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Abstract

Pinewood nematode, Bursaphelenchus xylophilus, a pine parasitic nematode, poses a serious
threat to its host pine forests globally. When dispersal-stage larvae 4 (dauer, DL4) of B. xylophilus
enters the new pine, it moults into propagative adult (dauer recovery) and reproduces quickly to
kill the host pine. Here, we found pine chemical volatiles, rather than the common dauer recovery
factors of nematodes (e.g. suitable temperatures, nutrient availability or density), promote B.
xylophilus dauer recovery. The results showed that volatilization of chemicals in host pines
could attract DL4 and promote DL4 recovery. To identify which chemicals promote this pro-
cess, we determined the stimulated activity of the main volatiles of pines including six mono-
terpenes and two sesquiterpenes. Results showed that all the six monoterpenes promoted
dauer recovery, especially S-pinene and S-myrcene, but the two sesquiterpenes have no effect
on the transformation. Furthermore, B-pinene performed gradient effects on dauer recovery.
We hypothesized that when DL4 infect pine trees, the pine volatiles released from the feeding
wounds are used as chemical signals for DL4 transformation to adult to reproduce and rapidly
kill the pines. Our study identified the B. xylophilus dauer recovery chemical signal and may
contribute to preventing pine wilt disease.

Introduction

The pine wood nematode (PWN), Bursaphelenchus xylophilus, is a highly invasive species that
causes pine wilt disease (PWD). It has devastating effects to pine forests of Japan, China, Korea
and Europe (Nickle et al., 1981; Cheng et al., 1983; Yi et al., 1989; Mota et al., 1999; Zamora
et al., 2015), and poses a serious threat to pine forests globally. The life cycle of B. xylophilus
involves two forms, propagative and dispersal (Mamiya, 1975, 1983b). Under suitable envir-
onmental conditions, the nematodes will reproduce and grow very rapidly from egg to
adult. However, when the environment becomes unsuitable, the dispersal-stage larvae 3
(DL3) and dispersal-stage larvae 4 (dauer, DL4) appear (Mamiya, 1983a; Fukushige, 1991;
Maehara and Futai, 2000). The DL3 nematodes moult to DL4 to enter the trachea of enclosing
beetles (Zhao et al., 2016). Following dispersal, while the vector beetles are feeding on healthy
pines, DL4 nematodes leave the trachea, enter the pines and moult into adults. These propa-
gative nematodes reproduce and kill the pines (Zhao et al., 2013). Thus, the dauer recovery
(DL4 transformation to adult) of B. xylophilus is the final step leading to the successful spread
of PWD to healthy pines.

In response to harsh environmental conditions, most nematode species undergo a diapau-
sal stage, dauer arrest, prior to the reproductive stage. In Caenorhabditis elegans, a free-living
nematode, the dauer developmental decision hinges on the integration of three environmental
parameters: population density, nutrient supply and ambient temperature. A high population
density initiates the dauer developmental program, while high temperatures and reduced
nutrient resources strongly potentiate this decision (Golden and Riddle, 1982, 1984; Ouellet
et al., 2008). Thus, dauer recovery, which leads to the propagative stage, requires a low popu-
lation density, sufficient nutrients and suitable temperatures (Ouellet et al., 2008). As with C.
elegans, the food supply-related signal could also induce the recovery of entomopathogenic
Heterorhabditis spp. nematodes (Strauch and Ehlers, 1998; Aumann and Ehlers, 2001;
Dolan et al., 2003). However, requirements for dauer recovery are not clearly understood as
in many other nematodes.

Terpenes, mainly composed of monoterpenes, sesquiterpenes and diterpenes (Chen ef al.,
2018), are the main pine volatile components responsible for plant defence (Smith, 2000; Xu
et al., 2018) and kairomone attraction of phytophagous pests (Fan et al., 2007; Xu et al., 2016).
In B. xylophilus, propagative larvae are attracted to terpene volatiles (a-pinene, -pinene and
longifolene) produced by the host pine (Zhao et al., 2007). DL4 are attracted to f-myrcene and
are recovered by some monoterpenes like f-myrcene, limonene and a-pinene (Hinode et al.,
1987; Stamps and Linit, 19984). While population density, nutrient supply or ambient
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temperature are well-known factors promoting nematode dauer
recovery, the role that volatile terpenes like sesquiterpenes of
pines play in dauer recovery of B. xylophilus is unclear.

Here, we investigated the effects of food supply, population
density, temperature and volatile terpenes of pines on dauer
recovery. The results showed that pine volatiles, but the common
dauer recovery stimulators, could promote the dauer recovery of
B. xylophilus from DL4 to adult. Understanding the mechanisms
that trigger dauer recovery may lead to new applications in PWD
prevention, for example, if a technique is developed to sustain
dauer arrest even after transmission, then it may prevent PWD
from developing.

Materials and methods
DL4 of B. xylophilus

D14 nematodes were obtained from vector beetles of
Monochamus alternatus. To ensure the stability of the DL4, we
dissected the beetles collected at peak eclosion time (April to
August, 2018) from Zhejiang and Guangdong Provinces, China.
The dissected beetle was soaked in ddH,O in a 60-mm Petri
dish for 2 h. The DL4 nematodes swam out of the beetle trachea
and were then sequentially transferred three times into new petri
dishes using a 10-uL pipette tip for decontamination. The col-
lected DL4 nematodes were stored at 4 °C for further research.

Stimulation of the B. xylophilus dauer recovery process with
different nutrients

Cellulose, glucose, Botrytis cinerea (the fungal food of B. xylophi-
lus) and the twigs of different trees (Ginkgo biloba, Pinus massoni-
ana and Pinus thunbergii) were collected at the vector beetle’s
peak eclosion time (May) on the campus of the Chinese
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ters, P<0.05. Error bars represent +s.e.

Academy of Forestry and used as nutrient sources for the dauer
recovery of DL4. In total, 30 DL4 nematodes were soaked in
4 mL ddH,0O supplemented with different nutrients in a 35-mm
petri dish. The concentrations of cellulose and glucose were 5 x
107> g mL™". The sizes of B. cinerea, G. biloba, P. massoniana and
P. thunbergii were 5 mm x5 mm. After cultivating for 2 d in a
25 °Cincubator, the numbers of adult stage nematodes were counted
using an optical microscope equipped with a camera (CZX51 and
BX51, Olympus, Japan), and the transformation rates of the DL4
were calculated. These tests were performed with three replicates.

Transformation rates of B. xylophilus DL4 stimulated by
population density

To test the effects of DL4 population density on dauer recovery,
we used one nematode and 100 DL4 nematodes per well as differ-
ent population densities (Hirao and Ehlers, 2010). In a 96-well
plate, every well had one nematode soaked in 100 yL ddH,O,
with or without a ~2 mm x 2 mm pine chip. Totally, there were
96 nematodes in 96 wells respectively for one nematode in one
well tests. Meanwhile, in the well of 96-well plate, every well
had 100 nematodes soaked in 100 yL ddH,O, with or without a
~2mm X2 mm pine chip for one hundred nematodes in one
well test. The test methods were as above, and the transformation
rates of the D14 were calculated. These tests were performed with
three replicates.

Transformation rates of B. xylophilus DL4 stimulated by
temperature

To test the effects of temperature on dauer recovery, a temperature
gradient was used. In total, 30 DL4 nematodes were cultivated at
4, 10, 15, 20, 25, 30, 35, 40 and 45 °C. The nematodes were soaked
in 4 mL ddH,O, with or without a ~5 mm x 5 mm pine chip. The
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Fig. 2. Transformation rates of B. xylophilus DL4 promoted by different densities, with
or without pine chips. (a) Transformation rates of B. xylophilus DL4 of one nematode
in one well, with or without pine chips. Statistical differences in the means are indi-
cated with “***, P<0.001". Error bars represent+s.e. (b) Transformation rates of
B. xylophilus DL4 of one hundred nematodes in one well, with or without pine
chips. Statistical differences in the means are indicated with “***, P<0.001". Error
bars represent +s.t.

transformation rates of DL4 were calculated as above. These tests
were performed with three replicates.

Transformation rates of B. xylophilus DL4 stimulated by pine
volatiles

In these tests, petri dishes divided into two parts with a physical
barrier in the middle were used (Fig. 4). In total, 50 DL4 nema-
todes were inoculated into the centre of 2% agarose media on
one side of the petri dish. A 20-mm dish, with G. biloba or P.
massoniana chips, and filled with 5 mL ddH,O was adhered to
the opposite side. After cultivating for 2 d in a 25 °C incubator,
the numbers of nematodes at different transformational stages
in both sides of the petri dish were counted, and the transform-
ation rates of the DL4 were calculated. These tests were performed
with three replicates.

Volatile analysis of G. biloba, P. massoniana and P. thunbergii

Volatiles of G. biloba, P. massoniana and P. thunbergii were col-
lected by solid phase micro-extraction (SPME, 57310-U, Supelco,
USA) and analysed by Gas chromatography-Mass spectrometry
(GC-MS, Agilent, USA, Agilent 6980N GC coupled 5973 mass
selective detector) equipped with a DB-WAX capillary column
(30 m x 0.25 mm, Agilent Technologies, USA), and the column
temperature was programmed from an initial temperature 50 °C
for 1 min, then increased by 5 °C min~" to 160 °C and held for
2 min, and last increased by 20 °C min~" to 250 °C and held for
5min (Zhou et al, 2017). Data files were analysed with the
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automated mass spectral and identification system for peak
deconvolution, and spectra were matched using the mass spectral
library (NIST 2008) and a custom library. To further identify the
main volatiles of these trees, the volatile samples were compared
with candidate standard chemicals a-pinene (Sigma, USA, 98%
purity), camphene (TCI, Japan, >78% purity, containing 20%
Tricyclene), D-limonene (Sigma-Aldrich, USA, 98% purity),
B-pinene (Sigma-Aldrich, USA, 99% purity), [-myrcene
(Sigma-Aldrich, USA, 2000 ug mL™" in hexane), B-phellandrene
(TRC, Canada, 100% purity), longifolene (Sigma-Aldrich, USA,
>75% purity) and trans-caryophyllene (Sigma-Aldrich, USA,
>98% purity) using above methods. The contents of the main
volatiles of the tested trees were measured using GC analysis of
the hexane-extracted tree chip samples containing heptyl acetate
as an internal standard (Xu et al., 2015).

Transformation rates of B. xylophilus DL4 stimulated by the
main volatiles

We tested the effects of the pine volatiles including a-pinene,
camphene, D-limonene, S-pinene, [-myrcene, S-phellandrene,
longifolene and trans-caryophyllene on dauer recovery. In total,
30 DL4 nematodes were cultivated in 5% Triton X-100 with or
without 107> g mL™" of each main volatile independently. These
tests revealed the most promotive volatile, which was then used
to test the gradient effects on dauer recovery. The gradient con-
centrations of this volatile were 0, 107°, 107% 107>, 107* and
10" gmL™". After cultivating for 2 d in a 25 °C incubator, the
transformation rates of the DL4 were calculated as above. These
tests were performed with three replicates.

Statistical analyses

In all experiments, the normality of data was measured using the
Kolmogorov-Smirnov test, and the homogeneity of group var-
iances was screened using Levene’s test. The statistical significance
of the population density promotive tests was evaluated using the
unpaired two-tailed Student’s ¢ test. Different pine and pine vola-
tile promotive tests were evaluated using one-way ANOVA (ana-
lysis of variance) with Tukey’s test or Dunnett’s T3 depending on
normality and homogeneity. A two-way ANOVA was used to
evaluate the between-subject effects on transformation rates pro-
moted by G. biloba or P. massoniana chips. Data were analysed
using SPSS 18.0 software (SPSS, Inc., Chicago, USA). All the
quantitative data were represented as means *s.E. (standard
error).

Results

B. xylophilus dauer recovery promoted by different foods,
temperatures and densities

Here, we used cellulose, glucose, B. cinerea, G. biloba, P. thunber-
gii and P. massoniana as stimulators to monitor the DL4 trans-
formation process from DL4 to adult. As B. xylophilus hosts, P.
thunbergii and P. massoniana promoted high transformation
rates of DL4 at ~80% significantly higher than the control at
~13%. However, The DL4 transformation rates stimulated by cel-
lulose, B. cinerea and especially glucose were not significantly dif-
ferent compared to controls. In addition, G. biloba from
Ginkgoopsida was tested as outgroup. The transformation rate
when stimulated by G. biloba was similar to controls at ~15%.
In addition, in the control test without a stimulator, some nema-
todes also moulted successfully (Fig. 1, one-way ANOVA, Fg 14 =
248.90, P<0.001).
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Fig. 3. Transformation rates of B. xylophilus DL4 promoted by different temperatures, with or without pine chips.

In addition to nutrient supply, temperature and population
density are known effectors of C. elegans dauer recovery.
Consequently, the effects of these factors on B. xylophilus DL4
transformation were tested. For population density, one nematode
per well and 100 nematodes per well were used to represent low-
and high-population density levels, respectively. Independent of
the population level, the transformation rates were low without
pine stimulation. However, with pine stimulation, nematodes at
both population density levels had significant transformation
rates compared with control (Fig. 2a, df=4, t=15.27, P<0.001;
Fig. 2b, df =4, t=22.01, P<0.001).

Without pine chips, the transformation rates of DL4 at all the
tested temperatures were less than 30%, even after 5 d (Fig. 3).
However, with pine chip stimulation, the transformation rates
of DL4 at 25 and 30 °C increased rapidly to 85% after 2 d
(Fig. 3). At less than 25 °C, the transformation rate decreased as
the temperature decreased, until 4 °C, when the nematodes
stopped transforming at all over 5 d (Fig. 3). Interestingly, the
DL4 transformation was inhibited when temperature was greater
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than 35 °C. At 35°C, DL4 transformed rapidly during the first
day, but the transformations stopped in the following days
(Fig. 3). At 40 °C, like at 4 °C, the nematodes did not transform.
All the DL4 nematodes died after 1 d at 45 °C (Fig. 3).

B. xylophilus DL4 recovery promoted by pine volatiles of
P. massoniana

P. massoniana was used as the representative pine for investigat-
ing transformation-stimulating signals. After cellulose and nutri-
ents, volatiles are the most important components of pines. The
promotive capability of volatiles from P. massoniana on DL4
transformation was first determined. The percentage of nema-
todes in the water section of the dish attracted by pine chips
was 84% (Fig. 4b), while it was only 23% with G. biloba
(Fig. 4a). Independent of the section, water or agarose, when
nematodes were exposed to pine volatiles, the DL4 transformation
rates were ~80%. When nematodes were exposed to ginkgo vola-
tiles from G. biloba chips, the transformation rates were only
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Fig. 4. Distribution and transformation rates of B. xylophilus DL4 promoted by the volatiles from P. massoniana or G. biloba. (a) DL4 nematode distributions in each
part of divided Petri dishes with G. biloba chips attraction. In the test diagram the left and right parts contained agarose and water, respectively. An empty 20-mm
dish with G. biloba chips was adhered to the right side. The distribution of nematodes on agarose and in water are displayed in pie graphs. (b) DL4 nematode
distributions in each part of divided Petri dishes with pine chips attraction. A 20-mm dish with pine chips was adhered to the right side. (c) Transformation
rate of B. xylophilus DL4 promoted by the volatilization of chemicals from P. massoniana or G. biloba. Transformation rates of DL4 on agarose and in water
were calculated with P. massoniana or G. biloba. Statistical differences in the means are indicated with different letters, P<0.05. Error bars represent £s.t.

~20% (Fig. 4c, one-way ANOVA, F;4=123.98, P<0.001). To
eliminate the effect of agarose on DL4 recovery, we evaluated
the between-subject effects on the transformation rates promoted
by pine chips or agarose (Table S1). The main effect on DL4
recovery was attributed to pine chips (P <0.001), while agarose
had no effect (P> 0.05). There was no interaction between pine
chips and agarose (P>0.05). In conclusion, the volatiles from
pine promoted the DL4 transformation into an adult.

Analysis of main volatiles of P. massoniana

The main volatiles of P. massoniana were a-pinene, camphene,
B-pinene, B-myrcene, [B-phellandrene, longifolene and trans-
caryophyllene. Among the main volatiles, the content of
a-pinene was highest, followed by S-phellandrene and S-pinene.
The contents of other volatiles were no more than 10%. While,
the main volatiles of P. thunbergii were a-pinene, camphene,
B-pinene, B-myrcene, D-limonene and trans-caryophyllene.
Among the main volatiles, the content of a-pinene was highest,
followed by D-limonene and f-pinene. Concentrations of all the
volatile components from P. thunbergii were higher than those
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of P. massoniana. In addition, G. biloba did not contain any
pine volatiles (Table 1).

B. xylophilus DL4 recovery promoted by standard pine
volatiles

Authentic standards of seven main volatiles in tested pines were
used to investigate their promotive effects on DL4 transformation.
After 2 d, the transformation rates of DL4 stimulated by
B-myrcene and f-pinene were highest, followed by D-limonene,
and the remain chemicals had limited effects on DL4 transform-
ation (Fig. 5a, one-way ANOVA, Fi; 56 =127.05, P <0.001), sug-
gesting pine chips have a stronger promotive ability than that of
the standard chemicals (Fig. la). After 4 d, B-myrcene and
B-pinene were still the most effective promoters for DL4 trans-
formation (Fig. 5a, one-way ANOVA, F};,¢=158.93, P<0.001),
and no significant effects were found for the longifolene and
trans-caryophyllene. S-Pinene was chosen for the effect of gradi-
ent chemical concentration on DL4 transformation. After 2 d, the
transformation rates of DL4 increased correspondingly with the
enhanced f-pinene concentrations (Fig. 5b), and all the tested
B-pinene concentrations promoted DL4 transformation (Fig. 5b,
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Table 1. Quantification of the main volatiles of tested trees
Content in different species (ug g™ wet weight)
Compounds Peak time (Min) G. biloba P. massoniana P. thunbergii
a-Pinene 9.71 0.00 907.54 £52.11 5451.09 +£91.83
Camphene 10.14 0.00 16.60 + 6.54 132.04 £2.97
S-Pinene 10.91 0.00 171.69 £ 37.50 441.71 +132.65
B-Myrcene 11.21 0.00 5.81£3.36 99.69 £ 9.56
D-limonene 12.38 0.00 0.00 537.16 +18.40
B-Phellandrene 12.4 0.00 148.49 £ 65.04 0.00
Longifolene 23.16 0.00 43.31+£9.00 0.00
trans-Caryophyllene 23.43 0.00 65.58 +5.62 246.13 +£29.95
The value indicates mean #s.e.
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Fig. 5. Transformation rate of B. xylophilus DL4 promoted by the standard volatiles detected in tested pine trees. (a) Transformation rates of B. xylophilus DL4
promoted by standard volatiles detected in P. massoniana after 2 and 4 d. (b) Transformation rates of B. xylophilus DL4 promoted by different concentrations
of B-pinene after 2 and 4 d. Statistical differences in the means are indicated with different letters, P<0.05. Error bars represent + s.E.

one-way ANOVA, Fs;,=130.51, P<0.001) though the chemical
had little effect on the transformation when its concentration is
less than 107> g mL™" (Fig. 5b, one-way ANOVA, Fs, =77.49,
P <0.001).

Discussion

Dauer recovery is necessary for nematodes to complete their life
cycles (Dolan et al, 2003; Murgatroyd and Spengler, 2010;
Zhao et al., 2013). For B. xylophilus, we found that pine volatiles
could promote dauer recovery from DL4 to adult. The
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determinant factors of dauer recovery for many other nematodes
are population density, food supply and ambient temperature
(Dolan et al., 2003; Fielenbach and Antebi, 2008). However, it
was not clear whether these three factors promote the DL4 recov-
ery of B. xylophilus. In C. elegans, its dauer will recover under 27 °
C (Fielenbach and Antebi, 2008). However, B. xylophilus dauer is
not sensitive to temperature. In our experiments, we tested nine
temperatures, ranging from 4 to 45 °C to assay their effects on
B. xylophilus dauer recovery. Some specific temperatures (20, 25
and 30 °C) could promote dauer recovery slightly. The transform-
ation rates were less than 40% in the control group, but the
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transformation rates of nematodes rearing at 20, 25 and 30 °C
were higher than those in the control, which increased with the
rising temperature. Moreover, extreme temperatures of 4, 35
and 40 °C inhibited DL4 transformation even with pine chips.
Independent of the population density, the transformation rates
of DL4 were very low without pine chips. This is corroborated
in the lack of density-dependent effects on the dauer recovery
of Entomopathogenic nematodes Steinernema carpocapsae and
Steinernema feltiae (Hirao and Ehlers, 2010). However, with
pine chips, the transformation rates of nematodes, no matter at
low density or high density, were very high. From the above,
we thus deduct that the pine chips play important roles
for B. xylophilus DL4 recovery, but temperature and density
were not.

Although pine chips were necessary for DL4 recovery, DL4 do
not feed during the process of leaving the beetle trachea and
entering the pines (Van Gundy, 1967; Storey, 1984; Zhao et al.,
2013). The main energy reserves of DL4s are neutral lipids
(Stamps and Linit, 1995). These lipids are converted into energy
or undergo histogenesis into digestive and reproductive organs
during dauer recovery to adult. Here, we found that, unlike pine
volatiles, nutrition had no effect on DL4 transformation (Figs 2
and 3). Pine volatiles, such as f-myrcene and S-pinene, promoted
D14 transformation (Fig. 5). In addition, they also attracted DL4
(Fig. 4) (Stamps and Linit, 1998b; Linit and Stamps, 2001).
Nematodes are very sensitive to chemicals and B. xylophilus
D14 appears to respond to a variety of chemical cues to leave
the trachea of vector beetles (Futai, 2013).

When the vector beetle feeds on pine trees, the volatile concen-
trations from the pine increase rapidly (Su et al., 2008; Niu et al.,
2012; Zhao et al., 2014; Chen et al., 2018). The accumulation of
volatiles in response to herbivore or pathogen attack is an import-
ant component of host defence (Lewinsohn et al., 1991; Keeling
and Bohlmann, 2006; Hansen et al., 2017). However, B. xylophilus
might take advantage of these volatile accumulations for its sur-
vival (Figs 4 and 5). Pine volatiles could attract DL4 and promote
D14 transformation in a gradient-dependent manner. After a 2-d
exposure to B-pinene, the transformation rates increased with the
rising concentration of B-pinene. In our experiments, we tested
eight volatiles released from P. massoniana or P. thunbergii.
Different terpenes had varied promotive effects. Among them,
the monoterpenes -myrcene and S-pinene were the most effect-
ive stimulators of DL4 transformation, following closely by
D-limonene, a-pinene, camphene and f-phellandrene. However,
the sesquiterpenes longifolene and trans-caryophyllene had no
effects on DL4 transformation (Fig. 5). Since the results cannot
fully explain the different promotive effects of terpenes to B. xylo-
philus DL4 transformation and the sample size is small, more
studies are needed to further explore and confirm the molecular
mechanisms of the transformation.

Although pine volatiles have been shown to promote B. xylo-
philus DL4 transformation (Fig. 5), a few nematodes were capable
of transforming to the propagative stage without any stimulators
regardless of the low transformation rate (see controls in all
Figures). Thus, other factors may initiate the DL4 transformation.
For example, the amounts of neutral storage lipids in DL4 may act
as an internal clock that influences the decision to remain in the
body of the vector beetle or enter the pine host (Stamps and Linit,
1995; Stamps and Linit, 1998b; Linit and Stamps, 2001).
Additionally, different carbon dioxide concentrations from tra-
chea produced by the beetle’s breathing may attract or repel
D14 (Maehara and Futai, 2001). These signals might also be
the stimulators of B. xylophilus DL4 transformation. Our study
identified a new dauer recovery signal of nematodes and this
may contribute to preventing dauer recovery, which would aid
in decreasing the incidence of pine wilt disease.
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