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Abstract

The network approach to psychopathology posits that mental disorders can be conceptualized
and studied as causal systems of mutually reinforcing symptoms. This approach, first posited in
2008, has grown substantially over the past decade and is now a full-fledged area of psychiatric
research. In this article, we provide an overview and critical analysis of 363 articles produced in
the first decade of this research program, with a focus on key theoretical, methodological, and
empirical contributions. In addition, we turn our attention to the next decade of the network
approach and propose critical avenues for future research in each of these domains. We argue
that this program of research will be best served by working toward two overarching aims:
(a) the identification of robust empirical phenomena and (b) the development of formal the-
ories that can explain those phenomena. We recommend specific steps forward within this
broad framework and argue that these steps are necessary if the network approach is to develop
into a progressive program of research capable of producing a cumulative body of knowledge
about how specific mental disorders operate as causal systems.

The network approach to psychopathology began a decade ago with a simple hypothesis:
symptoms may cohere as syndromes because of causal relations among the symptoms them-
selves (Borsboom, 2008; Cramer, Waldorp, van der Maas, & Borsboom, 2010a). From this per-
spective, symptoms are not passive indicators of a latent ‘common cause’; they are agents in a
causal system (Borsboom, 2008; Kendler, 2016; Kendler, Zachar, & Craver, 2011). This
hypothesis has proven generative, stimulating a growing body of theoretical, methodological,
and empirical work predicated on the idea that mental disorders can be characterized as com-
plex systems in which symptoms play an active causal role (Fried et al., 2017; McNally, 2016).
In this paper, we provide an overview of the first decade of this ‘network approach’ to psycho-
pathology and consider directions forward for this research.

Literature review. We began by identifying articles within this literature. A description of
our literature search and a PRISMA diagram appear in online Supplementary Materials.
Briefly, we identified articles using keyword searches and citation records in ISI Web of
Science, PsycINFO, and PubMed and reference lists from prior reviews. This search produced
1656 unique records, 924 of which were screened out, most commonly because they pertained
to another domain of network analysis (e.g. protein interaction networks). The remaining
732 articles were assessed for eligibility. An article was eligible if it addressed a psychiatric phe-
nomenon and incorporated the perspective of the network approach. To facilitate this deter-
mination, we first identified articles as being principally theoretical, methodological, or
empirical. We deemed 363 articles eligible, including 98 theoretical, 61 methodological, and
204 empirical articles.

Notably, this literature has grown rapidly in recent years, with 90% of articles published in
the last 5 years and 60% published in the last 2 years alone (see Fig. 1). Much of this growth is
driven by empirical articles, especially those using ‘network psychometrics’ (Epskamp, Maris,
Waldorp, & Borsboom, 2016): a methodological approach developed within this literature.
Indeed, the network approach has become largely synonymous with this type of empirical con-
tribution. However, considerable work has been carried out beyond these empirical studies. To
provide an overview of the full breadth of this work, we independently review theoretical,
methodological, and empirical contributions. To our knowledge, this is the first systematic
review of the full network approach literature (for a review of the empirical literature, see
Contreras, Nieto, Valiente, Espinosa, & Vazquez, 2019).

Network theory

Among theory articles (n = 97), we identified five areas of work that have substantially contrib-
uted to the network conceptualization of psychopathology.
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Philosophy of psychiatry

Parallel to the earliest conceptualization ofmental disorders as symp-
tomnetworks (Borsboom, 2008;Crameret al., 2010a), another group
of theorists independently proposed that mental disorders can be
conceptualized as ‘mechanistic property clusters’ (MPCs): kinds uni-
fied not by a shared underlying essence, but by causal relations
among the features of the disorder (Kendler, 2016; Kendler et al.,
2011; Zachar, 2015). Symptomnetworks can be understood as a par-
ticular kind ofMPC: one which emphasizes symptoms as features of
the disorder. Yet, the origins of these concepts are quite distinct.
Whereas symptom networks are rooted in psychometric theory
(Borsboom, 2008),MPC theorists draw their ideas from the philoso-
phy of biology (Boyd, 1991, 1999). In doing so, they provide a philo-
sophical foundation for network theory, undergirding it in twoways.
First, as argued byHeld (2017), it clarifies what kind of thingsmental
disorders are from this perspective: clusters of features sufficiently
unified by the causal relations among them that they support induc-
tion, explanation, and prediction. Second, it positions network the-
ory within the broader history of psychiatry, contrasting it
especially with monocausal and essentialist frameworks that have
long dominated psychiatric research. As argued by Radden (2018),

the bacterial model of disease has been a powerful and entrenched
metaphor in psychiatry, shaping the theories, methods, interpreta-
tions, and expectations of the field. Amajor contribution of network
theory, Radden suggests, is that it provides a newmetaphor for think-
ing about mental disorders.

Consistent with this position, much of the network theory
literature can be seen as an effort to grapple with what mental dis-
orders are, how they arise, and how they are treated when viewing
them through this new lens. Theorists have used this framework to
examine psychiatric comorbidity (Cramer et al., 2010a; Eaton,
2015; van Loo & Romeijn, 2015; Yordanova, Kolev, Kirov, &
Rothenberger, 2010), sudden shifts in the onset or remission of
symptoms (Hofmann, Curtiss, & McNally, 2016; van de Leemput
et al., 2014), developmental psychopathology (Wass &
Karmiloff-Smith, 2010), biological psychiatry (Walter, 2013), psy-
chiatric diagnosis (Maung, 2016; Tsou, 2016; van Os, Delespaul,
Wigman, Myin-Germeys, & Wichers, 2013a, 2013b), the ‘p factor’
(a general psychometric factor of psychopathology analogous to the
general factor of intelligence; Caspi & Moffitt, 2018; van Bork,
Epskamp, Rhemtulla, Borsboom, & van der Maas, 2017), and the
equifinality and multi-finality of mental disorders (a disorder
reached by many causal factors and multiple disorders reached

Fig. 1. An overview of the network approach literature. Examining the cumulative number of empirical, methodological, and theoretical papers published in the
network literature from 2008 to 2018.
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by the same causal factor, respectively; Borsboom, 2017; McGorry,
Hartmann, Spooner, & Nelson, 2018). Theorists have also used this
lens to examine specific disorders, including depression (de Jonge,
Wardenaar, & Wichers, 2015; Hayes, Yasinski, Ben Barnes, &
Bockting, 2015; Wittenborn, Rahmandad, Rick, &
Hosseinichimeh, 2016), post-traumatic stress disorder (Armour,
Fried, & Olff, 2017; McNally, 2012, 2017), anxiety disorders
(Heeren & McNally, 2016), obsessive compulsive disorder (van
den Hout, 2014), eating disorders (Smith et al., 2018), autism
(Anderson, 2015; Verhoeff, 2013), psychosis (Bentall, 2014;
Isvoranu, Borsboom, van Os, & Guloksuz, 2016; Looijestijn,
Blom, Aleman, Hoek, & Goekoop, 2015), psychopathy (Brzović,
Jurjako, & Šustar, 2017), sleep disorders (Blake, Trinder, & Allen,
2018; Marques & Azevedo, 2018), and suicidality (de Beurs, 2017).

Network science

Making use of the network metaphor, early theoretical work drew
heavily from network science (Barabasi, 2012), focusing on the
network’s structure (i.e. the web of relations among symptoms)
and its effect on the network’s state (i.e. the activation of symp-
toms). Theorists posited that when causal relations among symp-
toms are strong, the onset of one symptom will lead to the onset
of others (‘causality hypothesis,’ Borsboom, 2008; Cramer et al.,
2010a). Strongly inter-connected symptom networks are thus vul-
nerable to a ‘contagion’ effect of spreading activation through the
network (‘connectivity hypothesis’). Computational models have
supported this notion (Cramer et al., 2016), showing that, in
highly connected networks, modest activation of select symptoms
initiated by an ‘external stressor’ can trigger a cascade of activa-
tion (for a discussion on how external factors relate to the symp-
tom network, see Borsboom, 2017; Fried & Cramer, 2017).
Moreover, when symptom activation becomes widespread, it
will persist even after the initiating stressor is removed.

From a network perspective, mental disorder is characterized not
only by the state of the network (i.e. elevated symptom activation),
but also by the structure of the network: in particular, a strongly con-
nected network in which inter-symptom relationships are sufficient
to maintain elevated symptom activation over time (see Fig. 2;
Borsboom, 2017). In other words, mental disorder is characterized
by a state of harmful equilibrium (for thought provoking and some-
times critical discussions of this characterization, see Friston, Redish,
and Gordon, 2017; Guyon, Falissard, and Kop, 2017; Porter, 2015;
Vosgerau & Soom, 2018; Young, 2015). Interestingly, computational
modeling studies suggest that the boundary between health and dis-
order will vary as a function of network structure (Borsboom et al.,
2016), yielding a novel perspective onwhether disorders are continu-
ous or discrete phenomena (Haslam, Holland, & Kuppens, 2012;
Waller & Meehl, 1998). In weakly connected networks, activation
varies dimensionally. However, strongly connected networks pro-
duce sharper boundaries, as any activation within the system rapidly
cascades into a state of psychopathology.

Early work on network structure also contributed to a shifting
perspective on individual symptoms (Fried, 2015; Fried et al.,
2015). From a network perspective, symptoms are not interchange-
able indicators. They are agents in a causal network whose role
depends upon their position in that network (Cramer et al.,
2010a). Theorists posited that highly ‘central’ symptoms (e.g.
thosewith stronger inter-symptom connections) have greater poten-
tial to spread symptom activation throughout the network than do
symptoms on the periphery (‘centrality hypothesis’; Cramer et al.,
2010a). Such symptoms were thus posited to feature in disorder

onset and remission (Borsboom & Cramer, 2013; Cramer et al.,
2010a; McNally et al., 2015). Further, because some symptoms
occur inmultiple disorders, symptom activation can spread between
syndromes, with symptoms bridging these syndromes playing a
critical role in psychiatric comorbidity (‘comorbidity hypothesis,’
Cramer et al., 2010a).

Affect dynamics and momentary experience

As network theory developed, some researchers argued that we
must shift our focus not only from disorders to symptoms, but fur-
ther to the level of momentary experiences (van Os et al., 2013a,
2013b; Wichers, 2014; Wichers, Wigman, & Myin-Germeys,
2015). These researchers note that symptoms are aggregates of
moment-to-moment experiences. It is these moment-to-moment
‘micro-processes,’ they argue, that constitute the true building
blocks of psychopathology (see Fig. 3; cf. Wichers, 2014,
p. 1351). This perspective shifts our focus to a more granular
level of experience and highlights the importance of understanding
the ‘chronometry’ of experiences, symptoms, and disorders
(Treadway & Leonard, 2016).

Cognitive behavioral theory

From its earliest stages, network theory has drawn on cognitive
behavioral models of psychopathology when discussing plausible

Fig. 2. Network structure, network state, and the definition of mental disorder.
Network structure (high v. low connectivity) and network state (low v. high symptom
activation) can be used to form concrete definitions of mental health and mental dis-
order (Borsboom, 2017; Cramer, Waldorp, van der Maas, & Borsboom, 2010b). A
weakly connected network with low symptom activation is in a state of mental health
(top left panel). If elevated symptom activation arises (e.g. due to the effects of time-
limited external stressor) the system will no longer be in a state of mental health, but
will also not be in a state of mental disorder as symptoms will diminish once the
external stressor is removed (bottom left panel). In contrast, a strongly connected
network is vulnerable to the persistence of symptom activation even absent the
effects of an external stressor. It is this stable state of elevated symptom activation
that we refer to as a mental disorder (bottom right panel). Finally, strongly con-
nected networks with minimal symptom activation are perhaps not in a state of men-
tal disorder, but are in a state of vulnerability to the onset or recurrence of a disorder
(top right panel). Such a system may thus represent a ‘silent disorder’ where symp-
toms are not currently manifest, but the risk for such symptoms remains high
(Cramer et al., 2010b).

Psychological Medicine 355

https://doi.org/10.1017/S0033291719003404 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291719003404


causal relations among symptoms (e.g. ‘vicious cycle’ theories of
panic disorder; Cramer et al., 2010a). Indeed, the cognitive behav-
ioral literature offers a long history of theorizing about causal rela-
tions among symptoms, empirical research investigating those
relationships, and treatment research suggesting that symptom-
level interventions are effective treatments (e.g. see van den
Hout, 2014). Not surprisingly then, some cognitive behavioral the-
orists have embraced network theory and proposed integrating it
with cognitive behavioral models (Hoffart & Johnson, 2017;
Hofmann, 2014; Hofmann et al., 2016; McNally, 2016; van den
Hout, 2014).

Systems science

Most recently, theorists have drawn from areas of systems sci-
ence beyond network science alone, including dynamical sys-
tems theory, catastrophe theory, and cybernetics (Hayes et al.,
2015; Nelson, McGorry, Wichers, Wigman, & Hartmann,
2017; Tretter & Loffler-Stastka, 2018; Yordanova et al., 2010).
These fields offer new tools for psychiatric research. For
example, the feedback loops emphasized in cognitive behavioral
theories of psychopathology have been rigorously investigated
in cybernetics and dynamical systems theory (Scheffer, 2009).
Illustrating the value of this work, Wittenborn et al. (2016)
used the ‘causal loop diagrams’ of dynamical systems theory
to generate a conceptual model of depression as a dynamical
system and dynamical systems concepts such as alternative
stable states and critical slowing have already begun to be
applied to psychopathology (Hayes et al., 2015; Hofmann &
Curtiss, 2018; Nelson et al., 2017; Rikkert et al., 2016).
Indeed, there is research examining mental disorders as dynam-
ical systems that predates (e.g. Granic, 2005; Hayes & Strauss,
1998; Schiepek, 2003) and, in some cases, has continued to
develop independently of (e.g. Pincus & Metten, 2010) the net-
work approach literature. This work anticipated many of the
ideas that would later develop within the context of the network
approach (e.g. ‘ideographical system modeling,’ Schiepek, 2003)
and is thus an invaluable resource for those studying mental
disorders as complex systems.

Critical analysis and future directions

With these diverse scientific and philosophical contributions,
considerable progress has been made in developing a general net-
work theory of mental disorders (Borsboom, 2017). However, for-
mal theories that specify precisely how any specific disorder
operates as a causal system are still scarce. We regard the develop-
ment of such theories to be a critical next step for network theory.
Computational models will play a critical role if the field is to
achieve this aim (Huys, Maia, & Frank, 2016; Robinaugh et al.,
2019; Tryon, 2018).

One key advantage of such models is that they render all
aspects of the theory explicit and available for evaluation
(Epstein, 2008). Computational models of symptom networks
thus provide insight into the assumptions made in network
theory, as they are the most explicit representation in the literature
of how symptom networks are posited to operate. Unfortunately,
currently operational models (Borsboom et al., 2016; Cramer
et al., 2016) reveal a restrictive set of assumptions: they typically
assume binary symptoms that operate on the same time scale
and interact with instantaneous and positive effects (i.e. symp-
toms exacerbate, rather than inhibit one another). Further, inter-
actions between symptoms are pairwise and symmetric (i.e. X
causes Y to the same extent that Y causes X).

Models adhering to these assumptions [Binary Instantaneous
Positive Pairwise and Symmetric (BIPPS) models] are unrealistic
for most mental disorders. Many symptoms are dimensional.
Some inter-symptom effects occur over minutes (fear→ avoid-
ance) whereas others occur over days (insomnia→ fatigue),
weeks (appetite loss→weight loss), or years (childhood sexual
abuse→ adulthood social disconnection). Negative inter-symptom
effects are plausible, as are higher order interactions (e.g. sleep
moderating the effect of trauma memories on emotional reactiv-
ity), and many inter-symptom relations are asymmetric (e.g. fear
elicits avoidance, but avoidance dampens fear). Violations of
these assumptions will almost certainly impact core network the-
ory hypotheses. For example, whether ‘central symptoms’ are
indeed especially important almost certainly depends on the speci-
fics of the network structure and inter-symptom interactions, mak-
ing it unclear when this hypothesis should be expected to hold

Fig. 3. Illustrating symptom networks and moment-
ary experiences with the example of panic disorder.
Panic disorder comprises three core symptoms
(recurrent panic attacks, persistent concern or
worry about those attacks, and avoidance behavior)
that play out on a time scale of days, weeks, or even
months (e.g. to meet criteria for panic disorder,
these symptoms must persist for at least 1
month). Panic attacks, in turn, comprise moment-
ary experiences of arousal-related bodily sensa-
tions, a sense of impending threat (e.g. fear of
having a heart attack), and an urge to escape
from or mitigate that threat. These momentary
experiences play out over the course of seconds
of minutes (e.g. to meet criteria for a panic attack,
these experiences must surge to a peak within
10 min). Cognitive behavioral theories posit that
causal relations at both of these time scales play
critical roles in panic attacks (Clark, 1986) and
panic disorder (Goldstein & Chambless, 1978). A
critical challenge for the network approach litera-
ture will be determining precisely how processes
at these different time scales interact with one
another (cf. Wichers, 2014).
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(cf. Bringmann et al., 2019; Dablander & Hinne, 2018; Hallquist,
Wright, & Molenaar, 2019). Theorists may rightly object that
their own theory of symptom networks does not require adherence
to these assumptions. However, to the extent that such theories
remain verbal in character, their assumptions remain unclear and
unavailable for careful evaluation.

It will thus be important to develop computational models in
which the assumptions embodied in the model better align
with how specific disorders are thought to operate (e.g. see
Hosseinichimeh, Wittenborn, Rick, Jalali, & Rahmandad, 2018).
This work can (indeed, must) be directly informed by each of the
areas of work that have already contributed to network theory.
For example, cognitive behavioral models of psychopathology
bring a wealth of theory and empirical research about inter-symptom
causal relations (cf. van den Hout, 2014); the literature on affective
dynamics can inform our understanding of the timescales on
which processes operate and how moment-to-moment experiences
become symptoms and, in turn, disorders (cf. Wichers, 2014);
and the dynamical systems literature can provide a host of tools
for modeling and evaluating complex systems (cf. Wittenborn
et al., 2016; Yang et al., 2018).

Methodology

When the network approach was first proposed, there was no estab-
lished method for assessing symptom network structure. The meth-
odology developed to meet this need in the 61 methodological
articles we reviewed has two primary components: (a) estimating
network structure and (b) assessing network characteristics.

Network structure

Early efforts defined network structure using symptom co-
occurrence or correlation (Cramer, Borsboom, Aggen, & Kendler,
2012; Cramer et al., 2010a). Aiming to better identify the direct
inter-symptom relations posited in network theory, subsequent
efforts have focused on conditional dependence relationships with
a penalty on regression parameters to obtain a sparse network of
dependence relationships known as a pairwise Markov random
field (PMRF; see Fig. 4). This approach was first implemented by
van Borkulo et al. (2014) and subsequently extended to multivariate
normal data (Epskamp, Borsboom, & Fried, 2018a), mixed data
(Haslbeck & Lourens, 2016), and latent variables (Epskamp,
Rhemtulla, & Borsboom, 2017b). Researchers have made these

Fig. 4. Network estimation methods commonly utilized in empirical network studies. This figure depicts methods commonly used in estimating network structure
from cross-sectional (panels a and b) and time-series data (panels c and d ). Panels a and c depict the cumulative number of articles applying a given estimation
method for cross-sectional and time-series data, respectively. Panels b and d depict the proportion of articles in a given year that utilized these estimation meth-
ods. For the purposes of this summary, we considered any network based on multiple time points to be based on ‘time-series’ data, thus incorporating change
score networks into this category. Note that the earliest cross-sectional (Cramer et al., 2010a) and time-series (Bringmann et al., 2013) networks were regarded as
theoretical and methodological contributions, respectively, given their substantial contributions in these domains, and thus are not included in this report. PMRF =
pairwise Markov random field; SEM = structural equation modeling; GIMME = group iterative multiple model estimation.
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methods freely available (Epskamp, Cramer, Waldorp, Schmittmann,
& Borsboom, 2012; van Borkulo et al., 2014), provided tutorials on
their use (Borsboom & Cramer, 2013; Costantini et al., 2015;
Epskamp & Fried, 2018; Epskamp, Kruis, & Marsman, 2017a;
Jones, Mair, & McNally, 2018), and extensively discussed their
properties (Kruis & Maris, 2016; Marsman et al., 2018).

Conditional dependence networks can be constructed from
either cross-sectional or intra-individual time series data. Cross-
sectional networks have been criticized on two fronts. First,
researchers have expressed concerns about their replicability
(Fried & Cramer, 2017; Fried, Epskamp, Nesse, Tuerlinckx, &
Borsboom, 2016), with some arguing that these methods are
inherently unstable (for an extended discussion, see Borsboom,
Robinaugh, The Psychosystems Group, Rhemtulla, & Cramer,
2018; Borsboom et al., 2017; Forbes, Wright, Markon, &
Krueger, 2017a, 2017b). Some have further argued that instability
is exacerbated by the use of single-item assessments and small
samples (DeYoung & Krueger, 2018). To promote robustness,
methods have been developed for evaluating the precision and
stability of estimated network parameters (Epskamp et al., 2018a).
These methods have been rapidly adopted in the empirical network
literature (see Fig. 4). Nonetheless, replicability remains an
important subject of ongoing debate (e.g. Forbes, Wright,
Markon, & Krueger, 2019; Jones, Williams, & McNally, 2019).

Researchers have also argued that cross-sectional findings can-
not demonstrate causality and cannot be assumed to generalize to
the level of most interest in network theory: the level of the indi-
vidual (e.g. Bos & Wanders, 2016; Bringmann & Eronen, 2018;
Forbes et al., 2017a; Tzur-Bitan, Meiran, & Shahar, 2010).
These researchers suggest that conditional dependence structure
should instead be based on within-person variation, assessing net-
work relations ‘where (i.e. within-person) and when (i.e. in real
time)’ they are posited to operate (Hamaker & Wichers, 2017).
Researchers have thus developed (Beltz & Gates, 2017;
Bringmann, Ferrer, Hamaker, Borsboom, & Tuerlinckx, 2018;
Bringmann et al., 2013; Bulteel, Tuerlinckx, Brose, &
Ceulemans, 2018; Epskamp et al., 2018c) and evaluated (Bulteel,
Tuerlinckx, Brose, & Ceulemans, 2016b; de Haan-Rietdijk,
Voelkle, Keijsers, & Hamaker, 2017; Kuiper & Ryan, 2018;
Schuurman, Ferrer, de Boer-Sonnenschein, & Hamaker, 2016;
Schuurman, Houtveen, & Hamaker, 2015) methods for estimating
within-subject network structure. These methods, especially vec-
tor autoregressive models, are growing in popularity and promise
to substantially inform our understanding of the relationships
among symptoms (see Fig. 4).

Alternative methods
Although most studies estimate network structure using statistical
associations, additional methods have been used (e.g. Borsboom,
Cramer, Schmittmann, Epskamp, & Waldorp, 2011; Tio,
Epskamp, Noordhof, & Borsboom, 2016). In one method of note,
researchers query patients or clinicians about the relations among
symptoms (Frewen, Schmittmann, Bringmann, & Borsboom,
2013; Ruzzano, Borsboom, & Geurts, 2015). Despite their promise,
these perceived causal relation networks remain underutilized.

Network characteristics

Researchers have adopted or developed methods for examining
local and global characteristics of symptom networks, including
assessments of node centrality (Epskamp et al., 2012), node pre-
dictability (Haslbeck & Waldorp, 2018), node clustering

(Costantini & Perugini, 2014), community structure (Blanken
et al., 2018; Golino & Epskamp, 2017; Zhao, Yang, Liu, &
Chen, 2017), and similarity of intra-individual network structure
(Bulteel, Tuerlinckx, Brose, & Ceulemans, 2016a). These charac-
teristics are often a primary focus of network analysis studies.

Critical analysis and future directions

The network psychometric toolbox is rapidly evolving. Researchers
are developing new methods for comparing (van Borkulo et al.,
2017; Williams, Rast, & Mulder, 2019) and estimating network
structure, including methods that integrate latent variable and net-
work models (Chen, Li, Liu, & Ying, 2018; Christensen, Kenett,
Aste, Silvia, & Kwapil, 2018; Epskamp, 2019; Williams & Rast,
2018). Researchers have also called for increased adoption of
tools from other domains of systems science (Nelson et al.,
2017), such as the use of autocorrelations to signal shifts into a
state of psychopathology (van de Leemput et al., 2014). Here, we
highlight three additional areas in need of development.

Most importantly, the relationship between data generating
causal systems and empirical networks estimated from data
requires further evaluation (see Fig. 5). Network psychometrics
recover the ‘true’ causal system when that system is itself a
PMRF (Epskamp et al., 2018b), as would be the case for a causal
system meeting the BIPPS assumptions. We also know what
empirical PMRF we should expect for one specific type of causal
system (i.e. directed acyclic graphs; Pearl, 2009). However, neither
of these systems is theoretically plausible for most mental disor-
ders, and we have minimal insight into the relationship between
causal systems and network structures estimated using network
psychometrics in more realistic frameworks. This is true for
both cross-sectional networks and within-subject networks.
Clarifying this relationship is fundamental to our ability to
draw inferences from these analyses and, therefore, a critical dir-
ection for future research.

Second, methodologies for aggregating findings across this
growing literature are needed, including methods for combining
networks derived from similar analyses and methods for integrat-
ing findings across different analyses. Because no single method-
ology has been shown to directly recover the network structure of
mental disorders, both cross-sectional networks and within-
subjects networks provide valuable but incomplete information
about the relationships among symptoms. Accordingly, a genuine
understanding of causal systems will almost certainly require an
aggregation of evidence across multiple studies and methodo-
logical approaches.

Finally, the field must develop a methodology for network data
collection. The majority of empirical network studies have used
data that were not collected for the purpose of network analysis
(Guloksuz, Pries, & van Os, 2017). The selection and measure-
ment of network components is fundamentally important to
the estimation (Hallquist et al., 2019) and interpretation (Forbes
et al., 2017a) of network structure. Even seemingly minor meas-
urement decisions can impact the results of these analyses
(Hoffman, Steinley, Trull, & Sher, 2018). Accordingly, psycho-
metric strategies focused on the optimal assessment of compo-
nents of psychopathology networks are needed.

Empirical studies

Among 204 empirical articles in the reviewed literature, 174 used
some form of network analysis. Among these, 170 used network
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psychometrics to estimate network structure, including 141 arti-
cles that examined cross-sectional data in 176 samples (mean
N = 2169; median N = 508) and 32 articles that examined time-
series data in 44 samples (mean N = 185; median N = 76). This
approach has been applied to a wide range of disorders, but espe-
cially to depression (69 articles) and posttraumatic stress disorder
(PTSD; 31 articles). This empirical work provides rich and
nuanced information about inter-symptom relationships for
these disorders. A complete review of these disorder-specific find-
ings is beyond the scope of this review. In our online
Supplementary Materials, we list empirical publications organized
by disorder and we encourage readers to use this resource to read
further. Here, we adopt a broader focus and consider findings
across disorders for the two most commonly examined network
characteristics: network connectivity and node centrality (see
Fig. 6).

Network connectivity
Most fundamentally, empirical network studies have found
that symptoms are highly interconnected. There is not only a
positive manifold (i.e. all variables are positively correlated),
but a conditional positive manifold for most disorders. That is,
with some exceptions, even after controlling for shared variance
among symptoms, these symptoms tend to be positively inter-
connected. This high connectivity is not surprising, but bears
noting as it suggests meaningful clustering of symptoms in the
syndromes we identify as mental disorders. Connectivity tends
to be consistent across time (e.g. Curtiss, Ito, Takebayashi, &

Hofmann, 2018; Rouquette et al., 2018; von Stockert, Fried,
Armour, & Pietrzak, 2018) and demographic groups, especially
gender and age (e.g. Belvederi Murri, Amore, Respino, &
Alexopoulos, 2018; Fonseca-Pedrero et al., 2018; Russell, Neill,
Carrion, & Weems, 2017); though differences have been
observed between countries (Fonseca-Pedrero et al. 2018;
Wusten et al. 2018).

Researchers have investigated the hypothesis that greater con-
nectivity (aka network density or global strength) confers risk for
psychopathology using cross-sectional analyses in several ways.
First, researchers have compared connectivity between groups
based on clinical severity. These studies typically found greater
connectivity in those with greater severity (e.g. Heeren &
McNally, 2018; Santos, Fried, Asafu-Adjei, & Ruiz, 2017; van
Rooijen et al., 2018), though one reported no difference
(Levinson et al., 2018a) and another found the opposite pattern
(Southward & Cheavens, 2018). However, these findings should
be interpreted with caution as grouping subjects on severity
affects the estimation of the network (De Ron, Fried, &
Epskamp, 2019). Second, researchers have retrospectively exam-
ined baseline network connectivity in those whose disorder
subsequently remitted v. persisted, reasoning that greater connect-
ivity should lead to disorder persistence. van Borkulo et al. (2015)
indeed found greater baseline connectivity among depression
symptoms in those with persistent v. remitted depression. In
two subsequent studies, one similarly reported greater baseline
connectivity in those with persistent depression, but could not
reject the null hypothesis that networks were equal at the

Fig. 5. An overview of network methodology, with a focus on the relationship between causal systems, data, and the empirical networks most commonly used in
the network approach literature (PMRFs). In many areas of network science, both the elements of the network and the connections among them can be directly
observed (e.g. train stations and the tracks that connect them). In psychiatry, symptoms can be assessed, but the relationships among them must be inferred.
Network psychometrics aims to infer those relationships using statistical associations. The method by which this is done depends on the data collected (for a
discussion of Cattell’s data cube and its relation to specific analyses, see Wardenaar & de Jonge, 2013). For cross-sectional data, a single network is estimated
based on the covariation of symptoms between-persons at that point in time. For n = 1 time-series data, networks are estimated based on the covariation of symp-
toms over time within one individual, and can be used to inform contemporaneous and temporal (lagged) associations among symptoms. In time series data in
larger samples, networks can be estimated using both within- and between-person information. Importantly, the network structure derived from between-person
analyses and within-person analyses are unlikely to be equivalent and, for many plausible causal systems, it remains unclear how the structure derived from either
analysis corresponds to the ‘true structure’ of the causal system. The relationships among between-person networks, within-person networks, and the ‘true struc-
ture’ of different types of causal systems are critical directions for future research.
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population level (Schweren, van Borkulo, Fried, & Goodyer, 2018)
and another reported greater connectivity in treatment non-
responders v. responders for psychotic disorder symptoms, but
no statistical tests were performed (Esfahlani, Sayama, Visser, &
Strauss, 2017). Accordingly, there is at best modest support
for the notion that connectivity is associated with disorder persist-
ence. Third, researchers have examined whether those at risk for
psychopathology (e.g. genetic risk; van Loo et al., 2018) exhibit
elevated network connectivity. No such elevations have been
observed. Fourth, researchers have examined whether connectiv-
ity reduces over the course of treatment, hypothesizing that treat-
ments may have their effect by reducing connectivity. Most such
studies reported no change in connectivity (e.g. Levine & Leucht,
2016; Lydon-Staley, Schnoll, Hitsman, & Bassett, 2018; Schuler,
Wittmann, Faller, & Schultz, 2018) and two reported an increase
in connectivity over time (Beard et al., 2016; Bos et al., 2018).
Notably, the only study to find significant connectivity change
naturally over time similarly found increased connectivity
among PTSD symptoms from 24-h to 12-months post-trauma,
a timeframe in which there is significant reduction in symptom
severity (Bryant et al., 2017).

Importantly, these cross-sectional studies are predicated on the
assumption that greater connectivity at the group level indicates
greater connectivity in the individuals who compose the group
(Bos & Wanders, 2016; van Borkulo, Borsboom, & Schoevers,

2016). To our knowledge, there is no evidence to support or
disconfirm this assumption, making it unclear whether these
findings are an adequate test of the connectivity hypothesis.
Several studies have avoided this limitation using intra-individual
network analyses. These studies have found greater connectivity
among negative mood states in those with depression (Pe et al.,
2015), elevated neuroticism (Bringmann et al., 2016), and genetic
liability for psychopathology (Hasmi et al., 2017). However, de
Vos et al. (2017) found that whether mood state network connect-
ivity was indeed stronger among depressed patients varied consid-
erably depending on methodological choices. In addition, in a
network encompassing a broader range of components (e.g. cog-
nitions, emotions, psychotic experiences), Klippel et al. (2018)
observed differences in the number but not strength of connec-
tions among psychotic patients, first-degree relatives, and healthy
controls. Together, these studies utilizing time-series data provide
qualified support for the notion that connectivity of negative
mood state networks is associated with psychopathology, but
minimal evidence that broader networks of momentary experi-
ences exhibit such associations.

Node centrality
Empirical research has focused heavily on examining individual
symptoms using node centrality. Among centrality indices, the
most popular and robust is node strength (i.e. summed absolute

Fig. 6. Network characteristics commonly examined in empirical network studies. This figure depicts characteristics commonly examined in empirical network
studies utilizing cross-sectional (panels a and b) and time-series data (panels c and d ). Panels a and c depict the cumulative number of articles reporting a
given characteristic for cross-sectional and time-series data, respectively. Panels b and d depict the proportion of articles in a given year that examined those
characteristics. In both cross-sectional and time-series networks, node centrality and network connectivity were the most examined network characteristics.
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strength of a node’s direct links). At least two broad conclusions
can be drawn from this work. First, there is no evidence that the
symptoms identified in the DSM play a privileged role in these
networks. Fried et al. (2016) and Kendler, Aggen, Flint,
Borsboom, and Fried (2018) found that there was, on average,
no difference between DSM and non-DSM symptoms of depres-
sion. Indeed, non-DSM symptoms often exhibit elevated central-
ity (e.g. feeling disliked in depression and fear of weight gain in
bulimia nervosa; Levinson, Vanzhula, Brosof, & Forbush, 2018b;
Santos et al., 2017) and some DSM nodes are weakly connected
to the network (e.g. traumatic amnesia in PTSD networks; Fried
et al., 2018). Relatedly, there is mixed evidence as to whether
those symptoms the DSM identifies as being especially important
(e.g. depressed mood and anhedonia) are more central than other
DSM symptoms. For example, the cardinal symptoms of depres-
sion are indeed often highly central, but perhaps the most consist-
ently central depression symptom is low energy/fatigue (cf.
Contreras et al., 2019). Accordingly, while connectivity analyses
suggest that the DSM accurately identifies symptoms that cohere
as syndromes, centrality analyses suggest it has not captured all
symptoms or even uniquely important symptoms within these
syndromes.

Second, there is modest evidence to support the notion that
centrality indices identify important symptoms. Central symp-
toms have been found to be more predictive of subsequent diag-
nosis than are peripheral symptoms in both depression and PTSD
(Boschloo, van Borkulo, Borsboom, & Schoevers, 2016; Haag,
Robinaugh, Ehlers, & Kleim, 2017), and a symptom’s centrality
is positively correlated with the strength of association between
change in the symptom and change in the remainder of the net-
work (Robinaugh, Millner, & McNally, 2016; Rodebaugh et al.,
2018). However, while these findings are consistent with the cen-
trality hypothesis, they are also consistent with a common cause
framework where symptoms arise from a single underlying
dimension. In that case, symptoms with higher strength centrality
would be identified as more reliable indicator variables and the
the same pattern of findings would be expected, as more reliable
indicators are more predictive (Lord & Novick, 1968; Muchinsky,
1996). Accordingly, these findings are consistent with, but not
especially strong evidence for, the centrality hypothesis.

Critical analysis and future directions

We have three broad critiques of the empirical literature. First,
these studies have relied heavily on data collected for purposes
other than network analysis. This raises concern about whether
individual items used in these analyses indeed represent discrete
components of the syndrome (Fried & Cramer, 2017; Hallquist
et al., 2019; Levinson et al., 2018a). It has also contributed to sub-
stantial differences between studies in the components included in
the network. For example, among 18 studies estimating the
depression symptom network in isolation, researchers used 12 dif-
ferent pre-existing scales, with the number of symptoms ranging
from 9 to 28 (see online Supplementary Materials). This problem
is not unique to the network approach (Fried, 2017), but is espe-
cially problematic in this context given the emphasis on individ-
ual symptoms. It will thus be important to design studies
expressly for the purpose of investigating mental disorders as
complex systems. Second, to our knowledge no studies within
this literature have experimentally manipulated individual symp-
toms in order to evaluate their impact on other symptoms. Even
in the absence of network analysis, such studies are fundamentally

important to our understanding of how symptoms relate to one
another (Blanken et al., 2019; Marsman et al., 2018). Finally, we
believe that researchers (including authors of this article), must
be more cautious when deriving hypotheses from network theory
to be tested in empirical research. The behavior of complex sys-
tems is notoriously difficult to predict and the process of deriving
hypotheses about the data models these systems should produce is
likely prone to error. For instance, it is uncertain whether stronger
inter-symptom causal relations will indeed produce greater con-
nectivity in conditional dependence networks, as intuition
would suggest. As detailed in the next section, we believe compu-
tational models are needed to more accurately derive the predic-
tions made by network theory.

An agenda for future research

The central task for the next decade of the network approach is to
build on the theoretical, methodological, and empirical founda-
tions we have described here and advance our understanding of
how specific mental disorders operate as causal systems. We
believe that the path to this aim is clarified by viewing the net-
work approach as an abductive program of research: one rooted
in the twin aims of identifying robust empirical phenomena
and developing formal theories that explain those phenomena
(Haig, 2005, 2008).

Most empirical network studies can be understood as carrying
out the initial stages of phenomena detection: using exploratory
network analyses to uncover data patterns (e.g. a conditional posi-
tive manifold, community structure, or centrality ordering).
Indeed, the most widely used methodological tools developed
within this literature are especially valuable for this exploratory
work, as they allow researchers to visualize and quantify complex
dependencies in the data. Over the next decade, it will be neces-
sary for empirical researchers to evaluate which among these
exploratory findings are replicable and generalizable phenomena.
Carrying out our recommendations for methodological develop-
ment will support this effort, providing tools for aggregating find-
ings across studies and for conducting confirmatory network
analyses. It will be important for empirical researchers to use
such methods in studies designed specifically for assessing symp-
tom networks, ideally with large samples and time-series data that
can support both between-subject and within-subject analyses (cf.
Wichers, Wigman, Bringmann, & De Jonge, 2017). These efforts
will allow researchers to evaluate whether observed data patterns
are sufficiently robust that they can inform and constrain the
development of formal theories.

The development of network theory over the past decade has
provided a theoretical framework that accounts for a fundamental
psychiatric phenomenon: the tendency for symptoms to cohere as
syndromes. Over the next decade, we must use this framework to
develop computational models that posit precisely how specific
mental disorders are thought to operate. Such models will expli-
cate theory assumptions and provide a tool for evaluating what
theories can and cannot explain, thus guiding their ongoing
development. Moreover, these models will facilitate the recom-
mendations for methodological and empirical work we have
made in this review. For methodologists, computational models
will provide theoretically plausible causal systems from which to
generate data, equipping them to investigate the relation between
network psychometric models and the causal systems we expect to
see in psychiatric research. For empirical researchers, computa-
tional models can guide study design, clarifying the components
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to be investigated and the timeframe in which they should be
assessed. Moreover, model simulations can more precisely derive
theory predictions, thereby strengthening empirical tests of net-
work theory hypotheses. In turn, the phenomena detected
through empirical research can inform the advancement of net-
work theories, clarifying the features of psychopathology for
which they must account. Through this ongoing exchange
between theoretical development and empirical research, formal
theories can be evaluated and advanced, permitting genuine
advances in our understanding of how mental disorders operate
as causal systems.

Conclusion

The first decade of the network approach has been a period of
considerable growth. An inter-disciplinary group of researchers
developed the hypothesis that there are important causal relation-
ships among symptoms into a theory regarding the nature of psy-
chopathology, a nascent methodology for investigating symptom
networks, and a growing body of empirical research. To build
upon this work, we believe that theorists, methodologists, and
empirical researchers must collaboratively work toward two over-
arching aims: (a) establishing robust empirical phenomena and
(b) developing formal theories that can explain those phenomena.
Progress toward these aims will be critical if the network approach
is to be a cumulative program of research over the next decade:
one that does not merely produce a growing number of empirical
analyses, but also represents the accumulation of knowledge about
psychopathology.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291719003404.
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