
Math. Struct. in Comp. Science (2007), vol. 17, pp. 289–305. c© 2007 Cambridge University Press

doi:10.1017/S0960129507006007 Printed in the United Kingdom

Randomness and determinism in the interplay

between the continuum and the discrete†

FRANCIS BAILLY‡ and GIUSEPPE LONGO§

‡Physique, CNRS, Meudon

Email: bailly@cnrs-bellevue.fr

§LIENS, CNRS ENS and CREA, Paris

Web site: http://www.di.ens.fr/users/longo

Received 20 May 2006; revised 19 November 2006

This paper provides a conceptual analysis of the role of the mathematical continuum versus

the discrete in the understanding of randomness as a notion with a physical meaning or

origin. The presentation is ‘informal’ as we will not write formulas; however, we will refer to

non-obvious technical results from various scientific domains, and we will also propose a

conceptual framework for understanding randomness (and predictability), which we believe

is, essentially, original. As a matter of fact, unpredictability and randomness may be

conveniently identified in various physico-mathematical contexts. This will allow us to

explore these concepts in continuous versus discrete frameworks, with particular emphasis

on the relationships and differences between classical approaches and quantum theories in

Physics.

1. Introduction

Our starting point is the idea hinted at in Bailly and Longo (2006) and Longo (2007) that

the mathematical structures that have been constructed to understand physical phenomena

may suggest different ways of understanding Nature according to their continuous (mostly

in Physics) or discrete (generally in Computing) natures. In particular, the causal relations,

as explanatory structures (we use them to ‘understand Nature’), are mathematically related

to the use of the continuum or the discrete.

But what discrete (mathematical) structures are we talking about? We believe that

there is one clear mathematical definition of ‘discrete’, and we will use it in this paper:

a structure is discrete when the discrete topology on it is ‘natural’. Of course, this is not

a formal definition, but in mathematics we all know what ‘natural’ means. For example,

one can endow Cantor’s real line with the discrete topology, but this is not ‘natural’ (you

cannot do much with it, and it does not help you better understand the reals or the notion

of ‘continuous functions’); on the other hand, the integer numbers or a digital data base

are naturally endowed with the discrete topology (though one may have good reasons to

work with them using a different structuring).

† A preliminary French version of part of this paper formed the Appendix of Bailly and Longo (2006).
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Later in the paper we will also discuss the randomness/unpredictability issue in quantum

mechanics. Our approach will then stress that, in the space-time of modern microscopic

physics, one may not consider the discrete topology as in any way ‘natural’. Our work

will be based specifically on quantum non-locality and non-separability results, which,

in our view, suggest the exact opposite of an underlying discrete space-time. Indeed, the

discrete topology ‘separates’ and ‘localises’ the elements of mathematical structures – this

is its job. Of course, quantum mechanics originated from the discovery of a fundamental

(and unexpected) discretisation of the light absorption or emission spectra of atoms

(specifically, the hydrogen atom). Then, a few dared to propose a discrete lower bound

to the measurement of action, that is, of the product energy×time. It is this physical

dimension that bears a discrete structure. Clearly, one can then compute, by assuming

the relativistic maximum for the speed of light, a Planck length and time. But in no way

are space and time organised in small ‘quantum boxes’ in this way. And this is the most

striking and crucial feature of quantum mechanics: the global and entanglement effects

(Bell 1964; Bohm 1951; Aspect et al. 1982). These effects are the opposite of a discrete,

separated organisation of space and time, and are at the core of its scientific originality.

In particular, they motivate quantum computing (as well as our analysis of quantum

randomness).

As for the continuum, its role will be stressed in understanding classical determinism,

as mathematised in the geometry of dynamical systems. In fact, the notion of randomness

lies at the centre of dynamic unpredictability: a deterministic system is unpredictable

precisely when it presents random evolutions. In quantum mechanics, this notion is also

evoked, but in a very different and intrinsic way (we will give a more precise meaning to

this term later). We will attempt to examine the following issues closely:

— How does randomness present itself in the natural sciences today?

— Is there a randomness specific to the various different fields of physics?

— What impact does this possible differentiation/unification of the notion of physical

uncertainties have on the common/scientific concepts of randomness?

— Is it correlated with the various mathematical tools established (the continuous versus

the discrete, for example)?

We will not return here to the terrain of specifically biological randomness (see Bailly

and Longo (2006, Chapter 6)), which remains, in our opinion, unexplored. We will first

consider classical physics in order to look at the problem of the meaning of randomness

in the context of different theoretical frameworks. We will see that dynamical systems

and quantum physics independently suggest very important, but different, notions of

randomness, giving rise to a different role for probabilities in their various contexts. Our

distinguishing criterion will refer to the notion of ‘epistemicity’ as being in contraposition

to that of ‘objectivity’, the difference being related to the role of the knowing subject in

the construction of scientific objectivity. This is an essential role within modern physics,

particularly when it is a question of probability and randomness. In short, we will first

state the problem of knowing whether a disordered sequence (or more generally, of a

disordered state) is the effect of chaotic determinism or of pure random processes, that

is, is it of an epistemic or an objective nature. In the absence of very general theorems
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on the matter (which would contribute to a constitution of objectivity – as is the case for

‘mixing’ random sequences, or Bernoulli’s dynamics, which can be demonstrated as being

equivalent to, and thus interpreted as, ‘heads or tails’ type sequences; we will return to

this), we can develop an argument that will have the effect of somewhat displacing the

problem, while at the same time highlighting some of the constraints it implies.

We will develop the thesis that in classical physics, randomness is of an ‘epistemic’

nature; in particular, we mean that one will always be able to interpret an apparently

random sequence as stemming from either a chaotic determinism or from ‘pure’ ran-

domness that is analysable in statistical terms (independent of any possible determinism).

Thus, two different approaches are possible according to the viewpoint one assumes. In

contrast, we will say the randomness specific to quantum mechanics is ‘objective’. Our

argument will base itself on two elements justifying this distinction. One is centred on

the role of theoretical determinism, of the ‘view’ (constituted by the proposed theoretical

framework) and of measurement. The other, which is stronger in a certain sense, is based

on the properties of quantum non-separability and of continuous mathematics, which we

will discuss at length.

2. Deterministic chaos and mathematical randomness: the classical physics case

Thus, we will begin by analysing classical randomness. To this end, we assume the idea

that, for example, the result of the throw of a die, which we can legitimately consider to be

random, may be interpreted as random given that the system of equations and constraints

we can use to describe it (and thus to determine it) is (very) sensitive to the initial conditions.

Note also that the reverse interpretation is quite different: a dynamic system defined by

its equations and presenting a chaotic behaviour has an objective character associated

with these equations themselves and with their intrinsic properties (it is described/given

by physical objects, with their properties, their invariants, their symmetries, and so on,

deduced from the equations). In short, from the modern (post-Laplacian) point of view,

even this system, the paradigm of randomness, is indeed deterministic, in the sense

that a sufficient number (in fact a very great number) of equations could, theoretically,

describe all the forces at play, all of them (gravitation, various frictions, and so on) being

theoretically well-known. However, this would tell us very little about its evolution: this

classical system is so sensitive to the slightest variation in the boundary conditions, which

are, moreover, very numerous, that the mathematical effort required to describe the (very

numerous!) equations determining it will not help us in practice, not even qualitatively.

Thus its evolution remains unpredictable: it is this that leads us to consider it, within a

classical framework, as random, while at the same time being deterministic (chaotic).

As a less familiar but simpler example, we may consider a double pendulum, by which

we mean a pendulum where a second pendulum is articulated on the first, that is, a

weight is placed at an articulation point of the broken stick of the pendulum. This simple

mechanism, which is perfectly determined by the two equations (it has two degrees of

freedom), has a chaotic behaviour: its trajectories are dense (the weights go everywhere,

within the limits of their constraints) and it is sensitive to the initial conditions (see

Lighthill (1986)). Once again, the system’s evolution appears random to all observers,
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despite the apparent simplicity of the determining equations and conditions. Here we

have another case of epistemic randomness, which could, in fact, also be analysed in

terms of a random sequence (for example, by writing 0 or 1 depending on whether

the smaller weight finds itself to the right or to the left after 10 oscillations). On the

other hand, a simple pendulum is deterministic and, in principle, predictable (we can be

grateful that Galileo came across a simple pendulum, otherwise we might still be far from

understanding the law of falling bodies in its basic simplicity!).

As a final classical example, which is highly relevant given that it triggered all

the deterministic unpredictability analysis, we will consider the gravitational ‘three-

body problem’. Poincaré demonstrated the impossibility of resolving the system of

nine Newton–Laplace equations describing its movements in either an elementary and

direct manner (by using ‘simple’ functions say) or analytically (by means of convergent

series). In doing so, he provided an analysis of what we have just done: classical

determinism may fail to imply predictability. With this result, he opened the way to the

integration/comprehension of classical randomness within the framework of mathematical

determinism: the ‘laws’ concerned are all expressed by means of equations, but the

evolution remains unpredictable, and thus, epistemically random. Modern results confirm

the scientific relevance of this approach: Laskar has demonstrated in his numerous

articles (Laskar 1990; Laskar 1994) that the solar system, our good old planetary system,

is chaotic. So, apart from a few differences regarding the time scales (demonstrable time

of unpredictability: 1 million years for Pluto, 100 million years for the Earth), it is not,

from the mathematical point of view, very different from the double pendulum case, or

the throwing of dice. In the long term we could also address it in purely statistical terms,

like dice (and, for instance, make a bet at 2/1 that the Earth will no longer be revolving

around the Sun in 500 million years).

The dynamic system we are considering may, therefore, have a great number of

parameters, like dice, or a medium number of parameters, like the solar system, or even

a very small number of degrees of freedom, like the double pendulum. On the other

hand, a random representation of the statistics of the results obtained in all of the above-

mentioned cases assumes a large number of parameters. Finally, note that this alternative

possibility (the analysis of chaotic determinism or randomness in purely statistical terms)

is intimately related to the fact that we can give local descriptions for the system (those

associated with the underlying equations and their initial conditions), while the statistical

and probabilistic representations generally involve a global representation of the system

(an example of this is the physical behaviour of a gas, for which the thermodynamics

consists precisely of taking global statistical averages – statistical mechanics – of local

mechanical behaviours).

Finally, we can summarise the two reasons for us saying that classical randomness is

epistemic. First, we can choose a purely statistical mathematical approach or an analysis

in terms of (equational) determinism. Of course, both approaches, though theoretically

equivalent (and there are plenty of theorems demonstrating this equivalence), may be

more or less effective or even relevant: normally, we do not analyse planetary evolutions

statistically, just as we do not analyse dice in equational terms; each system will have its

own best-adapted method of analysis (in the case of a double pendulum, the difference is
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less clear, and depends on the aims of the analysis: this pendulum could very well be used

for a little family game of chance). Second, the unpredictability of a deterministic system

is due to a (classical) physical principle: measurement is always an interval. That is, even if

we have a system of equations that determines a system point by point (in Euclid’s sense

of points, or of real numbers à la Cantor), as Laplace quite soundly tells us, only God

knows the world through (mathematical) points and can thus predict (and retrodict) its

future (and past) states. As far as we humans are concerned, our physics uses approximate

measurements, and does so as a matter of principle, because, in the worst (or best) of

cases, there are classical thermal fluctuations that force approximation (the interval of

measurement). Only discrete state machines (our digital computers, in particular, when

they are sequential and thus theoretically independent of physical contexts) and their

access to exact data bases, in their discrete, well separated, topologies, can thus possess

predictable evolutions. This observation has already been made by Turing, who viewed

his machine as ‘Laplacian’ (see Longo (2007) for details and references). In this way,

if we consider a deterministic system that is sensitive to the boundary conditions,† one

gets that unpredictability is the joint result of this sensitive dependency to the boundary

conditions and the theoretical properties of classical measurement. Classical (and, of

course, relativistic) theories thus simultaneously give us perfect determinism (from God’s

viewpoint, but even conceivable by us, mathematically) and unpredictability. The key role

of the mathematical continuum in these frames will be analysed in Section 4.

In conclusion, the two following arguments lead us to consider that classical randomness

is epistemic:

1 the possible equivalence of the statistical view and equational determinism;

2 the role of measurement (performed by the knowing subject).

Thus, we could propose a ‘Poincaré thesis’ for classical dynamics:

‘Any classical random process is a trajectory given by a system that is, in principle,

deterministic and in a chaotic regime.’

This thesis does not necessarily correspond to Poincarés actual thinking, but to what

we can say 120 years after his great theorem. It is at best just a thesis, since it is clearly

unprovable (where is this list of all classical processes?), though it is falsifiable.

3. The objectivity of quantum randomness

One may argue that, in contrast with classical physics, quantum physics contains an

‘objective’ randomness that is intrinsic to the theory and conceptually and mathematically

quite different from classical randomness (in Mugur-Schachter (2006) it is called ‘prim-

ordial’). This randomness is intrinsic inasmuch as it is associated with any operation of

measurement, because, in quantum physics, a measurement only returns a probability as

† Boundary conditions are typically non-linear, even chaotic, and would require a more general definition than

that suggested and use the notions of topological transitivity and density of periodic points, which we will

not develop here, see Devaney (1989)
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its result. More specifically, the objective randomness of quantum physics is due jointly

(but in each of the cases listed, quite differently) to:

1 the non-null value of the Planck constant h (which constitutes a lower limit for the

product of the possible precisions in the simultaneous measurement of two conjugated

variables, namely, for the volume of the phase space, position and impulse);

2 the process of measurement specific to quantum physics (the ‘projection of the state

vector’, which does not depend upon the value of h, while being ‘non-determined’ and

returning a value as a probability);

3 the complex nature of the wave function (it is complex values that are added through the

superimposition principle, but they are not what we measure, which are real numbers;

the probability amplitudes do not coincide with the probabilities themselves).

Concerning the first two points, the difference compared with classical measurement

is well understood. Quantum theory is centred on this essential role played by non-

determinism in measurement: by the theoretical choice inherent in the approach itself,

determinism by points (that of Euclid–Cantor, as in the mathematics of classical determ-

inism) is not always possible; such a general determinism is theoretically inconceivable,

and even proscribed, in direct contrast with what is presumed by the mathematics of

classical deterministic systems (and which we have called the ‘Poincaré thesis’). The

mathematics of quantum physics begins with Planck’s h, and is developed through an

analysis of quantum states in terms of vectors (state vectors or, in other words, wave

functions) within a space of infinite dimension (Hilbert space: the space of complex

functions the squares of which are integrable). It then assumes a linear field where these

wave functions are given in terms of complex components. Measurement, which always

provides real numbers as a result, is thus associated with an essential loss of information,

which is due to the passage from a complex variable to its absolute value. The physical

relevance of the mathematical representation by complex numbers (or phase) is shown by

phenomena such as quantum interference, while a representation as point particles was

‘classically’ expected (cf. Young’s experiments). Similar reasons are at the root of quantum

entanglement (see below).

So we already have a few good reasons for considering randomness to be intrinsic to

the theory: it stems from the measurement, the mathematics, and the evolution of the

system (the wave function).

To these we should add the intrinsic character of quantum fluctuations (as opposed

to classical fluctuations related to temperature, for instance). In the measurements, this

characteristic is manifested through both the zero-point energy of the harmonic oscillator

(at absolute zero, 0◦K), for instance, as well as through resonance widths in particle

theory. In short, 0◦K in classical physics corresponds to the complete absence of energy,

while in quantum mechanics, zero-point energy is admitted – in fact, we may speculate

that zero-point energy could have played a remarkable role in cosmology through the

destabilisation of the ‘quantum void’ (fundamental energetic state) during the ‘big-bang’.

As an aside, regarding the big-bang, one may notice (with a few word plays) that

this representation also resolves the enigma of the Lucretian clinamen (we have always

wondered what the origin of this could be in the absence of any external influence: we
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find it here in the intrinsic fluctuations) as well as resolving Leibniz’s perplexity (why is

there something rather than nothing?). Well, this is because ‘nothing’, the quantum void,

is unstable, all the while being subjected to these same intrinsic fluctuations: unstable

quantum void, fluctuation and . . . big bang.

3.1. Separability versus non-separability

We will now present our main, and we believe new, argument for these different analyses

of randomness (classical versus quantum). Objective (quantum) randomness appears to

be deeply coupled to the properties of non-separability (the equation that describes the

evolution of the system produces an entangled result for the quantons after they have

interacted), as well as with the properties of non-locality (the measurement performed

on one of the quantons after they have interacted produces instantaneous ‘information’

regarding the other’s state). It is this, indeed, that leads us to refute the possibility

of any local causal representation intended to account for specific quantum properties

(technically, this refutation is ensured by the Bell inequalities (Bell 1964), which are, in

turn, validated by the Aspect experiments (Aspect et al. 1982)). In this sense, therefore, the

situation of a quantum system may always be considered as purely global, and without

the possibility of reducing it to a combination of local components (which appears

to be indissociable from the possibility of establishing causal/deterministic evolution

equations). Thus, we will not here address Schrödinger’s local equation, which describes

the evolution of a complex state vector and is beyond the operation of measurement (the

latter concerning another state vector involving the measurement device itself, cf., among

other things, decoherence theory (Zurek 1991), which, from the mathematical standpoint,

corresponds to the passage from complex values to real numbers).

This point of view could indicate that in order to account for the situations we

have just evoked, rather than resorting to the concepts of ‘chaotic determinism’ on the

one hand and ‘intrinsic randomness’ on the other, it would be even more enlightening

to use the concepts of ‘separability’ (to characterise the deterministic side) and ‘non-

separability’ (to characterise the intrinsically or objectively random aspect in the role

it plays in the construction of scientific objectivity in quantum physics). In short, it is

the ability to separate the different ‘objects’ that participate in a classical process (each

planet of an astronomical system, each die, a simple or double pendulum) that enables

the mathematical description/determination of observable evolutions. In systems that are

sufficiently sensitive to boundary conditions, these objects may evolve in an unpredictable

way, although individually always theoretically determined by the dynamic equations. For

quantum physics, on the other hand, the fact of its non-separability (an aspect of globality

associated with non-locality) definitely confers a different character to randomness, which

we call intrinsic. Typically, if two flipping coins interact in some classically possible

way, and then separate while flipping in the air and fall, their analysis may be based

on independent probabilities: the observation of one coin sets no limitation on the

observation of the other. In contrast to this, two interacting quantons are entangled, that

is, the measurement of one of them sets limitations on the measurement of the other (they

cannot be ‘separated’; they are entangled). So, in general, a set of n classical random events
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may be analysed in statistical terms, and follows classical laws of probability distribution,

while quantum observables may violate them, for example, when they depend on entangled

particles.

Later in the paper we will return to the role of trajectories in a space-time continuum

as in the classical notion of determinism. Now, for a quantum system there are no hidden

variables or equations that could determine its evolution (or the ‘trajectory’ of a quanton

in an underlying continuum), and this corresponds to the absence of any possibility

of local determinism. Note that the so-called ‘hidden variable’ theories do not escape

this type of analysis inasmuch as these variables must be considered as non-local: they

cannot describe a purely local dependence on a separated quanton, but require a global

dependence (in view of entanglement, see next section).

In conclusion, the classical deterministic chaotic processes (dice, a double pendulum, as

opposed to a simple pendulum, and even the solar system) normally also enable another

description in purely statistical terms, and this follows classical probabilities. Thus, given

that classical physical reality depends on this double description and on the physical (and

not mathematical) nature of the limits of measurement, we have insisted on the epistemic

character of classical randomness (it would depend on the approach, as is the case for the

relationship between statistical mechanics and thermodynamics). On the other hand, in

quantum physics, there is no possible double representation: any data that would enable

us to access (to construct) knowledge, any measurement, is a probability, but of a different

nature from the classical one.

Of course, it is a question here of the approach we should now take, which would need to

base itself upon somewhat general theorems in order to be argued further. It nevertheless

remains the case that the quantum situation differs essentially from the classical situation

with respect to the status of the probabilities and randomness it involves, and that we

cannot avoid taking this into consideration.

3.2. Possible objections

We should ask what objections there may be to such a point of view?

1 It could be that, in a way comparable (though different) to the quantum situation, there

is an intrinsic classical randomness, which is linked to precisely this collective effect of

kinetic energy (temperature) and which would not be reducible to a dynamic system.

There are at least two possible responses to this objection. First, it is clear that the role

of the initial conditions is determinant: there exists, classically, from the mathematical

standpoint, a null set of measurements of the initial conditions that produces an ordered

situation for a gas, for example, all speed vectors are parallel. In contrast to this,

quantum non-locality and spontaneous fluctuations necessarily generate a ‘clinamen ’.

Second, for a classical system, the Nernst principle (the third law of thermodynamics)

states that as the temperature approaches zero (no kinetic energy, which is conceivable

for a classical system), the entropy of the system becomes zero (complete order).

Conversely, in a quantum system the non-deterministic relationships prohibit such a

complete order even at this limit (inasmuch as one may conceive of attaining it):

Planck’s h forces a zero-point energy, and, thus, the null kinetic energy is inconceivable.
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We stress, and we will do so even more below, that the theoretical possibility of limit

cases is crucial in classical approaches: this is the core of Cantor’s continuum: a limit

construction, and differential equations on it.

These two counter-objections make it rather implausible (or even impossible) that we

could transfer the quantum viewpoint to the classical frameworks (and would confirm

the meaning of our ‘Poincaré thesis’): a mathematically coherent, limit-based, classical

situation that has no quantum meaning. However, a simple example (of the inverse)

of this limit passage may be given. Classically, it is theoretically conceivable that we

could place a needle on its tip and leave it there for ever (if we are very lucky): it is the

epistemic nature of your shaking (approximation inducing) hands that make it difficult.

In the quantum case, however, a quantum fluctuation would make it fall in a random

direction, under all theoretical circumstances.

2 A more profound objection is that, despite indications to the contrary, the quantum ran-

domness manifested through these fluctuations is also an effect of the ‘viewpoint’ (it is

epistemic) and that the underlying agitation within an environment that one could describe

as sub-quantum (cf. Vigier, Bohm, Halbwachs, Hillion, Lochak) could account for it in

as deterministic a way as for the case of chaotic dynamic systems: for example, Louis

de Broglie’s double solution theory, that is, a superimposition of a regular and extended

solution of Schrödingers (wave) equation and a singular and localised (particle) solution

– corresponding to a (still unknown) non-linear operator inserted within this equation; or

Bohm’s version of hidden variables theory. This amounts to considering quantum mechanics

as only ‘providing a statistically exact but incomplete description of physical phenomena’

(see de Broglie (1961)), an incompleteness that was also the perspective of the early

Schrödinger or of Einstein – and more generally of E.P.R.

A possible response to this objection lies in the fact that this environment itself, if

one formalises its effect, intervenes at quantum magnitudes and their measurements

in a global, non-local fashion, as we have noted earlier. Moreover, in order to justify

the probabilistic properties of quantum physics and the presence of zero-point energy,

fluctuations, virtual particles, and so on, these authors referred to a sub-quantum

medium or to a new concept of ‘ether’, which is in principle a continuum, presenting

these properties. If one cannot totally discard the possibility of such an approach, it is

the case that it is not in accord with the heuristic principle of conceptual economy, in

that it adds an underlying ether to phenomena (which, in the end, is not determinant).

But also, and most importantly from our point of view, it remains non-local, and

thus non-classical, when applied to the issues raised by Bell and Aspect, in requiring

continuous, yet non-separable, hidden variables.

3 One could still argue that this non-locality is similar to the globality presented by a

classical system (for instance, the above-mentioned gas) and therefore reinforces the

representation of the effect of a statistical disorder beneath the quantum level itself.

However, our response is that the lines of research seeking the unification of physical

theories, which lead to the theories of quantum gravitation or superstrings, seem to

fit badly with this representation. In particular, supersymmetries require us to replace

the point-like (zero size) character of the structures considered as elementary by a

non-null dimensionality (strings or p-branes). On the other hand, the issues regarding
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the ‘mass of particles’ open up a way of thinking and a view of objectivity that are of

a different nature (Higgs fields, or supplementary ‘compactified’ dimensions), and are

classically inconceivable. All this is a consequence of breaking away from the point-like

classical representation and the usual four-dimensional space-time, which raises these

‘paradoxes’.

4 Another point to take into consideration, and which could nullify our distinction, is what

happens in the passage to the classical limit from quantum mechanics, that is, in recon-

structing the classical regime by making h tend towards 0.

Now, this passage requires at least two conditions. We will only hint at what is involved,

as we know that in reality the passage from the quantum to the semi-classical and

classical is much more delicate than is presented here, and the fundamental problems

are still not completely resolved. On the one hand, the Planck constant h must be

removed (its value going to 0), and, on the other hand, we also need to consider

large quantum numbers (simply removing h does not always enable us to construct

the classical limit). Once these conditions are assumed, it is tempting to consider them

as a means of passing to a classical limit, with its epistemic notion of randomness.

In particular, it would be possible, starting from quantum non-separability (in the

framework of decoherence theory, for instance, which allows us to understand how

the interactions with the environment – such as through the measurement apparatus –

destroy entanglement and non-separability), to move away from an objective quantum

randomness (if, as we hypothesise, there is a sense to this) and get to a classical

epistemic dual random (purely statistical) representation and deterministic chaos. This

would be compatible with so-called ‘quantum chaos’, which precisely corresponds to a

chaotic classical limit. Thus, many see, in taking the zero limit of h, the possibility of a

reduction to a dynamical system (thus obtaining the classical equations of mechanics)

and, by resorting to large quantum numbers, the possibility of a reduction to epistemic

probability. This double passage to the limit is a long way from being accomplished, and

constitutes one of the great challenges for the much sought after ‘unification’ between

the classical (and relativistic) theories and quantum frameworks.

Having attempted to respond to a few possible strong objections to our approach,

there is still another aspect favouring the objective character of quantum randomness:

the profound difference between quantum and classical statistics. This difference does

not only stem from a non-zero h, but also from the ‘observational’ properties associated

with classical particles in comparison with quantons, and to the nature of the symmetries

to which bosons and fermions respond (symmetry constraints that do not exist in the

classical framework). Classical particles are distinguishable, while quantum particles are

not, which leads to different expressions for the statistics that these entities obey: Fermi–

Dirac for fermions (which cannot simultaneously occupy the same quantum state, and are

considered as the matter quantons, endowed with spin half); Bose–Einstein for bosons

(which can simultaneously occupy the same quantum state, and are considered as the

interaction quantons, endowed with spin one or zero); and Maxwell–Boltzmann statistics

for classical particles. The indistinguishability of quantum particles (which is moreover

related to non-separability) harks back, in our opinion, to the objective character of
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quantum randomness, while the distinguishability of classical particles (the well-isolated

particles, each with an individual identity, whose integral sum of free energy we are

considering) would refer to the epistemic character of classical randomness.

Moreover, we would like to add another element to this, which is of a quite different

nature, but one that, in our opinion, has the effect of reinforcing the objective character of

quantum probabilities. As we have previously mentioned, the domain of physics in which

probabilities and statistics are most present is, beyond any doubt, statistical mechanics

and thermodynamics, be it at equilibrium or in the study of irreversible phenomena.

To account for these phenomena, and because fluctuations (which are not necessarily

quantum) also fill our universe at the same time as there being a certain degree of disorder,

Boltzmann was lead to introduce the constant kB , which bears his name. In a way, this

measures an entropy, which is a physical quantity generally related to averages taken

from collections. The elements of these collections (a gas, for example, formed of atoms

in movement and subject to random collisions) are animated by disordered movements,

of which the average effect of the interactions is represented by the temperature T (in

kelvins: K). In the simplest of cases, each of the system’s degrees of freedom is associated

with an energy, which is given by the formula kBT/2. It is worth noting that other

physical theories (gravitational, quantum, electromagnetic, and so on) usually address

isolated elements (two masses, an electron, a photon, in any event, elements with a

limited number of degrees of freedom), while thermodynamics (domain par excellence

for the relevance, appearance and utilisation of kB) addresses situations where these

elements are very numerous (a large number of degrees of freedom), making it dependent

on a statistical mechanics approach (however, see point 2 above for a brief comment-

ary regarding what Louis de Broglie has called the ‘thermodynamics of the isolated

particle’).

3.3. Final remarks on quantum randomness

Clearly, it is not possible for us to provide a real conclusion: our approach is partly

conjectural, and there is a lack of general mathematical theorems (on the relationships

between classical randomness and chaos) to give it sufficient support. Further develop-

ments in the physical theories themselves are also needed, and these could nurture a vision

of contemporary physics that is thoroughly unified, or at least sufficiently objective and

discriminating with regard to the processes at play in quantum interactions. Currently,

the dominant paradigm (but this is not to say that it is necessarily definitely established)

is generally in line with the conceptions we have presented. But the search for a causal

interpretation of quantum physics referring, for instance, to a (continuous) sub-quantum

environment is not finished, even if one might consider that, since its inception, it has

not been particularly fruitful, while progress in other directions has proved quite rich. We

would above all like to avoid finding ourselves overdetermined by a priori views that are

too ideological in nature, as this might make us seek and thus defend a total determinism

or, conversely, an essential non-determinism for which, in any case, the relevance, in terms

of philosophical implications remains, to be demonstrated. Admitting that, nevertheless,

we want to go beyond the operational aspect of the scientific approach in order to
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question the set of interpretations that it raises (which is also one of our preoccupations),

it appears to us to be much more interesting to argue for the spatial/energetical/temporal

irreducibility introduced by the non-nullity of the h constant. In fact, this irreducibility

is the harbinger of considerable developments that are yet to be established, because we

believe it to be correlated with the intrinsic probabilities we have been considering. These

are themselves the expression, it appears, of the conditions imposed by non-determinism,

by the complex character of the wave function, by non-commutativity, non-separability,

and so on, in short, by quantum specificities. It seems that it might be more heuristic

and fruitful to argue for a specificity arising from living phenomena, which we know

can be reduced at a functional level to physico-chemical processes, but whose mode of

existence is not susceptible to the same analysis (however, in order to understand this

mode of existence we are led to introduce concepts as specific as those of metabolism,

normal/pathological, living/dead, phylogenesis/ontogenesis, and even ‘contingent finality’,

see Bailly and Longo (2006) for a discussion along these lines).

Finally, it seems important to emphasise the fact that the objective character we

are considering here is a constructed, or constituted objectivity. Its construction obviously

depends on the standpoint (preparation, measurements, choice of formulations, convenient

mathematical structures and principles, and so on). But once constituted, it becomes

independent of the viewpoint in the sense that it has recourse to abstract mathematical

constants or structures that henceforth prescribe it as much as they describe it. Invariance

and stability with respect to a change of coordinate system and measure (view-point)

correspond to constructed objectivity in science.

4. Determinism and continuous mathematics

In the preceding sections we have identified ‘random’ and ‘unpredictable’, in both classical

and quantum physics. In the classical case, dynamic unpredictability has, in fact, provided

us with the definition of randomness, as a consequence of the relationship between

mathematical determinism on the one hand and physical measurement on the other. In

microscopic physics, we have stressed the fact that randomness is integrated within the

theory itself, that it is, in a way, the starting point, being rooted in the peculiar polarity

between a knowing subject and the object, and given by means of mathematics, the

preparation of the experiments and measurement, all of which lead to an ‘unpredictable’

result, where only a probability is given as the result. In turning now to the role of

continuous mathematics we will return to the difference between the two theoretical

(and phenomenal) fields, which, when discussing randomness, we have separated into the

epistemic and objective (or intrinsic for quantum theory).

When we use the classical viewpoint or tools for the analysis or production of

randomness (we observe turbulence, or throw a coin or a die, and so on), a preliminary

analysis of the phenomenon or object is possible: we analyse the irregularities and the

stabilities of a fluid, we look at the physical structure and symmetries of a coin or a

die, and so on. This enables us to ascribe probabilities to the ensuing processes and

to make physically well-founded estimates for some elements of these processes. In the

case of a coin or a die, the object’s symmetries and the set of physical properties enable
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us to ascribe probabilities to the occurrence of the various possible outcomes before

they take place (1/2, 1/6, respectively). In short, it is possible to separate the physical

object and its properties from the process, to study it before making the measurement

relating to the dynamics of interest to us. This is impossible in microscopic physics:

prior to measurement, that is, before the process where randomness will be produced,

it is impossible to completely determine the physical object and its list of properties;

in particular, quantum non-separability prevents us from isolating the ‘properties’ of a

quanton. In microscopic physics, our only form of access to the world lies through the

measurement of processes. It is impossible to ‘look’ at the photon or the electron, in

the same way as we can a coin or a die, independently of the processes of production,

evolution and measurement, where probabilities are intrinsic to observation.

Even when some information about possible measurements is given at the beginning

of the process, for example, when preparing an electron for the measurement of its spin

(by setting a direction, one knows a priori that it will be ‘up’ or ‘down’), there is no

underlying classical theory enabling us to determine, even theoretically, the exact spin,

before and independently of measurement, as the result of a determined state or even of

a trajectory. On the other hand, we can conceive of an analysis of the classical dynamics

of a coin that, as the solution to the equations of motion, would describe the coin’s exact

trajectory, in terms, for example, of the Euclidean lines of the barycentre and of a point

on the edge. The different ‘hidden variables’ approaches in quantum mechanics assumed

that these classical theories of real underlying trajectories exist but, as we recalled earlier,

they do not escape the non-local aspect of their specifications.

Moreover, the classical theory enables us, at least conceptually, to go to the limit of

measurement. Once again, we know very well that measurement in classical physics

is always an interval; however, the theory of dynamical systems is given within a

framework of continuous mathematics, with Euclidean points and trajectories, which are

considered to be zero-width lines. For this reason, as Laplace rightly stated and we have

already mentioned, an infinite and perfect intelligence knowing the world point by point

could predict everything, including throws of dice. In theory, this boundary continuous

framework is, to this day, essential, because the imposing of an a priori mathematically

finite limit for measurement makes no physical sense classically. This then enables us to

conceive of determining the whole motion, in particular, the trajectory beginning from

a point; it is in this sense that the classical world is deterministic. Thus randomness, as

unpredictability, remains epistemic: it is in the relationship between, on the one hand, the

tool of knowledge and determinism given by mathematics, and, on the other hand, the

actual object, which we assume to be independent and measurable only in a humanly

approximate fashion. It is this (presumed) independence that does not occur in quantum

physics, where the object and objectivity itself are constituted in the practice of knowing

(the preparation of the experiment and measurement, and their mathematisation, or even

their principal mathematical consequence: the quantum object).

In order to better highlight the correlated roles of determinism and continuous mathem-

atics within the classical frameworks, and their autonomy relative to the (preconsitituted)

physical object, we will return to a previous remark. Mathematics performs the passage

to the continuous limit in many abstract constructions that are quite independent of (are
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at the external boundary of) the ‘rational’ (ratios between integer magnitudes, for Greek

thought). We are thinking, for instance, of the sequences of rational numbers converging

towards an irrational, for example,
√

2: this theoretical limit produces
√

2, which is not

a rational number. It therefore exists within a conceptual universe of actual limits (the

geometric construction of
√

2, which so deeply troubled our colleagues in Greece that

it led some of them to the brink of suicide, is the true beginning of mathematics). The

understanding stemming from real numbers à la Cantor–Dedekind provided a definitive

foundation for the mathematics of continua, or provided this continuum made of points

beyond this world with an immense mathematical stability and conceptual invariance.

It has also enabled the developments of modern physics, where the infinite and the

passage to the limit play a crucial role well beyond differential calculus (see Bailly and

Longo (2006)). However, it is clear that this does not have any ‘physical sense’ if we

are referring to physical measurement, despite the fact that differential and algebraic

calculus, in the continuous framework, are at the centre of classical physico-mathematical

determinism. In short, classical determination is a ‘limit notion’ and has long sat at the

core of the mathematics of continua and mathematical physics.

The dimensionless points, Euclid told us, are the exact departing points for trajectories,

for, he continued, zero-width lines determined by equations, as Newton, Laplace and

Einstein explained. It is, therefore, continuous mathematics that enables us to conceive,

on the one hand, of theoretically perfect classical determinations, and on the other, of

the unpredictability of physical evolutions that are sensitive to the boundary conditions

and affected by the unavoidable imprecision of physical measurement. It is the very

idea of a conceptually possible continuous substrate that highlights the approximation

of measurement: a universe in which the spacetime is discrete, digital for instance,

would be exact, because it would allow for exact measurements, digit by digit, as

separable points, with exact access to information, just as the digital machine accesses its

databases.

Let us note that even in turbulence theory, the framework provided by the Navier–

Stokes equations is continuous, and therefore deterministic, in this limited sense, although

specific to highly unpredictable phenomena (with a few underlying important difficulties

for prediction, even of the theoretical type, due to the absence, even today, of a proof

of the uniqueness of solutions and therefore for the uniqueness of the possible trajectory,

once we are given the boundary conditions).

Yet none of this carries over to quantum physics, as we have argued: it seems impossible

to pass to the threshold of possible measurement, to refer to a continuous substrate, even

a purely conceptual one. The theory begins with Planck’s h constant, which provides

a theoretical lower bound for measurement and the non-determinism intrinsic in the

mathematics of quantum mechanics. There are not, in quantum space, any dimensionless

points to act as possible departure points for zero-width trajectories: they are proscribed

by the theory. In fact, there are, in the classical sense, no trajectories whatsoever within

space-time: it is here we find the radical watershed constituted by quantum physics, after

two thousand years of the physics of trajectories, from Aristotle to Galileo and Newton

to Einstein. In this sense, randomness becomes intrinsic to the theory and participates in

the construction of objectivity, and itself becomes ‘objective’.
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5. Conclusion: towards computability

In this paper we have tried to understand the notion of randomness as unpredictability

in two different theoretical frames (classical dynamics and quantum mechanics). We

have stressed fact that the epistemic nature of classical chaotic dynamics is based

on:

— possible alternative understandings (deterministic or purely statistical);

— an underlying continuum structure that allows one to conceive of perfect determinism,

in the sense of complete infinitary predictability (God, the theory says, who knows

the world by Cantorian points, one by one, would be able to predict all future

events).

In contrast to this, in the (prevailing) interpretation of quantum mechanics, there is no

alternative to measurement as probability value, nor are there any (hidden) continuous

variables, thus we are led to the ‘theoretically objective’ nature of quantum randomness

(there is no such conceivable God in quantum theories). Moreover, the entanglement

effects (non-separability and non-locality) are at the core of the prevailing interpretation

of quantum physics and, as stressed above, they contribute the peculiar nature of quantum

randomness. This interpretation is also the basis of current approaches to quantum

computing and cryptography (deterministic hidden variables are incompatible with current

security quantum protocols).

Many computer scientists are familiar with the mathematical definition of randomness

proposed by Martin-Löf, which is related to the Kolmogorof approach and has been

widely developed by Chaitin and others. Briefly, Martin-Löf used classical computability

theory to give a notion of ‘passing any effective statistical test’ and used this to define

the so-called ‘infinite ML-random sequences’. We will not give a formal presentation

here, but just quote one of the major consequences, which highlights the sense of the

approach:

An infinite ML-random sequence has no infinite recursively enumerable subsequence.

The meaning of this strong non-computability property should be clear: there is no way

to predict or compute infinitely many values of the sequence. As a matter of fact, if you

had a total recursive function that could output the date and the results of infinitely many

Lotto or Bingo games, you would be very happy. Infinitely many, of course, otherwise

your sequence would be ‘just’ eventually random, which is mathematically the same, for

infinite sequences.

How does this mathematical definition relate to our analysis within physics in terms of

dynamics or processes? In the mathematical approach based on computability, there is

no reference whatsoever to an underlying physical process generating the sequence, be it

the Lotto, dice or coin tossing. In this way it is truly general, and it applies just as well to

a quantum sequence of, say, an electron’s spin-up/spin-down, interpreted as 0s and 1s (of

course, this latter sequence is random or unpredictable for rather different reasons, as we

have dsicussed at length: in particular, the measurement itself contributes to producing

the states).
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In other words, if we are given a chaotic deterministic dynamics or a quantum

phenomenon to which we can associate an infinite sequence of integers, we can say

it is ML-random. Clearly, one has to specify how we obtain a sequence from the intended

process (for example, by writing numbers or signs on the dice or coins, by quantum

measurement, and so on). A precise statement of this implication is still to be given (that

is, a characterisation of the dynamics or the processes whose chaotic behaviour produces

exactly ML-random sequences). In the case of a deterministic dynamics in a chaotic

regime, one has to wait long ‘enough’ for unpredictability to pop out, once we have

associated a measure and values to the process (some techniques, such as the analysis

of Lyapounov exponents, can give an estimate of this time: for an ago-antagonistic

process modelled by the logistic functions with a minimal level of observability of, say,

10−15, one has to wait at least 50 iterations before the kneading sequence becomes

ML-random; for the evolution of the solar system, after 1 million years the iterated

analysis of the position of Pluto still being in or out of the system is an ML-random

sequence).

The use of recursion theory allowed Martin-Löf to put previous work on randomness

(which was done before the invention or a sufficiently widespread use of this theory) onto

firm foundations. The notion of ‘passing any effective statistical test’, and its consequence

in terms of the non-existence of recursively enumerable subsequences, clarifies two major

aspects of randomness as unpredictability.

First, it provides a framework in which one can show that unpredictability is stronger

than undecidability. As we have already mentioned, both classical and quantum unpre-

dictability, which we identified with physical randomness in their contexts, yield ML-

randomness as a mathematical notion. In turn, the latter implies a strong form of

undecidability for a sequence: it cannot contain any recursively enumerable subsequence.

It is then fair to say that unpredictability is stronger than undecidability, as non-recursive

enumerability, in a context where these two notions can be compared.

Second, the Martin-Löf approach allows us to better understand the interplay between

subject and object in (scientific) knowledge. There is neither randomness in nature, nor

unpredictability. The world is not random nor unpredictable, per se: this simply makes

no sense. Both randomness and unpredictability pop out of the relationship between the

world and a knowing subject: in order to predict, one needs someone to pre-dicere (latin for

to say in advance). If nobody says, there is no unpredictability nor physical randomness.

In quantum physics, we do not even have a ‘physical object’ without measurement and

mathematics. Now, recursion theory is an eminently linguistic theory: it was born as and

is a matter of algorithms, given in words within formal systems, over sequences of letters

or of 0s and 1s. In this way, it also makes an important contribution to the analysis

of physical randomness, when it is defined, as we did, in terms of unpredictability. As

a matter of fact, ML-randomness is based on the notion of effectiveness for a test, that

is, for the activity of someone who wants to test or try to predict the evolution of a

sequence. However, in no way does the relevance of computability for the analysis of

this interplay between a knowing subject and the world prove that there is anything

intrinsically computational in the world, as many claim. On the contrary, it serves only

to set a limit on our linguistic (algorithmic) effort to say something about the world
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(to predict), and it does this through a negative notion of mathematical unpredictability

or ML-randomness.

References

Adler, R. L. (1979) Topological entropy and equivalence of dynamical systems, American Mathematical

Society.

Alligood, K., Sauer, T. and Yorke, J. (2000) Chaos: an introduction to Dynamical Systems, Springer.

Anandan, J. (2002) Causality, Symmetries and Quantum Mechanics. Foundations of Physics Letters

15 (5) 415–438.

Aspect, A., Grangier, P. and Roger, G. (1982) Experimental Realization of the Einstein–Podolsky–

Rosen–Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities. Phys. Rev. Let. 49

91.

Bailly, F. and Longo, G. (2006) Mathématiques et Sciences de la Nature. La singularité physique
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Bitbol, M. (2000b) Physique et philosophie de l’esprit, Flammarion.

Bohm, D. (1951) The Paradox of Einstein, Rosen and Podolsky. Quantum Th. 611–623.

Bohm, D. (1987) La plénitude de l’univers, Le Rocher, Paris.
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