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Abstract

A novel online antenna array calibration method is presented in this paper for estimating
direction-of-arrival (DOA) in the case of uncorrelated and coherent signals with unknown
gain-phase errors. Conventional calibration methods mainly consider incoherent signals for
uniform linear arrays with gain-phase errors. The proposed method has better performance
not only for uncorrelated signals but also for coherent signals. First, an on-grid sparse tech-
nique based on the covariance fitting criteria is reformulated aiming at gain-phase errors to
obtain DOA and the corresponding source power, which is robust to coherent sources.
Second, the gain-phase errors are estimated in the case of uncorrelated and coherent signals
via introducing an exchange matrix as the pre-processing of a covariance matrix and then
decomposing the eigenvalues of the covariance matrix. Those parameters estimate values con-
verge to the real values by an alternate iteration process. The proposed method does not
require the presence of calibration sources and previous calibration information unlike offline
ways. Simulation results verify the effectiveness of the proposed method which outperforms
the traditional approaches.

Introduction

Direction-of-arrival (DOA) estimation in an antenna array system has been an intensive
research area in communications, radar, and many other fields [1] for several decades.
Various techniques have been proposed for estimating DOA of far-field, narrowband sources,
including the traditional subspace methods and recently developed sparse methods. The
MUltiple SIgnal Classification (MUSIC) algorithms [2, 3] and the Estimation of Signal
Parameters via Rotational Invariance Techniques (ESPRIT) [4, 5] are undoubtedly the most
successful super-resolution methods, which are based on the orthogonality of subspaces.
However, these subspace-based methods are sensitive to coherent sources. Thus, some
methods [6, 7] are proposed to solve the source correlation by spatial smoothing technique
without considering gain-phase errors. With the recent advances in sparse signal processing
[8, 9], the performance of DOA estimation algorithms have been further enhanced by exploit-
ing the spatial sparsity in direction of sources. The sparse methods estimate DOAs by applying
sparse representation and compressed sensing techniques. In particular, the continuous direc-
tion range is approximated by a set of discrete grid points and the DOAs are assumed to lie on
a prescribed grid. Those sparse methods are so popular in recent decades due to these obvious
pro: no prior knowledge of the number of sources, small number of snapshots (even a single
snapshot), and robustness to coherent sources. The available sparse algorithms are mainly
divided into three categories [10]: on-grid algorithms [11, 12], off-grid algorithms [13, 14],
and gridless algorithms [15, 16]. The on-grid methods are also dependent on the grid selection
so that they inevitably encounter the problem of grid mismatch. The off-grid and gridless
methods are applied to cope with the grid mismatch problem. Moreover, the gridless methods
completely solve it because of direct operating in the continuous domain. The semiparametric
iterative covariance-based estimation (SPICE) method [11] uses the covariance fitting criteria
which have sound statistical motivation. The source power and noise variances are estimated
by alternate iteration. In [15], the sparse and parametric approach (SPA) is a discretization-free
sparse method, which is also based on covariance fitting criteria, and first ever introduced for
continuous DOA estimation which completely eliminates grid mismatches in existing grid-
based methods. In addition, the SPICE + pp method is also advanced to further improve
the performance of both the SPICE and the SPA.

Although those subspace and sparse methods have excellent performance of DOA estimate,
they are critically dependent on the knowledge of array manifold. Unfortunately, in practical
application scenarios, the array manifold is often influenced by unknown gain-phase errors.
Without array manifold calibration, the estimator’s performance could degrade substantially
[17]. Therefore, it is necessary to develop DOA estimation methods in the presence of array
errors. The existing correction methods are mainly divided into two categories [18]: active
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calibration methods and self-calibration methods. The active cali-
bration method [19] performs offline estimation of the array error
parameters by setting the precisely known calibration signals,
which is rarely guaranteed in practice. An improved offline
method [20] is proposed by using two calibration sources in
unknown direction, but it is also invalid when directions of the
two calibration sources are equal. The self-calibration methods
are carried out online and are blind approaches. They can esti-
mate the perturbation as well as DOA of sources simultaneously
and do not require knowledge of the exact locations of sources.
The method in [21], named as the WF method for convenience,
is based on alternative iteration algorithm for simultaneously esti-
mating the DOA and gain-phase errors. However, it requires the
assumption that the array perturbations are small. The error esti-
mation in [22] is facilitated by considering the Toeplitz structure
of the sample covariance matrix without calibration signals, how-
ever, it is limited to the array with particular geometries. The
method in [23] uses the ESPRIT technique to estimate the
DOA and gain-phase errors, but requires the information of cali-
brated sensors. Other methods in [24, 25] present non-iterative
algorithms which have the advantage that DOA estimates are
independent of gain-phase errors, but require two signals spatially
far separated from each other. All of them [21–25] do not con-
sider the gain-phase errors in the case of coherent signals.
Coherent signals usually exist in some scenarios, such as wireless
communication systems, which result in rank deficiency of the
sample data covariance matrix, and the above-mentioned
methods may not be application. To the best of our knowledge,
however, there are very limited methods that can resolve DOAs
of coherent signals in the presence of unknown gain-phase errors.

Considering these issues, in this paper, a new iteration method
is proposed to estimate the DOA of uncorrelated and coherent
signals with gain-phase errors simultaneously. First, the gain
errors are estimated by using the diagonal of the covariance
matrix subtracting the noise term. Second, inspired by the
SPICE method, the source power and noise variances in the
case of existing gain-phase errors are deduced respectively because
gain-phase errors just have effects on the signal sources. Finally,
we estimate the phase errors by introducing an exchange matrix
and combining the WF method. The exchange matrix is a special
case of forward and backward space smoothing method and can
reduce the correlation between signal sources. Furthermore, the
proposed method is applied to solve the problem of performance
degradation in the SPA method under the condition of gain-
phase errors. The problem is addressed by using the estimated
gain-phase errors and source powers of the proposed method as
initial values of the SPA with gain-phase errors, which is called
the combined method.

Compared with the available works, our method has two con-
tributions: (1) estimate the DOA and gain-phase errors simultan-
eously for not only the uncorrelated sources but also the coherent
sources. (2) Resolve the problem of performance deterioration of
the SPA method with gain-phase errors. Some experiments are
performed on the varying gain error ranges, varying signal to
noise ratios (SNRs) and varying snapshots, and the simulation
results verify that the proposed method has well performance of
estimating DOA and gain-phase errors in the uncorrelated
sources and the coherent sources cases, and illustrate that the
combined method can improve the performance of the SPA in
the case of gain-phase errors.

Notations used in this paper are as follows. Throughout the
paper, we use capital italic bold letters to represent matrices

and operators, and lowercase italic bold letters to represent vec-
tors. For a given matrix A, �A denotes the complex conjugate
matrix, AT denotes the transpose, AH represents the conjugate
transpose matrix, and Amn denotes the (m, n) the element of A.
tr(A) denotes the trace of A. I denotes the identity matrix. ·‖ ‖
denotes the Frobenius norm for matrices and l2 norm for vectors.
R̂ is an estimator of R and E[ • ] denotes expectation.

The rest of the paper is organized as follows. In the Section
“Data model”, the mathematical model is formulated. In the
Section “The proposed method”, the calibration algorithm is pre-
sented. Section “A combined method” introduces a combined
method. Section “numerical Simulations” presents simulation
results. Conclusions are drawn in the Section “Conclusion’.”

Data Model

Consider a linear array of M isotropic sensors radiated by D nar-
rowband far-field sources. Let θ = [θ1, …, θK]

T and {uk}
K
k=1

denotes a grid that covers Ω∈ [− 90°, 90°). Ω denotes the set
of possible locations, and K denotes the grid number. For simpli-
city we assume that the signal sources and the sensors are copla-
nar, take the first sensor as the reference point, and fix its location
as the origin of coordinates, i.e., (x1, y1) = (0, 0). The elements are
uniformly distributed on the x axis, and the array spacing is half-
wavelength. The observed signals at the uniform linear array
(ULA) along the x axis are given by

y(t) =
∑K
k=1

a(uk)sk(t) + n(t) = A(u)s(t) + n(t)

t = 1, . . . , N(M × 1)
(1)

where y(t), s(t), and n(t) denote the observed snapshot, the vector
of source signals, and the vector of measurement noise, respect-
ively. a(uk) = [1 ejp sin uk . . . ej(M−1)p sin uk ]T is the steering vector.
t denotes the tth snapshot. M is the number of sensors and N is
the snapshot number. A(θ) is the array manifold matrix given by
A(θ) = [a(θ1),…, a(θK)].

Equation (1) denotes the ideal model without gain-phase
errors. Considering the gain-phase errors, (1) should be rewritten
as

y(t) = GA(u)s(t) + n(t) = GFA(u)s(t) + n(t) (2)

where G = GF = diag([a1e−jf1 , . . . , aMe−jfM ]T ) denotes the
gain-phase errors. G = diag([α1, …, αM]

T) and αm denotes the
gain-error diagonal matrix and the gain error of the mth sensor.
F = diag([e−jf1 , . . . , e−jfM ]T ) and fm denotes the phase-error
diagonal matrix and the phase error of the mth sensor. α1 = 1,
f1 = 0.

More compactly, (2) can be written as

Y = GA(u)S+ E (3)

where

Y = [y(1), . . . , y(N)]
S = [s(1), . . . , s(N)]
E = [n(1), . . . , n(N)]
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Assumption 1: The noise n(t) is assumed to be spatially and
temporarily uncorrelated.

E[n(t1)nH(t2)] = diag(s)dt1,t2 (4)
where σ = [σ1, …, σM]

T denotes the noise variance and dt1,t2 is a
delta function.

dt1,t2 =
1, if t1 = t2
0, elsewhere

{
(5)

Assumption 2: The source signals s(t) is independent of the
noise n(t).

E[s(t1)sH(t2)] = diag(p)dt1,t2 (6)
where p = [ p1, …, pK]

T denotes the source power.
Assumption 3: The data snapshots {y(1), …, y(N)}(n!/(r!(n−

r)!) are uncorrelated with each other and have the following
covariance matrix:

R = E[y(t)yH(t)]
= GA(u)diag(p)AH(u)GH + diag(s)

= [Ga1, . . . , GaK ]

p1 0 · · · 0

0 . .
. · · · ..

.

..

. ..
. . .

. ..
.

0 · · · · · · pK

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

aH1 G
H

..

.

aHKG
H

⎡
⎢⎢⎣

⎤
⎥⎥⎦

+

s1 0 · · · 0

0 . .
. · · · ..

.

..

. ..
. . .

. ..
.

0 · · · · · · sM

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

= [Ga1, . . . , GaKI]

p1 0 · · · · · · · · · · · · 0

0 p2 0 · · · · · · · · · 0

..

.
0 . .

. ..
. ..

. ..
. ..

.

0 · · · · · · pK · · · · · · 0

0 · · · · · · · · · s1 · · · 0

..

. ..
. ..

. ..
. ..

. . .
. ..

.

0 · · · · · · · · · · · · · · · sM

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

aH1 G
H

..

.

aHKG
H

I

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

(7)

The Proposed Method

Gain error estimation

Denote R̂ = YYH/N as the sample covariance. The eigendecom-
position of R̂ is given as

R̂=
∑M
m=1

gR̂,muR̂,mu
H
R̂,m (8)

where {gR̂,m}
M
m=1 denotes the eigenvalues and {uR̂,m}

M
m=1 is the

corresponding eigenvectors. Arrange those eigenvalues in des-
cending order. Correspondingly, {gR̂,m}

D
m=1 are the signal eigenva-

lues and {gR̂,m}
M
m=D+1 are the noise eigenvalues.

Therefore the average value of {sm}
M
m=1 can be given as

�s =
∑

{gR̂,m}
M
m=D+1/M − D (9)

Define R(m, m) as the main diagonal of R, the gain errors can
be estimated as

âm = sqrt
R(m,m) − �s

R(1, 1) − �s

( )
m = 1, . . . , M (10)

DOA estimation with gain-phase errors

We consider the following covariance fitting criterion for the pur-
pose of parameter estimation when N ≥M:

g(u, p,s,G) = ||R−1/2(R̂− R)R̂−1/2||2 (11)

where R−1/2 denotes the square root of R−1, and both R̂ and R are
invertible.

We need to calculate P and σ separately, rather than using a
uniform formula in SPICE method, because the amplitude and
phase errors only affect P.

A simple calculation shows that

g = tr[R−1/2(R̂− R)R̂−1(R̂− R)R−1/2]
= tr(R−1R̂) + tr(R̂−1

R) − 2M

= tr(R̂1/2
R−1R̂

1/2) +
∑K
k=1

(aHk GHR̂
−1
Gak)pk

+
∑K+M

k=K+1

R̂
−1
sk−K − 2M

(12)

The problem of minimizing g can be written as the following
constrained minimization:

min
{ pk≥0,sk≥0}

tr(R̂1/2
R−1R̂

1/2) s.t.
∑K
k=1

wkpk+
∑K+M

k=K+1

wksk−K = 1

(13)

where

wk = aHk G
HR̂

−1
Gak/M k = 1, . . . , K

R̂
−1
/M k = K + 1, . . . , K +M

{
(14)

We introduce C =[cH1 , . . . , c
H
K+M] [ C(K+M)×M and have that

(readers are referred to [11] for the detailed procedure)

CHP−1C ≥CH
0 P

−1C0

= R̂
1/2

R−1R̂
1/2

s.t. AHC =R̂
1/2

(15)

where C0 = PAR−1R̂
1/2

is the solution (for fixed P) of the
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problem

min
C

tr(CHP−1C) s.t. AHC = R̂
1/2 (16)

It is easy to obtain that

tr(CHP−1C) = tr(P−1CCH) =
∑K
k=1

ck‖ ‖2
pk

+
∑K+M

k=K+1

ck‖ ‖2
sk−K

(17)

Combining (13) and (15), this function (17) is to be minimized
with respect to {pk≥ 0, σk−K≥ 0}, subject to

∑K
k=1

wkpk+
∑K+M

k=K+1

wksk−K = 1 (18)

By the Cauchy–Schwarz inequality

∑K
k=1

w1/2
k ck‖ | +

∑K+M

k=K+1

w1/2
k ck‖ ‖

[ ]2

≤
∑K
k=1

ck‖ ‖2
pk

+
∑K+M

k=K+1

ck‖ ‖2
sk−K

[ ] ∑K
k=1

wkpk+
∑K+M

k=K+1

wksk−K

[ ]

=
∑K
k=1

ck‖ ‖2
pk

+
∑K+M

k=K+1

ck‖ ‖2
sk−K

(19)

Therefore the solution to (19) is

pk = ck‖ ‖
w1/2
k r

, k = 1, . . . , K (20)

sk−K = ck‖ ‖
w1/2
k r

, k = K + 1, . . . , K +M (21)

r =
∑K+M

m=1

w1/2
m cm‖ ‖ (22)

C0 is as the first step and substituted into (20–22) above, and we
have the updating formulas

Pi+1
k = Pi

k

aHk (Gi)H(Ri)−1R̂
1/2

∥∥∥ ∥∥∥
w1/2
k ri

k = 1, . . . , K (23)

si+1
k−K = si

k−K

(Ri)−1R̂
1/2

∥∥∥ ∥∥∥
w1/2
k ri

k = K + 1, . . . ,K +M (24)

ri =
∑K
m=1

w1/2
m pim aHm(Gi)H(Ri)−1

R̂
1/2

∥∥∥ ∥∥∥
+

∑K+M

m=K+1

w1/2
m si

m−K (Ri)−1
R̂
1/2

∥∥∥ ∥∥∥ (25)

In the case of identical {sk}, it is the special case of (24) and
(25), and is easy to obtain that

si+1 = si
(Ri)−1R̂

1/2
∥∥∥ ∥∥∥∑K+M
k=K+1 wk

1/2
ri

( ) (26)

ri =
∑K
m=1

w1/2
m pim aHm(Gi)H(Ri)−1

R̂
1/2

∥∥∥ ∥∥∥
+ si

∑K+M

m=K+1

w1/2
m (Ri)−1

R̂
1/2

∥∥∥ ∥∥∥ (27)

Phase-error estimation

In this section, we introduce an exchange matrix to reduce the
correlation between signal sources without affecting the estimated
performance in the case of unrelated sources. JM is an M-order
exchange matrix, in which the counter-diagonal elements are 1
and the remaining elements are all 0. JMJM = IM.

Denote x(t) = JM�y(t), the covariance matrix of x(t) is

Rx = E[x(t)xH(t)] = JM�RJM (28)

Let R1 = R+Rx = R+ JM�RJM. The noise subspace V = [VD+1,
VD+2, …, VD+M] can be obtained by the characteristic decompos-
ition of R1 �y(t) and �R are the complex conjugate matrix of y(t)
and R, respectively.

For ith iteration, we can get a new generation p i, and find the
D highest peaks of the estimated power variance, and the corre-
sponding DOAs {uik}

D
k=1 from this iteration, where p i and θ i are

arranged in descending order.
Denote w = [f1, …, fM]

T, and the updating iteration of phase
errors can be estimated as

wi = −angle(z i) (29)

z i = (Qi)−1
h

hT (Qi)−1
h
h = [1, 0, . . . , 0]T (30)

Qi =
∑D
k=1

[diag(a(uik))]
H
VVHdiag(a(uik)) (31)

where angle( • ) denotes the phase of a complex number.
Compute Γ i from the estimated gain errors G and phase

errors w i:

Gi = diag([a1, . . . ,aM]T )diag(exp(−jwi)) (32)
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Consequently, the proposed method is summarized as follows.

A Combined Method

In order to estimate the DOAs of arriving sources without discret-
izing the spatial angles, we transform the angular parameters to
the frequency ones.

Denote

fd = (sin (ud)+ 1)/2 [ [0, 1), d [ [D] (33)

where f = [ f1, …, fD]
T is called the frequency parameter, and the

relation θ↔ f is one-to-one. Therefore, the new steering matrix
can be written as A(f) = [a( f1),…, a( fD)], with a(fd)=[1,
ei2pfd , . . . , ei2(M−1)pfd ]T , d = 1, . . . ,D. According to the SPA
method, the minimization of (12) is equivalent to

min
X,G,u,{s≻0}

tr(X) + tr(GHR̂
−1
GT(u)) + Re(diag(R̂−1)H)s

subject to
X R̂

1
2

R̂
1
2 GT(u)GH+s

T(u)

⎡
⎢⎢⎣

⎤
⎥⎥⎦ ≥ 0

(34)

where T(u) =A(f)diag(p)AH(f) is a (Hermitian) Toeplitz matrix
which is determined by its first row u.

Equation (34) cannot be solved by the semidefinite program-
ming (SDP) convex tools in the SPA to obtain R. In order to
cope with this problem, we improve the SPA method by replacing
the first step of the SPA method with the estimated parameters of
the proposed method, called the combined method.

Numerical Simulations

In this section, we illustrate the performance of proposed methods
through simulations. The range of the DOAs of signals is confined
in [− 90°, 90°]. The gain errors {am}

M
m=1 and phase errors

{fm}
M
m=1 of the sensors are generated by

am = 1+
���
12

√
sazm

fm =
���
12

√
sfhm

where ζm and ηm are independent and identically distributed ran-
dom variable distributed uniformly over [− 0.5, 0.5].σα and σf
are the standard deviations of αm and fm, respectively. In the
simulations below, σα = 0.1.

Effect of signal sources correlation

In our simulation, we consider D = 3 sources with power p = [3, 3,
5]T from directions θ = [10°, 25°, 60°]T. A ULA withM = 10 is used
to receive the signals. Let the sample number N = 200 and the grid
number K = 180 for SPICE+ (‘ +’ indicates the condition that the
noise variances are equal in this paper). The SNR is 30 dB.

It can be seen from Fig. 1(a) that in the case of uncorrelated
sources, the performance of the SPICE with gain-phase errors is
severely deteriorated. But after calibrating the gain and phase
errors by the proposed method in Table 1, the spatial spectrum
can clearly form sharp peaks at three incident directions.
Obviously, the method proposed in [21] (in the following we
refer to it as the WF method) can also correct the errors well
under this condition. However, the WF method almost com-
pletely fail in the correlated sources case (Fig. 1(b)). In contrast,
the proposed algorithm can form effective peaks at three direc-
tions of arrival. Therefore, the calibration algorithm proposed in
this paper has successfully corrected the gain and phase uncer-
tainties for the uncorrelated sources and the coherent sources.

Fig. 1. Spectra of SPICE+ without gain-phase errors, SPICE+ with gain-phase errors, the proposed method+ and WF+ in the case of uncorrelated sources and coher-
ent sources. (a) Sources are uncorrelated, and σf = 40° and (b) sources are coherent (source3 is a replica of source1) and σf = 15°.

Table 1. The proposed algorithm.

(1) Initialization: Γ0 = I, and the power estimates obtained by means of the
periodogram method [11]: p0k = aHk R̂ak/ ak‖ ‖4 k = 1, . . . , K + M.

(2) Gain errors are estimated by (10) and compensated.
(3) Power variances of ith iteration p i are estimated by (23).
(4) Search for the D highest peaks of p i and the corresponding DOAs.
(5) Phase errors are estimated by (29) and compensated.
(6) After compensating gain-phase errors based on step (2) and step (5),

solve next iteration p i+1 using r.
(7) If pi − pi+1

∥∥ ∥∥
2/K , 1 (ε is a threshold) or the maximum number of

iteration is reached, the iteration is terminated. Otherwise, i = i + 1, go
to (2).
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Effect of sample number

Consider three signals with the power p = [3, 3, 5]T from θ = [10°,
25°, 60°]T. The SNR is 20 dB and the sample number is 200. Based
on 500 Monte Carlo runs, the average root mean square error

(ARMSE) of DOA versus the number of samples with uncorre-
lated sources and coherent sources are shown in Figs 2(a) and 2
(b), respectively.

Figure 2(a) plots that the four curves almost coincide in the
case of large phase errors, but the proposed method outperforms

Fig. 2. ARMSE of DOA estimation versus the number of samples (a) sources are uncorrelated (the dashed and solid plots represent the cases of σf = 20° and σf = 5°,
respectively) and (b) sources are coherent (the dashed and solid plots represent the cases of σf = 15° and σf = 5°, respectively).

Fig. 3. (a) ARMSE of DOA estimation versus σf, (b) ARMSE of phase error estimation versus σf and (c) ARMSE of gain error estimation versus σf (the dashed and
solid plots represent the cases of uncorrelated signal sources and coherent signal sources, respectively).
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the WF method when the phase errors are small. Figure 2(b) pre-
sents that the proposed method performs better than the WF
method in the coherent sources case as the snapshot number
increases. In addition, regardless the number of samples, the pro-
posed method is better when noise variances are equal.

Effect of phase errors

Consider three signals impinging on the ULA array from direc-
tions 10, 25 and 60°, respectively. Based on 500 Monte Carlo

runs, the ARMSE of DOA, phase error and gain error estimates
versus the standard deviation of the phase error σf are obtained
by the WF method and the proposed method, respectively. We
show the results in two different experiment conditions: uncorre-
lated sources and coherent sources.

From Figs 3(a) and 3(b), it is shown that both the proposed
method and the WF method perform well in the uncorrelated
sources case for DOA and phase error estimates. In contrast, it
is illustrated that the proposed method behaves better than the
WF method when the sources are coherent. It is because the
covariance fitting criteria is robust to the coherent sources and
the exchange matrix of the new method reduces the correlation
of sources. In addition, they fall into suboptimal solutions in
large phase error. On the other hand, Fig. 3(c) presents the gain
error estimation of the proposed method is stable and performs
better because it is independent of the phase errors.

Effect of SNR

We repeat the simulation by fixing sample number N = 200 and
varying SNR from −20 to 30 dB. 500 Monte Carlo runs are
used for the performance of the aforementioned methods versus
the SNR, where the sources signals are in two cases.

Figure 4(a) presents that both the proposed method and the
WF method have similar performance trends as the SNR increases
and perform well in the case of large phase errors. However, the
proposed method performs better in the case of small phase
errors. From Fig. 4(b), it is shown that when signal sources are
coherent, the WF method fails during all varying SNR. To the
contrary, the curve of the proposed method is constantly slower
than that of the WF method.

Application on SPA method with gain-phase errors

In this subsection, we consider three uncorrelated sources
with power p = [3, 3, 1]T from directions by the frequency vector
f = [0.10, 0.13, 0.50]T. A ULA with M = 10 is considered. The SNR
is 30 dB and sample number is 200. σf = 30°.

From Fig. 5, it is illustrated that the performance of SPA
degrades substantially when the gain and phase errors exist.
After calibration by the combined method in Table 2, the esti-
mated points almost coincide with the truth points.

Fig. 4. ARMSE of DOA estimation versus the SNR (a) sources are uncorrelated (the dashed and solid plots represent the cases of σf = 20° and σf = 5°, respectively)
and (b) sources are coherent (the dashed and solid plots represent the cases of σf = 15° and σf = 5°, respectively).

Fig. 5. Spectra of SPA without gain-phase errors, SPA with gain-phase errors and the
combined method for uncorrelated sources.

Table 2. The combined algorithm.

(1) Gain errors are estimated by (10) and compensated.
(2) Phase errors are estimated by (29) and compensated.
(3) Solve (p, s) by using (23) and (24).
(4) R is estimated by R =ΓA;(f)diag(p)AH(f)ΓH + diag(σ) instead of the first

step of SPA.
(5) Parameters (û, p̂, ŝ) is estimated more accurately using the remaining

two step of SPA.
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Conclusion

In this paper, the DOA estimation problem in the presence of
gain-phase errors is addressed. The proposed method in
Table 1 does not require the presence of calibration sources
and previous calibration information. Moreover it performs
well not only in the case of uncorrelated sources during a
large phase error range but also in the case of coherent sources
in the small and moderate phase error range. Meanwhile, com-
bining the proposed method and the SPA method in Table 2
solves the problem of deteriorate performance of the SPA
with gain-phase errors. The main drawback is converging to
suboptimal solution in large phase errors. However, it is
worth mentioning that the AMRSE of DOA estimated by the
proposed method is about 1° when σf = 30°(corresponding
phase error range is [−51.96° 51.96°]) in uncorrelated sources
case and σf = 15° (corresponding phase error range is
[−25.98° 25.98°]) in coherent sources case (Fig. 3), respectively.
Therefore, the proposed method is effective in practical applica-
tion scenarios.
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