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Abstract

Cluster algebras give rise to a class of Gorenstein rings which enjoy a large amount
of symmetry. Concentrating on the rank 2 cases, we show how cluster varieties can be
used to construct many interesting projective algebraic varieties. Our main application
is then to construct hundreds of families of Fano 3-folds in codimensions 4 and 5. In
particular, for Fano 3-folds in codimension 4 we construct at least one family for 187 of
the 206 possible Hilbert polynomials contained in the Graded Ring Database.
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1. Introduction

Cluster algebras were originally introduced in a series of papers by Fomin and Zelevinsky, starting
with [FZ02], and have since been found to appear in many diverse branches of mathematics.
They enjoy many remarkable properties, two of the most important of which are the Laurent
phenomenon (i.e. that any cluster variable can be expanded as a Laurent polynomial in some
distinguished subset of the other cluster variables) and, for cluster algebras of finite type, a
classification parallel to the Cartan–Killing classification of Lie groups. In particular, a cluster
algebra of finite type is generated by a finite number of cluster variables.

In the language of the wider cluster algebra literature, in this paper we use the term ‘cluster
algebra’ to mean a generalised cluster algebra A with universal geometric coefficients, and ‘cluster
variety’ to mean the affine variety X = SpecA. However, as algebraic geometers we like to take a
more geometric approach to defining cluster varieties, in terms of the families of log Calabi–Yau
surfaces constructed by Gross, Hacking and Keel [GHK15a]. Taking this approach provides a
much clearer way to generalise our methods.

1.1 Motivation
Our primary motivation comes from classification problems in low-dimensional algebraic geom-
etry. In particular, we have chosen to concentrate on the classification of Fano 3-folds (a.k.a.
Q-Fano 3-folds with at worst terminal singularities), but the methods of this paper would be
just as applicable to constructing other types of projective algebraic varieties, including Cal-
abi–Yau 3-folds, surfaces and 3-folds of general type. Hyperplane sections of our Fano 3-folds are
either K3 surfaces or del Pezzo surfaces, with cyclic quotient singularities.

1.1.1 Gorenstein formats. For a formal definition of Gorenstein formats and key varieties,
we refer to § 2.5 or [BKZ19]. Informally, a Gorenstein format is a succinct representation of the
generators, relations and syzygies of a Gorenstein ring R. A key variety V is the generic case of
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a format, that is, V = Spec R. We construct φ−1(V ) ⊂ An
z1,...,zn

by substituting the generators
x1, . . . , xm of R with polynomials xi = φi(z1, . . . , zn), i = 1, . . . , m. If φ preserves the format of
φ−1(V ), then this is called a regular pullback of V . If R is graded and we choose φ appropriately,
then we can divide φ−1(V ) by the C∗-action to get (weighted) projective varieties. In the best
cases, V has a large torus action so that there are several choices of grading available.

For example, the origin V := V (x1, . . . , xm) in Am, together with the Koszul resolution
of its defining ideal, is a format. Regular pullbacks of V give hypersurfaces (m = 1) or com-
plete intersections of codimension m ≥ 2. Another classic example is the affine cone over the
Plücker embedding of the Grassmannian Gr(2, 5) (cf. [CR02]). This is an instance of the Buchs-
baum–Eisenbud theorem for projectively Gorenstein varieties in codimension 3. Moreover, we
note that Gr(2, 5) also appears as the simplest non-trivial cluster variety, associated to the A2

root system. Brown, Kasprzyk and Zhu [BKZ19] make a detailed analysis of Gr(2, 5) format (or,
in our notation, A2 format) for constructing Calabi–Yau and canonical 3-folds.

Other symmetric spaces, such as the orthogonal Grassmannian OGr(5, 10), were used by
Mukai to construct canonical curves, K3 surfaces and smooth Fano 3-folds of genus 6 ≤ g ≤
10, 12, among other things. In particular, it seems that the weighted OGr(5, 10) format does not
yield any other constructions of Fano 3-folds [CR02], but is moderately successful for canonical
3-folds [BKZ19].

1.1.2 Fano 3-folds. Previous efforts to construct Fano 3-folds in codimension 4 or higher
include Tom and Jerry [BKR12, BS07a, BS07b, PR16, BKQ18]. There are also non-existence
results for Fanos of high Fano index due to Prokhorov [Pro13, Pro16]. The approach taken in
most of these works is to construct Fano 3-folds by various types of unprojection, that is, by
starting at the midpoint of a Sarkisov link and working backwards, or something similar. In her
forthcoming PhD thesis, Taylor has developed new types of unprojection to construct many of
the codimension 4 Fano 3-fold candidates.

Despite the geometrically appealing nature of these constructions, unfortunately it is difficult
to construct birationally rigid varieties this way since the corresponding Sarkisov link gives a
non-trivial birational map which must necessarily return to the variety you started with. Our
cluster formats give uniform descriptions for special subfamilies of the Hilbert scheme of Fano
3-folds, with no predisposition to the birational geometry. One advantage of this approach is
that we construct some examples which are expected1 to be birationally rigid (see § 5.6).

1.1.3 Similar constructions. The C2 and G2 cluster varieties appearing in this paper have
been used in the literature before as key varieties to construct several interesting algebraic
varieties. Indeed, C2 format appears in the construction of Godeaux surfaces by Reid [Rei1] (see
also § 5.9.1) and a version of G2 format appears in the explicit construction of 3-fold flips (in the
guise of one of Brown and Reid’s diptych varieties [BR17, § 5.2]) and 3-fold divisorial contractions
[Duc15, Example 7.2].

1.2 Rank 2 cluster formats
There are four rank 2 cluster varieties of finite type corresponding to the four rank 2 root systems
of finite type: A1 × A1, A2, C2 and G2. In each case the cluster algebra has a distinguished set
of generators, called cluster variables, which can be put into correspondence with the almost

1 Since the first version of this article appeared, Okada has proven birational rigidity in the expected cases [Oka20].
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Figure 1. The almost positive roots in the root systems of rank 2.

positive roots of the corresponding root system, as shown in Figure 1.2 Given two adjacent cluster
variables, θ1 and θ2 say, any other cluster variable θ′ can be written as a Laurent polynomial
θ′ = F (θ1, θ2)/θα1

1 θα2
2 where α1r1 + α2r2 is a positive root in the corresponding root system and

r1, r2 are a basis of simple roots.
Given three consecutive cluster variables θi−1, θi, θi+1 corresponding to roots ri−1, ri, ri+1,

say, the tag at θi is the integer di such that ri−1 + ri+1 = diri. As seen in (1.1) and (1.2) below,
this tag records the degree of the exchange relation, θi−1θi+1 = fi(θi), where fi is a polynomial
of degree di over an appropriate coefficient ring.

The simplest rank 2 cluster variety, A1 × A1 format, is a generic complete intersection
of codimension 2. Moreover, as already mentioned, A2 format coincides with Gr(2, 5) format
(cf. § 2.4). In this paper we concentrate on the C2 case, which is a Gorenstein format of codi-
mension 4, and the G2 case, which is a Gorenstein format of codimension 6. Very concretely, the
corresponding cluster varieties are the affine varieties given by the explicit equations appearing
below. We will explain one way to derive these equations in §§ 3.1 and 4.1, but, for the appli-
cations we have in mind, we will essentially use them as black boxes with the nice properties
described in § 2.3.

1.2.1 C2 format. The cluster variety XC2 = SpecAC2 ⊂ A13 is an affine Gorenstein 9-fold of
codimension 4, where AC2 is a Z6-graded ring with 13 generators, 9 relations and 16 syzygies.
The 13 generators are given by six cluster variables θ1, θ12, θ2, θ23, θ3, θ31, six coefficients A1,
A12, A2, A23, A3, A31 and one parameter λ. The nine relations are:

θiθj = Aijθij + AjkAkAki, (×3)
θkiθij = Aiθ

2
i + λAjkθi + AjA

2
jkAk, (×3)

θiθjk = AijAjθj + λAkiAij + AkAkiθk, (×3)
(1.1)

where (i, j, k) are taken to vary over all Dih6-permutations of (1, 2, 3).

1.2.2 G2 format. The cluster variety XG2 = SpecAG2 ⊂ A18 is an affine Gorenstein 12-fold of
codimension 6, where AG2 is a Z8-graded ring with 18 generators, 20 relations and 64 syzygies.
The 18 generators are given by eight cluster variables θ1, θ12, θ2, θ23, θ3, θ34, θ4, θ41, eight

2 We fix this as the notation we will use later on, where θi are attached to short roots and θij are attached to long
roots.
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coefficients A1, A12, A2, A23, A3, A34, A4, A41 and two parameters λ13, λ24. The 20 relations
are:

θiθj = Aijθij + AjkAkA
2
klAlAli, (×4)

θijθjk = Ajθ
3
j + λjlAklAliθ

2
j + λikA

2
klAlA

2
liθj + AkA

3
klA

2
l A

3
liAi, (×4)

θiθjk = AijAjθ
2
j + λjlAklAliAijθj + λikA

2
klAlA

2
liAij + AkA

2
klAlAliθk, (×8)

θiθk = AijAjAjkθj + λjlAijAjkAklAli + AklAlAliθl, (×2)
θijθkl = AjA

2
jkAkθjθk + AliAjk(λikθiθk + λjlθjθl) + AlA

2
liAiθlθi + · · ·

+AijA
2
jkAklA

2
li(AiAjAkAl − λikλjl), (×2)

(1.2)

where (i, j, k, l) are taken to vary over all Dih8-permutations of (1, 2, 3, 4).

1.2.3 Relation to Gross, Hacking and Keel’s construction. Given a positive Looijenga pair
(Y, D) (i.e. a rational surface Y and an ample anticanonical cycle D ∈ |−KY |), Gross, Hack-
ing and Keel [GHK15a] define a family of mirror surfaces X fibred over a toric base variety
B = Spec C[NE(Y )]. In this case, the family X/B is a relatively Gorenstein affine scheme with
nice properties, including a torus grading Tk � X . However, we are interested in working with
(absolutely) Gorenstein varieties, so instead we consider a slightly different family. We first
restrict X to X|Tn , over the dense torus orbit Tn ⊂ B, and then extend this to an affine Goren-
stein variety X/An, corresponding to the closure of Tn ⊂ An for some good choice of coordinates
on Tn. We take this X as our rank 2 cluster variety. In particular, the theta functions introduced
by [GHK15a] play the role of the cluster variables. Our coefficients Ai correspond to coefficients
(or frozen variables) in the language of cluster algebras. Our parameters, λ or λij , do not appear
in the original cluster algebra story; however, we see them to be unified with the other coefficients
by taking this approach.

1.2.4 Unprojection structure. These cluster varieties come with a natural type I Gorenstein
projection structure. The champion XG2 has a projection to a complete intersection in codi-
mension 2, given by eliminating the four tag 1 cluster variables θ12, θ23, θ34 and θ41. We get a
projection cascade (part of which is shown in Figure 2) in which we see all of the other rank
2 cluster varieties, albeit not in their most natural presentation.In particular, this projection
cascade also allows us to define two intermediate formats, G

(5)
2 and G

(4)
2 , where the superscript

denotes the codimension. The two codimension 4 formats behave like the two codimension 4
formats Tom and Jerry [BKR12]. Indeed, C2 format can be written as a Tom unprojection from
A2 format, and G

(4)
2 format as a Jerry unprojection.

This should be an instance of the more general observation that whenever two Looijenga pairs
are related by blowing down a (−1)-curve in the boundary divisor π : (Y ′, D′) → (Y, D) then there
is a relationship between the mirror families, described in [GHK15a, § 6.2]. The family X/B for
(Y, D) can be obtained from the family X ′/B′ for (Y ′, D′) as a pullback along the morphism of
affine toric varieties B → B′ induced by the inclusion of cones π∗ : NE(Y ) → NE(Y ′).

1.3 Main results
For definitions and notation concerning Fano 3-folds, we refer to § 5. The main result of this
paper is the classification and construction of all families of quasismooth Fano 3-folds in C2 or
G2 format. The full classification is available from [CD]. In total, we construct over 400 families
in codimensions 4 and 5. There are none in codimension 6. About two-thirds of these families
are prime. The following theorem highlights some more features of the classification.
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Figure 2. Part of the projection cascade for the G2 cluster variety.

Theorem 1.1.

(i) Of the 29 candidates in codimension 4 of index 1 and with no type I centre, 25 have at least

one cluster format construction which is prime.

(ii) Of the 61 candidates in codimension 4 of index at least 2, 45 have at least one cluster format

construction which is prime.

(iii) There are 50 families of codimension 5 Fano 3-folds in a cluster format.

In particular, when combined with non-existence results of Prokhorov, part (ii) answers the
question of existence of Fano 3-folds in codimension 4 with large Fano index.

Corollary 1.2. For each candidate Fano 3-fold Hilbert series appearing in [GRDB] with codi-

mension 4 and Fano index q ≥ 4, then either there exists a prime Fano 3-fold with that Hilbert

series or, by the work of Prokhorov, no such Fano 3-fold exists.

Several of the codimension 4 candidates have constructions in both C2 and G
(4)
2 formats,

echoing Tom and Jerry [BKR12]. Around 270 of our constructions in codimension 4 have index
1 and a type I centre, and so are special subfamilies of those appearing in [BKR12].

We give a criterion for checking primality in cluster formats. It turns out that the families
which are not prime are related to P2 × P2, (P1)3 or rolling factors formats. In particular, this
answers the question of primality for those cases which overlap with [BKR12].

1.4 Outline of the paper
In § 2 we give a brief introduction to cluster varieties, including their important properties. We
also give a crash course on Gorenstein formats. In §§ 3 and 4 we look at the C2 and G2 rank 2
cluster formats in more detail and explain some ways of constructing them. We make a detailed
study of their singular loci and the singular loci of some hyperplane sections, since this plays
a crucial part in excluding bad cases from consideration. In § 5 we explain how we apply these
formats to construct Fano 3-folds and give many examples. In § 6 we explain the computer
algorithm that we use to make our classification.
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1.5 Conventions and terminology
– Cluster varieties can be defined as schemes over Z but, since the applications we have in

mind are constructing complex projective varieties, we choose to work over C throughout.
– We write Tk = (C×)k for the torus of rank k.
– We write Dih2n for the dihedral group of order 2n, which acts on the set {1, . . . , n} labelling

the vertices of a regular n-gon cyclically. Our cluster formats have variables θi, θij , etc.
indexed by i, j ∈ {1, . . . , n} and an action of Dih2n, where π ∈ Dih2n acts by θij �→ θπ(i)π(j)

etc. Throughout this paper we always consider our labellings to be unordered, for example
θij = θji.

– We write CI(c) to denote a complete intersection of codimension c.
– We write down a skew-symmetric matrix M by specifying the strict upper triangular part

only. We use Pfk M to denote the ideal generated by the k × k maximal Pfaffians of M .
– We make free reference to the terminology of Tom and Jerry [BKR12].
– A variety Y in weighted projective space is quasismooth if the affine cone Ŷ has at worst

an isolated singularity at the vertex.
– A variable x in a graded ring is redundant if it satisfies a relation of the form x = · · · , where

· · · is an expression in terms of the other ring generators.

2. Cluster varieties of rank 2

We only give a very brief recap of the theory established by Gross, Hacking and Keel [GHK15a]
since we are primarily interested in using our two cluster varieties XC2 and XG2 to construct
examples of Fano 3-folds. In particular, we summarise the results of several calculations without
providing many of the details. Hopefully this is enough to provide some motivation for their
existence and basic properties, as well as giving some hints as to how other families of log
Calabi–Yau surfaces (or higher-dimensional varieties) could be used as key varieties. The reader
is perfectly entitled to ignore this section if they are willing to take our key varieties XC2 and
XG2 as black boxes with the properties described in §§ 2.3 and 2.5.

2.1 Looijenga pairs
A Looijenga pair (Y, D) is a projective rational surface Y together with a reduced anticanonical
cycle D =

∑k
i=1 Di ∈ |−KY |.

2.1.1 The A2, C2 and G2 Looijenga pairs. We will consider (Y, D) to be one of the following
three cases.3

(A2) Let k = 5 and (−D2
i : i = 1, . . . , 5) = (1, 1, 1, 1, 1).

(C2) Let k = 6 and (−D2
i : i = 1, . . . , 6) = (2, 1, 2, 1, 2, 1).

(G2) Let k = 8 and (−D2
i : i = 1, . . . , 8) = (3, 1, 3, 1, 3, 1, 3, 1).

For convenience, in the C2 case we relabel the boundary divisors D1, D12, D2, . . . , D31, so that
D2

i = −2 and D2
ij = −1, and similarly in the G2 case.

2.1.2 Toric models. Any Looijenga pair can be obtained, possibly after a sequence of toric
blow-ups, as the blow-up of a toric surface (Ȳ , D̄) at points along the toric boundary divisor D̄,

3 We could also consider the A1 × A1 case, with k = 4 and (−D2
i : i = 1, . . . , 4) = (0, 0, 0, 0).
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Figure 3. The configurations of points blown up to obtain YA2 , YC2 and YG2 .

such that D ⊂ Y is the strict transform of D̄ ⊂ Ȳ (cf. [GHK15a, Proposition 1.3]). We can realise
special cases4 of the three examples above by considering blow-ups

πA2 : YA2 → P2, πC2 : YC2 → P2, πG2 : YG2 → P1 × P1

at the configurations of points described below, and shown in Figure 3.
Let exc(p) be the exceptional divisor above a point p, let π−1(C̄) be the strict transform of

a curve C̄ under a birational map π, let Lp,q be the line in P2 which passes through two points
p, q, and let Mp,q,r be the curve of bidegree (1, 1) in P1 × P1 which passes through three points
p, q, r. Then the blow-ups we consider are given by the following.

(A2) Let D̄2 + D̄4 + D̄5 be the toric boundary components of P2. We obtain YA2 by blowing up
the two intersection points d1 = D̄5 ∩ D̄2, d3 = D̄2 ∩ D̄4 and two general points e4 ∈ D̄4,
e5 ∈ D̄5.

The anticanonical cycle D ⊂ YA2 is given by D1 = exc(d1), D2 = π−1(D̄2), D3 =
exc(d3), D4 = π−1(D̄4) and D5 = π−1(D̄5). Moreover, we note that YA2 contains five inte-
rior (−1)-curves E1 = π−1(Ld1,e4), E2 = π−1(Le4,e5), E3 = π−1(Ld3,e5), E4 = exc(e4) and
E5 = exc(e5).

(C2) Let D̄1 + D̄2 + D̄3 be the toric boundary components of P2. We obtain YC2 by blowing up
the three intersection points dij = D̄i ∩ D̄j and three points ei ∈ D̄i ∩ F̄ , where F̄ is a line
in general position with respect to D̄.

Let (i, j, k) vary over all Dih6-permutations of (1, 2, 3). Then the anticanonical cycle
D ⊂ YA2 is given by Di = π−1(D̄i) and Dij = exc(dij). Moreover, we note that YC2 contains
six interior (−1)-curves Ei = exc(ei) and Eij = π−1(Ldij ,ek

), and one interior (−2)-curve
F = π−1(F̄ ).

(G2) Let D̄1 + D̄2 + D̄3 + D̄4 be the toric boundary components of P1 × P1. We obtain YG2 by
blowing up the four intersection points dij = D̄i ∩ D̄j and four points ei ∈ D̄i ∩ (F̄13 ∪ F̄24),
where F̄13 and F̄24 are two curves of bidegree (1, 0) and (0, 1) which are in general position
with respect to D̄.

Let (i, j, k, l) vary over all Dih8-permutations of (1, 2, 3, 4). Then the anticanonical
cycle D ⊂ YG2 is given by Di = π−1(D̄i) and Dij = exc(dij). Moreover, we note that YG2

4 More generally, we could consider blowing up points ei which lie in general position along D̄i ⊂ Ȳ . However this
does not change the final description of our cluster variety.
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Figure 4. Dual intersection diagrams for the extremal curves on YA2 , YC2 and YG2 .

contains eight interior (−1)-curves Ei = exc(ei) and Eij = π−1(Mdij ,ek,el
), and two interior

(−2)-curves Fik = π−1(F̄ik).

2.1.3 The Mori cone NE(Y ). A Looijenga pair (Y, D) is said to be positive if the cycle D

supports an ample divisor. In particular, this implies that the Mori cone NE(Y ) ⊂ N1(Y )Q is a
closed finite polyhedral cone.

In the A2, C2 and G2 cases, (Y, D) is positive and the Mori cone NE(Y ) is spanned by 10,
13 and 18 extremal rays respectively, corresponding to the classes [Di], [Dij ], [Ei], [Eij ], [F ], [Fik]
described above. A (−1)-curve contained in Y \ D must intersect the boundary divisor D at
precisely one point, in the interior of a component Di or Dij . In each of the three cases there
is precisely one (−1)-curve Ei which intersects Di and one (−1)-curve Eij which intersects Dij .
Figure 4 depicts the dual intersection diagrams for the curves in Y belonging to the extremal
rays of NE(Y ).5

2.1.4 The intersection pairing and the Looijenga roots. We have the usual intersection pairing

( · ) : N1(Y )Q × N1(Y )Q → Q.

Let D ⊂ N1(Y )Q be the sublattice D =
⊕k

i=1 Z[Di], spanned by the components of D. Then
elements α of the subspace

D⊥ = {[C] ∈ N1(Y )Q : [D] · [C] = 0 for all D ∈ D} ⊂ N1(Y )Q

satisfying α2 = −2 are called Looijenga roots.6 In the A2 case D⊥ = ∅, in the C2 case D⊥ = Z[F ]
forms a root system of type A1, and in the G2 case D⊥ = Z〈[F13], [F24]〉 forms a root system of
type A2.

2.2 The mirror family X and the cluster variety X

We now describe the mirror family X introduced by Gross, Hacking and Keel and the related
cluster variety X. In both cases these are families of mildly singular (log canonical) surfaces.

5 There are two pairs of double edges in the G2 graph since E12 · E34 = E23 · E41 = 2 in YG2 , but otherwise all of
the (non-self-)intersection numbers are 0 or 1.
6 In general, for a Looijenga pair (Y, D) whose boundary divisor has a negative definite intersection matrix, there
is a further condition to ensure that α corresponds to the parallel transport of the class of an internal (−2)-curve
on a deformation equivalent pair; cf. [GHK15b, Theorem 3.3].
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The first X is defined over a singular base variety B, whereas X is defined over a much nicer
base variety An.

2.2.1 The mirror family X . The mirror family X , for a Looijenga pair (Y, D), is a
deformation of the vertex

Vk = (A2
θ1,θ2

∪ A2
θ2,θ3

∪ · · · ∪ A2
θk−1,θk

∪ A2
θk,θ1

) ⊆ Ak
θ1,...,θk

,

with k equal to the number of components of D =
⋃k

i=1 Di, defined by introducing theta functions
and using the machinery of scattering diagrams. If (Y, D) is positive, then the construction yields
an algebraic variety X with the following nice properties.

(i) X/B is a deformation of Vk over the affine toric variety:

B := Spec(C[NE(Y )]) = Spec(C[zC : [C] ∈ NE(Y )]).

(ii) X/B is a flat family of affine Gorenstein surfaces with at worst semi-log canonical
singularities.

(iii) The action of the torus TD = D ⊗ C∗ on B, given by

λi · (zC) = λDi·C
i zC for i = 1, . . . , k,

extends uniquely to a TD-action on X .

Our only problem with trying to use X/B as a key variety directly is that the total space X
is not Gorenstein, but only relatively Gorenstein.

2.2.2 The cluster variety X. For that reason we consider a slightly different family, by first
taking the restriction X|Tn to the structure torus Tn ⊂ B and then considering the variety X/An,
obtained by the compactification Tn ⊂ An with respect to some natural choice of coordinates on
Tn:

This choice of coordinates is described in § 3.1 for the C2 cluster variety and in § 4.1 for the
G2 cluster variety.

2.3 Basic properties
The cluster variety X inherits all of the good properties of the mirror family X . In particular,
X is an normal affine Gorenstein variety and has a TD action. We summarise some of the basic
properties of the cluster variety X that will be important later on.

Proposition 2.1. The cluster variety X = SpecA has the following properties:

(i) X is a normal, prime, Gorenstein, affine variety;

(ii) X has an action by G × TD for some finite symmetry group G.

Moreover, because of the nice structure of the equations we also have the following lemma.
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Lemma 2.2. The cluster variety X has a partial open covering by complete intersection affine

hypersurfaces

Ui = X ∩ (θi �= 0) and Uij = X ∩ (θij �= 0).

The complement of these pieces is called the deep locus of X and breaks up into a union of
subvarieties of very high codimension. See § 3.3 for an example.

Remark 2.3. These open sets make it possible to check the singular loci (see § 6.2) and compute
the rank of the divisor class group (see § 5.2) of regular pullbacks from X.

2.4 The A2 case
As a warm-up we explain how this works in the A2 case.

2.4.1 Equations for the mirror family XA2. The equations for XA2/BA2 are worked out in
[GHK15a, Example 3.7]. To simplify the notation we let Ai = z[Di] and Bi = z[Ei]. The base
variety BA2 is a toric variety defined by 10 equations,

AiBi = Ai−2Ai+2 = Bi−1Bi+1,

and there are five relative equations,

θi−1θi+1 = Aiθi + AiBi,

which define XA2 as a scheme over BA2 . Therefore the total space XA2 ⊂ A5
θi
× A10

Ai,Bi
is an

affine variety of codimension 8 defined by 15 equations. This variety is Cohen–Macaulay, but not
Gorenstein.

2.4.2 The cluster variety XA2. To recover the Grassmannian Gr(2, 5) we restrict X to the
locus X|T5 ⊂ X over the structure torus T5 ⊂ B. After writing all of the elements of N1(Y ) in
terms of the basis [Di], the equations become

θi−1θi+1 = Aiθi + Ai−2Ai+2

which we see to be ideal, given by the 4 × 4 maximal Pfaffians of a 5 × 5 skew-symmetric matrix

Pf4

⎛⎜⎜⎝
A5 θ1 θ2 A3

A2 θ3 θ4

A4 θ5

A1

⎞⎟⎟⎠ .

Taking the closure of X|T5 over T5 ⊂ A5
Ai

gives the cluster variety XA2 . Indeed, we see that XA2

is nothing other than the affine cone over the Grassmannian Gr(2, 5) in its Plücker embedding.

2.4.3 Symmetries. XA2 has the action of the group Dih10 ×TD, where Dih10 permutes the
indices {1, . . . , 5}. The characters for the TD-action are given by χi(zC) = Di · C, as shown in
Table 1.
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Table 1. The character table for TD � XA2 .

θ1 θ2 θ3 θ4 θ5 A1 A2 A3 A4 A5

χ1 1 0 0 0 0 −1 1 0 0 1
χ2 0 1 0 0 0 1 −1 1 0 0
χ3 0 0 1 0 0 0 1 −1 1 0
χ4 0 0 0 1 0 0 0 1 −1 1
χ5 0 0 0 0 1 1 0 0 1 −1

2.5 Cluster varieties as key varieties
Suppose that X = SpecA ⊂ An is an affine cluster variety with torus action Tk × X → X.
Define the character lattice M = Hom(Tk, T) ∼= Zk and the dual lattice of one-parameter sub-
groups M∨ = Hom(T, Tk), together with the perfect pairing 〈 · , · 〉 : M × M∨ → Z. The following
objects are all endowed with an M -grading induced by the torus action: the coordinate ring
A =

⊕
χ∈M Aχ, the ambient ring OAn , the minimal free resolution F of A as an OAn-module

and the Hilbert series of X,

PX(t1, . . . , tk) =
∑
χ∈M

dim(Aχ)tχ1
1 · · · tχk

k .

Following the definition of a Gorenstein format by Brown, Kasprzyk and Zhu [BKZ19], we make
the following definition.

Definition 2.4. A cluster format is a triple (X, μ, F) where X ⊂ An is a cluster variety, μ is
the character of an action T � X and F is a Z-graded resolution of A as an OAn-module. If X

is the cluster variety of finite type T we also call this T format.

In this set-up, a cluster format is determined by the choice of cluster variety X and a
one-parameter subgroup ρ ∈ M∨. For such a ρ, the action of λ ∈ T on vχ ∈ Aχ is given by
λ · vχ �→ λ〈ρ,χ〉vχ, and extended to all of A linearly. The degree of vχ is this exponent, denoted by
d(vχ) := 〈ρ, χ〉. Thus ρ induces a Z-grading on A =

⊕
d∈Z Ad, where Ad =

⊕
{χ∈M :〈χ,ρ〉=d}Aχ.

The polynomial ring OAn is Z-graded in a similar way, which determines the character μ = 〈ρ, ·〉
of the T-action and a Z-grading on F.

Fix a cluster format (X, μ, F) of codimension c and consider the polynomial ring OAm =
C[y1, . . . , ym] with a (positive) Z-grading (a1, . . . , am). Let φ : Am → An be a homogeneous mor-
phism of degree 0 with respect to the given grading on OAm and the μ-grading on OAn (i.e. φ is
T-equivariant).

Proposition–Definition 2.5 (Cf. [Rei2, Proposition 1.3]). Let Ŷ = φ−1(X) ⊂ Am for a mor-

phism φ : Am → An homogeneous of degree 0, as above. Then Ŷ is called a regular pullback of X

if one of the following equivalent conditions holds.

(i) Ŷ ⊂ Am has codimension c.

(ii) The pullback of F by φ is a free resolution of OAm-modules.

(iii) If xi are coordinates on An, then xi − φ∗(xi) form a regular sequence on Am × An for

i = 1, . . . , n.
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The point of the definition is that all of the equations, the syzygies, the Hilbert series,
etc. of Ŷ come from the cluster format (X, μ, F) together with the morphism φ. Since φ is T-
equivariant, we may define the weighted projective variety associated to (X, μ, F) and φ by taking
the geometric invariant theory (GIT) quotient

Y = (Ŷ //μ T) ⊂ P(a1, . . . , am).

See Examples 3.4 and 4.4 for details.

Remark 2.6.
(i) The character μ is allowed to have non-positive weights, since if xi is a coordinate with

d(xi) < 0 then φ∗(xi) = 0.
(ii) By considering larger torus actions Td for d ≤ k, we could also use X as a key variety for

the Cox ring of some variation of geometric invariant theory (VGIT) quotient, for example to
construct 3-fold flips as with Brown and Reid’s diptych varieties [BR17], divisorial extractions
as in [Duc15], or Sarkisov links in the style of Brown and Zucconi [BZ10].

In this paper we consider the first generalisation. Our convention is always to assume that φ

is a generic morphism, and therefore that φ∗(v) �= 0 is a non-zero constant if d(v) = 0.

We end this section with a useful lemma.

Lemma 2.7 (Singularity avoidance lemma). Let Ŷ = φ−1(X) be a regular pullback where

φ : Am → An is a morphism of graded degree 0.

(i) φ−1(sing(X)) ⊆ sing(Ŷ ).
(ii) Let Π = V (f1, . . . , fc) ⊂ An be a homogeneous complete intersection of codimension c ≤ m.

Then either

(a) φ−1(Π) = ∅, which happens if and only if d(fi) = 0 and φ∗(fi) �= 0 for some i, or

(b) dimφ−1(Π) ≥ m − c.

(iii) If Ŷ is the affine cone over a quasismooth weighted projective variety Y , then φ−1(sing(X))
is at worst the cone point P ∈ Ŷ . Moreover, if Π ⊆ sing(X) is a homogeneous complete inter-

section in An of codimension less than m, then d(f) = 0 and φ∗(f) �= 0 for some generator

f ∈ I(Π).

Proof. Suppose X is defined by equations g1, . . . , gd in variables x1, . . . , xn and Ŷ is defined by
equations h1, . . . , hd in variables y1, . . . , ym, where hi(y1, . . . , yn) = gi(φ∗(x1), . . . , φ∗(xn)) for all
i. Now, by the chain rule for differentiation, we have

Jac(Ŷ ) =
(

∂hi

∂yj

)
= φ∗

(
∂gi

∂xk

)
·
(

∂φ∗(xk)
∂yj

)
= φ∗(Jac(X)) · Jac(φ),

and when the rank of Jac(X) is less than c then the rank of Jac(Ŷ ) must be less than c. This
proves statement (i).

Statement (ii) follows from φ−1(Π) = V (φ∗(f1), . . . , φ∗(fc)) ⊂ An, which is an intersection of
c homogeneous polynomials in Am. These define a locus of dimension at least m − c, unless one
φ∗(fi) is identically non-zero. This can only happen if d(fi) = 0 and φ∗(fi) �= 0.

Statement (iii) follows directly from (i) and (ii). �
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Remark 2.8. In our situation, φ : Am → An is usually a generic immersion. One might ask
whether φ−1(sing(X)) being empty implies that sing(Ŷ ) is empty. This is not true; the rank
of Jac(Ŷ ) may drop if the image of Jac(φ) intersects too much of the kernel of φ∗(Jac(X)). See
§ 6.3 for examples.

Remark 2.9. Our codimension 4 cluster formats determine certain loci inside SpH8, the Spin-
Hom variety introduced by Reid in [Rei15]. The main theorem of [Rei15] puts codimension 4
Gorenstein ideals I into correspondence with regular pullbacks by suitable morphisms ϕ : An →
SpHk, thus SpHk acts as a key variety for the (k + 1) × 2k first syzygy matrix of I. We specify
a grading on Mor(A8, SpH8) and only consider those morphisms landing in the cluster locus.
We classify the components of this space which correspond to quasismooth varieties. This is a
tractable case of a question raised in [Rei15, § 4.8].

3. C2 cluster format

Recall that the cluster variety XC2 ⊂ A13 is the affine Gorenstein 9-fold in codimension 4
described in § 1.2.1. We now describe how to derive equations (1.1) defining XC2 from the mirror
family XC2 . Throughout the whole of this section we consider subscripts (i, j, k) in all formulae
to vary over all of the Dih6-permutations of (1, 2, 3).

3.1 The equations for C2 format
Recall that the mirror family XC2 is defined over a toric basic variety BC2 = Spec(C[NE(YC2)]).

3.1.1 The toric base BC2. In this case BC2 is a singular affine toric variety with 18 equations of
the form zX = zY , where X = Y is a linear relation in N1(YC2) for some classes X, Y ∈ NE(YC2).
We only write down six of these 18 equations, which will be relevant to the following calculation:

[Di] + 2[Ei] + [F ] = [Dj ] + 2[Djk] + [Dk],

[Dij ] + [Eij ] = [Djk] + [Dk] + [Dki].
(3.1)

3.1.2 The mirror family XC2. In this case, the mirror family XC2/BC2 is defined by nine
relative equations. These nine equations are determined by the six tag equations

θiθj = zDij (θij + zEij ),

θijθjk = zDj (θj + zEj )(θj + zEj+F ),

where the monomials appearing in the right-hand side of these equations come from counting cer-
tain classes of rational curves on YC2 . In general, the expectation that the coefficients appearing
in the mirror algebra can be interpreted in terms of the enumerative geometry of Y is described
in [GS18].

In the case above, the first tag equation is of the form θiθj =
∑2

m=1 z[Σm]θ
−Dij ·Σm

ij , where
[Σ1] = [Dij ] and [Σ2] = [Dij ] + [Eij ] are the two classes of an effective rational curve Σ ⊂ YC2 such
that Σ · Di = Σ · Dj = 1, and Σ · D′ = 0 for all other irreducible components in the boundary
D′ ⊂ D. Similarly, the second tag equation is θijθjk =

∑4
m=1 z[Σm]θ

−Dj ·Σm

j , where [Σ1] = [Dj ],
[Σ2] = [Dj ] + [Ej ], [Σ3] = [Dj ] + [Ej ] + [F ] and [Σ4] = [Dj ] + 2[Ej ] + [F ] are the four classes of
an effective rational curve Σ ⊂ YC2 such that Σ · Dij = Σ · Djk = 1, and Σ · D′ = 0 for all other

1886

https://doi.org/10.1112/S0010437X20007368 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007368


Constructing Fano 3-folds from cluster varieties of rank 2

Table 2. The character table for TD � XC2 .

θ1 θ12 θ2 θ23 θ3 θ31 A1 A12 A2 A23 A3 A31 λ

χ1 1 0 0 0 0 0 −2 1 0 0 0 1 −1
χ12 0 1 0 0 0 0 1 −1 1 0 0 0 1
χ2 0 0 1 0 0 0 0 1 −2 1 0 0 −1
χ23 0 0 0 1 0 0 0 0 1 −1 1 0 1
χ3 0 0 0 0 1 0 0 0 0 1 −2 1 −1
χ31 0 0 0 0 0 1 1 0 0 0 1 −1 1

irreducible components in the boundary D′ ⊂ D. The remaining equations, which are of the
form θiθjk = · · · , can be obtained either by a similar calculation (i.e. finding the relevant classes
of rational curves passing between Di and Djk) or by simply calculating the relation which is
implied birationally from the tag equations.7

Remark 3.1. Since we are primarily concerned with the existence of XC2 we do not take the time
to give a rigorous proof of this description. To do that one would either have to calculate the
relevant Gromov–Witten invariants for Y or (similarly to [GHK15a, Example 3.7]) show that
there is a consistent scattering diagram with six rays, corresponding to the six cluster variables,
with the attached functions zDij (1 + zEijθ−1

ij ) and zDj (1 + zEjθ−1
j )(1 + zEj+F θ−1

j ).

3.1.3 The cluster variety XC2. We write N1(YC2) = D ⊕ Z[δ], according to the Q-basis
[D1], . . . , [D31], δ, where

δ = 1
2([D1] + [D2] + [D3] − [F ]) = π∗

C2
H − D12 − D23 − D31,

in which πC2 is as in § 2.1.2 and H is the hyperplane class on P2. The reason for this choice of
basis is that, by the equations for BC2 (3.1), we have:

[Ei] = [Djk] − [Di] + δ,

[Eij ] = [Djk] + [Dk] + [Dki] − [Dij ],

which allows us to eliminate the coefficients zEi , zEij in a Dih6-invariant way. After doing this,
and setting Ai := zDi , Aij := zDij and λ := zδ(1 + zF ) to simplify the notation, we arrive at our
desired equations (1.1), albeit defined over the torus T7

A1,...,A31,λ. Since all the exponents that
appear in the equations are positive and integral, the equations defining XC2 |T7 immediately
extend to obtain the cluster variety XC2/A7.

3.1.4 Symmetries. The cluster variety XC2 has the action of Dih6 ×T6, where Dih6 permutes
the indices {1, 2, 3}. The torus action T6 = TD � XC2 is determined by the six characters χi,
χij , as defined in § 2.2.1. Since δ · [Di] = −1 for all i and δ · [Dij ] = 1 for all i, j, the character
table for TD � XC2 is given by Table 2.

3.2 Alternative presentations for C2 format
The nine equations (1.1) can be presented in a number of different ways.

7 In much the same way that the tag equations of a toric variety determine all of the other equations.
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3.2.1 Crazy Pfaffian format. The equations can be written in a 6 × 6 crazy Pfaffian format:

Pf4

⎛⎜⎜⎜⎜⎝
A3A31 θ1 θ12 A2θ2 + λA31 A2A23A3 + λθ1

A12 θ2 θ23 A3θ3 + λA12

A23 θ3 θ31

A31A1 A1θ1

A1A12A2

⎞⎟⎟⎟⎟⎠
where the variables A1, A2, A3 are floating factors. In other words, after expanding these Pfaffians
some of the relations are found to be divisible by A1, A2 or A3. In crazy Pfaffian format we
allow ourselves to divide by these floating factors wherever possible. In particular, if we set
A1 = A2 = A3 = 1 and λ = 0 then we recover the codimension 4 extrasymmetric format which
first appeared in Dicks’ thesis [Dic88], and now in many other places.

3.2.2 Triple unprojection structure. Eliminating θ12, θ23, θ31 from AC2 gives a Gorenstein
projection XC2 ��� Z where Z is the hypersurface:

θ1θ2θ3 = A31A1A12θ1 + A12A2A23θ2 + A23A3A31θ3 + λA12A23A31.

This variety Z is a family of affine cubic surfaces over A7
Ai,Aij ,λ whose general member has three

lines at infinity meeting at three 1
2(1, 1) singularities, obtained by contracting the three (−2)-

curves in the boundary divisor of YC2 . The variable θij can be recovered from Z as a serial
Gorenstein type I unprojection of the divisor Πij = V (Aij , θk). This gives rise to the following
description as an interlaced 4 × 4-Pfaffian format for the three matrices:

Pf4

⎛⎜⎜⎝
AkAki θi θij Ajθj + λAki

Aij θj θjk

Ajk θk

AkiAi

⎞⎟⎟⎠ (3.2)

where two Pfaffian equations in each matrix are repeated in one of the other two matrices. From
any one of these three matrices, XC2 is given by unprojecting the Tom3 ideal (Aki, θij , θj , θjk)
with unprojection variable θki.

3.2.3 Papadakis and Neves’
(
n
2

)
Pfaffian format. Papadakis and Neves [PN09] define the

(
n
2

)
Pfaffian format as a series of parallel type I unprojections from a certain codimension 1 ring.
When n = 3 (and in different notation from [PN09]) it is given by the parallel unprojection of
the three ideals (u1, v1), (u2, v2), (u3, v3) contained in the hypersurface:

Cu1u2u3 − D1v1u2u3−D2u1v2u3 − D3u1u2v3+E1u1v2v3 + E2v1u2v3+E3v1v2u3 − Fv1v2v3 = 0.

The result is a Gorenstein ring in codimension 4 with 9 × 16 equations and syzygies. For (i, j, k)
any Dih6-permutation of (1, 2, 3), the nine equations are

wiui = Diujuk − Ejujvk − Ekukvj + Fvjvk, (×3)

wivi = Cujuk − Djukvj − Dkujvk + Eivjvk, (×3)

wjwk = (DjDk − CEi)u2
i + (CF + DiEi − DjEj − DkEk)uivi + (EjEk − DiF )v2

i , (×3)
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and (as can be seen from the hypersurface model Z of § 3.2.2) if we set

(ui, vi, wi; C, Di, Ei, F ) �→ (θi, Ajk, θjk; 1, 0, −Ai, λ)

then we recover XC2 . The
(
3
2

)
Pfaffians ring has symmetry group8 BDih6 ×T7 which is slightly

larger than Dih6 ×T6, the symmetry group of XC2 .

Remark 3.2. The reason why we stick to the cluster algebra format and do not consider this
more general format is mainly due to computational advantage. Even though this ring is not
that much bigger than AC2 (and has greater symmetry) in almost all computations the computer
has a much harder time working with it. For example, the decomposition of

(
3
2

)
Pfaffian format

into affine charts is more complicated than for XC2 , which is worked out next.
Question: Can we also obtain the

(
3
2

)
Pfaffians variety from XC2? It seems a little suspicious

that the rank of the torus action is now bigger, and that part of the symmetry switches cluster
variables θij with coefficients Aij .

3.3 Affine pieces and the deep locus
We explain in more detail the partial covering of the C2 cluster variety from Lemma 2.2. In
the locus where the cluster variable θ12 does not vanish, the equations defining XC2 ∩ (θ12 �= 0)
reduce to CI(4):

θ31θ12 = A1θ
2
1 + λA23θ1 + A2A

2
23A3,

θ12θ23 = A2θ
2
2 + λA31θ2 + A3A

2
31A1,

θ1θ2 = A12θ12 + A23A3A31,

θ3θ12 = A31A1θ1 + λA23A31 + A2A23θ2.

Similarly, if any of the other cluster variables θi, θij are non-vanishing, the equations also reduce
to CI(4). Therefore XC2 is partly covered by six affine CI(4) charts and the remaining ‘deep locus’
X0 = X ∩ V (θ1, θ12, θ2, θ23, θ3, θ31) decomposes into 11 pieces. Up to the Dih6 symmetry, these
are

A4
A1,A2,A3,λ = V (θ1, . . . , θ31, A12, A23, A31), (×1)

A4
A23,A31,A1,A2

= V (θ1, . . . , θ31, A3, A12, λ), (×3)

A4
A31,A2,A3,λ = V (θ1, . . . , θ31, A1, A12, A23), (×6)

A3
A12,A23,A31

= V (θ1, . . . , θ31, A1, A2, A3, λ). (×1)

3.4 Regular pullbacks from C2 format
Let (XC2 , μ, F) be a C2 format determined by the one-parameter subgroup

ρ = (ρ1, . . . , ρ31) : C∗ → TD.

The action on XC2 is readily computed from Table 2; we just multiply the matrix of torus weights
on the left by ρ to obtain d(θi) = ρi, d(θij) = ρij , d(Ai) = ρki − 2ρi + ρij , d(Aij) = ρi − ρij + ρj

and d(λ) = ρ12 + ρ23 + ρ31 − ρ1 − ρ2 − ρ3.

8 BDih6 is the binary dihedral group (i.e. a central extension of D6 of order 2). In this case the extra involution
switches ui ↔ vi, Di ↔ Ei and C ↔ F .
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We use the shorthand

C2

(
φ∗(θ12) φ∗(θ23) φ∗(θ31)

φ∗(A12) φ∗(A23) φ∗(A31)

∣∣∣∣∣ φ∗(θ1) φ∗(θ2) φ∗(θ3)

φ∗(A1) φ∗(A2) φ∗(A3)

∣∣∣∣∣ φ∗(λ)

)

to write down a regular pullback from C2 format, and the same array with integer entries if we
wish to denote a generic pullback with given degrees.

The M -graded Hilbert series of XC2 can be computed using Macaulay2 (or even by hand),
and we can easily translate this into the Z-graded Hilbert series of (XC2 , μ, F):

P(XC2
,μ,F)(t) = PXC2

(tρ1 , tρ12 , tρ2 , tρ23 , tρ3 , tρ31).

The resolution F is Gorenstein codimension 4 with nine relations and 16 syzygies, and the Hilbert
numerator is of the form

1 −
∑

(tρi+ρj + tρij+ρjk + tρi+ρjk) + · · · + tα,

where the adjunction number is α = ρ1 + ρ12 + ρ2 + ρ23 + ρ3 + ρ31.

3.5 Singular locus
We want to construct quasismooth three-dimensional varieties via regular pullback from a key
variety X that turns out to be rather singular. According to Lemma 2.7, we have to control the
dimension of the pullback of sing(X), so we first compute the singular locus of XC2 and of some
distinguished subvarieties of XC2 .

Lemma 3.3. The reduced singular locus of XC2 is contained in the deep locus

sing(XC2) ⊂ X0 = XC2 ∩ V (θ1, θ12, θ2, θ23, θ3, θ31)

and decomposes into four irreducible linear subvarieties, given by

A4
A1,A2,A3,λ = X0 ∩ V (A12, A23, A31) and A2

Ai,Ajk
= X0 ∩ V (Aij , Aj , Ak, Aki, λ).

In particular, all components of the singular locus have codimension at least 5 in XC2 .

Moreover, the singular locus of the hyperplane section Xz := XC2 ∩ V (z) contains the

following bad components of codimension at least 3.

(i) sing(Xθi) is contained in the locus Xθi
0 := Xθi ∩ V (θij , θj , θk, θki) and contains the following

component which has codimension 3 in Xθi :

A5
θjk,Ai,Aj ,Ak,λ = Xθi

0 ∩ V (Aij , Ajk, Aki).

(ii) sing(Xθij ) contains the following component which has codimension 1 in Xθij :

Xθij ∩ V (θi, θj , Ajk, Aki).

(iii) sing(XAi) is contained in the locus XAi
0 := XAi ∩ V (θij , θj , θjk, θk, θki) and contains the

following component which has codimension 3 in XAi :

A5
θi,Aij ,Aj ,Ak,Aki

= XAi
0 ∩ V (Ai, Ajk, λ).
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(iv) sing(XAij ) is contained in the locus X
Aij

0 := XAij ∩ V (θj , θjk, θk, θki, θi) and contains the

following component which has codimension 3 in XAij :

A5
θij ,Ai,Aj ,Ak,λ = X

Aij

0 ∩ V (Aij , Ajk, Aki).

Proof. The statements about singular loci can easily be checked by using Macaulay2 or Magma
(cf. [Rei1, Theorem 1.1]). Note that if θij = 0 then T = Aiθi/Ajk = Ajθj/Aki are solutions to
the equation T 2 + λT + A1A2A3 = 0 in the ring O

Xθij , so Xθij is not normal. Since Xθij is
Gorenstein, and hence S2, it must be singular in codimension 1. �

3.6 Quasismoothness conditions
Let Ŷ ⊂ A8 be the four-dimensional affine cone over a quasismooth weighted projective 3-fold
Y ⊂ wP7 given as a regular pullback of the C2 cluster variety. The following proposition lists the
conditions imposed on the format by avoiding large components in the singular locus of XC2 .

Proposition 3.4. Suppose that Ŷ := φ−1(XC2) is a regular pullback and is not a complete inter-

section. Then, for all i, j, we must have d(θi) > 0, d(θij) > 0 and one of the following conditions

must hold.

(i) If d(Aij) > 0 for all i, j and d(λ) > 0, then we say Ŷ is in C2 format. In this case, d(Ai) ≥ 0
for all i.

(ii) If d(Aij) > 0 for all i, j and d(λ) = 0, then we say Ŷ is in P2 × P2 format. In this case,

either

(a) d(A1) = d(A2) = d(A3) = 0, or

(b) d(Ai) < 0 for some i.

(iii) If d(Aij) = 0 then we say Ŷ is in A2 + CI(1) format. In this case, all of Ai, Ajk, Aki, Aj , λ

have positive degree.

Proof. If d(θi) = 0 for some i, or if d(θij) = 0 for some i, j, then we can eliminate most of the
equations to be left with a CI(4). Therefore we may assume that d(θi) �= 0 and d(θij) �= 0 for all
i, j.

We now prove that the stated conditions on the degrees of the variables hold through the
following series of claims. We repeatedly use the following argument: if a variable z has degree
d(z) < 0 then φ∗(z) = 0, and hence φ must factor as a regular pullback from Xz. Then, by
Lemma 2.7(iii), some of the other variables must be non-vanishing and constant in order to
avoid pulling back the bad components in sing(Xz) of codimension at least 3, listed in Lemma
3.3.

Claim 1. Any one of d(θi) < 0, d(θij) < 0 or d(Aij) < 0 cannot happen.

If d(θi) < 0 then φ factors through Xθi and, in order to avoid pulling back the bad component
of Lemma 3.3(i), we must have d(Aij) = 0, d(Ajk) = 0 or d(Aki) = 0. This puts us in case (iii)
below, but with a zero entry appearing in the Pfaffian matrix. Hence Ŷ will fail to be quasismooth,
by [BKZ19, Proposition 2.7]. Similarly for the cases d(θij) < 0 and d(Aij) < 0.

Claim 2. If d(Ai) < 0 for some i, then we are either in case (ii)(b) or case (iii).
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To avoid pulling back the bad component of sing(XAi) we need either d(λ) = 0, which puts
us in case (ii)(b), or d(Ajk) = 0, which puts us in case (iii).

Claim 3. If d(λ) = 0 then we are in case (ii), and d(λ) < 0 cannot happen.

From Table 2 we have the relation 2d(λ) = d(A1) + d(A2) + d(A3). Therefore d(λ) = 0
implies either that d(A1) = d(A2) = d(A3) = 0 or that d(Ai) < 0 for some i, which are the two
conditions of case (ii). If d(λ) < 0 then d(Ai) < 0 for some i and by Claim 2 we end up in
case (iii), but with a zero entry in the Pfaffian matrix. Hence Ŷ will not be quasismooth, as in
the conclusion of Claim 1.

This completes the analysis of the allowed degrees in cases (i)–(iii). We now show that case (ii)
is equivalent to P2 × P2 format and case (iii) is equivalent to A2 + CI(1) format. �

Case (ii) is P2 × P2 format. In case (ii)(a), φ factors through the regular pullback of XC2

by the morphism φ1 : A9 → A13, given by φ∗
1(λ) = φ∗

1(A1) = φ∗
1(A2) = φ∗

1(A3) = 1 and φ∗
1(z) = z

for all other variables. If we make the change of variables Xi = (1 + ω)(θi − ωAjk) and Yi =
(1 + ω2)(θi − ω2Ajk) for ω a primitive third root of unity, the equations defining φ−1

1 (XC2) can
be written as

2∧⎛⎝−θ12 X2 Y1

Y2 −θ23 X3

X1 Y3 −θ31

⎞⎠ = 0,

so that φ−1
1 (XC2) is a regular pullback from P2 × P2 format.

In case (ii)(b), pulling back XC2 by the morphism φ2 : A11 → A13 given by φ∗
2(λ) = 1,

φ∗
2(Ai) = 0 and φ∗

2(z) = z for all other variables, gives

2∧⎛⎝ θij Ajθj + Aki AjAjkAk + θi

θj θjk Akθk + Aij

Ajk θk θki

⎞⎠ = 0,

so that φ−1
2 (XC2) can also be rewritten as a regular pullback from P2 × P2 format.

Case (iii) is A2 + CI(1) format. In case (iii), pulling back XC2 by the morphism φ3 : A12 → A13

given by φ∗
3(Aij) = 1 and φ∗

3(z) = z for all other variables, gives

Pf4

⎛⎜⎜⎝
Ai θj θjk Akθk + λ

Ajk θk θki

Aki θi

Aj

⎞⎟⎟⎠ = 0 and θij = θiθj − AjkAkAki.

Therefore, φ−1
3 (XC2) can be rewritten as a regular pullback from a hypersurface inside Gr(2, 5)

format. Note that all entries in the Pfaffian matrix must have degree at least 0, else Ŷ is too
singular to be the affine cone over a quasismooth 3-fold Y , and if any entry has degree 0 then Ŷ

is a CI(4).
As a consequence of the proposition we may easily discard cases with d(λ) < 0, and if d(λ) = 0

we could search with a simpler algorithm for P2 × P2 format (or just appeal to Brown, Kasprzyk
and Qureshi’s work on Fano 3-folds in P2 × P2 format [BKQ18]).

Example 3.5 (Hypersurface inside Pfaffians). The reason why we call case (iii) of the propo-
sition ‘A2 + CI(1) format’ (and not simply ‘A2 format’) is that if φ∗

3(θij) cannot be used
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to eliminate a variable then the variety we construct by regular pullback will be a gen-
uine hypersurface inside Gr(2, 5) format. This happens for Fano 3-fold #29374, classically
constructed as Y = Q2 ∩ Gr(2, 5) ∩ P7, where Q2 is a quadric hypersurface. We construct
Y in format C2( 2 1 1

0 1 1

∣∣ 1 1 1
1 1 0

∣∣ 1 ). Here d(A12) = 0 but, since there are no variables of degree
d(θ12) = 2 to eliminate, the equation involving θ12 defines a quadric hypersurface. A similar phe-
nomenon occurs for G2 format. Indeed, #29374 is also constructed as G2( 2 2 2 1

0 0 0 1

∣∣ 1 1 1 1
0 1 1 0

∣∣ 1
1 ) (see

Example 4.4 for notation). This format commonly occurs in constructions of general type 3-folds
[BKZ19].

4. G2 cluster format

The cluster variety XG2 ⊂ A18 is the affine Gorenstein 12-fold in codimension 6 described in
§ 1.2.2. We now describe how to derive the equations (1.2) defining XG2 from the mirror fam-
ily XG2 . Throughout this section we consider subscripts (i, j, k, l) in all formulae to vary over
all Dih8-permutations of (1, 2, 3, 4). We give a parallel treatment to the previous section on
XC2 , but the situation for XG2 is more involved. Indeed, we realise XC2 as a special case
of XG2 .

4.1 The equations for G2 format
Recall that the mirror family XG2 is defined over a toric basic variety BG2 = Spec(C[NE(YG2)]).

4.1.1 The toric base. The base variety BG2 is a singular affine toric variety with 40 equations
of the form zX = zY , where X = Y is a linear relation for some classes X, Y ∈ NE(YG2). We only
write down eight of the 40 equations, which will be relevant to our calculations:

[Di] + 3[Ei] + 2[Fik] + [Fjl] = [Dj ] + 3[Djk] + 2[Dk] + 3[Dkl] + [Dl],

[Dij ] + [Eij ] = [Djk] + [Dk] + 2[Dkl] + [Dl] + [Dli].
(4.1)

4.1.2 The mirror family. In this case XG2/BG2 is given by 20 relative equations, determined
by eight tag equations:

θiθj = zDij (θij + zEij ),

θijθjk = zDj (θj + zEj )(θj + zEj+Fjl)(θj + zEj+Fjl+Fik),

where the monomials appearing in the equations are counting certain classes of rational curves
on YG2 . More precisely, the first tag equation is derived from θiθj =

∑2
m=1 z[Σm]θ

−Dij ·Σm

ij ,
where [Σ1] = [Dij ] and [Σ2] = [Dij ] + [Eij ] are the two classes of an effective rational curve
Σ ⊂ YG2 such that Σ · Di = Σ · Dj = 1, and Σ · D′ = 0 for all other irreducible components
in the boundary D′ ⊂ D. The second tag equation comes from θijθjk =

∑
m z[Σm]θ

−Dj ·Σm

j ,
where [Σm] runs over the classes of an effective rational curve Σ ⊂ YG2 such that Σ · Dij =
Σ · Djk = 1, and Σ · D′ = 0 for all other irreducible components in the boundary D′ ⊂ D. As
before, the other 14 equations defining XG2 can be found from the tag equations by working
birationally.

As explained in Remark 3.1, to give a rigorous proof that this description holds we could use
the machinery of scattering diagrams. However, we skip this since we are only interested in the
existence of XG2 in order for us to use it as a key variety.
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Table 3. The character table for TD � XG2 .

θ1 θ12 θ2 θ23 θ3 θ34 θ4 θ41 A1 A12 A2 A23 A3 A34 A4 A41 λ13 λ24

χ1 1 0 0 0 0 0 0 0 −3 1 0 0 0 0 0 1 −2 −1
χ12 0 1 0 0 0 0 0 0 1 −1 1 0 0 0 0 0 1 1
χ2 0 0 1 0 0 0 0 0 0 1 −3 1 0 0 0 0 −1 −2
χ23 0 0 0 1 0 0 0 0 0 0 1 −1 1 0 0 0 1 1
χ3 0 0 0 0 1 0 0 0 0 0 0 1 −3 1 0 0 −2 −1
χ34 0 0 0 0 0 1 0 0 0 0 0 0 1 −1 1 0 1 1
χ4 0 0 0 0 0 0 1 0 0 0 0 0 0 1 −3 1 −1 −2
χ41 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 −1 1 1

4.1.3 The cluster variety. We write N1(Y ) = D ⊕ Z〈δ13, δ24〉, according to the Q-basis
[D1], . . . , [D41], δ13, δ24, where

δik = 1
3(2[Di] + [Dj ] + 2[Dk] + [Dl] − 2[Fik] − [Fjl]).

The δik were chosen so that

[Ei] = [Djk] + [Dkl] − [Di] + δik,

[Eij ] = [Djk] + [Dk] + 2[Dkl] + [Dl] + [Dli] − [Dij ],

and therefore we can eliminate all of the coefficients zEi , zEij in a Dih8-equivariant way. Writing
Ai := zDi , Aij := zDij , λik := zδik(1 + zFik + zFik+Fjl), and noting that

2δik = δjl + [Di] + [Dk] − [Fik],

we recover our desired equations (1.2). Since all powers are positive and integral we can easily
extend all these equations to get an irreducible affine Gorenstein variety XG2/A10.

4.1.4 Symmetries. The cluster variety XG2 has the action of Dih8 ×T8, where Dih8 permutes
the indices {1, 2, 3, 4}. By calculating Di · δik = 1 etc., we get the character table for the torus
action T8 � XG2 , as shown in Table 3.

4.2 Alternative formats for XG2

We discuss some of the possible formats and useful subformats for XG2 .

4.2.1 Quadruple unprojection structure. Eliminating θ12, θ23, θ34, θ41 from AG2 gives a
Gorenstein projection XG2 ��� Z where Z is the following complete intersection of codimension 2:

θ1θ3 = A12A2A23θ2 + λ24A12A23A34A41 + A34A4A41θ4,

θ2θ4 = A41A1A12θ1 + λ13A12A23A34A41 + A23A3A34θ3.

This variety Z is a family of affine surfaces over A10
Ai,Aij ,λik

whose general member has a com-
pactification to a singular Del Pezzo surface with four lines at infinity meeting at four 1

3(1, 1)
singularities; see [CH17, § 2.2.1]. These four 1

3(1, 1) singularities are obtained by contracting the
four (−3)-curves in YG2 . Each variable θij can be recovered from Z as a serial Gorenstein type
I unprojection of the divisor Dij = V (Aij , θk, θl), giving the following codimension 3 Pfaffian
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format Pf4(Mij) = 0, where Mij is the matrix

Mij =

⎛⎜⎜⎝
AjkAkAkl θl θi Aij

Ali(Aiθi + λikAjkAkl) θij θj

Ajk(Ajθj + λjlAklAli) θk

AklAlAli

⎞⎟⎟⎠ . (4.2)

We note that Mij contains three unprojection divisors:

(i) the Tom5 ideal (θl, θi, θij , Ajk) for the unprojection variable θjk;
(ii) the Jer24 ideal (θi, θij , θj , Akl) for the unprojection variable θkl;
(iii) the Tom1 ideal (θij , θj , θk, Ali) for the unprojection variable θli.

Taken all together, these variables give an unprojection cascade, partly shown in Figure 2.

4.2.2 The G
(5)
2 and G

(4)
2 subformats. It is clear from equations (1.2) that if φ∗(Aij) = 1 for

some regular pullback φ from XG2 , then the variable θij becomes redundant.

Definition 4.1. We define the G
(5)
2 format of codimension 5 by making the specialisation

A12 = 1 and eliminating the redundant variable θ12. We define the G
(4)
2 format of codimen-

sion 4 by making the specialisation A12 = A34 = 1 and eliminating the redundant variables θ12

and θ34.9

4.2.3 G
(5)
2 format. This is a triple Jerry format. In terms of the matrices Mij defined above,

the 14 equations are:

Pf4(M23|A12=1) = 0, Pf4(M34|A12=1) = 0, Pf4(M41|A12=1) = 0,

θ23θ34 = (long equation), θ34θ41 = (long equation), θ41θ12 = (long equation).

If we wish to keep the variable θ12 with the equation θ12 = θ1θ2 − A23A3A
2
34A4A41, then we call

this G
(5)
2 + CI(1) format.

4.2.4 G
(4)
2 format. This is a double Jerry format (cf. [BKR12, § 9]). The nine equations are:

Pf4(M23|A12=A34=1) = 0, Pf4(M41|A12=A34=1) = 0, θ23θ41 = (long equation).

If we wish to keep the variables θ12, θ34 and their tag equations, then we call this G
(4)
2 + CI(2)

format.

4.3 Affine pieces and the deep locus
Similarly to the C2 cluster variety XC2 , the G2 cluster variety XG2 is partly covered by eight
affine CI(6) charts where one of each of the cluster variables θi or θij does not vanish. The deep
locus X0 = XG2 ∩ V (θ1, . . . , θ41) breaks up into the following 28 linear subvarieties.

A8 ∼= V (θ1, . . . , θ41, Aij , Akl), (×2)

A7 ∼= V (θ1, . . . , θ41, Ai, Aij , Ajk), (×8)

9 These could also be obtained in a fancy way, by considering the mirror family for a log Calabi–Yau surface (Y, D)
whose anticanonical cycle has negative intersection degrees (2, 2, 1, 3, 1, 3, 1) or (2, 2, 1, 2, 2, 1), respectively.
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A7 ∼= V (θ1, . . . , θ41, Ai, Ajk, λik), (×8)

A7 ∼= V (θ1, . . . , θ41, Ai, Ajk, Akl), (×4)

A7 ∼= V (θ1, . . . , θ41, Aij , Ak, Al), (×4)

A6 ∼= V (θ1, . . . , θ41, Ai, Ak, λik, λjl). (×2)

4.4 Regular pullbacks from G2 format
Let (XG2 , μ, F) be a G2 cluster format determined by the one-parameter subgroup

ρ = (ρ1, ρ12, . . . , ρ4, ρ41) : C∗ → TD.

From Table 3,

d(θi) = ρi, d(θij) = ρij , d(Ai) = ρli − 3ρi + ρij , d(Aij) = ρi − ρij + ρj ,

d(λik) = −2ρi + ρij − ρj + ρjk − 2ρk + ρkl − ρl + ρli.

We use the shorthand

G2

(
φ∗(θ12) φ∗(θ23) φ∗(θ34) φ∗(θ41)

φ∗(A12) φ∗(A23) φ∗(A34) φ∗(A41)

∣∣∣∣∣ φ∗(θ1) φ∗(θ2) φ∗(θ3) φ∗(θ4)

φ∗(A1) φ∗(A2) φ∗(A3) φ∗(A4)

∣∣∣∣∣ φ∗(λ13)

φ∗(λ24)

)
to write down a regular pullback from G2 format, or the same array with integer entries if we
just wish to denote the degrees.

As with the regular pullbacks from XC2 , it is easy to use the M -graded Hilbert series of XG2

to get the Z-graded Hilbert series of (XG2 , μ, F). Again, the Hilbert numerator has adjunction
number α = ρ1 + ρ12 + ρ2 + ρ23 + ρ3 + ρ34 + ρ4 + ρ41.

4.5 Singular locus
As we did with the C2 cluster variety XC2 we now describe the singular locus of XG2 and some
of the hyperplane sections of XG2 .

Lemma 4.2. The reduced singular locus sing(XG2) is contained inside the deep locus

sing(XG2) ⊂ X0 := XG2 ∩ V (θ1, θ12, θ2, θ23, θ3, θ34, θ4, θ41)

and decomposes into 14 irreducible linear subvarieties, given by

A8 = X0 ∩ V (Aij , Akl), A7 = X0 ∩ V (Ai, Ajk, Akl),
A5 = X0 ∩ V (Ai, Aij , Ajk, Ak, λik), A5 = X0 ∩ V (Ai, Aj , Akl, λik, λjl).

In particular, all components of the singular locus have codimension at least 4 in XG2 .

The hyperplane section Xz = XG2 ∩ V (z) is singular in codimension 1 if z = θi or z = θij . In

other cases,

(i) sing(XAi) is contained in the locus XAi
0 := VXAi (θij , θj , θjk, θk, θkl, θl, θli) and contains the

components

A8 = XAi
0 ∩ V (Ajk, Akl), A8 = XAi

0 ∩ V (Ajk, λik) and A8 = XAi
0 ∩ V (Akl, λik),

which have codimension 3 in XAi ;
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(ii) sing(XAij ) is contained in the locus X
Aij

0 := V
XAij (θj , θjk, θk, θkl, θl, θli, θi) and contains the

components

A9 = X
Aij

0 ∩ V (Akl) and A8 = X
Aij

0 ∩ V (Ajk, Ali),

which have codimension ≤ 3 in XAij .

Proof. This is slightly more delicate than the computation of sing(XC2), since asking the com-
puter to compute the 6 × 6 minors of the 18 × 20 Jacobian matrix J is fairly hopeless. First of
all, if one of the cluster variables θi or θij is non-zero we are in one of the affine complete inter-
section charts of Lemma 2.2 and it is easy to check that these are smooth. Therefore sing(XG2)
is contained in the deep locus sing(XG2) ⊆ X0. Let Π be one of the 28 irreducible components
of X0 listed in § 4.3, and take the restriction J |Π. It turns out that J |Π is rather sparse, and it is
then much easier to compute sing(XG2)|Π for each Π. Finally, we take the union of all of these
singular subloci and compute the irreducible components of this union. We see that sing(XG2)
has the 14 irreducible components above.

The singular loci of XAi and XAij can be computed in a similar way (with the appropriate
adjustments to X0), although it is easier just to check the inclusion of the components claimed
in the statement of the proposition directly.

If θ12 = 0, then T = A1θ1/A23A34 is a solution to the monic polynomial equation

T 3 + μT 2 + λA1A3T + A2
1A2A

2
3A4 = 0

over the ring OXθ12 , and hence OXθ12 is not integrally closed. Moreover, since θ12 is not a zero
divisor in AG2 we know that Xθ12 is Gorenstein (hence S2) and therefore must be singular in
codimension 1. By a similar argument, because U = A12A2θ2/A34 solves the monic equation

U2 + λ24A41A12U + λ13A2A4A
2
12A

2
41 + A2A3A4A12A41θ3 = 0

over the ring OXθ1 , Xθ1 is also singular in codimension 1. �

4.6 Quasismoothness conditions
Let Ŷ ⊂ A10 be the four-dimensional affine cone over a quasismooth weighted projective
3-fold Y .

Proposition 4.3. Suppose that Ŷ = φ−1(XG2) is a regular pullback and is not a complete

intersection. Then, for any i, j, we must have d(θi) > 0, d(θij) > 0, and one of the following

conditions must hold, up to Dih8 symmetry.

(i) G
(6)
2 format: d(Aij) > 0 for all i, j. Then d(Ai) ≥ 0 for all i and d(λ13), d(λ24) ≥ 0.

(ii) G
(5)
2 + CI(1) format: d(A12) = 0 and d(Aij) > 0 for all other i, j. Then d(A1), d(A2) ≥ 0 and

d(λ13), d(λ24) ≥ 0. (See Corollary 4.4 for further analysis.)

(iii) G
(4)
2 + CI(2) format: d(A12) = d(A34) = 0 and d(A23), d(A41) > 0. (See Corollary 4.6 for

further analysis.)

(iv) C2 + CI(2) format: d(A12) = d(A23) = 0 and d(A34), d(A41) > 0. (See Proposition 3.4.)

(v) A2 + CI(3) format: d(A12) = d(A23) = d(A34) = 0 and d(A41) > 0.
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If all four d(Aij) = 0 then we are in CI(6) format. In other words, we consider cases according

to the following cascade of specialisations (cf. Figure 2):

(Note that, after making the specialisation, we do not automatically assume that the redundant

variables are eliminated.)

Proof. There are two things to prove: first, that the claimed inequalities on the degrees are
necessary in each case; and second, that C2 and A2 format appear as claimed in case (iv) and
case (v), respectively.

We obtain the degree inequalities in each case by considering what happens if one of the
variables is allowed to take a negative degree. Up to the Dih8 symmetry we can reduce to one of
the following cases.

Claim 1. d(θ1) < 0 and d(θ12) < 0 cannot happen.

Using Lemma 4.2, we see that d(θ1) ≥ 0 and d(θ12) ≥ 0. A single equality d(θ1) = 0 or
d(θ12) = 0 would reduce Ŷ to a complete intersection CI(6) by Lemma 2.2. Thus from now
on, we assume d(θi) > 0, d(θij) > 0.

Claim 2. d(A12) < 0 cannot happen.

If d(A12) < 0 then we must have d(A34) = 0 and either d(A23) = 0 or d(A41) = 0 to avoid
pulling back the two bad components of Lemma 4.2(ii). This puts us in case (iv), which is C

(4)
2 +

CI(2) format. Proposition 3.4, combined with the coordinate change described below, implies
that d(A12) cannot be negative.

Claim 3. d(A1) < 0 puts us in case (ii).

If d(A1) < 0 we need either d(A23) = 0 or d(A34) = 0, which puts us in case (ii). Assume
the former case. Then if one of d(A2) < 0 or d(A3) < 0 holds, this forces one of d(A34) = 0,
d(A41) = 0 or d(A12) = 0, and so we are either in case (iii) or case (iv).

Claim 4. d(λ13) < 0 puts us in case (iv).

Table 3 can be used to obtain the following identities:

3d(λ13) = 2d(A1) + d(A2) + 2d(A3) + d(A4),

3d(λ24) = d(A1) + 2d(A2) + d(A3) + 2d(A4),

d(λ13) + d(λ24) = d(A1) + d(A2) + d(A3) + d(A4).

(†)

If d(λ13) < 0 the first of these implies that d(Ai) < 0 for some i—without loss of generality either
A1 or A2.
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If d(A1) < 0 then, to avoid pulling back the big components of sing(XA1), we need

(d(A23) = 0 or d(A34) = 0) and (d(A23) = 0 or d(λ13) = 0) and (d(A34) = 0 or d(λ13) = 0).
(‡)

Since d(λ13) < 0, this implies d(A23) = d(A34) = 0 and we are in case (iv).
If d(A2) < 0 then, to avoid pulling back the big components of sing(XA2), we need

(d(A34) = 0 or d(A41) = 0) and (d(A41) = 0 or d(λ24) = 0) and (d(A34) = 0 or d(λ24) = 0).

If d(A34) = d(A41) = 0 then we go to case (iv), otherwise d(λ24) = 0 and the relations (†) imply
d(A1) + d(A3) = 2d(λ13) < 0, so either d(A1) < 0 or d(A3) < 0. This again forces two consecutive
Aij to have degree 0, and we go to case (iv).

This completes our rough analysis of the admissible degrees in cases (i)–(v). We now show
that C2 format and A2 format appear in cases (iv) and (v). By definition, case (ii) is G

(5)
2 format

and case (iii) is G
(4)
2 format.

Case (iv) is C2 + CI(2) format. Pulling back XG2 by the morphism φ : A16 → A18 given by
φ∗(A12) = φ∗(A23) = 1, and φ∗(z) = z for all other variables, gives a complete intersection of
codimension 2,

θ12 = θ1θ2 − A3A
2
34A4A41, θ23 = θ2θ3 − A34A4A

2
41A1,

inside the following generic pullback from C2 format:

C2

(
θ41 θ2 θ34

A41 A2 A34

∣∣∣∣∣ θ1 θ3 θ4

A1 A3 A4θ4 + λ24

∣∣∣∣∣ λ13

)
,

that is, inside A2
θ12,θ23

× XC2 . Under this coordinate change, the degrees of all variables must
satisfy the conditions of Proposition 3.4.

Case (v) is A2 + CI(3) format. Pulling back XG2 by the morphism φ : A15 → A18 given by
φ∗(A12) = φ∗(A23) = φ∗(A34) = 1, and φ∗(z) = z for all other variables, gives

Pf4

⎛⎜⎜⎝
A2 θ3 θ4 A41

A4θ4 + λ24 θ41 θ1

A1θ1 + λ13 θ2

A3

⎞⎟⎟⎠ θ12 = θ1θ2 − A3A4A41,

θ23 = θ2θ3 − A4A
2
41A1,

θ34 = θ3θ4 − A41A1A2.

If Ŷ is quasismooth and not a complete intersection, then the entries of this matrix must all
have positive degrees [BKZ19, Proposition 2.7]. �

4.6.1 Some further subformats. Let Ŷ ⊂ A10 be the four-dimensional affine cone over a
quasismooth weighted projective 3-fold Y . We refine cases (ii) and (iii) of Proposition 4.3.

Corollary 4.4 (Subformats for G
(5)
2 ). Suppose that Ŷ is in G

(5)
2 format, that is, d(A12) = 0,

all other d(Aij) > 0, d(A1), d(A2) ≥ 0 and d(λ13), d(λ24) ≥ 0. There are three possibilities.

(i) d(A3), d(A4) ≥ 0.

(ii) d(A3) < 0 and d(λ13) = 0.

(iii) d(A3), d(A4) < 0 and d(λ13) = d(λ24) = 0.

Proof. From (‡) and its translates under Dih8, if d(A3) < 0 then d(λ13) = 0, and if d(A4) < 0
then d(λ24) = 0. This completes the proof. �
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Remark 4.5. We do not have special formats for cases (ii) and (iii), but their divisor class group
has rank greater than 1.

Corollary 4.6 (Subformats for G
(4)
2 ). Suppose that Ŷ is in G

(4)
2 format, that is, d(A12) =

d(A34) = 0 and d(A23), d(A41) > 0. There are three possibilities (up to symmetry).

(i) If d(λ13), d(λ24) > 0, then d(Ai) ≥ 0 for all i and Ŷ is in (strict) G
(4)
2 format.

(ii) If d(λ24) = 0 and d(λ13) > 0, then Ŷ is in rolling factors format.

(iii) If d(λ13) = d(λ24) = 0, then Ŷ is in P1 × P1 × P1 format.

Proof. We have that d(A12) = d(A34) = 0, so we assume that φ∗(A12) = φ∗(A34) = 1. By
equation (‡), if d(A1) < 0 or d(A3) < 0 then we must have d(λ13) = 0. Similarly, if d(A2) < 0 or
d(A4) < 0 then we must have d(λ24) = 0.

Suppose we are in case (ii). Then equations (†), combined with the above, imply that at least
one of d(A2) < 0 or d(A4) < 0 is negative, and d(A1), d(A3) ≥ 0. Say d(A2) < 0 and let φ : A14 →
A18 be defined by φ∗(A2) = 0, φ∗(λ24) = φ∗(A12) = φ∗(A34) = 1, and φ∗(z) = z otherwise. Since
d(λ24) = 0, the coordinate changes

A′
23 = A4θ4 + A23, θ′2 = θ2 + λ13A4A41 + A3A4θ3

are homogeneous, and the ideal defining φ∗XG2 is in rolling factors format:

2∧(
θ23 θ3 θ4 A41

θ′2 A′
23 θ41 θ1

)
= 0,

θ23θ4 = A3θ
2
3 + λ13A41θ3 + A1A

2
41,

θ23θ41 = A3A
′
23θ3 + λ13A41A

′
23 + A1A41θ1,

θ′2θ41 = A3A
′2
23 + λ13θ1A

′
23 + A1θ

2
1.

If we are in case (iii), then equations (†) reduce to d(λ13) = d(A1) + d(A3) and d(λ24) = d(A2) +
d(A4). Thus d(A1) = −d(A3) and d(A2) = −d(A4). So either two consecutive Ai have negative
degree, or d(Ai) = 0 for all i.

For the former case, suppose φ∗(A2) = φ∗(A3) = 0, φ∗(λ13) = φ∗(λ24) = φ∗(A12) =
φ∗(A34) = 1 and φ∗(z) = z otherwise. Then φ∗(XG2) ⊂ A12 is in P1 × P1 × P1 format, defined
by the 2 × 2 minors of the following cube after the displayed coordinate changes:

,

,

.

In the latter case, φ∗(Ai) = φ∗(λ13) = φ∗(λ24) = φ∗(A12) = φ∗(A34) = 1 for all Ai, and
φ∗(z) = z otherwise. Then φ∗(XG2) ⊂ A12 is in P1 × P1 × P1 format, defined by the 2 × 2 minors
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of the cube after the displayed coordinate changes:

,

,

,

,

,

.

where ε is a primitive eighth root of unity. �

5. Applications to constructing Fano 3-folds

5.1 Introduction to Fano 3-folds
A Fano 3-fold is a normal projective 3-fold Y with at worst Q-factorial terminal singularities and
whose anticanonical divisor −KY is Q-Cartier and ample. The Fano index of Y is the largest
positive integer q such that −KY = qA for some ample Weil divisor A. If the Weil divisor class
group Cl(Y ) = Z, then Y is called prime. The discrete invariants of Y are q, h0(Y, A) and the
basket of terminal quotient singularities B. There are a finite number of numerical possibilities for
(q, h0(Y, A),B), and approximately 50 000 such are listed in [GRDB], produced using [ABR02,
BS07a, BS07b]. We refer to any one such numerical possibility as a candidate Fano 3-fold.

The next stage of the classification is to prove whether a given candidate Y exists, and then
to investigate the structure of the Hilbert scheme of Y . We construct Y by taking Proj of the
finitely generated Gorenstein graded ring R(Y, A) =

⊕
n≥0 H0(Y, nA). A choice of generators for

R(Y, A) gives an embedding of Y into weighted projective space P(a1, . . . , an). From now on,
we assume that Y is quasismooth with at worst terminal quotient singularities. The expected
codimension of Y may be computed from the Hilbert series P(Y,A)(t) =

∑
n≥0 h0(Y, nA)tn, which

is in turn computed using the above invariants. Since our cluster formats have codimension 4, 5
or 6, we only consider those candidates whose expected dimension lies in this range. We further
assume that R(Y, A) is generated as simply as possible; that is, we do not consider specialisations
of A (e.g. hyperelliptic, trigonal) which may also have cluster format constructions, but in higher
than expected codimension.

5.2 Primality of Fano 3-folds
We give a criterion for checking primality of quasismooth varieties in cluster format.

Lemma 5.1. Let k be an algebraically closed field of characteristic 0. Suppose that Y = φ−1(X)
is a quasismooth variety defined over k, of dimension at least 3 in cluster format. Choose one of

the cluster variables θi or θij and denote it by θ. If φ∗(θ) is a prime element of k[Y ], then every

Weil divisor on Y is of the form OY (n) for some n.

Proof. We show that the coordinate ring k[Ŷ ] is factorial. If τ = φ∗(θ) is a prime element of
k[Ŷ ], then by Nagata’s lemma [Mat89, Theorem 20.2], it suffices to show that the localisation
k[Ŷ ]τ is factorial. The open set Ŷ ∩ (τ �= 0) is a complete intersection, because the localisation at
τ factors through the open subset X̂ ∩ (θ �= 0), which is a complete intersection by Lemma 2.2.
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Since complete intersections of dimension at least 4 are parafactorial and Ŷ is regular outside the
vertex (by quasismoothness), it follows that k[Ŷ ]τ is factorial (see [SGA2, XI 3.10, 3.13]). �

The following theorem summarises the application of this criterion to our list of Fano 3-folds
in cluster formats.

Theorem 5.2.

(i) If Y is in C2 format and not P2 × P2 subformat, then Y is prime.

(ii) If Y is in G
(4)
2 format and not rolling factors or (P1)3 subformat, then Y is prime.

(iii) If Y is in G
(5)
2 format, and in case (i) of Corollary 4.4, then Y is prime.

Proof. Primality depends on the format and on φ, so we apply the above lemma to each construc-
tion individually, using the computer. We do not check primality of τ = φ∗(θ) in k[Ŷ ] directly,
as the computer does this over Q, and τ could still be non-prime over C. Instead, we check that
Y ∩ V (τ) is non-singular in codimension 1 (this computation is valid over C). Since R1 + S2 is
equivalent to normality, the fact that Y is Gorenstein implies that Y ∩ V (τ) is normal over C and
hence geometrically normal. Thus by [EGA, IV § 4.6], Y ∩ V (τ) is geometrically irreducible—in
particular, irreducible over C.

Moreover, it follows from Lemmas 3.3 and 4.2 that Y ∩ V (θ) is necessarily singular in codi-
mension 1 for certain choices of θ. Thus for C2 format, we need only check θ1, θ2, θ3, for G

(4)
2

format only θ1, θ3, and for G
(5)
2 format only θ3. �

5.3 Comparison with Tom and Jerry
In this subsection we suppose that Y is a Fano 3-fold in codimension 4 with a type I centre.
The definitive guide to this situation is [BKR12], according to which each Y has at least two
constructions: one Tom and one Jerry. In total, 274 of the 322 families from [BKR12] contain a
subfamily which is in a cluster format.

Based on analysis of our classification [CD], we make the following observation.

Up to symmetry of the cluster format and choice of coordinates,

the type I centre is positioned at the coordinate point Pφ∗(θ12). (TJ)

Thus if Y is in C2 format, then the projection is the Tom3 matrix (3.2), and if Y is in G
(4)
2

format, then the projection is the Jerry24 matrix (4.2).
Under assumption (TJ), we can transform the output of [BKR12] into a short list of possible

cluster formats for Y , by permuting the row-columns of the skew-symmetric weight matrix
appropriately. We work through a representative example.

Example 5.3. According to [BKR12], candidate #5000 Y ⊂ P(1, 1, 3, 4, 4, 5, 5, 9) has Tom4 and
Jerry24 projections from the type I centre 1

9(1, 4, 5), leading to an unprojection divisor P(1, 4, 5)
inside a Fano 3-fold Y ⊂ P(1, 1, 3, 4, 4, 5, 5) defined by the Pfaffians of a 5 × 5 skew matrix.
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Table 4. Fano 3-folds with q ≥ 2.

Fano index q 2 3 4 5 6 7 >7

GRDB candidates in codimension 4 37 11 5 2 3 3 0
Candidates which do not exist ? 1 1 0 1 1 0
Candidates with cluster format constructions 27 8 4 2 2 2 0

We assume that Y is a Tom4. The weights of this skew matrix (mij) are then

(mij) =

⎛⎜⎜⎝
3 4 3 4

5 4 5
5 6

5

⎞⎟⎟⎠
after swapping row-columns 3 and 4, to match up with (3.2). According to (3.2),
the one-parameter subgroup ρ : C∗ → TD (see 3.4) corresponding to (mij) is ρ = (d(θ12),
m14, m25, m35, m13, m24). Further permutations fixing row–column 3 lead to different possibilities
for ρ. After removing those which are invalid according to Proposition 3.4, we get four possible
C2-formats matching Tom4, indexed by the corresponding permutation:

ρ=(9, 3, 5, 6, 4, 4), ρ(1,2) =(9, 4, 5, 6, 5, 3), ρ(4,5) =(9, 5, 4, 5, 4, 5), ρ(1,2)(4,5) =(9, 5, 3, 5, 5, 5).

Of these, ρ �→ C2( 9 3 5
1 5 5

∣∣ 6 4 4
2 4 0

∣∣ 3 ) gives a working construction for Y , corresponding to a subfamily
of that constructed by [BKR12]. The other three fail because the adjunction number is wrong.
We carried out a similar analysis for Jerry24. There is no G

(4)
2 construction for candidate #5000.

Thus cluster format constructions do not exist for some of the families constructed by
[BKR12]. Heuristically, the cluster format restricts the monomials available to the 5 × 5 matrix,
and this sometimes imposes worse than allowed singularities on Y and therefore Y .

5.4 Fano 3-folds of large Fano index
Table 4 presents the data of [GRDB] for prime Fano 3-folds with q ≥ 2 in codimension 4, and
its refinement using results of Prokhorov [Pro13, § 1] on the non-existence of certain candidates.
The last row lists our cluster format constructions which are prime.

Thus the question of existence is now settled in codimension 4 and Fano index at least 4.
In particular, the constructions of two index 7 candidates provide an answer to a question of
Prokhorov [Pro16, § 1.4]. For index 3, the missing candidates are #41058 and #41245. It would
be interesting to know whether these exist. Brown and Suzuki [BS07a] constructed 33 of the
index 2 candidates, although it is not clear to us whether these constructions are prime. We
have prime cluster format constructions corresponding to 27 of these 33 candidates. Thus there
remain at least four candidates for which is it not known whether there is a prime construction,
hence the ‘?’ in the table.

The finer question of describing the Hilbert scheme for each of the candidates with q ≥ 2
remains open. For some candidates, we get two distinct cluster constructions, often both prime.
Perhaps the general phenomenon from [BKR12] persists, and there are always at least two
components to the Hilbert scheme, if we relax the requirement that Y be prime.
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5.5 Fano 3-folds with empty |−KY |
We use C2 cluster format to construct two codimension 4 candidates with |−KY | empty. These
both have extrasymmetric descriptions induced by the C2 format. We explain #25 in some detail;
#38 is rather similar.

Example 5.4. Candidate #25 is Y ⊂ P(2, 5, 6, 7, 8, 9, 10, 11). Let p, q, r, s, t, u, v, w be coordinates
on the ambient space. With the notation established in Example 3.4, the cluster format is
C2( 8 10 12

8 7 9

∣∣ 10 6 11
0 6 0

∣∣ 3 ), and after coordinate choices, the general morphism φ : A8 → A13 of degree
0 is (

R8 v P12

t s u

∣∣∣∣∣ Q10 S6 w

1 r 1

∣∣∣∣∣ 0

)
,

where P12, Q10, R8, S6 are general weighted homogeneous forms of degree given by the subscript.
Since d(λ) = 3 forces φ∗(λ) = 0 for degree reasons, and φ∗(B23) = φ∗(B31) = 1, the equations
defining Y have a nice extrasymmetric format with floating factor r (see 3.2.1):

Pf4

⎛⎜⎜⎜⎜⎝
t S6 v w u

s w P12 Q10

u Q10 R8

rt rS6

rs

⎞⎟⎟⎟⎟⎠ .

The third codimension 4 candidate with |−KY | empty, #166, does not have a cluster for-
mat construction. Indeed, a proposed construction for #166 is as a Z/2-quotient of a complete
intersection Fano 3-fold [AR]. This proposed construction has expected embedding codimension
greater than 4. There are a handful of further candidates with |−KY | empty in codimension 5
and 6, but none of these have cluster format constructions.

5.6 Fano 3-folds with no projections
According to [AO18], the candidates that are most likely to give rise to birationally rigid Fano
3-folds are those with no centres of projection. In codimension 4 and Fano index 1, there are
five such candidates, of which we construct three: #25 has |−KY | empty, and is treated above;
#29374 is a del Pezzo 3-fold, classically known; #282 has two constructions, which we describe
here.

Example 5.5. Candidate #282 is Y ⊂ P(1, 6, 6, 7, 8, 9, 10, 11). Let p, q, r, s, t, u, v, w be coordi-
nates on the ambient space. We first consider the cluster format G2( 15 9 21 12

0 7 0 8

∣∣ 9 6 10 11
0 6 0 0

∣∣ 2
4 ), which

is in G
(4)
2 subformat, because d(A12) = d(A34) = 0 (see § 4.4 for notation). The general morphism

φ : A8 → A18 is (
θ12 Q9 θ34 P12

1 s 1 t

∣∣∣∣∣ u q v w

1 r 1 1

∣∣∣∣∣ p2

p4

)
,
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where the redundant variables θ12 and θ34 are eliminated, so we do not consider their images.
The equations of Y can be expressed as a double Jerry format following § 4.2.2:

Pf4

⎛⎜⎜⎝
t u q s

qr + p4t Q9 v

v + p2t w

t

⎞⎟⎟⎠ , Pf4

⎛⎜⎜⎝
rs v w t

w + p4s P12 u

u + p2s q

s

⎞⎟⎟⎠ ,

P12Q9 = vw + p4qw + p2uv + uqr + str − stp6.

The other construction of #282 uses exactly the same C2 cluster format as #25 above
(Example 5.4), giving an extrasymmetric construction whose explication we leave to the reader.

5.7 Fano 3-folds in codimension 5
There are 50 Fano 3-folds in G

(5)
2 format. Three of these have Fano index 3, one has index 2

and the remainder have index 1. Moreover, all of the index 1 candidates that we construct in
codimension 5 have type I centres.

Example 5.6. Consider the index 3 candidate #41117 given by Y ⊂ P(1, 2, 3, 3, 4, 5, 5, 6, 7)
with coordinates p, q, r, s, t, u, v, w, x. From [CD], Y has a G2( 11 4 5 7

0 3 1 3

∣∣ 6 5 2 4
0 0 3 0

∣∣ 2
1 ) cluster format

construction. The general morphism φ : A9 → A18 is(
θ12 P4 u x

1 r p s

∣∣∣∣∣ w v q t

1 1 Q3 1

∣∣∣∣∣ R2

S1

)
,

where P4, Q3, R2, S1 are general polynomials of degree denoted by the subscript, and the
redundant variable θ12 is eliminated. Following § 4.2.2, Y is a triple Jerry format with 14
equations:

Pf4

⎛⎜⎜⎝
ps w v r

v + Sps P q

p(Qq + Rs) t

s

⎞⎟⎟⎠ , Pf4

⎛⎜⎜⎝
s v q p

r(Qq + Rs) u t

s(t + Sr) w

r

⎞⎟⎟⎠ ,

Pf4

⎛⎜⎜⎝
r q t s

p(t + Sr) x w

w + Rrp v

Qrp

⎞⎟⎟⎠ ,

Pu = Qq3 + Rsq2 + Ss2q + s3,

ux = Qr3 + Rr2t + Srt2 + t3,

Px = (Qqt + (Q − RS)rs)p2 + p(Stv + Rqw) + vw.

5.8 Why no Fano 3-folds in codimension 6 cluster format?
There are no codimension 6 Fano 3-folds in G

(6)
2 format. According to Lemma 4.2 and Proposi-

tion 4.3, if Y is in strict G
(6)
2 format, then φ−1(sing XG2) contains two components of expected

dimension 0. These must therefore be supported at the vertex of Ŷ , and this imposes rather
strong numerical conditions on the available G

(6)
2 formats. Indeed, the first part of our classifica-

tion algorithm (see § 6) outputs 33 numerical G
(6)
2 formats for Fano 3-folds in codimension 6. In

each case, we have d(Ai) < 0 for all i and d(λ13), d(λ24) < 0 as well. This implies that the G
(6)
2

format is highly reducible.
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5.9 Fano 3-folds with Dih6 symmetry in C2 format
The Dih6 invariant characters of non-negative degree are generated by χDih6

1 =
∑

χi +
∑

χij

and χDih6
2 =

∑
χi + 2

∑
χij :

θi θij Ai Aij λ

χ
Dih6
1 1 1 0 1 0

χ
Dih6
2 1 2 2 0 3

With respect to these two characters XC2 has multigraded Hilbert series

PX(s, t) =
1 − 3s2t2 − 3s2t3 − 3s2t4+2s3t3+6s3t4+6s3t5+2s3t6−3s4t5 − 3s4t6 − 3s4t8 + s6t9

(1 − s)3(1 − t2)3(1 − t3)(1 − st)3(1 − st2)3
.

Let X(a,b) be the C2 format (XC2 , χa,b, F), where χa,b = aχDih6
1 + bχDih6

2 . In other words X(a,b) is

the generic regular pullback with degrees C2( a+2b a+2b a+2b
a a a

∣∣ a+b a+b a+b
2b 2b 2b

∣∣∣ 3b ). Now

X(a,b) ⊂ P12
(
(a)3, (2b)3, 3b, (a + b)3, (a + 2b)3

)
is a Fano 8-fold with −KX = OX(3a + 9b). We can construct the following projective varieties
as Dih6-invariant hyperplane sections of X(a,b), which therefore all carry the action of Dih6.

From [CD] the possible symmetric constructions are as follows.

(i) X(0,1) is a 5-fold complete intersection of codimension 4, X2,2,2,3 ⊂ P9(13, 26, 3):

θiθj = θij + Ak (×3), θ1θ2θ3 = A1θ23 + A2θ31 + A3θ12 + λ.

(ii) X(1,0) is C2( 1 1 1
1 1 1

∣∣ 1 1 1
0 0 0

∣∣ 0 ), the Segre embedding P2 × P2 ⊂ P8, by Proposition 3.4(ii)(a).
This gives a Dih6-symmetric construction for

#41028 Y ⊂ P(1, 1, 1, 1, 1, 1, 1, 1) −KY = OY (2).

(but not for #12960).
(iii) X(1,1) is C2( 3 3 3

1 1 1

∣∣ 2 2 2
2 2 2

∣∣ 3 ), giving Dih6-symmetric constructions for

#11222 Y1 ⊂ P(1, 1, 1, 2, 2, 3, 3, 3) −KY1 = OY1(1),
#40407 Y2 ⊂ P(1, 1, 2, 2, 2, 3, 3, 3) −KY2 = OY2(2).

(iv) X(2,1) is C2( 4 4 4
2 2 2

∣∣ 3 3 3
2 2 2

∣∣ 3 ), giving no Dih6-symmetric constructions. (We do not consider
#2511 or #5410, since X(2,1) does not have variables of weight 1.)

(v) X(3,1) is C2( 5 5 5
3 3 3

∣∣ 4 4 4
2 2 2

∣∣ 3 ), giving possibly symmetric constructions for

#5052 Y1 ⊂ P(1, 1, 3, 4, 4, 5, 5, 5) −KY1 = OY1(1),
#39934 Y2 ⊂ P(1, 2, 3, 4, 4, 5, 5, 5) −KY2 = OY2(2).

(We do not consider #1405, #39678 or #41297, since X(3,1) does not have two variables of
weight 3.)
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5.9.1 Reid’s Z/3-Godeaux surface. For (iii), note that X(1,1) ⊂ P12(13, 26, 34) is the regular
pullback C2( 3 3 3

1 1 1

∣∣ 2 2 2
2 2 2

∣∣ 3 ). We get a Fano 8-fold of index 12 with Hilbert series

P(2,3)(t) =
1 − 3t4 − 3t5 − t6 + 6t7 + 6t8 − t9 − 3t10 − 3t11 + t15

(1 − t)3(1 − t2)6(1 − t3)4
.

This variety was considered by Reid in [Rei1, Theorem 1.1]. If we take Dih6-invariant hyperplane
sections

θ1 + θ2 + θ3 = θ12 + θ23 + θ31 = A1 + A2 + A3 = 0

then we cut down to a Fano 5-fold W ⊂ P(13, 24, 33) of index 5. Now we find the Fano 3-folds

#11222 Y1 ⊂ P(13, 22, 33) −KY1 = OY1(1),
#40407 Y2 ⊂ P(12, 23, 33) −KY2 = OY2(2)

as hyperplane sections of W . (It is tempting to think we may also cut W by hyperplanes of degrees
1 and 3 to construct Fano 3-fold #8051 given by Y3 ⊂ P(12, 24, 32), with −KY3 = OY3(1). Alas,
this construction turns out to be too singular.)

Moreover, following Reid again, we may cut down this second Fano 3-fold Y2 by a Dih6-
invariant section of degree 3 to get a surface of general type S with pg = 2, K2

S = 3 and an action
of Dih6. Taking the quotient S/C3 by the cyclic subgroup C3 ⊂ Dih6 gives a Z/3-Godeaux surface
with an involution. See also [CU18] for a detailed study of this surface using Reid’s construction.

Remark 5.7. We do not consider the case of Dih8-invariant constructions from G2 format since,
for dimensional reasons (see § 5.8), the full codimension 6 G2 format does not give us any quasis-
mooth Fano 3-folds. However it may well still be possible to obtain interesting surfaces, similar
to Reid’s Godeaux surface, from G2 format.

6. Proof of the classification

Let Y ⊂ P(a) be a candidate Fano 3-fold from [GRDB] with expected codimension 4, 5 or 6,
and let (X, μ, F) be a cluster format as in Definition 2.4. As explained in § 2.5, the character μ

is determined by the choice of ρ in M∨ ∼= Zm. We write R for the polynomial ring generated by
variables with weights ai, such that P(a) = Proj(R).

6.1 The computer search
The algorithm proceeds in two stages. First, we search over all ρ inside a certain finite polytope in
Zm and check the Hilbert series of the corresponding cluster format against the candidate Hilbert
series. This gives a list of potential cluster formats whose numerical invariants match those of
Y . Second, for each such numerical cluster format, we consider homogeneous maps φ∗ : A → R

of degree 0. Such φ must satisfy certain further conditions in order that Y be quasismooth. If
these conditions are satisfied, we construct a variety Y ′ as the projectivised regular pullback of
X under φ, and check whether Y ′ is really quasismooth and has the correct basket. The details
are as follows.

6.1.1 Part 1 (Finding numerical cluster formats). We search through all ρ in Zm for
numerical cluster formats (X, μ, F) matching the Hilbert series data of the candidate Y .
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(i) According to § 2.5, the adjunction number of the cluster format X is αX =
∑

i ρi. Thus
we only consider ρ lying on the hyperplane (

∑
ρi = αY ) ⊂ Zn, where αY is the adjunction

number of the candidate Y .
(ii) Propositions 3.4 and 4.3 determine several half-spaces in which ρ must lie, in particular all

ρi > 0. The intersection of all these half spaces determines our finite search polytope P .
(iii) If the cluster format is G2 and Y has codimension 4, then we assume that Y is in G

(4)
2 subfor-

mat. According to Proposition 4.3, this cuts P by two further hyperplanes. For codimension
5, the G

(5)
2 subformat cuts P by one hyperplane.

(iv) For each ρ in P , we compute the Hilbert series of the corresponding cluster format and
compare that with the Hilbert series of Y . This is computationally expensive, so we do it
in two stages.
(a) Compute equation degrees of X and check whether the predicted equation degrees of

Y are a subset thereof.
(b) For each ρ satisfying (a), we compute the Hilbert numerator and compare it with that

of Y .
(v) Each ρ has an orbit under the dihedral group action, and elements of the same orbit give the

same cluster format up to a coordinate change. Thus we choose a representative ρ for each
orbit. Sometimes there are extra symmetries. For example, when ρ lies on a certain facet of
P , the cluster format specialises to P1 × P1 × P1 format. Such a ρ has an orbit under the
octahedral group.

The output from Part 1 is a list of numerical cluster formats (X, μ, F) for the candidate Y .

6.1.2 Part 2 (Checking quasismoothness). We work through necessary conditions on ρ and
φ imposed by the assumption that Y is quasismooth.

(i) For each potential ρ, we run through the reasons for failure (see § 6.3) to remove those
cluster formats which it would be impossible for φ−1(X) to be quasismooth.

(ii) We construct a general homogeneous map φ∗ : A → R of degree 0. Wherever possible, we
use coordinate changes to optimise φ (see, e.g., Example 5.4).

(iii) We construct a test variety Y ′, the regular pullback of X along φ. Depending on ρ, we may
know a subformat for Y ′ (e.g. P2 × P2), in which case we use this subformat to construct Y ′.

(iv) We check the quasismoothness of Y ′. This is by far the most computationally expensive
part of the algorithm. We use the strategy outlined in § 6.2.

(v) If quasismoothness fails, we try again—accidents happen! There is a chance that Y ′ is not
quasismooth for a bad random choice of φ. The fact that Y ′ is eventually quasismooth
proves that our reasons for failure are sharp.

(vi) We check that the basket of Y ′ matches the basket of the candidate Y —this is a non-trivial
condition in general (see § 6.3.4).

6.2 Strategy for testing quasismoothness
We exploit the structure of the cluster variety to produce an efficient way of testing quasis-
moothness of a regular pullback Y = φ−1(XT). First we compute

∧c(Jac(Y )|φ−1(Π)), for each
linear subspace Π in the deep locus. This is fast because the Jacobian matrix is very sparse.
Then we compute non-singularity for each affine piece of the partial covering from Lemma 2.2.
Let F1, . . . , Fc be the homogeneous equations whose restriction to (φ∗(θ) �= 0) defines the CI(c)

chart Yθ = φ−1(X ∩ (θ �= 0)) corresponding to cluster variable x. We verify the inclusion of ideals
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Table 5. Table of failures.

Failures

Codimension Numerical candidates (1) (2) (3) (4) Working constructions

4 1220 464 338 3 28 387
5 199 112 36 0 1 50
6 33 3 30 – – 0

(φ∗(θ)k) ⊂ (
∧c(Jac(Fi))) for large enough k, which implies that the reduced singular locus of

the chart Yθ is empty.

Remark 6.1. Näıvely checking the rank of Jac(Y ) directly is not feasible in codimension greater
than 4 because of the size of the matrix. We have compared output of both methods in
codimension 4, to ensure correct implementation.

6.3 Reasons for failure
We summarise the results on Part 2 of the algorithm in Table 5.

The ‘Numerical candidates’ column refers to the numerical cluster constructions output from
Part 1. Part 2 removes those cluster formats which fail to construct a quasismooth Fano 3-fold
Y , and outputs those which do give a working construction. The reasons for failure listed in the
table are explained in the rest of this subsection:

(1) φ−1(sing X) is non-empty, § 6.3.1;
(2) Y is not quasismooth at a coordinate point, § 6.3.2;
(3) Y fails for some ad hoc reason, § 6.3.3;
(4) Y is quasismooth but has a false basket, § 6.3.4.

Throughout this subsection, Ŷ in An is the affine cone over a quasismooth 3-fold Y ⊂ P(a) in
cluster format (X, μ, F), and we denote the coordinates on An by z1,...,n. The reasons for failure
are conditions on the morphism φ : An → AN which are necessary for Y to be quasismooth.
These conditions are independent of the choice of φ.

6.3.1 Pullback singular locus of the cluster variety. The search polytope P from Part 1 of
the search is defined by certain numerical conditions on ρ implied by the requirement that
φ−1(sing X) is supported at the vertex or empty. By analysing φ more closely, we can sharpen
the conditions on ρ.

Lemma 6.2. Suppose that Π is a component of the singular locus of X, with defining ideal

IΠ = (w1, . . . , wk). If Ŷ is the affine cone over a quasismooth 3-fold, then one of the following

two conditions must hold.

(i) (Empty) For some i, d(wi) = 0.

(ii) (Vertex) For each i = 1, . . . , n, there exists ji such that d(zi) divides d(wji).

Proof. (i) If d(wi) = 0 for some i, then we are done, because φ∗(wi) = 1 by convention, and
φ−1(Π) is empty. (ii) Otherwise, φ−1(Π) is supported at the vertex, which implies that for each
i, some power of zi is in φ∗(IΠ). Thus for each i, there exists ji such that some power of zi

appears in φ∗(wji). �
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Lemma 6.3. Suppose we are in case (ii) of Lemma 6.2. Choose coordinates and reorder them

z1, . . . , zp, zp+1, . . . , zn so that for i = p + 1, . . . , n, we have φ∗(wji) = zi for some wji . Then at

least p of the φ∗(wi) must be non-trivial modulo (zp+1, . . . , zn).

Proof. We work on the affine subspace V (zp+1, . . . , zn) = Ap ⊂ An. It remains to show that the
ideal quotient I ′ = φ∗(IΠ)/(zp+1, . . . , zn) is supported on the vertex V (z1, . . . , zp) in Ap. For this,
we need at least dim Ap non-trivial generators for I ′. �

Example 6.4 (Pullback of sing XC2 is non-empty). Consider #25, Y ⊂ P(2, 5, 6, 7, 8, 9, 10, 11).
Part 1 of the algorithm gives five numerical C2 formats for Y :(

7 9 13
10 9 8

∣∣ 7 11 10
2 0 0

∣∣ 1 ) ,
(

8 9 13
8 9 7

∣∣ 7 11 9
3 0 3

∣∣ 3 ) ,
(

11 9 11
5 8 8

∣∣ 7 10 9
6 0 4

∣∣ 5 ) ,
(

8 10 12
8 7 9

∣∣ 6 11 10
6 0 0

∣∣ 3 ) ,
(

10 9 12
6 9 6

∣∣ 8 10 8
3 1 6

∣∣ 5 ) .

By Lemma 3.3, the largest component of sing XC2 is V (θ1, θ2, θ3, θ12, θ23, θ31, A12, A23, A31). We
can read the degrees of the ideal generators directly from the cluster format. For example, in
the first displayed case, we have (7, 9, 13, 7, 11, 10, 10, 9, 8). Since none of these is divisible by
d(z3) = 6, this case fails Lemma 6.2. Similarly for the second and third cases, while the fifth
case also fails, because there is no space for z4 which has degree 7. The fourth case is actually a
working construction; see Example 5.4 above.

Example 6.5. Consider #166, Y ⊂ P(2, 2, 3, 3, 4, 4, 5, 5) with coordinates p, q, r, s, t, u, v, w and
C2 format ( 5 5 5

3 3 3

∣∣ 4 4 4
2 2 2

∣∣ 3 ). After choosing coordinates, φ takes the form(
v w P5

r s R3

∣∣∣∣∣ t u Q4

p q S2

∣∣∣∣∣ T3

)
,

which passes Lemma 6.2(ii), so we test Lemma 6.3. For the component

Π = V (θ1, θ2, θ3, θ12, θ23, θ31, A12, A23, A31) ⊂ sing(XC2),

the variables r, s, t, u, v, w appear as pullbacks of A12, A23, θ1, θ2, θ12, θ23, respectively. Thus we
need only consider φ−1(Π) ∩ A2

p,q = V (P5, Q4, R3)|A2
p,q

. For degree reasons, P |A2
p,q

≡ R|A2
p,q

≡ 0
and so Q|A2

p,q
cuts out two lines. Thus φ−1(Π) must be non-empty along the pq-plane.

6.3.2 Quasismoothness at coordinate points. It may still happen that Y is singular even
though φ−1(sing X) = ∅. The following lemma gives a necessary condition for Y to be
quasismooth at all coordinate points of P(a).

Lemma 6.6. Let φ∗(IX) = (φ∗(f1), . . . , φ∗(fm)) be the ideal defining Ŷ under regular pullback,

and suppose that Pi is the coordinate point corresponding to zi. Then for each i, one of the

following conditions must hold.

(i) (Pi /∈ Y ) There exists an integer j such that φ∗(fj) contains the monomial zk
i for some

k > 0.

(ii) (Pi ∈ Y ) There exists S ⊂ {1, . . . , n} of cardinality c = codimP(a) Y and a permutation σ on

n elements, such that for all j in S, φ∗(fj) contains the monomial zσ(j)z
mj

i for some mj > 0.

Proof. Clearly, condition (i) implies that Pi is not contained in Y . So we assume that Pi is in Y .
Let J denote the Jacobian matrix Jac(Y ) evaluated at Pi. If Y is quasismooth, then J contains
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a c × c submatrix Jc of rank c. Since Pi is a coordinate point, this implies condition (ii) of the
lemma. Indeed, the row numbers of Jc make up the subset S, and σ is some suitable permutation
whose restriction to S maps rows of Jc to linearly independent columns of Jc. �

Example 6.7. Consider #308, Y ⊂ P(1, 5, 6, 6, 7, 8, 9, 10), with coordinates p, q, r, s, t, u, v, w in
C2 format ( 7 9 11

7 6 8

∣∣ 9 5 10
0 6 0

∣∣ 3 ). The general form of φ is(
t v P11

R7 r u

∣∣∣∣∣ Q9 q w

1 s 1

∣∣∣∣∣ p3

)
.

Here Y = φ−1(X) is always singular at the coordinate point Ps, even though φ is generically an
immersion, and φ−1(sing X) is empty. Indeed, for degree reasons, s only appears as φ∗(A2) and
possibly in P11, Q9, R7. A quick examination of the equations shows that the tangent cone to
φ−1(X) at Ps must be singular.

6.3.3 Ad hoc reasons for failure. We document the failures appearing in column (3) of
Table 5.
(#360) Y ⊂ P7(1, 4, 5, 6, 7, 7, 8, 9) in C2( 6 8 10

7 6 7

∣∣ 5 9 8
4 0 0

∣∣ 2 ) format is always singular at one point in
P(4, 8).

(#393) Y ⊂ P7(1, 4, 5, 5, 6, 7, 8, 9) in C2( 6 7 9
6 8 8

∣∣ 5 10 7
3 −4 1

∣∣ 0 ) format (i.e. P2 × P2 subformat) has a
singular curve supported on P(5, 5) and a singular point in P(4, 8).

(#878) Y ⊂ P7(1, 3, 3, 4, 4, 5, 5, 6) in G2( 9 6 9 6
0 2 0 4

∣∣ 4 4 5 5
3 3 0 0

∣∣ 3
3 ) format is singular along a curve in

P(3, 3, 6).

6.3.4 False baskets and ice cream. Let Y ⊂ P(a1, . . . , an) be a candidate Fano 3-fold from
[GRDB] with basket of terminal quotient singularities B. Suppose Y ′ is a quasismooth 3-fold in
weighted projective space with Hilbert series matching Y . We say that Y ′ has a false basket if
the quotient singularities of Y ′ are not terminal. Such Y ′ are discarded.

Example 6.8. #569, Y ⊂ P(1, 3, 4, 5, 5, 6, 7, 9) of Fano index q = 1 in G2( 15 5 10 9
0 5 0 6

∣∣ 7 3 7 8−1 6 −2 0

∣∣ 0
3 )

format has 1
5(1, 1, 4) and 1

5(3, 4, 4) singularities instead of a single 1
5(1, 2, 3) singularity.

Example 6.9. #2410, Y ⊂ P(1, 2, 2, 3, 4, 5, 5, 6) in G2( 6 5 9 6
0 0 0 4

∣∣ 2 3 6 4
5 5 −3 0

∣∣ 3
4 ) format (i.e. A2 + CI(1)

subformat) has a curve of index 2 singularities. This is the only quasismooth Fano 3-fold with
non-isolated singularities that we find.

Remark 6.10. There is a misprint in [BKQ18, Table 1]: #577 has a working construction in
P2 × P2 format, while #645 is quasismooth but not terminal.

Let B denote either the basket of a candidate Fano 3-fold Y , or the set of isolated singularities
on a quasismooth Fano 3-fold Y ′. Define the basket vector of B to be v(B) = (v2, . . . , van) where
vr is the number of quotient singularities in B with index divisible by r, for 2 ≤ r ≤ an.

Example 6.11. According to [GRDB], #569 has basket vector v(B) = (0, 3, 0, 1, 0, 0, 0, 1), while
the construction of Example 6.8 has basket vector v(B′) = (0, 3, 0, 2, 0, 0, 0, 1).
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Lemma 6.12. Suppose Y is a candidate Fano 3-fold from [GRDB] in codimension 4, 5 or 6 and Y ′

is a quasismooth 3-fold with isolated singularities such that PY (t) = PY ′(t). Then B(Y ) = B(Y ′)
if and only if v(B(Y )) = v(B(Y ′)).

Proof. The ‘only if’ part is obvious. For the ‘if’ part, we use ice cream. Define kY = −q(Y ) < 0
so that ωY = OY (kY ). By [BRZ13], the Hilbert series of Y can be expressed as

PY (t) = PI(t) +
∑
Q∈B

Porb(Q, kY )(t)

where PI(t) is uniquely determined by kY and the first �(kY + 2)/2� terms of PY (t). In particular,
the orbifold contributions to PY (t) and PY ′(t) are equal.

Using a computer, we calculate the orbifold contribution to the Hilbert series for all baskets
B′ with basket vector v(B′) = v(B(Y )). Since Y ′ is quasismooth with isolated singularities, one
of these baskets must be the set of singularities of Y ′. We find that the only possibilities for B′

whose orbifold contribution matches that of Y are permutations of B, so the lemma is proven. �

We discard any constructions Y ′ whose basket vector does not match that of the candidate
Y , or which has non-isolated singularities. The basket vector is quite easy for the computer to
determine. According to the above lemma, the remainder are terminal quasismooth Fano 3-folds.
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