})
because x �∈ fv(σ0), being σ0 closed by hypothesis. So the thesis follows by the induction

hypothesis.

Now rank(rec x.σ) = rank(σ), so that rank(rec x.σ) = rank(σ{rec x.σ/x}) no matter

whether x ∈ fv(σ) or not.

If α ∈ Act, by abuse of notation we write rank(α) = 0 if α ∈ Act0 = N ∪ N and

rank(?(σp)) = rank(![σp]) = rank(σ) + 1, otherwise.

We now formally introduce the relation of compliance for session behaviours of rank 0,

written ρ �0 σ. Then, by means of this compliance relation, we define the sets of clients,

servers and peers of level 0, and finally the sub-behaviour relations of level 0.

We recall that behaviours in SB0 do not contain higher-order input/output actions like

?(σp) and ![σp].

Definition 2.7 (compliance and sub-behaviours for SB0).

i. Let ρ‖σ denote a pair of first-order session behaviours, i.e. such that ρ, σ ∈ SB0, then

define the relation −→‖ as follows:

ρ
α−→ ρ′ σ

α−→ σ′

ρ‖σ −→‖ ρ′‖σ′

ρ −→ ρ′

ρ‖σ −→‖ ρ′‖σ
σ −→ σ′

ρ‖σ −→‖ ρ‖σ′

where α ∈ N ∪ N and α is the usual involution: α = α.

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

Sub-behaviour relations for session-based client/server systems 1353

ii. We say that the client ρ ∈ SB0 is compliant with the server σ ∈ SB0, written ρ �0 σ, if

∀ρ′, σ′. ρ‖σ −→∗
‖ ρ′‖σ′ �−→‖ ⇒ ρ′ = 1

The session behaviour ρ ∈ SB0 is said to be a peer of the behaviour σ ∈ SB0, written

ρ ⊥ 0σ, if both ρ �0 σ and σ �0 ρ hold.

iii. We define:

Client0(σ) = {ρ ∈ SB0 | ρ �0 σ} Server0(ρ) = {σ ∈ SB0 | ρ �0 σ}

Peer0(σ) = {ρ ∈ SB0 | ρ ⊥ 0σ}.
iv. We define the following sub-behaviour relations over SB0:

σ �0
s σ

′ ⇔ � �= Client0(σ) ⊆ Client0(σ
′),

ρ �0
c ρ

′ ⇔ � �= Server0(ρ) ⊆ Server0(ρ
′),

σ �0
∗ σ′ ⇔ � �= Peer0(σ) ⊆ Peer0(σ

′).

Notice that, by restricting the attention to behaviours in SB0, the compliance relation

is defined as in Laneve and Padovani (2007) and Padovani (2009a).

Simple examples of compliance are: a ⊕ b �0 a.d + b and also a ⊕ b �0 a.d + b + e,

whereas a ⊕ b ⊥ 0 a + b; on the other hand a + b ��0 a ⊕ d because the behaviour a ⊕ d

could reduce to d. This would prevent a possible request of a + b, the one modelled by

the action
a−→, from being matched by a corresponding action on d’s side.

The �0 relation is not symmetric: indeed 1 �0 σ for any σ, but e.g. a ��0 1. Observe that

in Laneve and Padovani (2007) and Padovani (2009a) a ⊕ b ��0 a ⊕ b while a+ b �0 a+ b.

On the other hand, by our syntactical restrictions neither a ⊕ b nor a+ b are well-formed

session behaviours.

We stress that in our model two behaviours can be compliant even if they exhibit an

infinite sequence of synchronising actions: the simplest example is rec x.a.x �0 rec x.a.x.

As recalled at the beginning of this subsection, if we wish to have a flexible and

expressive formalism, the extension of the definition of compliance to the whole SB is

not straightforward. In fact to cope with higher-order input/output actions, the following

rule would be sound but unnecessarily restrictive:

σ
![ρp]
−→ σ′ τ

?(ρp)
−→ τ′

σ‖τ −→‖ σ′‖τ′
(3)

For instance, it would prevent, in the example of the introduction, the behaviour

Voter3Beh to comply with AuthServiceBeh. It would not guarantee as well the possibility

of safely substitute AuthService2Beh by AuthService3Beh.

As a matter of fact, given that one is able to extend the sub-behaviour relations �0
s , �0

c

and �0
∗ to SB, it would be reasonable to relax the above rule (3) as follows:

σ
![ρ

p
1]−→ σ′ τ

?(ρ
p
2)−→ τ′ ρ1 �p ρ2

σ‖τ −→‖ σ′‖τ′
(4)

where p = s, c, ∗.

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

F. Barbanera and U. de’Liguoro 1354

The intuitive justification of rule (4) above is as follows: let us look at a received

behaviour as a protocol that the receiving agent is expected to conform to. The superscript

polarity specifies the role to play among client, server or peer when the protocol is used.

Without specifying the polarity, rule (4) either reduces to rule (3) or to a version of (4)

where only �∗ can be considered. But this would be a remarkable loss of flexibility.

Indeed an agent could keep on safely interacting with the environment even in case it

waits for a client protocol ρ2 but actually receives a less demanding client protocol ρ1

(that is ρ1 �c ρ2). Dually, the interaction with the environment cannot produce undesired

effects if a richer server protocol ρ1 is received instead of the expected and poorer ρ2 (that

is ρ1 �s ρ2). A similar explanation can be given for the �∗ relation.

Rule (4) above, however, cannot be used to define the relation −→‖, since it would

make the definition circular: in fact, by using such a rule, the relation −→‖ would rely

on the definition of �p, that is defined in terms of �, which in turn is defined in terms of

−→‖ itself.

Fortunately, as it is suggested in Castagna and Padovani (2009) and Padovani (2009b),

if σ
?(ρp)
−→ σ′ or σ

![ρp]
−→ σ′ then rank(ρ) < rank(?(ρp)) = rank(![ρp]) � rank(σ), so that the

circularity can be avoided by stratifying the definitions.

Below we consider stratified notions of client/server/peer sub-behaviours.

Definition 2.8 (compliance and stratified sub-behaviours). For each i ∈ N we define

inductively the binary relations �i
c, �i

s and �i
∗. The cases of �0

c , �0
s and �0

∗ have

been treated in Definition 2.7. When i > 0 let us add to the rules in the definition of −→‖
the following one:

τ
![ρ

p
1]−→ τ′ σ

?(ρ
p
2)−→ σ′ ρ1 �i

p ρ2 i = max(rank(ρ1), rank(ρ2))

σ‖τ −→‖ σ′‖τ′
(5)

and its symmetric, where:

i. ρ � σ ⇔ ∀ρ′, σ′ ∈ SB. ρ‖σ −→∗
‖ ρ′‖σ′ �−→‖ ⇒ ρ′ = 1;

ii. ρ ⊥ σ ⇔ ρ � σ & σ � ρ ;

iii. Clienti(σ) =

{
{ρ ∈ SBi | ρ � σ} if rank(σ) � i

� otherwise

iv. Serveri(ρ) =

{
{σ ∈ SBi | ρ � σ} if rank(ρ) � i

� otherwise

v. Peeri(σ) =

{
{ρ ∈ SBi | ρ ⊥ σ} if rank(σ) � i

� otherwise

vi. σ �i
s σ

′ ⇔ � �= Clienti(σ) ⊆ Clienti(σ
′);

vii. ρ �i
c ρ

′ ⇔ � �= Serveri(ρ) ⊆ Serveri(ρ
′);

viii. ρ �i
∗ ρ′ ⇔ � �= Peeri(ρ) ⊆ Peeri(ρ

′).

Also for −→‖ we use the standard notation =⇒‖ = −→∗
‖.

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

Sub-behaviour relations for session-based client/server systems 1355

From now on, in order get a clearer notation, we shall overload the symbols −→ and

=⇒: we shall denote by them both the relations −→ and =⇒ on session behaviours and

the relations −→‖ and =⇒‖ on (client‖server) pairs.

The following lemma easily descends from the definitions.

Lemma 2.9.

i. −→ preserves duality whenever −→�= ⊕−→ †; that is σ‖σ −→ σ1‖σ2 ⇒ σ2 ≡ σ1.

ii. ρ ⊥ σ ⇔ ∀ρ′, σ′ ∈ SB. ρ‖σ −→∗
ρ′‖σ′ �−→ ⇒ ρ′ = 1 & σ′ = 1;

iii. For all i ∈ N, Peeri(σ) = Serveri(σ) ∩ Clienti(σ).

Notice that we immediately have �i
∗ ⊇ �i

c ∩ �i
s. More work is needed to establish the

desired �i
∗ = �i

c ∩ �i
s.

Lemma 2.10.

i. σ
α−→ σ′ ∨ σ −→ σ′ ⇒ rank(σ) � rank(σ′);

ii. σ
?(ρp)
−→ σ′ ∨ σ

![ρp]
−→ σ′ ⇒ rank(σ) > rank(ρ);

iii. ρ‖σ −→ ρ′‖σ′ ⇒ rank(ρ) � rank(ρ′) & rank(σ) � rank(σ′).

Proof. All the three points are quite immediate. In particular point (iii) follows by

points (i) and (ii) and does not depend on the premise �k
p in Definition 2.8.

Proposition 2.11. For all i ∈ N the relations �i
s, �i

c and �i
∗, as well as the sets Clienti(σ),

Serveri(ρ) and Peeri(ρ), are well defined.

Proof. By simultaneous induction on i. The base case being obvious, we treat the

induction case for �i
s only, since the other ones are either implied or similar.

For σ �i
s σ

′ to be well defined, this has to be the case for both Clienti(σ) and Clienti(σ
′),

that is for any ρ ∈ SBi the statements ρ � σ and ρ � σ′ must be defined. This requires

that also σ, σ′ ∈ SBi, so that by (iii) of Lemma 2.10, if ρ‖σ =⇒ ρ′‖σ′′ or ρ‖σ′ =⇒ ρ′‖σ′′

we have that rank(ρ′), rank(σ′′) � i . It follows that, if anywhere in these reductions an

instance of rule (5) in Definition 2.8 ever occurs, the rank k in the premise is strictly lower

than i by part (ii) of Lemma 2.10, so that the relation �k
p in the premise is well defined

by the inductive hypothesis.

We can now define the client/server/peer sub-behaviour relations.

Definition 2.12 (server/client/peer sub-behaviour relations). Over SB we define the binary

relations:

�s =
⋃
i∈N

�i
s �c =

⋃
i∈N

�i
c �∗ =

⋃
i∈N

�i
∗ .

† As noted by an anonymous referee, the property clearly does not hold for
⊕−→; in fact a + b ≡ a⊕b‖a+b

⊕−→
a‖a + b �≡ a.

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

F. Barbanera and U. de’Liguoro 1356

From the above definition it is not immediate to get a clear picture of what are

the properties of the sub-behaviour relations. In particular of what is the relationship

among �∗, �c and �s, for which a thoroughly analysis of the stratified definitions will be

necessary.

We start by showing that the sub-behaviour relations are indeed reflexive.

Lemma 2.13. Let σ ∈ SB with k = rank(σ), and p = s, c, ∗.

i. σ ∈ Clientk(σ) ∩ Serverk(σ);

ii. σ �k
p σ.

Proof. We prove (i) and (ii) by simultaneous induction over k. For (i) we need to

consider just σ ∈ Clientk(σ) ∩ Serverk(σ), since σ ∈ Peerk(σ) will immediately descends

from Lemma 2.9(iii).

Case k = 0. The theses descend immediately from Definition 2.7.

Case k > 0. We consider (i) first. We show only that σ ∈ Clientk(σ), being the proof for

σ ∈ Serverk(σ) similar.

Then, by definition of Clientk(σ), we have to show, taking into account Lemma 2.9(i), that

∀σ′ ∈ SB. σ‖σ =⇒ σ′‖σ′ �−→ ⇒ σ′ = 1. This can be shown by using the definition of −→
and the definition of syntactic duality (Definition 2.3). In case of higher-order actions we

can apply the induction hypothesis for (ii). In fact, whenever rule (5) has to be used in

the derivation, we need to have ρ′ �h
p ρ′ for some ρ′, with h = rank(ρ′). This is exactly

the induction hypothesis of (ii), since, by Lemma 2.10(iii) and definition of rank, we get

rank(ρ′) < rank(σ), that is h < k.

We can now proceed with (ii). By point (i) we have that Clientk(σ) �= � and Serverk(σ) �=
�. Then, by definition of �k

p, what we need to show is just the trivial facts that

Clientk(σ) ⊆ Clientk(σ) and Serverk(σ) ⊆ Serverk(σ).

Observe that, by the last lemma, conditions � �= Clienti(σ), � �= Serveri(σ) and

� �= Peeri(σ) in Definition 2.8 are equivalent to max(rank(σ), rank(σ′)) � i.

A relevant property of the sub-behaviour relations is illustrated by the following

proposition which roughly says that �s has a bottom element and �c a top one, both

coinciding with 1. When we define client/server/peer subtyping relations for session types

in Section 5 (Definition 4.2), these properties will be explicitly represented by the axioms

(T-Ax-C) and (T-Ax-S), so that the client/server subtypings is sound and complete w.r.t.

the corresponding sub-behaviour relations.

Observe that Clienti(1) �= {1} since e.g. rec x.1 ∈ Clienti(1); on the other hand to prove

that Serveri(1) = SBi it doesn’t suffice that 1 is the top element w.r.t. �c, since we have

to prove that any behaviour possesses at least a server.

Proposition 2.14.

∀σ ∈ SB. σ �c 1 & 1 �s σ.

Proof. The first part of the conjunction easily follows by the fact that, for k = rank(σ)

we have Serverk(σ) �= � by Lemma 2.13(i), and by the fact that Serverk(1) = SBk

straightforwardly holds.

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

Sub-behaviour relations for session-based client/server systems 1357

For the second part: we recall that ρ ∈ Clienti(1) if and only if ρ ∈ SBi, i � rank(1) = 0

and for all ρ′ if ρ‖1 =⇒ ρ′‖1 �−→ then ρ′ = 1. Therefore, in such a case, we get

ρ ∈ Clienti(1) if and only if, for all ρ′, if ρ =⇒ ρ′ �−→ then ρ′ = 1 (trivially 1 itself satisfies

the condition). But any such ρ belongs to Clientk(σ) as soon as k � max(rank(ρ), rank(σ));

in particular this is the case for ρ = σ: hence � �= Clientk(1) ⊆ Clientk(σ), i.e. 1 �k
s σ if

k � rank(σ), and hence 1 �s σ by definition.

2.2. A non-stratified characterization of the sub-behaviour relations

Even if the definition of the sub-behaviour relations relies on the stratification of SB, they

can be given a simple and natural characterization in terms of the subset relation between

sets of clients, servers and peers, defined as the unions of the sets Clienti(σ), Serveri(ρ)

and Peeri(σ) respectively.

Definition 2.15 (Client(σ), Server(ρ) and Peer(σ)).

For σ, ρ ∈ SB, we define the sets:

Client(σ) =
⋃

i∈N
Clienti(σ) Server(ρ) =

⋃
i∈N

Serveri(ρ)

Peer(σ) =
⋃

i∈N
Peeri(σ)

From Lemma 2.13 we know that Client(σ), Server(σ) and Peer(σ) are non-trivial

notions for arbitrary σ.

Corollary 2.16. ∀σ ∈ SB. Client(σ) �= � & Server(σ) �= � & Peer(σ) �= �.

The characterizations we aim at are then as follows:

σ �s σ
′ ⇔ Client(σ) ⊆ Client(σ′) ρ �c ρ

′ ⇔ Server(ρ) ⊆ Server(ρ′)

σ �∗ σ′ ⇔ Peer(σ) ⊆ Peer(σ′)
(6)

Moreover, we expect that for Peer(σ) and �∗ the following hold:

Peer(σ) = Client(σ) ∩ Server(σ) (7)

and

�∗ = �c ∩ �s (8)

If (6) is the case then �s, �c and �∗ are all preorders. However, there are some difficulties

in proving this. Suppose in fact that σ �s σ
′. Then we know that the set of clients of

σ is non-empty and included into that of σ′, but this is the case only below a certain

rank. As a matter of fact, if we know that Clienti(σ) ⊆ Clienti(σ
′), it is not obvious that

a client ρ of σ, possibly of higher rank than i, will be a client of σ′ as well. Similar

remarks concerning stratification levels can be made about the other relations and about

the claim (7). For what concerns Claim (8), and in particular the ⊆ direction, the problem

depends on the two separate quantifications over clients and servers of a behaviour

that are not equivalent to a singular quantification over their peers. Claim (8) will be

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

F. Barbanera and U. de’Liguoro 1358

proved in Section 3 by means of the coinductive characterization of our sub-behaviour

relations. We devote instead the remaining part of this section to the proofs of claims (6)

and (7).

We begin the study by stating the following simple fact, easily descending by the

corresponding definitions.

Fact 2.17. For any i � j:

Clienti(σ) ⊆ Clientj(σ) & Serveri(σ) ⊆ Serverj(σ) & Peeri(σ) ⊆ Peerj(σ).

From the above fact, the following lemma easily descends.

Lemma 2.18.
i. ρ ∈ Client(σ) & k = max(rank(ρ), rank(σ)) ⇒ ρ ∈ Clientk(σ);

ii. σ ∈ Server(ρ) & k = max(rank(ρ), rank(σ)) ⇒ σ ∈ Serverk(ρ);

iii. σ ∈ Peer(ρ) & k = max(rank(ρ), rank(σ)) ⇒ σ ∈ Peerk(ρ).

Now we are able to prove Claim (7).

Proposition 2.19.

Peer(σ) = Client(σ) ∩ Server(σ)

Proof. (⊆) Immediate, by definition of Peer(σ), Client(σ) and Server(σ).

(⊇) Let ρ ∈ Client(σ) ∩ Server(σ) and let k = max(rank(ρ), rank(σ)). By Lemma 2.18 we

have that ρ ∈ Clientk(σ) ∩ Serverk(ρ), and hence ρ ∈ Peer(σ) by definition.

We now move towards the proof of the right-to-left implications of claims (6).

Lemma 2.20.
i. Client(σ) ⊆ Client(σ′) ⇒ ∃i ∈ N. σ �i

s σ
′;

ii. Server(ρ) ⊆ Server(ρ′) ⇒ ∃i ∈ N. ρ �i
c ρ

′;

iii. Peer(σ) ⊆ Peer(σ′) ⇒ ∃i ∈ N. σ �i
∗ σ′.

Proof. (i) Let k = max(rank(σ), rank(σ′)). Then σ ∈ Clientk(σ) �= � by Lemma 2.13 (i)

and Fact 2.17. On the other hand, if ρ ∈ Clientk(σ) ⊆ Client(σ) ⊆ Client(σ′) we have that

rank(ρ) � k and, by Lemma 2.18, that ρ ∈ Clienth(σ
′) where h = max(rank(ρ), rank(σ′)).

It follows that h � k and hence ρ ∈ Clientk(σ
′) by Fact 2.17.

(ii), (iii). Similar to (i).

The above lemma implies that:

Client(σ) ⊆ Client(σ′) ⇒ σ �s σ
′ Server(ρ) ⊆ Server(ρ′) ⇒ ρ �c ρ

′

Client(σ) ⊆ Client(σ′) ⇒ σ �s σ
′.

Establishing the left-to-right implications of (6) is more involved, and a precise definition

of the concept of synchronization is in order.

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

Sub-behaviour relations for session-based client/server systems 1359

Definition 2.21. Given α, β ∈ Act and k ∈ N we say that α and β synchronize below k and

write α synch β below k, if one of the following cases occur:

i. α, β ∈ Act0 and α = β and k is arbitrary (even 0);

ii. α =![σp] and β =?(τp), or α =?(τp) and β =![σp], and σ �h
p τ for some h < k.

We then say that α and β synchronize, written α synch β, if α synch β below k for some k.

Observe that if α synch β and k bounds above both rank(α) and rank(β) then α synch β

below k.

Let s = α1 · · · αm and t = β1 · · · βn be sequences in Act∗: then we say that s and t

synchronize pointwise (or just synchronize), and write s synch t, if m = n and αi synch βi
for all i = 1, . . . , m. We also write |s| for the length of s ∈ Act∗.

Lemma 2.22. Let ρ, σ ∈ SB:

i. ρ‖σ =⇒ ρ′‖σ′ for some ρ′, σ′ ∈ SB if and only if there exist s, t ∈ Act∗ such that

s synch t and ρ
s

=⇒ ρ′ and σ
t

=⇒ σ′;

ii. ρ‖σ �−→ if and only if either ρ = 1 or σ = 1 or

ρ �−→ & σ �−→ & ¬∃α, β ∈ Act. [α synch β & ρ
α−→ & σ

β
−→] ;

iii. if ρ � σ and ρ‖σ =⇒ ρ′‖σ′ then ρ′ � σ′;

iv. if ρ ⊥ σ and ρ‖σ =⇒ ρ′‖σ′ then ρ′ ⊥ σ′.

Proof. Easy consequences of Definition 2.8.

Lemma 2.23. Let σ, σ′, ρ, ρ′ ∈ SB. For all k ∈ N:

i. if i � k then σ �i
s σ

′ ⇒ σ �k
s σ

′;

ii. if i � k then ρ �i
c ρ

′ ⇒ ρ �k
c ρ

′;

iii. if i � k then ρ �i
∗ ρ′ ⇒ ρ �k

∗ ρ′.

Proof. We prove (i), (ii) and (iii) by simultaneous induction over k. The case k = 0 is

trivial since then i = k. Let k > 0; from σ �i
s σ

′ and i � k it follows that � �= Clienti(σ) ⊆
Clientk(σ), i.e. Clientk(σ) �= �. To prove that Clientk(σ) ⊆ Clientk(σ

′) we reason by

contradiction: suppose that there exists some ρ ∈ Clientk(σ) \ Clientk(σ
′). By Lemma 2.22

there exist s ∈ Act∗ of minimal length, ρ0 ∈ SB and α ∈ Act such that ρ
s

=⇒ ρ0
α

=⇒
and σ′ s̃

=⇒ σ′
0 with s̃ pointwise synchronising with s, but for any β synchronising with

α, σ′
0 �

β
=⇒. For simplicity, let us assume that |s| = |̃s| = 0, that is ρ0 = ρ and σ′

0 = σ′:

indeed the general case can be treated by iterating the following argument. By assumption

ρ � σ, hence also α.1 � σ, which implies that σ
γ

=⇒ for some γ s.t. α synch γ. Since

rank(α) � rank(ρ) � k and rank(γ) � rank(σ) � k we know that α synch γ below k.

On the other hand, since by definition γ.1
γ

−→ 1 and since we showed that σ
γ

=⇒, we

have, by definition of �, that γ.1 � σ. Then, since h = rank(γ.1) = rank(γ) � rank(σ) � i,

we know that γ.1 ∈ Clienti(σ) ⊆ Clienti(σ
′) by the hypothesis that σ �i

s σ
′. It follows that

σ′ δ
=⇒ for some δ s.t. γ synch δ, and again this is the case below k.

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

F. Barbanera and U. de’Liguoro 1360

Now let us consider the possible cases according to the shape of α, and consequently

of γ and δ:

α ∈ Act0: then rank(α) = rank(γ) = rank(δ) = 0, hence α, γ, δ ∈ Act0 so that there exists

a ∈ N s.t. either α = γ = a and γ = δ = a or α = γ = a and γ = δ = a: in both cases

α synch δ.

α =![τp0]: then by the fact that α synch γ below k we have γ =?(τp1) for some τ1 s.t. τ0 �k0
p τ1

where k0 < k. It follows that γ =![τp1], and by γ synch δ we deduce that δ =?(τp2) for

some τ2 s.t. τ1 �k1
p τ2 where also k1 < k. By the induction hypothesis (i), (ii) or (iii),

according to what p is, we have that τ0 �h
p τ1 �h

p τ2 where h = max(k0, k1) < k i.e.

τ0 �h
p τ2 and we conclude that α synch δ.

α =?(τp0): in this case we have α =?(τp0), γ =![τp1] and δ =![τp2] where τ1 �k0
p τ0 and

τ2 �k1
p τ1, where k0, k1 < k; then we argue as in the previous case concluding that

α synch δ.

In all possible cases we get a contradiction w.r.t. the assertion that σ′ �
β

=⇒ for any β

synchronising with α. The proofs of (ii) and (iii) are similar and we are done.

Theorem 2.24. For all σ, σ′, ρ, ρ′ ∈ SB:

σ �s σ
′ ⇔ Client(σ) ⊆ Client(σ′) ρ �c ρ

′ ⇔ Server(ρ) ⊆ Server(ρ′)

σ �∗ σ′ ⇔ Peer(σ) ⊆ Peer(σ′)

Proof. The ⇐ implications follow by Lemma 2.20. In order to show ⇒, suppose that

σ �s σ
′, namely σ �i

s σ
′ for some i; if ρ ∈ Client(σ) then ρ ∈ Clientj(σ) for some j; then

for k = max(i, j) we have:

ρ ∈ Clientj(σ) ⊆ Clientk(σ) ⊆ Clientk(σ
′) ⊆ Client(σ′),

by Fact 2.17 and (i) of Lemma 2.23. This proves σ �s σ
′ ⇒ Client(σ) ⊆ Client(σ′); the

other implications follow in a similar way using Fact 2.17 and (ii), (iii) of Lemma 2.23.

Corollary 2.25. �s, �c and �∗ are preorders, that is reflexive and transitive relations.

Proof. Immediate by Theorem 2.24.

We end up with a nice property of syntactical duality w.r.t. the preorders �c, �s and�∗.

Let us first establish a lemma.

Lemma 2.26. For all ρ, σ, τ ∈ SB,

i. If ρ � τ and τ � σ then ρ � σ;

ii. If ρ ⊥ τ and τ ⊥ σ then ρ ⊥ σ.

Proof. (i) For a complete proof of such a statement one can easily provide a coinductive

characterization of the relation � in terms of coinductive compliance relations, in the style

of what we shall do for our sub-behaviour relations (see Definition 3.4 below). Then it

suffices to prove that {(ρ, σ) | ∃τ. ρ � τ & τ � σ} is a compliance relation. In order to show

that, the main difficulty lies in showing that if ρ
α

=⇒ then there exists γ s.t. σ
γ

=⇒ and

α synch γ. We prove in detail such a statement, being the one deserving more attention.

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

Sub-behaviour relations for session-based client/server systems 1361

If ρ
α

=⇒ then, by the hypothesis ρ � τ, there exists β s.t. τ
β

=⇒ and α synch β. On the

other hand if τ
β

=⇒ then τ
β

=⇒, so that, by the assumption τ � σ, we have that σ
γ

=⇒ for

some γ s.t. β synch γ. We now check that α synch γ by cases of α.

Let α ∈ Act0: then either α = a or α = a for some a ∈ N . In the first case we have that

β = a so that β = a = a and we obtain that γ = a. If instead α = a, we obtain by the

same reasoning that γ = a, and in both cases α synch γ.

If α =![ρp0] then β =?(τp0) for some τ0 s.t. ρ0 �p τ0. It follows that β =![τp0]; therefore

γ =?(σp
0) for some σ0 s.t. τ0 �p σ0. By Corollary 2.25 we know that �p is transitive for all

p = c, s, ∗, hence we deduce that ρ0 �p σ0 and we conclude that α synch γ.

The case α =?(ρp0) is treated similarly, by deducing that γ =![σp
0], this time with

σ0 �p τ0 �p ρ0 for some τ0 s.t. β =![τp0].

(ii) Easy by definition of ⊥ and point (i), observing that the · operation is involutive.

Proposition 2.27. Let τ ∈ SB. Then

i. τ is the minimum client of τ, i.e. ∀ρ ∈ Client(τ). τ �c ρ;

ii. τ is the minimum server of τ, i.e. ∀σ ∈ Server(τ). τ �s σ;

iii. τ is the minimum peer of τ, i.e. ∀ρ ∈ Peer(τ). τ �∗ ρ.

Proof. We observe that, by Lemma 2.13 and Definition 2.15, τ ∈ Client(τ) ∩ Server(τ).

Hence it remains to show the minimality property w.r.t. �c, �s and �∗, respectively.

(i) Let ρ ∈ Client(τ). In order to establish τ �c ρ, let σ ∈ Server(τ). Then we have ρ � τ

and τ � σ. By Lemma 2.26 we know that ρ � σ, i.e. σ ∈ Server(ρ). Hence τ �c ρ. The

proofs of (ii) and (iii) are similar, using Lemma 2.26 and observing that the · operation is

involutive.

Remark 2.28. The properties in Proposition 2.27 depend on the lack of implicit non-

determinism in session behaviours (reflecting the same characteristic of session types).

The non-determinism in our system is in fact only explicit , since it is due exclusively to

the ⊕ operator.

A light form of implicit non-determinism could be introduced by relaxing the constraint

imposing prefixes in a sum + or ⊕ to be pairwise distinct: in fact, if we let a + a.b to be

a session behaviour, (a + a.b)‖a reduces both to 1 and to b. Then a ⊕ a.b �� a + a.b and

the minimum of Client(a+ a.b) is actually a. On the other hand, a+ a.b �� a⊕ a.b and the

minimum of Server(a + a.b) is a.b. But some behaviours could have no minimum client

or server at all, e.g. Server(a.b + a.c) = �.

Relaxing the constraint that a1, . . . , an ∈ N in a1.σ1 + · · · + an and a1, . . . , an ∈ N
in a1.σ1 ⊕ · · · ⊕ an.σn, would, instead, introduce even more non-determinisms, taking us

completely outside of the ‘session’ context. It would take us in the realm of contracts

languages, which are very similar to process calculi in the style of CCS and CSP. In that

realm a behaviour like, e.g., a+ b is allowed and can provide a meaningful description of

a web service. There are more than a single possibility of interaction with a component

exposing a contract like a+b. Each possible interaction cannot completely been dependent

on a single component’s will. Moreover it is not possible to model any interaction described

by a session type by means of such unrestricted contracts.

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

F. Barbanera and U. de’Liguoro 1362

3. Coinductive characterizations

The definitions of compliance and sub-behaviour relations in the previous section remain

unmanageable because of their loose connection with the algebraic structure of behaviours.

To remedy such a deficiency, this session is devoted to the coinductive characterization of

these concepts.

We start from some remarks. The syntax of session behaviours prevents infinite −→
reductions out of them. A raw behavioural expression like rec x.x is not, in fact, a session

behaviour. Also an expression like rec x.(y⊕z) is not a proper session behaviour (not even

a raw expression), since we allow the + and ⊕ operators only with prefixed expressions.

Such syntactical restrictions, however, do not prevent an abstract representation of

branching and selection types. At the same time they rule out diverging expressions

like rec x.x and rec x.rec y.(x⊕x) which would be meaningless in the present setting. This

is made precise by the following lemma.

Lemma 3.1. For any σ ∈ SB, there exists no infinite −→ reduction out of it. Moreover,

given σ ∈ SB, there exists a unique finite and non-empty R ⊆ SB such that R = {σ′ ∈
SB | σ =⇒ σ′ �−→}, which takes one of the following forms:

{1},
{

n∑
i=1

ai.σi

}
, {a1.σ1, . . . , an.σn}, {?(σp

1)σ2}, {![σp
1]σ2} (n > 0).

Proof. By cases of σ ∈ SB: in particular, if σ = rec x.σ′ we know that σ′ �= x and

that, in case σ′ be a ⊕-term, its components are prefixed. So the longest −→ reduction

sequence out of σ necessarily consists in a number of
rec−→ steps (which is equal to

the number of occurrences of rec prefixing σ, since σ can actually be of the form

rec x.rec x2. . . . rec xn.σ
′′), followed by at most one

⊕−→ step. From the above reasoning it

easily follows also the second part of the statement.

Definition 3.2. For any σ ∈ SB and R ⊆ SB, we define

σ⇓ R if and only if R = {σ′ ∈ SB | σ =⇒ σ′ �−→}

As a consequence of Lemma 3.1, for all σ there exists a unique R such that σ ⇓ R and

R �= �. As a shorthand, we shall write σ⇓ 1, σ⇓
∑n

i=1 ai.σi, σ⇓
⊕n

i=1 ai.σi, σ⇓?(σp
1)σ2 and

σ ⇓![σp
1]σ2 whenever σ ⇓ R and R has one of the four forms in Lemma 3.1, respectively.

Equivalently σ ⇓ τ if and only if τ is the unique session behaviour such that σ
rec−→

∗
τ. By

this we have:

Corollary 3.3. For any σ, τ ∈ SB, if σ⇓ τ then rank(σ) = rank(τ).

Proof. By the above remark and Lemma 2.6.

Definition 3.4 (coinductive client/server/peer relation triple).

i. The operator H : (P(SB2) × P(SB2) × P(SB2)) → (P(SB2) × P(SB2) × P(SB2))

is defined as follows: for any triple of relations (Rc,Rs,R∗) ⊆ SB2 × SB2 × SB2,

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

Sub-behaviour relations for session-based client/server systems 1363

((σc, τc), (σs, τs), (σ∗, τ∗)) ∈ H(Rc,Rs,R∗) if and only if:

either τc ⇓ 1 & σs ⇓ 1 & τ∗ ⇓ 1 & σ∗ ⇓ 1,

or the following conditions hold, where p, q ∈ {s, c, ∗}:

a. σp ⇓
∑

i∈I ai.σpi ⇒ ∃J ⊇ I. τp ⇓
∑

j∈J aj .τpj & ∀i ∈ I. σpiRpτpi

b. σp ⇓
⊕

i∈I ai.σpi ⇒ ∃J ⊆ I. τp ⇓
⊕

j∈J aj .τpj & ∀j ∈ J. σpjRpτpj

c. σp ⇓?(σq
1)σ2 ⇒ τp ⇓?(τq1)τ2 & σ1Rqτ1 & σ2Rpτ2

d. σp ⇓![σq
1]σ2 ⇒ τ⇓![τq1]τ2 & τ1Rqσ1 & σ2Rpτ2

ii. A triple of relations (Rc,Rs,R∗) ⊆ SB2 ×SB2 ×SB2 is a coinductive client/server/peer

relation triple if and only if (Rc,Rs,R∗) ⊆ H(Rc,Rs,R∗).

Since Rc, Rs and R∗ occur covariantly in the clauses defining H(Rc,Rs,R∗), the

operator H is monotonic w.r.t. subset inclusion. Then the following fact immediately

follows by Tarsky theorem.

Fact 3.5. Let H0 = SB2 × SB2 × SB2 and Hk+1 = H(Hk); then

ν(H) =

=
⋃

{(Rc,Rs,R∗) ⊆ SB2 × SB2 × SB2 | (Rc,Rs,R∗) ⊆ H(Rc,Rs,R∗)} =

=
⋂

k∈N
Hk

is the greatest fixed point of H.

Then, we define coinductively the following relations:

Definition 3.6.

(�co.k
c ,�co.k

s ,�co.k
∗) =def Hk and (�co

c ,�co
s ,�co

∗) =def ν(H),

where Hk is defined as in Fact 3.5.

Lemma 3.7. (�c,�s,�∗) is a client/server/peer relation triple.

Proof. It suffices to check the clauses of Definition 3.4 with �c, �s and �∗ in place of

Rc, Rs and R∗ respectively. In case σ �c τ, σ
′ �s τ

′ and σ′′ �∗ τ′′ with τ⇓ 1, σ′ ⇓ 1, τ′′ ⇓ 1,

and σ′′ ⇓ 1 the first clause (before (a)) of the definition is satisfied and we are done. We

go on now treating the case of �s only, since �c and �∗ can be treated in a similar way.

Suppose that σ ⇓
∑

i∈I ai.σi: then we observe that ρ � σ and ρ �⇓ 1 if and only if

ρ =
⊕

h∈H ah.ρh for some H ⊆ I and ρh � σh for all h ∈ H . Moreover, by assumption,

ρ ∈ Client(τ) which implies that τ ⇓
∑

j∈J aj .τj for some J ⊇ H such that ρh � τh for all

h ∈ H . We can now show that for all i ∈ I Client(σi) ⊆ Client(τi) and hence, by Theorem

2.24, σi �s τi. In fact, let {ρi}i∈I be any set such that ρi ∈ Client(σi). We observe that, for

ρ =
⊕

i∈I ai.ρi, ρ � σ and hence ρi ∈ Client(τi) for all i ∈ I by the preceding observations.

If σ ⇓
⊕

i∈I ai.σi the proof is as before. Let us now consider the case σ⇓?(σq
1)σ2. Then

ρ � σ and ρ �⇓ 1 if and only if ρ =![ρq1]ρ2 such that ρ1 �q σ1 and ρ2 � σ2. Now the

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

F. Barbanera and U. de’Liguoro 1364

hypothesis σ �s τ implies τ ⇓?(τq1)τ2 where it has to be the case that ρ1 �q τ1 and

ρ2 � τ2. By the arbitrary choice of ρ we can take ρ1 = σ1, so that in particular we

have σ1 �q τ1 and, by letting ρ2 vary over the whole Client(σ2), we can conclude that

Client(σ2) ⊆ Client(τ2), that is σ2 �s τ2 as desired.

The case σ⇓![σq
1]σ2 is similar to the last one, and we are done.

Lemma 3.8. For any σ, τ ∈ SB and p = s, c, ∗:

σ �co
p τ ⇒ σ �p τ.

Proof. We shall prove that σ �co
p τ implies σ �k

p τ for k = max(rank(σ), rank(τ)) (which

suffices since �p =
⋃

i �i
p) by double induction: primary induction over k and secondary

induction over the length of certain reduction sequences. In particular, when applying

the secondary induction, we shall show, equivalently, the contraposite implication. To this

aim recall that σ ��k
p τ if and only if Clientk(σ) �⊆ Clientk(τ) when p = s, Serverk(σ) �⊆

Serverk(τ) when p = c and Peerk(σ) �⊆ Peerk(τ) when p = ∗ (in fact by the assumption

that k � rank(σ) we know that σ ∈ Clientk(σ) ∩ Serverk(σ) ∩ Peerk(σ) and therefore

Clientk(σ), Serverk(τ) and Peerk(τ) are all non-empty). Pick some ρ ∈ Clientk(σ)\Clientk(τ)

(ρ ∈ Serverk(σ) \ Serverk(τ) and ρ ∈ Peerk(σ) \ Peerk(τ), respectively): then there exist

ρ1, . . . , ρn such that ρ0‖τ0 =⇒ ρ1‖τ1 =⇒ · · · =⇒ ρn‖τn with ρn �= 1 but ρn‖τn �−→, where

ρ0 = ρ and τ0 = τ. Since ρ � σ we have that ρ0‖σ0 =⇒ ρ1‖σ1 =⇒ · · · =⇒ ρn‖σn where

σ0 = σ. Then we argue by (secondary) induction over n that σ ��co
s τ (the proofs that

Serverk(σ) �⊆ Serverk(τ) implies σ ��co
c τ and that Peerk(σ) �⊆ Peerk(τ) implies σ ��co

∗ τ

can be carried on by means of similar arguments and hence it will be omitted).

If n = 0 then ρ0‖τ0 �−→ (possibly disregarding a finite amount of internal reductions of

ρ0 and τ0), namely ρ‖τ �−→. From ρ � σ it follows that no clause in Definition 3.4 can be

satisfied and we conclude that σ ��co
c τ directly.

If n > 0 then suppose that σ⇓ σ′ and consider the possible shapes of σ′ (which cannot

be 1):

σ′ =
∑

i∈I ai.σi: since ρ = ρ0 � σ we deduce that ρ0 ⇓
⊕

h∈H ah.ρh and that H ⊆ I and

ρh � σh for all h ∈ H . In particular we have that ρ1 = ρi for some i ∈ I such that

σ1 = σi. If not τ ⇓
∑

j∈J aj .τj or J �⊇ I then we know that σ ��co
c τ immediately;

otherwise J ⊇ I , τ1 = τi and ρi = ρ1 �� τ1 = τi, which is witnessed by the reduction

ρ1‖τ1 =⇒ · · · =⇒ ρn‖τn of length n − 1. Then by the secondary induction hypothesis

we know that σi = σ1 ��co
s τ1 = τi, and we conclude that σ ��co

c τ.

σ′ =
⊕

i∈I ai.σi: symmetrically to the previous case we deduce that ρ0 ⇓
∑

h∈H ah.ρh, with

H ⊇ I , and ρi � σi for all i ∈ I . If not τ ⇓
⊕

j∈J aj .τj or J �⊆ I then we are done;

otherwise J ⊆ I , and since ρ‖τ =⇒ ρ1‖τ1 we know that τ1 = τj and ρ1 = ρj for

some j ∈ J ⊆ I ⊆ H , and we have that ρj �� τj which is proved by the reduction

ρ1‖τ1 =⇒ · · · =⇒ ρn‖τn of length n − 1: then the thesis follows by the secondary

induction hypothesis, namely σj = σ1 ��co
s τ1 = τj .

σ′ =?(σq
1)σ2: reasoning as before we have that ρ0 ⇓![ρq1]ρ2 with ρ1 �co

q σ1 and ρ2 � σ2.

We observe that h = max(rank(ρ1), rank(σ1)) < k because ρ0 = ρ ∈ Clientk(σ) so that

rank(ρ1) < rank(![ρq1]ρ2) and rank(![ρq1]ρ2) = rank(ρ) by Lemma 2.6; on the other

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

Sub-behaviour relations for session-based client/server systems 1365

hand rank(σ1) < rank(σ′) = rank(σ), the last equation holding again by Lemma 2.6.

By the primary induction hypothesis we have ρ1 �h
q σ1 so that ρ1 = ρ2 and σ1 = σ2.

If not τ⇓?(τq1)τ2 or σ1 ��co
q τ1 we are done; otherwise σ1 �co

q τ1 which by the primary

induction implies σ1 �l
q τ1 for l = max(rank(σ1), rank(τ1)) < k: let m = max(h, l), then

m < k and ρ1 �m
q σ1 �m

q τ1 by Lemma 2.23 that is ρ1 �m
q τ1. We conclude that τ1 = τ2

and that ρ2 �� τ2 is witnessed by a reduction of length n− 1; therefore σ2 ��co
s τ2 by the

secondary induction, which implies σ ��co
s τ.

σ′ =![σq
1]σ2: similar to the last case.

Theorem 3.9. (�c,�s,�∗) is the largest client/server/peer relation triple w.r.t. component-

wise inclusion, namely

(�c,�s,�∗) = (�co
c ,�co

s ,�co
∗).

Proof. (�c,�s,�∗) ⊆ (�co
c ,�co

s ,�co
∗) = ν(H) follows by Lemma 3.7 and the fact that

ν(H) is the largest client/server relation pair. The opposite inclusion is just Lemma 3.8.

We can now show Claim (8), i.e. that the natural relationship among �∗, �c and �s

does hold.

Theorem 3.10.

�∗ = �c ∩ �s

Proof. (⊇) Assume that σ �c τ and σ �s τ. If ρ ∈ Peer(σ) then ρ ∈ Client(σ) and

ρ ∈ Server(σ) by Proposition 2.19. Hence, by assumption, ρ ∈ Client(τ)∩Server(τ). Then,

by Proposition 2.19 again, ρ ∈ Peer(τ), so establishing that σ �∗ τ.

(⊆) To prove the inclusion �∗ ⊆ �c ∩ �s, let us consider the triple (�∗,�∗,�∗). It is

not difficult to check, using Theorem 3.9, that it is a coinductive client/server/peer triple.

In fact, we can use the characterization of Theorem 2.24 and check that the relation of

inclusion of the sets of peers satisfies the conditions of Definition 3.4 for all Rc, Rs and

R∗. This implies then that �∗ ⊆ �c and �∗ ⊆ �s by Theorem 3.9 again.

We end this section by defining a relation that is a model of the Gay-Hole subtyping

relation on session types, as we shall prove in the next section.

Definition 3.11 (semantic subtyping).

i. We define SB�∗ as the set SB restricted to session behaviours containing only the

polarity ∗;

ii. The semantic subtyping relation � : ⊆ SB�∗ × SB�∗ is defined as the relation �∗
restricted to pairs in SB�∗ × SB�∗.

Notice that �: is in turn the restriction to SB�∗ of the subsieve relation in Castagna

et al. (2009a), where sieves, besides having input and output prefixes (both first- and

higher-order) and the internal and external choices (with no restriction on the prefixes),

can be combined by means of boolean operators.

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

F. Barbanera and U. de’Liguoro 1366

4. CSP-session types and CSP-subtyping.

In this section we extend the syntax of session types by labelling the types of sent and

received sessions with polarities c, s and ∗, to cope with the different roles to be played

in the delegated sessions. Then we consider a formal system akin to that one in (Gay

and Hole 2005) to derive subtyping judgments A �c B, A �s B and A �∗ B for client,

server and peer subtyping, respectively. In the next section we shall then provide semantics

of session types by interpreting types as behaviours in SB, and show that the system is

sound and complete w.r.t. the sub-behaviour relations �c, �s and �∗, respectively.

We shall consider session types only (live channel types), disregarding sorts in the

terminology of Honda et al. (1998).

Definition 4.1 (CSP-session types).

i. The set of raw client/server/peer type expressions is defined according to the following

grammar:

p, q ::= c | s | ∗ polarities

A,B session types

::= end terminated session

| &〈�i : Bi | i ∈ I〉 branching

| ⊕〈�i : Bi | i ∈ I〉 selection

| ?(Ap)B input

| ![Ap]B output

| X variable

| μX.A recursion

where

— I is a finite and non-empty set of indexes;

— the �i’s belong to a denumerable set of labels;

— X is a session type variable out of a denumerable set, and it is bound in μX.A,

free otherwise: fv(A) is the set of free variables occurring in A;

— p ∈ {c, s, ∗}.
ii. The set ST of Client/Server/Peer session types, CSP-types for short, is defined as the

set of closed raw type expressions such that A is not a variable in μX.A; Moreover,

fv(A) = � in any subexpression of the form ?(Ap)B or ![Ap]B.

iii. We define ST�∗ as the set of CSP-types containing only the polarity ∗.

In definitions and in the technical treatment we consider only pure session types without

ground types G = Bool, Int, Ground types could be easily added to the syntax of

input/output types by admitting the types ?(Gp)B and ![Gp]B.

In the following, &i∈I〈�i : Bi〉 and ⊕i∈I〈�i : Bi〉 will be sometimes used as shorthand for

&〈�i : Bi | i ∈ I〉 and ⊕〈�i : Bi | i ∈ I〉 respectively.

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

Sub-behaviour relations for session-based client/server systems 1367

The restriction that A is not a variable in μX.A is the usual one to make recursive types

contractive. Beside this, CSP-session types extend ordinary session types syntax because

of polarities in the type semantics, while they have been used only for live variables in

Gay and Hole (2005) and Yoshida and Vasconcelos (2007) as well as in our Barbanera et

al. (2009).

On the other hand we are more restrictive w.r.t. input/output types. The restriction that

A must be closed in the contexts ?(Ap)B and ![Ap]B is new, and it is clearly connected

with the behavioural semantics we are proposing in this paper. It rules out types e.g. of

the shape μX. ?(Xp)A and μX. ![Xp]A which (by disregarding the polarity p) are legal

session types in the literature.

Definition 4.2 (CSP-subtyping). The client subtyping , denoted by �c, the server subtyping ,

denoted by �s, and the peer subtyping , denoted by �∗ are the binary relations on CSP-

session types defined by the following rules, where p, q ∈ {c, s, ∗}.
The symbol Γ in a judgment Γ � A �p B denotes a finite set of type inequalities of the

form C �p D. As usual Γ, C �p D abbreviates Γ ∪ {C �p D}, assuming that C �p D �∈ Γ.

Γ � A �c end (T-Ax-C) Γ � end �s A (T-Ax-S)

Γ � end �∗ end (T-Ax-P)

Γ � A �p A (T-Sub-Id) Γ, A �p B � A �p B (T-Sub-Hyp)

Γ � A{μX.A/X} �p B
(T-Sub-Unf-L)

Γ � μX.A �p B

Γ � B �p A{μX.A/X}
(T-Sub-Unf-R)

Γ � B �p μX.A

Γ,&i∈I〈�i : Ai〉 �p &j∈J〈�j : Bj〉 � Ai �p Bi ∀i ∈ I I ⊆ J
(T-Sub-&)

Γ � &i∈I〈�i : Ai〉 �p &j∈J〈�j : Bj〉

Γ,⊕i∈I〈�i : Ai〉 �p ⊕j∈J〈�j : Bj〉 � Aj �p Bj ∀j ∈ J I ⊇ J
(T-Sub-⊕)

Γ � ⊕i∈I〈�i : Ai〉 �p ⊕j∈J〈�j : Bj〉

Γ, ?(Aq)B �p ?(Cq)D � A �q C, B �p D
(T-Sub-In)

Γ � ?(Aq)B �p ?(Cq)D

Γ, ![Aq]B �p ![Cq]D � C �q A, B �p D
(T-Sub-Out)

Γ � ![Aq]B �p ![Cq]D

We say that A is a client (server, peer) subtype of B, written A �p B, whenever � � A �p B

is derivable.

We stress that the system above allows closed session types only. In particular we do

not have to care about assumptions like X �p Y in the treatment of recursion, which was

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

F. Barbanera and U. de’Liguoro 1368

the case e.g. in Amadio and Cardelli’s original subtyping system in Amadio and Cardelli

(1993).

The rules of our system are inspired to the axiomatization of recursive simple types

in Brandt and Henglein (1998), in that for each type constructor we have a rule that

coinductively defines its meaning, whereas the μ-types are simply unfolded on the right-

hand-side of the judgments. This has the technical advantage of being closer to the

coinductive characterization of the sub-behaviour relations studied in this paper.

Remark 4.3. The system in Definition 4.2 is algorithmic because it satisfies a kind of

subformula property (see Lemma 5.14 below for a precise statement), so that the upward

reconstruction of the derivation can be syntax driven. It is also deterministic, but possibly

for the choice of the order in which (T-Sub-Unf-L) and (T-Sub-Unf-R) are applied, which

is immaterial. In fact, whenever both of them need to be used in order to apply a rule

not concerning recursion, their order does not affect at all the upward reconstruction.

In Example 4.7 below, for instance, one could trivially swap Rules (T-Sub-Unf-L) and

(T-Sub-Unf-R) without any consequence at all.

4.1. Relationship between CSP- and Gay-Hole subtyping

In the present subsection we show the relationship between our system and the algorithmic

subtyping system in Gay and Hole (2005), to which we refer for its definition. By what we

previously discussed, we consider closed session types only also for the Gay-Hole system.

We denote by GHT the usual set of session types with delegation used in Gay and Hole

(2005), and by � the algorithmic subtyping relation defined there. Then we claim that the

sets ST�∗ and GHT are essentially the same (see also Fact 5.3 below).

Definition 4.4. We define �: as the restriction of �∗ to ST�∗ × ST�∗

In order to avoid too cumbersome a notation, we shall identify elements of ST�∗ with

the corresponding ones in GHT .

Proposition 4.5. Let �−
∗ be the relation defined on ST�∗ by the formal system of Definition

4.2 without axioms (T-Ax-C) and (T-Ax-S). Then, for A,B ∈ ST�∗, we have

i. � A � B ⇔ � A �−
∗ B

ii. � A �−
∗ B ⇔ � A �: B

The precise relationship between CSP-subtyping and the algorithmic subtyping of (Gay

and Hole 2005) is stated then in the following corollary.

Corollary 4.6. Let A,B ∈ ST�∗.

� A � B ⇔ � A �: B

Proposition 4.5(ii) easily descends from Remark 4.3. For what concerns Proposition

4.5(i), we do not prove it in detail, since it is rather routine and since the only difference

between our system and the algorithmic one of Gay and Hole (2005) lies in the coinductive

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

Sub-behaviour relations for session-based client/server systems 1369

treatment of type constructors rules. We illustrate instead such a different treatment by

means of an example.

Example 4.7. Given A = μX.&〈�1 : X〉 and B = μX.&〈�1 : X, �2 : C〉, where C is any
type in ST�∗, we can derive: � A �∗ B as follows:

(T-Sub-Hyp)
&〈�1 : A〉 �∗ &〈�1 : B, �2 : C〉 � &〈�1 : A〉 �∗ &〈�1 : B, �2 : C〉

(T-Sub-Unf-R)
&〈�1 : A〉 �∗ &〈�1 : B, �2 : C〉 � &〈�1 : A〉 �∗ B

(T-Sub-Unf-L)
&〈�1 : A〉 �∗ &〈�1 : B, �2 : C〉 � A �∗ B

(T-Sub-&)
� &〈�1 : A〉 �∗ &〈�1 : B, �2 : C〉

(T-Sub-Unf-R)
� &〈�1 : A〉 �∗ B

(T-Sub-Unf-L)
� A �∗ B

The same conclusion (after erasing the polarities) is derived in the system in Gay and

Hole (2005) (Figure 11), using the rules:

Γ, μX.A � B � A{μX.A/X} � B
(AS-Rec-L)

Γ � μX.A � B

and its symmetric (AS-Rec-R) to unfold the B above, plus

Γ � Ai � Bi ∀i ∈ I I ⊆ J
(AS-Branch)

Γ � &i∈I〈�i : Ai〉 � &j∈J〈�j : Bj〉

Then we can build the derivation:

(AS-Assump)
A � B,&〈�1 : A〉 � B � A � B

(AS-Branch)
A � B,&〈�1 : A〉 � B � &〈�1 : A〉 � &〈�1 : B, �2 : C〉

(AS-Rec-R)
A � B � &〈�1 : A〉 � B

(AS-Rec-L)
� A � B

where (AS-Assump) is the same axiom as (T-Sub-Hyp). Also the complexity of the two

derivations is comparable: the first derivation is higher than the second one in that it

makes the unfoldings twice; on the other hand the second derivation has a larger set of

assumptions where the unfoldings are saved, so that, looking at the systems algorithmically,

space in the second system compensate time in the first one.

As a simple example of a pair of session types having no relationship in the system

of Gay and Hole (2005), but belonging to our relation �c, we take ⊕〈�3 : ![B∗]D, �3 : E〉
and ⊕〈�3 : ![A∗]end〉, where A and B are as before and where D and E are two arbitrary

types. In the following derivation of � ⊕〈�3 : ![B∗]D, �3 : E〉 �c ⊕〈�3 : ![A∗]end〉 the

use of axiom (T-Ax-C) is essential. The derivation shows as well how to use a rule for

higher-order types, namely (T-Sub-Out).

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

F. Barbanera and U. de’Liguoro 1370

Let D be the derivation of A �∗ B as described before, weakened with the extra singleton
set of hypotheses Γ = {⊕〈�3 : ![B∗]D, �3 : E〉 �c ⊕〈�3 : ![A∗]end〉}. Then we have

D
Γ � A �∗ B

(T-Ax-C)
Γ � D �c end

(T-Sub-Out)
Γ � ![B∗]D �c ![A∗]end

(T-Sub-⊕)
� ⊕〈�3 : ![B∗]D, �3 : E〉 �c ⊕〈�3 : ![A∗]end〉

5. Behavioural semantics of CSP-subtyping.

We devote now the present section to provide a behavioural semantics for CSP-session

types and for CSP-subtyping. At the end we show how to use such semantics, together

with the results of the previous subsection, in order to get also a semantics for Gay-Hole

subtyping.

Given the definition of CSP-session types, it is straightforward to interpret them into

behaviours.

Definition 5.1 (behavioural semantics of CSP-session types). Assume, without loss of

generality, that there is a bijective mapping [[X]] = x from type variables to behaviour

variables, and that the set N is in one-to-one correspondence with the set of labels �i’s

used in session types.

Then the semantic function [[·]] : ST → SB is obtained by restricting to session types the

mapping from raw type expressions into raw behaviour expressions defined as follows:

[[end]] = 1

[[&〈�i : Bi | i ∈ I〉]] =
∑

i∈I �i.[[Bi]] [[⊕〈�i : Bi | i ∈ I〉]] =
⊕

i∈I �i.[[Bi]]

[[?(Ap)B]] = ?([[A]]p)[[B]] [[![Ap]B]] = ![[[A]]p][[B]]

[[X]] = x [[μX. A]] = rec [[X]]. [[A]]

Ground types could be interpreted into SB by means of names in N , so that we could

add the clause [[G]] = G.1 to the definition of the semantic mapping. The subtyping theory

is intended to formalize structural subtyping, so that no axiom like e.g. Int �p Real is ever

considered. For practical purposes, however, it shouldn’t be problematic to add axioms

like Int �p Real without loosing the theoretical properties of the system established in

this paper.

The interpretation mapping [[·]] is well defined and basic syntactical properties are

preserved in the following sense:

Lemma 5.2. If A ∈ ST then [[A]] ∈ SB. In particular, if A is a raw type expression,

fv([[A]]) = {x | ∃X ∈ fv(A). x = [[X]]}, so that if fv(A) = � then fv([[A]]) = �; moreover,

the mapping [[·]] on raw type expressions is well behaved w.r.t. substitution, that is

[[A{B/X}]] = [[A]]{[[B]]/[[X]]}.

Proof. By straightforward induction over the structure of A.

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

Sub-behaviour relations for session-based client/server systems 1371

It is immediate to check that we actually have the following

Fact 5.3. The mapping [[·]] : ST → SB is a bijection.

Remark 5.4. When typing π-calculus terms, dual session types play an essential role (see

Honda et al. (1998); Yoshida and Vasconcelos (2007)). Roughly, the dual of a type is

obtained by exchanging & with ⊕ and input with output. More precisely, if A is a type

expression then define the dual of A as the type expression A by:

end = end

&〈�i : Bi | i ∈ I〉 = ⊕〈�i : Bi | i ∈ I〉 ⊕〈�i : Bi | i ∈ I〉 = &〈�i : Bi | i ∈ I〉

?(Ap)B = ![Ap]B ![Ap]B = ?(Ap)B

X = X μX.A = μX.A

Now, if A ∈ ST then A ∈ ST , moreover [[A]] = [[A]], which is immediate by induction

over the structure of A.

In Remark 2.4 we discussed about the problem of providing a precise definition of dual

type in case one wished to have open expressions as delegated types, and mentioned the

solution proposed by Bernardi–Hennessy in Bernardi and Hennessy (2013b).

Given the interpretation of types, we proceed by defining the semantics of �c, �s and

�∗, and in general of judgments Γ � A �p B; recall that these are about closed types,

both in Γ and in A �p B:

Definition 5.5 (judgment semantics). Let p, q ∈ {c, s, ∗}.
i. |= A �p B iff [[A]] �p [[B]]

ii. |= Γ iff |= C �q D for all C �q D ∈ Γ

iii. Γ |= A �p B iff |= Γ implies |= A �p B

To facilitate the proofs below, it is convenient to consider the following stratified version

of Definition 5.5:

a. |=k A �p B iff [[A]] �co.k
p [[B]];

b. |=k Γ iff |=k C �p D for all C �q D ∈ Γ;

c. Γ |=k A �p B iff |=k Γ implies |=k A �p B.

Note that the stratification is done w.r.t. the characterization of the relations �p in terms

of the operator H in Theorem 3.9. In fact, by this theorem we have that |= A �p B if and

only if |=k A �p B for all k and hence:

∀k.Γ |=k A �p B ⇒ Γ |= A �p B.

This observation will be used in the proof of the following Soundness Theorem.

The opposite implication does not hold. In fact once it is the case that �|=k C �p D for

some C,D and some k, then the same is true for any h � k, but |=h′ C �p D for some

h′ < k, for h′ = 0 at least. Therefore it is possible to choose Γ such that |=k Γ and

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

F. Barbanera and U. de’Liguoro 1372

�|=k A �p B, while it is true that Γ |= A �p B just because �|= Γ, which only means that

�|=h Γ for all but finitely many h. In the Completeness Theorem, however, only the fact

that |= A �p B if and only if |=k A �p B for all k is needed.

As usual we write ambiguously Γ � A �p B for the judgment itself and the statement

that it is derivable.

Theorem 5.6 (soundness). For any judgment Γ � A �p B, with p = c, s, ∗:

Γ � A �p B ⇒ Γ |= A �p B.

Proof. We actually prove Γ � A �p B ⇒ ∀k. Γ |=k A �p B by a principal induction

over the derivation of Γ � A �p B, and a subordinate induction over k.

In case of axioms (T-Ax-C), (T-Ax-S) or (T-Ax-P) the thesis holds since [[end]] = 1

and for all σ = [[A]] and all k we have σ �co.k
c 1, 1 �co.k

s σ and 1 �co.k
∗ 1 by definition of H.

The cases of axioms (T-Sub-Id) and (T-Sub-Hyp) are obvious.

In case of rule (T-Sub-Unf-L) we observe that if [[μX.A]] = rec x.σ then rec x.σ ⇓ τ

if and only if σ{rec x.σ/x} ⇓ τ; hence [[μX.A]] �co.k
p [[B]] if and only if σ{rec x.σ/x} =

[[A{μX.A/X}]] �co.k
p [[B]], which holds by induction since it is the right-hand statement of

the judgment in the hypothesis of the rule. The case of rule (T-Sub-Unf-R) is analogous.

Of the remaining cases T-Sub-&, T-Sub-In, T-Sub-⊕ and T-Sub-Out we treat explicitly

the first two, as the others are symmetric.

(T-Sub-&). Γ |=0 &i∈I〈�i : Ai〉 �p &j∈J〈�j : Bj〉 is trivially true, since [[&i∈I〈�i : Ai〉]] �0
p

[[&j∈J〈�j : Bj〉]] holds always.

To establish Γ |=k+1 &i∈I〈�i : Ai〉 �p &j∈J〈�j : Bj〉, assume |=k+1 Γ.

Since �k
p ⊇ �k+1

p , we have that |=k Γ. By the secondary induction hypothesis: Γ |=k

&i∈I〈�i : Ai〉 �p &j∈J〈�j : Bj〉, so that it must be the case that |=k &i∈I〈�i : Ai〉 �p

&j∈J〈�j : Bj〉.
It follows that |=k Γ,&i∈I〈�i : Ai〉 �p &j∈J〈�j : Bj〉; hence by the primary induction

hypothesis: Γ,&i∈I〈�i : Ai〉 �p &j∈J〈�j : Bj〉 |=k Ai �p Bi for all i ∈ I . We conclude

that |=k Ai �p Bi for all i ∈ I .

Let [[&i∈I〈�i : Ai〉]] =
∑

i∈I �i.σi, where σi = [[Ai]], and similarly [[&j∈J〈�j : Bj〉]] =∑
j∈J �j .τj with τj = [[Bj]].

Then trivially
∑

i∈I �i.σi ⇓
∑

i∈I �i.σi and
∑

j∈J �j .τj ⇓
∑

j∈J �j .τj . On the other hand we

know that σi �co.k
p τi for all i ∈ I , since |=k Ai �p Bi. Hence

∑
i∈I �i.σi �co.k+1

p

∑
j∈J �j .τj ,

that is |=k+1 &i∈I〈�i : Ai〉 �p &j∈J〈�j : Bj〉 as desired.

(T-Sub-In). Γ |=0 ?(Ap)B �q ?(Cp)D since [[?(Ap)B]] �co.0
q [[?(Cp)D]] holds always.

To establish Γ |=k+1 ?(Ap)B �q ?(Cp)D, let us assume |=k+1 Γ.

Since �co.k
p ⊇ �co.k+1

p , we have that |=k Γ. By the secondary induction hypothesis:

Γ |=k ?(Ap)B �q ?(Cp)D, so that it must be the case that |=k ?(Ap)B �q ?(Cp)D. It

follows that |=k Γ, ?(Ap)B �q ?(Cp)D; hence by the primary induction hypothesis both

the statement Γ, ?(Ap)B �q ?(Cp)D |=k B �q D and Γ, ?(Ap)B �q ?(Cp)D |=k A �p C

hold. We conclude that |=k B �q D and |=k A �p C . Let [[?(Ap)B]] =?(σ1)σ2 and

[[?(Cp)D]] =?(τ1)τ2, where [[A]] = σ1, [[B]] = σ2, [[C]] = τ1 and [[D]] = τ2. We

trivially have that ?(Ap)B ⇓ ?(Ap)B and ?(Cp)D ⇓ ?(Cp)D. On the other hand we

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

Sub-behaviour relations for session-based client/server systems 1373

know that σ1 �co.k
p τ1 and σ2 �co.k

q τ2, since |=k A �p C and |=k B �q D. Hence

?(σp
1)σ2 �co.k+1

q ?(τp1)τ2, that is |=k+1 ?(Ap)B �q ?(Cp)D, as desired.

Corollary 5.7. For all A,B ∈ ST and p = c, s, ∗

� A �p B ⇒ [[A]] �p [[B]].

Proof. By Theorem 5.6, taking Γ = � and recalling that |= A �p B is defined as

[[A]] �p [[B]].

As far as completeness is concerned we preliminarily observe that the inverse implication

of Theorem 5.6 doesn’t hold, namely Γ |= A �p B �⇒ Γ � A �p B in general. This

is due to the fact that Γ |= A �p B is a conditional statement, which is vacuously

true when �|= Γ. This is the case if Γ contains some inequality C �q D such that

�|= C �q D, that is [[C]] ��q [[D]]. Now consider the inequalities end �c &〈� : end〉 and

&〈� : end〉 �s end: then it is easy to see that �|= end �c &〈� : end〉 (and by the way also

�|= &〈� : end〉 �s end); but end �c &〈� : end〉 |= &〈� : end〉 �s end vacuously, whereas

we have that end �c &〈� : end〉 �� &〈� : end〉 �s end because it is neither an instance of

an axiom nor of the conclusion of any rule.

Nonetheless we are able to prove a completeness theorem, namely the statement that

|= A �p B implies � A �p B, which is done below. We begin by introducing some auxiliary

concepts.

Definition 5.8. Given a finite set Γ of (closed) type inequalities and a (closed) type

inequality A �p B with p = c, s, ∗, we define, for any k ∈ N, the predicate Γ �k A �p B by:

i. Γ �k A �p B holds if either Γ � A �p B is an axiom, or k = 0;

ii. Γ �k A �p B holds if there is an instance of either (T-Sub-Unf-L) or (T-Sub-Unf-R)

inference rules
Γ � A′ �p B

′

Γ � A �p B

such that Γ �k A
′ �p B

′;

iii. Γ �k+1 A �p B holds if there is an instance of any inference rule

Γ1 � A1 �p B1 · · · Γn � An �p Bn

Γ � A �p B

but of rules (T-Sub-Unf-L) and (T-Sub-Unf-R), such that Γi �k Ai �p Bi for all

i ∈ {1, . . . , n}.

The following remark helps to understand the meaning of the judgments Γ �k A �p B.

Remark 5.9. Let us consider derivation trees whose nodes are labelled by sub-typing

judgments and such that each internal node represents the conclusion of a rule and its

immediate descendants its premises. Hence a derivation is a finite derivation tree whose

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

F. Barbanera and U. de’Liguoro 1374

leaves are (instances of) axioms. Then the meaning of Γ �k A �p B is that there exists a

finite derivation tree D with conclusion Γ � A �p B which possibly is not a derivation, as

it could have some leaves which are not axioms. The index k is a bound to the number

of the rules in a branch of D other than (T-Sub-Unf-L) and (T-Sub-Unf-R). Of course if

Γ �k A �p B then, for any h � k, Γ �h A �p B holds, and its tree D′ can be chosen so that

D′ ⊆ D, when considered as prefix closed sets of (labelled) nodes. In fact, as previously

mentioned in Remark 4.3, the derivation system is syntax directed but when both types

in the right-hand-side inequation are μ-types. Such types, however, must be unfolded in

order to match the conclusion of any rule, and hence there can be ambiguity only about

the order of rules (T-Sub-Unf-L) and (T-Sub-Unf-R). It is immediate to check that any

possible choice about such an order does work.

If Γ � A �p B then Γ �k A �p B for any k, and in fact the derivation of Γ � A �p B

is exactly the derivation tree establishing Γ �k′ A �p B for some suitably large k′. On the

other hand it is not necessarily the case that the branches of the derivation tree proving

Γ �k A �p B can be extended to reach a true derivation of Γ � A �p B; in the case

branches can be extended, this cannot be done infinitely many times, as it will be shown

at the end of the completeness proof.

The predicate Γ �k A �p B is well defined by induction over k: this follows by the

fact that μ-types are contractive, hence condition (ii) of Definition 5.8 cannot be satisfied

infinitely many times. Contractivity also implies that the following mapping over ST (also

considered in Gay and Hole (2005)) is well defined:

unfold(A) =

{
unfold(B{A/X}) if A = μX.B

A otherwise.

Indeed by contractivity of μ-types we know that any such a type is of the form

μX1 . . . μXn.A where A is neither a variable nor a μ-type. It follows that

unfold(μX1 . . . μXn.A) is always defined.

Lemma 5.10. For any k ∈ N

Γ �k A �p B ⇔ Γ �k unfold(A) �p unfold(B).

Proof. The thesis is a consequence of Definition 5.8 by observing that, reading de-

rivations in the upward sense, no μ-type can ever be used before unfolding it through

occurrences of either rule (T-Sub-Unf-L) or (T-Sub-Unf-R), and that the index k does

not decrease right in that cases.

Lemma 5.11. For any A ∈ ST :

[[A]]⇓ [[unfold(A)]].

Proof. This is an immediate consequence of the fact that [[μX.A]] = rec x.[[A]], where

x = [[X]], and that the semantic interpretation is well behaved w.r.t. substitution by

Lemma 5.2.

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

Sub-behaviour relations for session-based client/server systems 1375

For the proof of Lemma 5.12 below, the following notation will be useful.

Let A ∈ ST be not a μ-type. Then we write op(A) to denote the main type constructor

of A; in particular we have op(end) = end. If instead A is a μ-type then we put

op(A) = op(unfold(A)). By this convention and the definition of unfold(A) we have that

op(A) = op(unfold(A)) for any A which is not a variable, and for closed A a fortiori.

Lemma 5.12. For any k ∈ N:

|=k Γ, A �p B ⇒ Γ �k A �p B

Proof. In the following we assume that A �p B �∈ Γ, since otherwise Γ �k A �p B holds

trivially by definition because of the axiom (T-Sub-Hyp).

We prove the thesis by induction over k. When k = 0 the thesis holds immediately

since Γ �0 A �p B is always true. Let k > 0: by Lemma 5.11 Γ �k A �p B if and only if

Γ �k unfold(A) �p unfold(B); then it suffices to establish the latter proceeding by cases

of op(A) and op(B), which are the principal type constructors of unfold(A) and unfold(B)

respectively.

op(A) = end and op(B) �= end, i.e. unfold(A) = end and unfold(B) �= end. If p = s

then Γ � end �s B is an instance of the (T-Ax-S) axiom hence Γ �k end �s B holds

immediately. If instead p = c first observe that [[A]] ⇓ [[end]] by Lemma 5.11, and

[[end]] = 1. Now |=k Γ, A �c B implies |=k A �c B and hence |=k end �p B i.e. 1 �co.k
c

[[B]]. By definition of �co.k
p this is only possible if [[B]]⇓ 1 so that unfold(B) = end and

Γ �k end �p end is an instance of the axiom (T-Sub-Id).

op(B) = end and op(A) �= end: this is similar to the previous case, but for using axiom

(T-Ax-C) in place of (T-Ax-S).

op(A) = op(B) = end. If p = s, c then we proceed as in the previous cases. If p = ∗ then

Γ � end �∗ end is an instance of the (T-Ax-P) axiom and hence Γ �k end �∗ end

holds immediately.

op(A) = &: then unfold(A) = &〈�i : Ai | i ∈ I〉 for some Ai, so that we have that

[[A]]⇓ [[&〈�i : Ai | i ∈ I〉]] by Lemma 5.11, where [[&〈�i : Ai | i ∈ I〉]] =
∑

i∈I �i.[[Ai]].

By hypothesis we have that |=k Γ, A �p B, which implies, by what stated above,

that [[unfold(B)]] = [[&〈�j : Bj | j ∈ J〉]] =
∑

j∈J �j .[[Bj]] where
∑

i∈I �i.[[Ai]] �co.k
p∑

j∈J �j .[[Bj]]. It follows that, by definition of �co.k
p , I ⊆ J and [[Ai]] �co.k−1

p [[Bi]] for all

i ∈ I .

Since �co.k
p ⊆�co.k−1

p , we have that |=k Γ, A �p B implies |=k−1 Γ, A �p B and in

particular |=k−1 &〈�i : Ai | i ∈ I〉 �p &〈�j : Bj | j ∈ J〉. By the above we conclude that

|=k−1 Γ,&〈�i : Ai | i ∈ I〉 �p &〈�j : Bj | j ∈ J〉, Ai �p Bi for all i ∈ I . By induction this

implies that

Γ,&〈�i : Ai | i ∈ I〉 �p &〈�j : Bj | j ∈ J〉 �k−1 Ai �p Bi

for all i ∈ I; but since I ⊆ J we conclude by rule (T-Sub-&) that

Γ �k &〈�i : Ai | i ∈ I〉 �p &〈�j : Bj | j ∈ J〉

as desired.

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

F. Barbanera and U. de’Liguoro 1376

op(B) = &: this is symmetric to the previous case.

The remaining cases of op(A) and op(B) can be treated in the same manner.

In order to complete the proof of completeness, it remains to prove that if Γ �k A �p B

for all k then Γ � A �p B. This is done with minor differences by means of the same

proof as Lemma 10 in Gay and Hole (2005), which in turn adapts to session types the

proof in Pierce and Sangiorgi (1996), Lemma 2.4.1.

Definition 5.13 (subterms). For any (in general open) A ∈ ST define the set Sub(A) of

sub-expressions of A by the following clauses:

i. Sub(end) = {end},
ii. Sub(&〈�i : Ai | i ∈ I〉) = {&〈�i : Ai | i ∈ I〉} ∪

⋃
i∈I Sub(Ai),

iii. Sub(⊕〈�i : Ai | i ∈ I〉) = {⊕〈�i : Ai | i ∈ I〉} ∪
⋃

i∈I Sub(Ai),

iv. Sub(?(Tp)B) = { ?(Tp)B} ∪ Sub(T) ∪ Sub(B),

v. Sub(![Tp]B) = { ![Tp]B} ∪ Sub(T) ∪ Sub(B),

vi. Sub(μX.B) = {C{μX.B/X} | C ∈ Sub(B)},
vii. Sub(X) = {X}.

Given the judgments Γ � A �p B and Γ′ � C �q D, let us define

Γ � A �p B �R Γ′ � C �q D

if and only if Γ � A �p B is not an instance of any axiom and Γ � A �p B and

Γ′ � C �q D are instances of the conclusion and of a premise of rule (R), respectively.

Let us further define Γ � A �p B � Γ′ � C �q D if Γ � A �p B �R Γ′ � C �q D for some R.

In the following the notations below will be used:

Sub(A �p B) = Sub(A) ∪ Sub(B)

Sub(Γ) =
⋃

{Sub(C �p D) | C �p D ∈ Γ}

Lemma 5.14. Suppose that Γ � A �p B �R Γ′ � C �q D, then:

i. Γ ⊆ Γ′

ii. Sub(C �q D) ⊆ Sub(A �p B),

iii. Γ′ ⊆ Sub(Γ) ∪ Sub(A �p B).

Proof. By direct inspection of the rules.

Lemma 5.15. There exists no infinite chain of typing judgments w.r.t. �.

Proof. Toward a contradiction, let Γ0 � A0 �p0
B0 �R0

Γ1 � A1 �p1
B1 �R1

· · · be such

an infinite chain. Because of the contractiveness of the μ-types, Ak, Bk cannot always

be μ-types from a given index on, and hence for every i there exists j � i such that

Rj �∈ {T-Sub-Unf-L,T-Sub-Unf-R}, and in particular there exist infinitely many such

Rj ’s. Being this the case, for all such j’s we have, by definition of Sub(), that Aj ∈ Sub(Aj),

Bj ∈ Sub(Bj). Moreover, we have necessarily that Aj �pj Bj ∈ Γj+1 \ Γj , since otherwise

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

Sub-behaviour relations for session-based client/server systems 1377

Γj � Aj �pj Bj would be an instance of axiom (T-Sub-Hyp). From this fact, together with

Lemma 5.14(i), it follows that the cardinalities |Γi| are unbounded. However, by repeated

applications of Lemma 5.14(iii), we know that, for all i, Γi ⊆ Γ0 ∪ Sub(A0 �p0
B0) which

is a finite set.

Corollary 5.16. Let p = c, s, ∗. If Γ �k A �p B for all k then Γ � A �p B.

Proof. We proceed by contradiction. Let us then assume that Γ �k A �p B for all k and

that Γ �� A �p B. If Γ �k A �p B then there exists a derivation tree Dk with conclusion

Γ � A �p B and possibly some leaves which are not axioms. By Remark 5.9 we can

choose these trees so that Dh ⊆ Dk whenever h � k, where Dh and Dk are viewed as

prefix closed sets of nodes. Now, let D =
⋃

k Dk . If Γ �� A �p B then D is infinite, hence it

has an infinite branch by König lemma, since it is a finitary tree. But then the judgments

labelling such a branch would form an infinite chain w.r.t. �, contradicting Lemma 5.15.

Theorem 5.17 (completeness). Let Γ, A �p B be a finite set of type inequalities among

types, with p = c, s, ∗, then:

Γ |= A �p B ⇔ (�|= Γ ∨ Γ � A �p B).

Proof. (⇐) If �|= Γ then Γ |= A �p B holds vacuously; if instead Γ � A �p B then

Γ |= A �p B follows by Theorem 5.6.

(⇒) If Γ |= A �p B and |= Γ then |= Γ, A �p B, and hence |=k Γ, A �p B for all k. By

Lemma 5.12 this implies Γ �k A �p B for all k, and then Γ � A �p B by Corollary 5.16.

We get now as Corollaries, a number of results.

Corollary 5.18.

i. The relations �s, �c and �∗ over SB are decidable.

ii. For all closed A,B ∈ ST and p = c, s, ∗:

� A �p B ⇔ [[A]] �p [[B]].
iii.

� A �∗ B ⇔ � A �c B & � A �s B

Proof. (i) By Point (ii) and Fact 5.3, since � A �p B is decidable by Lemma 5.15.

(ii) By Theorem 5.17, taking Γ = �.

(iii) By Theorem 3.10 and point (ii).

We end our work by showing that the Gay and Hole subtyping relation is sound and

complete w.r.t. to our semantic subtyping of Definition 3.11.

Recall that we identify elements of ST�∗ and the corresponding ones in GHT .

Corollary 5.19 (soundness and completeness of Gay and Hole subtyping). Let A,B ∈ ST�∗.

� A � B ⇔ [[A]] �: [[B]]

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

F. Barbanera and U. de’Liguoro 1378

Proof.

� A � B ⇔ � A �: B (Corollary 4.6)

⇔ � A �∗ B (Definition 4.2)

⇔ � A �c B & � A �s B (Corollary 5.18(iii))

⇔ [[A]] �c [[B]] & [[A]] �s [[B]] (Corollary 5.18(ii))

⇔ [[A]] �∗ [[B]] (Theorem 3.10)

⇔ [[A]] �: [[B]] (Definition 3.11)

Remark 5.20. In Barbanera and de’Liguoro (2010) it was erroneously stated that Gay and

Hole subtyping can be modelled by the relation �c ∩ �s. Such a statement, as it is, does

not hold. In fact it is enough to consider the following counterexample: let us consider

the behaviours ?(Dc).end and ?(endc).end, where D is an arbitrary behaviour different

from end. In our typing system it is easy to show that both

?(Dc).end �c ?(endc).end and ?(Dc).end �s ?(endc).end

hold, whereas at the same time we have that

?(D).end �� ?(end).end and ?(Dc).end �� ?(endc).end

where � is the Gay–Hole subtyping relation†.

Actually a model that can be obtained for Gay and Hole subtyping from the system

without �∗ is the relation �c ∩ �̆s, where �̆s is defined by σ�̆sτ ⇔ σ̆ �s τ̆, where σ̆

is obtained from σ by exchanging all the polarities in σ (i.e. by replacing c by s and

vice versa). Intuitively, the use of ˘(·) in the relation �c ∩�̆s forces the synchronizing

higher-order actions to be the servers of each other.

6. Related work

The starting point of the present work are the subtyping system for session types in

Gay and Hole (2005) and the contract theory in Carpineti et al. (2006), Laneve and

Padovani (2007), Castagna et al. (2009b) and Castagna and Padovani (2009). In particular

the concept of compliance originates from Laneve and Padovani (2007); however, we

depart from the original definition adopting a more general concept, such that even non-

terminating behaviours can be compliant. In fact we allow the satisfaction in the limit of

the requirement that all the actions by the client should find an adequate reply by the

server. This is similar to Padovani (2009b), and we give a definition which is literally the

same as that one used in Padovani (2009a).

On the other hand, the concept of ‘subsession’ from Padovani (2009b) (which is the

same as that of ‘compliance’ in Castagna and Padovani (2009)) is not our compliance,

† Such a counterexample was pointed out to us by an anonymous referee of a draft version of the present

paper, whom we thank.

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

Sub-behaviour relations for session-based client/server systems 1379

nor one of our sub-behaviour relations. Rather it is comparable to our orthogonality and

behavioural subtyping, since for the test to succeed it is required that both sides of a

parallel combination complete (reaching a final state).

With respect to session type subtyping as presented in Gay and Hole (2005) we have

used a slightly different version of the algorithmic subtyping system, inspired to the

subtyping system in Brandt and Henglein (1998) for the simple types with arrow and

μ-types. The resulting system, though more verbose than the original one, is closer to the

coinductive characterization of the sub-behaviour preorders and technically more suitable

for our treatment. In the study of the proof theoretical properties of the system we have

largely profited of Pierce and Sangiorgi (1996) and Gapeyev et al. (2002).

The issue of comparing contracts to session types has been addressed in Laneve

and Padovani (2008) and Castagna et al. (2009a), besides the quoted (Padovani 2009b;

Castagna and Padovani 2009). The choice of restricting to session behaviours is responsible

for the neat characterization of the main concepts involved, and first of all of the notion

of the dual of a behaviour. To appreciate the advantage of the definition of session

behaviours one could compare it to the difficult treatment of duality for the full set of

behaviours in Laneve and Padovani (2008) and the fact the encodings from session types

to contracts and vice versa are not inverse each other.

A restriction to contracts, producing an effect similar to the one induced by our

restrictions, has been proposed in Bravetti and Zavattaro (2008) where terms like a + b.c

and also like a + b are avoided by imposing any output action b to be preceded by an

internal tau action; however, the absence of an internal choice and the ability of mixing

input (i.e. branching actions in our interpretation) and output summands (which are

naturally interpreted as selection actions) make this behaviour calculus rather unsuitable

for our purposes.

Finally, the recent work (Bernardi and Hennessy 2013) elaborates on the sub-behaviour

preorders and on the definition of session behaviours considered in the present paper, as

well as in the former (Barbanera and de’Liguoro 2010), and shows that the intersection

of server and client sub-behaviour is a fully abstract model of subtyping of first order

session types when restricted to ‘session contracts’, which essentially coincide with first-

order behaviours in SB. This result (but not the proof) is the same as our completeness

Theorem and Corollary 5.18(ii), which are however more general.

Concerning the behavioural semantics of higher order session types, namely with

session delegation, the stratified approach that is used in the present paper originates

from (Castagna et al. 2009a) and it was developed in Barbanera and de’Liguoro (2010).

An alternative model that doesn’t use stratification, therefore allowing unrestricted types

for delegation, has been proposed first in Padovani (2013), and further elaborated in

Bernardi and Hennessy (2013b). Even if the latter model can interpret a larger set of

session types, we conjecture that it is a conservative extension of ours.

7. Conclusion

We have considered a behavioural semantics of session types interpreted as a suitable

kind of contracts. Such particular contracts, which we dub session behaviours, enable also

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

F. Barbanera and U. de’Liguoro 1380

higher-order input/output of contracts. The sent/received contracts are equipped with a

label that expresses the role (client, server or peer) played by the user of a sent/received

‘component’ exhibiting that contract. The notions of client, server and peer (this last

notion being the intersection of the first two) descend from the concept of compliance

from contract theory. Three sub-behaviour pre-orders can then be defined as the inclusion

relation of the sets of clients, servers and peers, respectively. We have shown that the

three pre-orders provide a sound and complete semantics for an extension with roles

of Gay and Hole subtyping theory for session types. Such a system have been proved

to be decidable, so that the sub-behaviour relations we have studied are decidable as

well. As a by-product, also the original theory of subtyping has a complete model by

interpreting subtyping as a suitable restriction of the peer sub-behaviour relation, with

the mild restriction that input/output types have to be closed.

Acknowledgements

We wish to thank Luca Padovani for several discussions on the topics of this paper

since the time of its conference version. We also thank the anonymous referees for their

comments and for drawing our attention to an error. We are grateful to Mariangiola

Dezani-Ciancaglini for her everlasting support.

References

Amadio, R. and Cardelli, L. (1993) Subtyping recursive types. ACM Transactions on Programming

Languages and Systems 15 (4) 575–631.

Barbanera, F., Capecchi, S. and de’Liguoro, U. (2010) Typing asymmetric client-server interaction.

In: Proceedings of FSEN’09. Lecture Notes in Computer Science 5961 97–112.

Barbanera, F. and de’Liguoro, U. (2010) Two notions of sub-behaviour for session-based

client/server systems. In: Proceedings of PPDP’10. ACM SIGPLAN 155–164.

Bernardi, G. and Hennessy, M. (2013a) Modelling session types using contracts. Mathematical

Structures in Computer Science, To appear.

Bernardi, G. and Hennessy, M. (2013b) Mutually testing processes - (Extended Abstract). In:

Proceedings of CONCUR’13. Lecture Notes in Computer Science 8052 61–75.

Bernardi, G. and Hennessy, M. (2013c) Using higher-order contracts to model session types. In:

http://adsabs.harvard.edu/abs/2013arXiv1310.6176B.

Brandt, M. and Henglein, F. (1998) Coinductive axiomatization of recursive type equality and

subtyping. Fundamenta Informaticae 33 (4) 309–338.

Bravetti, M. and Zavattaro, G. (2007) Contract based multi-party service composition. In:

Proceedings of FSEN’07. Springer Lecture Notes in Computer Science 4767 207–222.

Bravetti, M. and Zavattaro, G. (2008) A foundational theory of contracts for multi-party service

composition. Fundamamenta Informaticae 89 (4) 451–478.

Carpineti, S., Castagna, G., Laneve, C. and Padovani, L. (2006) A formal account of contracts for

Web Services. In: Proceedings of WS-FM’06. Lecture Notes in Computer Science 4184 148–162.

Castagna, G., Dezani-Ciancaglini, M., Giachino, E. and Padovani, L. (2009) Foundations of session

types. In: Proceedings of PPDP’09, ACM Press 219–230.

Castagna, G. and Frisch, A. (2005) A gentle introduction to semantic subtyping. In: Proceedings of

ICALP’05. Lecture Notes in Computer Science 3580 30–34.

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

Sub-behaviour relations for session-based client/server systems 1381

Castagna, G., Gesbert, N. and Padovani, L. (2009) A theory of contracts for web services. ACM

Transactions on Programming Languages and Systems (TOPLAS)volume 31, number 5.

Castagna, G. and Padovani, L. (2009) Contracts for mobile processes. In: Proceedings CONCUR’09.

Lecture Notes in Computer Science 5710 211–228.

De Nicola, R. and Hennessy, M. (1987) CCS without tau’s. In: Proceedings of TAPSOFT’87. Lecture

Notes in Computer Science 249 138–152.

De Nicola, R. and Hennessy, M. (1993) Testing equivalence for processes. In: Proceedings of

ICALP’83. Lecture Notes in Computer Science 154 548–560.

Dezani-Ciancaglini, M., de’ Liguoro, U. and Yoshida, N. (2008) On progress for Structured

communications. In: Proceedings of TGC’07. Lecture Notes in Computer Science 4912 257–275.

Gapeyev, V., Levin, M. Y. and Pierce, B. C. (2002) Recursive subtyping revealed. Journal of Functional

Programming 12 (6) 511–548.

Gay, S. and Hole, M. (1999) Types and subtypes for client-server interactions. In: Proceedings of

ESOP’99. Lecture Notes in Computer Science 1576 74–90.

Gay, S. and Hole, M. (2005) Subtyping for session types in the Pi-calculus. Acta Informatica 42 (2)

191–225.

Honda, K., Vasconcelos, V. T. and Kubo, M. (1998) Language primitives and type disciplines for

structured communication-based programming. In: Proceedings of ESOP’98. Lecture Notes in

Computer Science 1381 22–138.

Laneve, C. and Padovani, L. (2007) The must preorder revisited: An algebraic theory for web

services contracts. In: Proceedings of CONCUR’07. Lecture Notes in Computer Science 4703

212–225.

Laneve, C. and Padovani, L. (2008) The pairing of contracts and session types. In: Concurrency,

Graphs and Models. Lecture Notes in Computer Science 5065 681–700.

Leavens, G. T. and Pigozzi, D. (2000) A complete algebraic characterization of behavioral subtyping.

Acta Informatica 36 (8) 617–663.

Padovani, L. (2010) Contract-based discovery and adaptation of web services. Theoretical Computer

Science 411 (37) 3328–3347.

Padovani, L. (2009) Session types at the mirror. In: Proceedings of IVE’09. Electronic Proceedings

in Theoretical Computer Science 12 71–86.

Padovani, L. (2011) Private communication.

Padovani, L. (2012) On projecting processes into session types. Mathematical Structures in Computer

Science 22 (2) 237–289.

Padovani, L. (2013) Fair subtyping for multi-party session types. Mathematical Structures in Computer

Science, To appear.

Pierce, B. and Sangiorgi, D. (1996) Typing and subtyping for mobile processes. Mathematical

Structures in Computer Science 6 (5) 409–453.

Ravara, A., Resende, P. and Vasconcelos, V. T. (2012) An algebra of behavioural types. Information

and Computation 212 64–91.

Rensink, A. and Vogler, W. (2007) Fair testing. Information and Computation 205 (2) 125–198.

Sangiorgi, D. and Walker, D. (2001) The π-Calculus: A Theory of Mobile Processes, Cambridge

University Press.

Yoshida, N. and Vasconcelos, V. T. (2007) Language primitives and type disciplines for structured

communication-based programming revisited. In: Proceedings of SecReT’06. Electronic Notes in

Theoretical Computer Science 171 73–93.

https://doi.org/10.1017/S096012951400005X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400005X

