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Bragg scattering of nonlinear surface waves over a wavy bottom is studied using
two-dimensional fully nonlinear numerical wave tanks (NWTs). In particular, we consider
cases of high nonlinearity which lead to complex wave generation and transformations,
hence possible multiple Bragg resonances. The performance of the NWTs is well verified
by benchmarking experiments. Classic Bragg resonances associated with second-order
triad interactions among two surface (linear incident and reflected waves) and one bottom
wave components (class I), and third-order quartet interactions among three surface
(linear incident and reflected waves, and second-order reflected/transmitted waves) and
one bottom wave components (class III) are observed. In addition, class I Bragg resonance
occurring for the second-order (rather than linear) transmitted waves, and Bragg resonance
arising from quintet interactions among three surface and two bottom wave components,
are newly captured. The latter is denoted class IV Bragg resonance which magnifies bottom
nonlinearity. It is also found that wave reflection and transmission at class III Bragg
resonance have a quadratic rather than a linear relation with the bottom slope if the bottom
size increases to a certain level. The surface wave and bottom nonlinearities are found to
play opposite roles in shifting the Bragg resonance conditions. Finally, the results indicate
that Bragg resonances are responsible for the phenomena of beating and parasitic beating,
leading to a significantly large local free surface motion in front of the depth transition.

Key words: surface gravity waves, wave scattering, wave–structure interactions

1. Introduction

Periodic submerged structures, either natural (such as tidally or wave generated small
sandbars) or artificial (i.e. engineering structures), are often found in coastal areas. These
support highly resonant free surface motions close to the structures if certain conditions
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are met. At these conditions, small reflected waves from successive structures, and the
incident waves are in phase and add up to form a strong reflection (i.e. large free surface
motions) at the seaward side. This resembles a classical phenomenon of ‘Bragg reflection’
in X-ray diffraction by crystalline materials, hence, the same terminology has also been
widely used in the field of water waves. The conditions are then denoted ‘Bragg resonance
conditions.’ The resonance may be excited in a linear or nonlinear fashion, and is of
importance for coastal protection and sediment transport/dune growth in coastal areas
(Heathershaw 1982).

Obviously, the dephasing (i.e. zero phases) between many reflected waves (from each
member structure) and the incident wave is the critical action for Bragg resonance to
manifest. Davies (1982a,b) has demonstrated from his linear perturbation calculations that
this zero-phase condition would be met if the ratio of surface and bottom wavelengths
equals two (both surface waves and bottom structure are assumed to vary sinusoidally).
The theory has been confirmed by experimental studies carried out by Heathershaw (1982)
and Davies & Heathershaw (1984). Later, the generalized Bragg resonance conditions were
proposed by Liu & Yue (1998), who treated the periodic bottom sinusoidal structure as
artificial surface waves that have corresponding wavenumbers but zero frequencies. The
criterion of wave resonance (i.e. linear combinations of wavenumbers/frequencies of each
surface wave component equal zero) devised by Phillips (1960) is then applicable for the
problem of Bragg resonance involving bottom undulations. The aforementioned Bragg
resonance condition in Davies (1982a,b) that involves one bottom and two surface wave
components is also represented and is denoted the class I Bragg resonance condition (Liu
& Yue 1998) or primary Bragg resonance condition (Yu & Howard 2010).

It is well established that linear theory (with appropriate corrections for resonance
conditions, and either solved analytically or numerically) can predict class I Bragg
resonant waves with a reasonable level of accuracy (see e.g. Mei 1985; Davies, Guazzelli
& Belzons 1989; Chamberlain & Porter 1995; Porter & Porter 2003; Liu & Zhou
2014), although various nonlinear numerical simulations are also widely used. The latter,
including a higher-order spectral (HOS) method (Liu & Yue 1998), a fully nonlinear
Boussinesq model (Gao et al. 2021) and Navier–Stokes solver models (Huang & Dong
2002; Hsu et al. 2014), have the potential to capture possible nonlinearities involved. These
theoretical and numerical studies as well as laboratory experiments (e.g. Heathershaw
1982; Davies & Heathershaw 1984) have shown that, in certain circumstances, very few
small structures can reflect the incident wave energy substantially, and could then be an
effective measure for shore protection. Thus, the concept of a Bragg breakwater, consisting
of several periodic small bars, has been proposed by Mei, Hara & Naciri (1988) as an
alternative to a single massive breakwater on a weak seabed.

Bragg scattering has been crucial in the above work but largely focused on
linear wave–wave and wave–structure interactions (that is, the superposition of linear
incident and diffracted waves). For larger surface and/or bottom wave steepness,
higher-order/nonlinear Bragg resonances resulting from nonlinear interactions among
surface and bottom wave components are expected. Mattioli (1990) demonstrated that, for
particular combinations of two sinusoidal bottom wave components, the response curve
shows reflection peaks at distinct frequencies of class I Bragg reflection. This feature can
be well explained by the generalized Bragg resonance conditions proposed by Liu & Yue
(1998) mentioned above. It involves two surface and two bottom wave components; hence,
it is denoted class II Bragg resonance, which manifests bottom nonlinearity.

In contrast, the resonance arising from free surface wave nonlinearity is denoted
class III Bragg resonance. This would occur if the interaction between surface waves
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(with two different wavenumbers) and a periodic submerged structure (with a single
wavenumber) gives rise to new waves with the wavenumber being equal to the difference
or sum of those of the surface and the sinusoidal bottom waves. The former (the difference
of the wavenumbers) travels away from the seaward side of the periodic structure (i.e.
higher-order reflected waves, and a so-called sub-harmonic Bragg resonant wave), and
the latter (the sum of the wavenumbers) away from the leeward side (i.e. higher-order
transmitted waves, and a so-called super-harmonic Bragg resonant wave). That is, resonant
interactions among one bottom and three surface waves are incurred in class III Bragg
resonances, as suggested by Liu & Yue (1998).

Class III Bragg resonance (both sub- and super-harmonic) has been captured
numerically by Liu & Yue (1998) using a HOS model, while the experimental evidence
was provided by Peng et al. (2019). These (numerical and physical) experiments were
carried out with carefully generated water waves over a sinusoidal bottom of carefully
selected dimensions, informed by the aforementioned Bragg resonance conditions. That
is, class I as well as class III sub- and super-harmonic Bragg resonances were observed
separately with different bottom configurations (characterized by the bottom amplitude
and wavelength). In addition, the relationship between the main characteristics of class III
Bragg resonance (in terms of the resonant wave intensity and the resonance condition etc.)
and the surface/bottom waves is still under-explored.

In this work, nonlinear Bragg resonances are investigated using two-dimensional (2-D)
fully nonlinear numerical wave tanks (NWTs) solving the Poisson equation and the fully
nonlinear free surface boundary conditions based on a higher-order boundary element
method (HOBEM). The scenario considered is a 2-D surface wave propagating towards
and over a parallel periodic sinusoidal structure (also known as a wavy bottom, and the
member structures are denoted ripples hereafter) with a single wavenumber. Even for
this rather simpler situation, the importance and implication of the nonlinear resonances
should be emphasized; multiple Bragg resonances may occur for the same system/bottom
topology. In addition to Bragg resonance conditions (i.e. classes I and III) mentioned
above, resonances at a surface wavenumber close to an integer multiple of half a bottom
wavenumber (the integer could be larger than 1) may occur (Yu & Howard 2010). The
improved understanding of the influence of the incident wave and bottom sinusoidal
structure on class III Bragg resonance is also of interest in this work. This also helps
to provide guidance/knowledge in designing the Bragg breakwater, as first proposed by
Mei (1985).

2. Re-creating published benchmarking experiments

In this section, experimental and numerical details of primary importance are presented;
more complete information describing the experiments on class III Bragg resonance can
be found in Peng et al. (2019), and the NWT employed in Appendix A and in Ning et al.
(2016). The verification of class I Bragg resonance has also been carried out, but is omitted
here for brevity. Class III Bragg resonance covers both linear and nonlinear interactions
between the surface and bottom waves; the former is essential for class I Bragg resonance
to be effectuated, as mentioned previously.

2.1. Experimental
The experiments of Peng et al. (2019) were carried out in a 2-D wave flume in which
2-D plane surface waves were generated and propagated over parallel bottom ripples of
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sinusoidal shape. The parameters of the surface and bottom waves were carefully selected,
according to the well-known class III Bragg resonance conditions (Liu & Yue 1998), in
order to produce super- and sub-harmonic resonances within the capacity of the wave
flume. A piston-type wave paddle was installed to allow for the generation of both regular
and irregular surface waves with a maximum wave height of 0.25 m and a period between
0.6 and 5.0 s. The flume had dimensions of 50 × 1.5 × 0.8 m (length × width × depth).
Since the sub-harmonic resonance condition is different from that of the super-harmonic
resonance, two distinct sets of experiments were designed with different ranges of wave
parameters and ripple dimensions.

For producing resonant transmitted waves (i.e. super-harmonic resonance), the
amplitude of the ripples was b = 0.1 m, and the wavelength of the ripples was λb = 2 m
(i.e. kb = π m−1 and the bottom slope kbb = π/10). The mean water depth over the
periodic sinusoidal structure was h = 0.47 m with kbh = 0.47π. The periodic structure
was 10 m long consisting of five ripples, and was 20 m away from the wave paddle.
The incident waves with the wave steepness k(1)a(1) in the range of 0.04–0.11 were
considered. Here, k(1) and a(1) are the surface wavenumber and the wave amplitude
of the linear incident waves measured at/close to the wave paddle, respectively. The
corresponding incident wave period T(1) varied from 1.0 to 2.6 s with the corresponding
incident wavenumber k(1)/kb = (0.38–1.33).

It is noted that the superscripts (1), (2), . . . , (n) denote that these are the terms
corresponding to the 1st, 2nd, . . . nth harmonic surface waves in this work. We also note
that the wavenumber in this work is a scalar, which does not provide information on the
direction of the parameter/variable.

For producing resonant reflected waves (i.e. sub-harmonic resonance), the corresponding
parameters were b = 0.1 m, λb = 1 m, h = 0.35 m, k(1)a(1) = (0.02–0.09) and T(1) =
(1.0–3.0) s. That is, kbb = π/5, kbh = 0.7π and k(1)/kb = (0.18–0.7). The length of the
ripples was set to 5 m, consisting also of five ripples.

Seventeen wave gauges (Gs) were placed to measure the free surface elevation along the
flume: G1 to G3 (G1 to G4 for the sub-harmonic Bragg resonance cases) were placed in
front of the bottom ripples for resolving the reflected waves; G4 − G12 (G5 − G13 for the
sub-harmonic Bragg resonance cases) were placed above the bottom ripples for the spatial
evolution of the waves and G13 − G17 (G14 − G17 for the sub-harmonic Bragg resonance
cases) were located after the bottom ripples for determining the transmitted waves.

2.2. Numerical
Simulations were carried out in a 2-D NWT shown in figure 1 based on the HOBEM
solving the boundary integral equation on the boundaries of the fluid domain. The equation
was obtained by reformulating the boundary value problem (BVP) for the Poisson equation
in the fluid domain (Ning et al. 2016).

The fully nonlinear kinematic and dynamic boundary conditions were satisfied/solved
on the instantaneous free surface, allowing various nonlinearities involved to be considered
properly. The impermeable boundary condition (i.e. the velocity potential normal to the
boundary = 0) was satisfied on the bottom and the right end of the tank as well as the
structure. The method of source generation was applied in which a set of pulsating sources
was distributed along a vertical wall to generate the desired incident waves propagating
from left to right. According to the widely used Le Méhauté’s diagram (Le Méhauté 2013),
the fluid velocity (i.e. the strength of the pulsating source) at the inlet boundary is specified
based on the second-order Stokes theory in this work (Koo & Kim 2007). In addition,
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Figure 1. Sketch of the 2-D numerical tank. Here, λ = λ(1).

a numerical beach/damping layer was installed in each end of the tank for absorbing
reflected waves from the domain, should they occur, i.e. the method of numerical beach
was used. For further details refer to Appendix A.

In the HOBEM, the boundary surface was discretized by higher-order elements based on
quadratic shape functions, which were also used to interpolate the physical variables. That
is, the elements were so-called isoperimetric elements (Ning & Teng 2007). It is noted that
a simple Green function, obtained by the superposition of images reflected about the tank
bottom (Ning et al. 2016), was adopted here. Thus, the horizontal bottom of the NWT was
excluded from the computational domain, hence, no discretization was required here.

A fourth-order Runge–Kutta integration scheme and the mixed Eulerian–Lagrangian
approach were adopted to advance the simulation in time.

The capability of the numerical model in simulating wave interactions with a single/dual
submerged structure(s) has been widely examined in e.g. Ning et al. (2014, 2017) and
Chen et al. (2017). Here, its performance in capturing complex wave–multiple-structure
interactions and in predicting the resulting resonant reflected/transmitted waves will be
tested by comparing the current work with published benchmarking experiments (Peng
et al. 2019); the primary details are summarized above.

As shown in figure 1, the bottom was arranged with a periodic sinusoidal structure
characterized by the number of ripples n, the amplitude b and the wavelength of the ripples
λb. Then nλb is the length of the periodic structure. Here, SF, SO, SB and SI denote the
free surface boundary, the outflow boundary, the bottom (including the horizontal bed Shb
and the wavy bottom Sb) and the incident boundary, respectively. As mentioned above,
the incident waves were generated by applying the method of source generation on SI , and
the damping layers (with a length equal to twice the surface wavelength; determined by
numerical tests and experience) were arranged at both ends of the flume to minimize the
reflection of waves from the bottom structure Sb and the outflow boundary SO.

For the sake of presentation and comparison, a Cartesian coordinate system Oxz was
defined with the origin on the plane of the undisturbed free surface z = 0; with the z-axis
and the x-axis being positive when pointing upwards and to the right, respectively. Hence,
the depth variation of the NWT was represented by z = −(h − ζ(x)) in which h is the
water depth away from the bottom ripples (i.e. above the horizontal bed Shb), and ζ(x) is
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the ripple geometry, prescribed as

ζ(x) =
⎧⎨
⎩

0, x ≤ x1,
b sin(kb(x − x1)), x1 ≤ x ≤ x1 + nλb,
0, x1 + nλb ≤ x,

(2.1)

where x1 is the starting point of the bottom ripples, kb the wavenumber of the ripple and
n the number of ripples, as defined previously; nλb = 2πn/kb is the total length of the
bottom ripples. These parameters were the same as those in the experiments (Peng et al.
2019) for the validation.

As mentioned above, no discretization was required for the horizontal bed Shb. The mesh
sizes at the free surface boundary SF, the outflow boundary SO as well as the incident
boundary SI were determined as �x = λ(1)/30 and �z = λ(1)/10, and for the bottom
ripples Sb, �x = λb/10 and �z = λ(1)/4. The time step was selected as �t = T(1)/60.
These were determined by the convergence tests, which are not shown here for brevity; for
details refer to Ning et al. (2016).

Similar to the experiments, two groups of four wave gauges with a spacing of 0.1λ(1)

were placed in front of and after the ripples to extract the reflected and transmitted waves
from the total signals, respectively. Note that the arrangement of the wave gauges was
slightly different from that of the experiments. This is because the so-called extended
two-point method (Liu & Yue 1998) was used in the experimental analysis of Peng et al.
(2019), while the available four-point method (Ning et al. 2014) was adopted here to obtain
the reflected waves in front of the ripples. A traditional two-point method (Grue 1992)
was still applied in this work for separating the transmitted waves. Due to the inherent
characteristics of the reflected and/or transmitted waves, this did not affect the results,
and hence the comparison, significantly. Further details on resolving the reflection and
transmission coefficients are to follow later in this section. The wave gauges are numbered
as G1 − G8 with G1 and G8 being 1.6λ(1) from the front and back toe of the ripples,
respectively, see figure 1 for details.

In the present work, the maximum ratio of the orbital excursion of the water particles
2Ab to the bottom ripple wavelength λb, 2Ab/λb, was 0.30 = O(10−1). The flow separation
above the wavy bottom was then considered to be unimportant according to Davies &
Heathershaw (1984). Hence, the use of the NWT with the assumption of irrotational flow is
considered to be plausible in this work. Here, 2Ab/λb = 2ga(1)k(1)/(λb[ω(1)]2 cosh(k(1)h))

in which g is the acceleration due to gravity. Satisfactory agreement between the
present numerical results and the experimental measurements shown below supports this
assumption. We note that vortex generation may be important for bars of rectangular shape,
as indicated in Hsu et al. (2014).

The calculated transmission and reflection coefficients of the second harmonic free
waves, K(2)

t and K(2)
r , are compared with the experimental results in figures 2(a) and 2(b),

respectively. Satisfactory agreements are achieved, indicating that the applied numerical
tool can provide accurate wave evolution over a periodic structure as well as simulating the
transmitted and reflected waves. Therefore, it should permit a detailed exploration of the
nonlinear scattering over a periodic structure, and hence (class I and III) Bragg resonances.
For completeness, the results calculated by the HOS method with M = 4 in Peng et al.
(2019) are also included.

Note that the transmission coefficients K(2)
t were calculated by the two-point method

(Grue 1992) based on the records of G5 − G6, G6 − G7, and G7 − G8 to separate the
nth-order (n ≥ 2) free waves (the wavenumber k(n) and the wave frequency nω(1) satisfy
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1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
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0.2K (
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2k(1) / kb 2k(1) / kb

0.3

0.4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4
Exptal (Peng et al.)
HOS   (Peng et al.)
NWTs (Present)

(a) (b)

Figure 2. Transmission coefficients of the second harmonic free waves for capturing class III super-harmonic
resonance with k(1)a(1) = 0.11, kbb = 0.314, b/h = 0.213 and n = 5 (a); and reflection coefficients for
class III sub-harmonic resonance with k(1)a(1) = 0.08, kbb = 0.628, b/h = 0.286 and n = 5 (b).

the dispersion relation) from the corresponding nth-order locked waves (the wavenumber
and the wave frequency are nk(1) and nω(1), respectively, having the same wave velocity
as the first-order wave). The final values of the transmission coefficient were the averaged
values of these three.

For the reflection coefficient K(2)
r , the nth-order wave generated in front of the bottom

ripples consists of incident free and locked waves as well as the reflected free and locked
waves from bottom ripples; this is too complex for the traditional two-point method
proposed by Grue (1992) to work properly. Hence, the available four-point method in Ning
et al. (2014) was used to obtain the reflected second-order free wave amplitude based on
the records from G1 − G4.

3. Nonlinear behaviours of class III Bragg resonance

Three key parameters are of concern for investigating Bragg resonance over periodic
structures which are the peak reflection/transmission coefficient (i.e. Bragg resonant
waves), the peak frequency at which the peak reflection/transmission coefficient occurs
(i.e. Bragg resonance points) and the effective frequency bandwidth within which the
reflection/transmission coefficient is larger than a certain value. Extensive research has
been carried out by various scholars to explore the characteristics of class I Bragg
resonance in terms of these three parameters (e.g. Davies & Heathershaw 1984, Wen &
Tsai 2008 and Liu, Li & Lin 2019).

It is found that, as the ripple number n increases, the peak reflection coefficient
increases, and the peak frequency is upshifted slightly when compared with the linearized
Bragg resonance point due to the inherent nonlinearity. The linearized Bragg resonance
point is predicted by the generalized Bragg resonance conditions of Liu & Yue (1998).
The effective frequency bandwidth, however, is found to decrease accordingly. As the
ripple amplitude b/h increases, the peak reflection coefficient and the effective frequency
bandwidth both increase, and the peak frequency is downshifted.

In contrast, the characteristics in terms of class III Bragg resonance are less explored but
of equal importance, and form the focus of this section. Accordingly, parameters K(2)

Tm , ω(2)
p ,
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p
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0.5K (2)
Tm

K (
T

2)

K (2)
Tm = A (2)

Tm

Figure 3. Parameters introduced for investigating nonlinear behaviours of class III Bragg resonances.

ω
(2)
+ and ω

(2)
− are introduced, as shown in figure 3. As mentioned before, the superscripts

(2) denote that these are the terms corresponding to the second harmonic waves for
class III Bragg resonance. The subscript T denote that this is the term for either reflected or
transmitted waves, and the subscripts m and p represent maximum and peak, respectively.

Hence, K(2)
Tm represents either the maximum transmission or the maximum reflection

coefficient of the second harmonic wave across the frequency range considered, and A(2)
Tm

the corresponding maximum amplitude (i.e. K(2)
Tm = A(2)

Tm/a(1)); ω
(2)
p (the corresponding

wavenumber denoted k(2)
p ) is the peak frequency at which K(2)

Tm actually occurs (i.e. the
actual Bragg resonance points). It is noted that ω

(2)
p or k(2)

p could be different from
the linearized Bragg resonance points ω

(2)
t or k(2)

t provided by Liu & Yue (1998); the
difference of which is of concern and is investigated in this study.

Bailard, DeVries & Kirby (1992) considered a Bragg breakwater as an effective
shore-protection device if it can reflect more than 50 % of the incident wave energy. Thus,
ω

(2)
+ and ω

(2)
− are defined as the frequencies at which 0.5K(2)

Tm occurs, and the effective
frequency bandwidth �ω(2) = ω

(2)
+ − ω

(2)
− in this work. Note that this is different from

the conventional definition of the effective frequency bandwidth, e.g. in Wen & Tsai
(2008). The conventional bandwidth is the distance (across the frequency axis) between
the adjacent frequencies at which zero coefficients occur.

The effects of surface and bottom waves on the characteristics of class III Bragg
resonance in terms of the three parameters defined above are detailed in this section. To
achieve this, six distinct sets of numerical experiments are designed; three (denoted Group
1–Group 3) for investigating the super-harmonic Bragg resonance, and three (denoted
Group 4–Group 6) for the sub-harmonic Bragg resonance. The number of bottom ripples
is varied from 2 to 13 in Group 1 and Group 4, the wave steepness varies in Group 2 and
Group 5 and the amplitude of the ripples is varied in the range of 0.096–0.67 in Group 3
and Group 6. The testing conditions are also summarized in table 1.

Note that the variation range of the wave steepness in Group 5 is smaller than that
of Group 2. Class III Bragg sub-harmonic resonance is supposed to occur at rather
small surface wave frequencies, which leads to a relatively large Ursell number on the
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Figure 4. Variations in the amplitude of the super-harmonic resonant transmitted waves (a) and the
sub-harmonic resonant reflected waves (b) with the wave and the bottom steepness, as well as the length of
the periodic structure, represented by the parameter n[k(1)a(1)]2(kbb).

weather side of the bottom structure. For this large wave steepness/Ursell number, stronger
nonlinearity and possible wave breaking are thus expected, which could reach the limit of
the current numerical method.

3.1. Amplitude of class III Bragg resonant waves
Liu & Yue (1998) indicated that the amplitude of a class III Bragg resonant wave is
quadratic in the surface wave slope and linear in the bottom steepness, according to
their regular perturbation solutions up to third order. The corresponding maximum values
should increase linearly with the length of the periodic bottom structure.

Thus, the effects of surface and bottom waves on characteristics of class III Bragg
resonant waves are firstly investigated by demonstrating the variations in amplitude of
both the resonant transmitted and reflected waves with the parameter of n[k(1)a(1)]2(kbb),
as shown in figure 4. It can be seen that the use of this parameter has led to a significant
collapse of the data for all values of the wave steepness and the length of the bottom
ripples. This collapse suggests that both the resonant transmitted and reflected waves
indeed increase quadratically and linearly with the surface wave steepness and the structure
length, respectively, as suggested by Liu & Yue (1998). However, it is found that the results
of the resonant transmitted wave start to deviate significantly from this trend when the
amplitude of the bottom ripples b/h equals or is larger than 0.48 – see figure 4(a). The
assumption of the small bottom wave slope inherent in the perturbation solution of Liu &
Yue (1998) may no longer be valid for the cases with this large structure height. It is noted
that the deviation in resonant reflected waves is less obvious (see figure 4b), which may be
due to the fact that the variation range of n[k(1)a(1)]2(kbb) is smaller when compared with
that for the resonant transmitted waves. The selection of the variation range was discussed
previously.

The amplitude of the resonant transmitted waves under class III Bragg resonance
has then been plotted as a function of a new parameter n[k(1)a(1)]2(kbb)2 in figure 5.
The collapse of the data is better, suggesting that the amplitude of the resonant waves,
especially resonant transmitted waves, has a quadratic relationship with both the bottom
and surface wave slopes, while still having a linear relationship with the structure length
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Figure 5. Variations in the amplitude of the super-harmonic resonant transmitted waves with the new
parameter n[k(1)a(1)]2(kbb)2.

when the nonlinearity of the system increases. We note here that this quadratic dependence
on the bottom steepness maybe altered by varying the bottom steepness to certain
ranges, e.g. the linear dependence is found to work for smaller (non-dimensional) bottom
structures, as discussed above and in Liu & Yue (1998).

3.2. Actual class III Bragg resonance conditions

The frequencies of the peak resonant transmitted or reflected waves ω
(2)
p (i.e. actual

Bragg resonance conditions) relative to the linearized solutions ω
(2)
t are investigated

in figures 6–8. The resonant wave frequency/number shifting (either upshifting or
downshifting) can in general be attributed to the nonlinear effects involved. Peng et al.
(2022) derived the theoretical solutions of frequency downshifting for class I Bragg
resonance based on a regular perturbation analysis up to third order, and found that the
frequency shifting has a quadratic dependence on the bottom/surface wave steepness.
Hence, the variations in the actual class III Bragg resonance conditions are plotted
against (k(1)a(1))2 (representing the surface wave nonlinearity) and (kbb)2 (representing
the bottom nonlinearity) in figures 7 and 8, respectively.

It can be seen that a general trend of upshifting (i.e. the actual Bragg resonance
conditions are larger than the equivalent linearized solutions; the vertical axis is larger
than 0) is found for the resonant transmitted waves, i.e. class III super-harmonic resonant
waves (solid symbols in the figures). The level/extent of the upshift increases with the
system nonlinearity represented by the parameters n, [k(1)a(1)]2 and (kbb)2. Note that a
downshift is, however, found for the relatively smaller system nonlinearity, i.e. when n < 4,
[k(1)a(1)]2 < 0.0015 and (kbb)2 < 0.2.

According to Peng et al. (2022), the nonlinear frequency correction introduced by the
inclusion of third-order bottom and surface nonlinearities consists of three components.
The first two, associated with the third-order interactions of bottom ripples with the
second-order wave components that have wavenumbers of (k(1) + kb) and (k(1) − kb),
respectively, cause the surface wave frequency to shift downwards when compared with the
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Figure 6. Shifting of the resonant frequency under class III Bragg resonances with the ripple number.
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Figure 8. Shifting of the resonant frequency under class III Bragg resonances with the bottom nonlinearity
represented by (kbb)2.

linear solutions. The level/extent of the frequency downshift increases first with the surface
wavenumber to its maximum value at (2k(1)/kb = 1) and decreases with further increase in
the wavenumber, and is found to have a quadratic relation with the bottom steepness, kbb.
This explains the increase observed in figure 7, despite the fact that the bottom steepness
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is kept unchanged in Group 2 and Group 5. We note here that the incident wave amplitude
a(1) is constant and the wave steepness is changed by varying the incident wavenumber
in this work. In contrast, the third term is associated with the third-order self-interaction
of the propagating surface wave (analogous to a third-order Stokes wave), and leads to a
frequency upshift that has a quadratic dependence on the surface wave steepness, k(1)a(1).

These (nonlinearities from bottom waves; the first two terms mentioned above, and from
surface waves; the aforementioned third term), in turn, result in an increase (upshift) and
a decrease (downshift) of the resonant wavenumber of class III super-harmonic resonant
waves, respectively. The final shifting is determined by the combined effects of these two;
recall that kb = kp − 2k(1) for the resonant transmitted waves.

An opposite trend is true for the resonant reflected waves, i.e. class III sub-harmonic
resonant waves (open symbols in the figures), as now kb = 2k(1) + kp; recall that the
wavenumber in this work is a scalar, and hence no information on its direction is provided.

This is different to class I Bragg resonance for which a downshift by bottom nonlinearity
and an upshift by surface wave nonlinearity are found (Peng et al. 2022). Note that
2k(1)/kb = 1 for class I Bragg resonance, and (2k(1) ± kb)/k(2)

t = ±1 for class III Bragg
resonance; the plus signs are taken for the transmitted waves and the minus sign for the
reflected waves.

The bottom nonlinearity plays a more important role when the parameters n, [k(1)a(1)]2

and (kbb)2 increase, as discussed previously. Thus, for larger system nonlinearity
represented by these parameters, the peak class III Bragg resonant transmission and
reflection are shifted to higher and lower wavenumbers relative to the linearized Bragg
resonance points, respectively (see figures 6–8).

3.3. Effective frequency bandwidth of class III Bragg resonance
The effects of the surface and bottom waves on the effective frequency bandwidth �ω(2)

are investigated in figures 9–11, respectively. It can be seen that the effective frequency
bandwidth (for both the super- and sub-harmonic resonant waves) decreases with both the
structure length n (see figure 9) and the surface wave steepness k(1)a(1) (see figure 10),
although the decrease with the latter is mild. In contrast, an increase with the bottom slope
kbb (i.e. the ripple amplitude; see figure 11) is observed. These trends are consistent to
those for class I Bragg resonance, see e.g. Davies & Heathershaw (1984). In addition, it is
found that the bandwidth for the resonant transmitted waves is always smaller than that for
the resonant reflected waves.

4. Harmonic generation at Bragg resonances

It is well established that waves propagating over a submerged structure may introduce
significant harmonic generation (i.e. redistribution of wave energy from the fundamental
frequency into higher harmonics of this linear component) due to nonlinearity in both
the incident waves and wave–structure interactions (e.g. shoaling effects). For example,
Dick & Brebner (1969) claimed that up to 64 % of the wave energy transmitted behind a
submerged breakwater is transferred to higher harmonics of the incident wave. Harmonic
waves up to at least fourth order are identified by Christou, Swan & Gudmestad (2008) for
waves interacting with rectangular submerged breakwaters.

These higher harmonic waves together with the linear wave components as well as the
wavy bottom may satisfy the resonance conditions at various orders (Liu & Yue 1998) to
generate resonant waves that are of the same order of magnitude as the linear components.
For example, class III Bragg resonance mentioned above (i.e. resonance at third order)
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Figure 9. Variations in the effective frequency bandwidth with the ripple number.
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Figure 10. Variations in the effective frequency bandwidth with the surface wave steepness.
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Figure 11. Variations in the effective frequency bandwidth with the bottom slope.

is associated with the second harmonic waves. These resonant waves may in turn alter
the underlying mechanisms associated with harmonic generation, and hence the local
wave field. The former (i.e. the possible introduction of various Bragg resonances) will
be discussed in the next section and this section is focused on the latter, i.e. harmonic
generation at Bragg resonances, to investigate the interplay between these two phenomena.
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Figure 12. Spatial distribution of the total and linear free surface elevations along the centreline of the wave
flume for cases with (a) and without (b) the occurrence of class III super-harmonic Bragg resonance. The
incident wave amplitude a(1) = 0.01 m, the bottom slope kbb = 0.628, the structure amplitude b/h = 0.48 and
the ripple number n = 5. The black dash-dotted lines indicate the limits of the periodic bottom structure.

We start with spatial distributions of the total free surface elevation along the centreline
of the wave flume for cases with (ω(1) = 6.11 rad s−1) and without (ω(1) = 6.65 rad s−1)
the occurrence of class III super-harmonic Bragg resonance, as shown in figure 12. The
results are collected at t = 38T(1) when the solutions are considered to have achieved
steady states. A highly distorted free surface is observed above and behind the periodic
structure when the Bragg resonance occurs, as expected. It is also not surprising to
see that the corresponding linear solutions are reasonably smooth, indicating that the
resonance mainly occurs in higher-order nonlinear components of wave–periodic structure
interactions. As mentioned above, the resonant transmitted wave is exited at second order
for the present bottom configuration; ω

(2)
p = √

(gkp tanhkph) = 12.04 rad s−1 ∼ 2ω(1) =
2 × 6.11.

To demonstrate this effect more clearly, the spatial distribution of the higher-order
nonlinear wave components at class III super-harmonic Bragg resonance (i.e. the
difference between the total signal and the linear solutions shown in figure 12a) is shown in
figure 13. The analytical solution of Liu & Yue (1998) is also given for direct comparison.
It is clear that the Bragg resonant wave amplitude grows linearly with the propagation
distance above the periodic structure, and fluctuates marginally around a nearly constant
value behind the structure. When the resonance occurs, the wave amplitude of the higher
harmonic wave is of the same order as the linear component; the crest value of the higher
harmonic wave is up to ∼60 % of the linear solution. Both solutions from the present
numerical model and Liu & Yue (1998) capture this trend well, although small differences
between the two solutions are observed. In addition to the resonant transmitted wave at
second order (free wave component), the nonlinear wave components calculated from the
present numerical model also include second-order locked waves and wave components at
frequencies that are higher than second order.
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Figure 13. Spatial distribution of the higher-order nonlinear wave components. Black line: solutions from the
present numerical model; red dashed line: analytical solution from Liu & Yue (1998). The black dash-dotted
lines indicate the limits of the periodic bottom structure. For additional information refer to figure 12.

We summarize the spatial distribution of the second harmonic waves (both free and
bounded wave components at double frequency are included) along the wave flume
centreline at class III super- and sub-harmonic Bragg resonances in figure 14. It can be
seen that standing waves are formed in front of the bottom structure, resulting from the
superposition of linear incident and reflected waves. The phenomenon of beating (i.e.
periodic oscillations in space) is observed to occur at the top of, or behind, the periodic
bottom structure when the free and bounded second harmonic waves are in phase, and
are of the same order. The beating value at the top of the structure increases and decreases
with the travel distance over the structure for class III super- and sub-harmonic resonances,
respectively. These trends agree well with those predicted by Liu & Yue (1998).

Likewise, figure 15 shows the spatial distribution of the second harmonics along the
wave flume centreline at class I Bragg resonance. Three bottom structure amplitudes
(b/h = 0.16, 0.32 and 0.48) are considered, and the result for the flat bed (b/h = 0) is
also included for direct comparison. The phenomenon of beating is also observed to occur
at the top of, or behind the periodic bottom structure. The beating length predicted by
the current NWT is ∼ 1.975 m, close to 1.939 m calculated by the theoretical formula
2π/(k(2) − 2k(1)) in which k(2) is the wavenumber of the second-order free waves, and
k(1) of the linear component (Hansen & Svendsen 1974).

Interestingly, additional beats are observed to occur and ride on top of the original
beating before the bottom structures, leading to a maximum value of the second harmonic
wave crest up to 5 times as large as that of the incident wave at second order (represented
by the flat bottom case, b/h = 0; top in the figure). This is denoted ‘parasitic beating’ and
occurs when free and bounded second harmonic incident and reflected waves are in phase.
It is noted that these four components are required to be of the same order for ‘beating’
and ‘parasitic beating’ to manifest, which is achieved by Bragg resonances. The maximum
values of beating decrease with an increase of bottom structure amplitude when more
energy is reflected. Hence, an opposite trend is found for the ‘parasitic beating’ in front of
the structure. The detailed derivation and the mathematical elucidation of the phenomena
of ’beating’ and ’parasitic beating’ can be found in Appendix B.

It is worth mentioning that the free second harmonic incident wave components shown
in figure 15 top (i.e. the flat bed) are introduced due to the imperfect match between
the wave generation at the inlet boundary and the applied/inherent fully nonlinear free
surface boundary condition. The water particle motion cannot be produced exactly. This
also occurs for physical experiments, as indicated by e.g. Hansen & Svendsen (1974).

946 A25-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

60
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.609


Nonlinear Bragg scattering of surface waves

2 4 6 8 10 12 140

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

5 10 15 20 25 30 35 40 45 500

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Beating

Beating

Class III sub-harmonic

Class III super-harmonic
η

(n
) /

a(1
)

η
(n

) /
a(1

)

x (m)

(b)

(a)

Figure 14. Spatial distribution of the linear wave component (black lines) and the second harmonics (red
dashed lines) along the centreline at class III super-harmonic (a) and sub-harmonic (b) resonances. The black
dash-dotted lines indicate the limits of periodic structure, and blue dashed lines are analytical solutions from
Liu & Yue (1998). Here, (n) = (1) and (2).

Various methodologies have been developed in an attempt to minimize this mismatch,
including the adoption of higher-order wave theories for specifying the fluid velocity at the
inlet for numerical simulations (Anbarsooz, Passandideh-Fard & Moghiman 2013), and the
use of a non-sinusoidal time variation of the wave paddle motion in physical experiments
(Hansen & Svendsen 1974). Despite these measures, it is well established that the perfect
match is still hard (or impossible) to achieve.

Recall that the wave theory recommended by Le Méhauté (2013) for the wave
parameters considered is the second-order Stokes wave theory, which is then applied in
this work for wave generation (see (A7) in Appendix A). The generation of the ‘artificial’
free second harmonic ‘incident’ wave component is improved. For example, for the cases
shown in figure 15, the ratio between the generated free second harmonic incident wave
component and the linear wave component is ∼1.7 %. This is smaller than ∼5.8 % which
is predicted by using the linear wave theory for wave generation.

Numerical simulations with various combinations of water depth and wave period
(without the periodic structure in place) show that the ratio between this ’artificial’ free
second harmonic incident wave component and the linear wave ranges from 1.2 % to
3 %; smaller for a larger water depth and a smaller wave steepness. For the case shown
in figure 15, the bounded second harmonic incident wave component is approximately
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Figure 15. Spatial distribution of the second harmonic waves along the centreline at class I Bragg resonance
for various structure amplitudes. Here, b/h = 0 indicates there is no periodic structure, and the black
dash-dotted lines indicate the limits of the periodic structure.

4.3 % of the linear wave component (close to the theoretical prediction of ∼4.5 % =
k(1)a(1) cosh(k(1)h)(2 cosh2(k(1)h) + 1)/4 sinh3(k(1)h)). The free and bounded second
harmonic reflected wave components are up to ∼ 5 % of the linear wave component; larger
for a higher bottom structure. Thus, all four components at second order are of the same
order, and the aforementioned ‘parasitic beating’ is excited.

It is noted that the absolute values for these four wave components at second order
are relatively small considering that the linear wave amplitude here is 0.01 m. This is
reasonable and expected because class I Bragg resonance is exited in a linear fashion,
as discussed before. Nevertheless, this scenario (i.e. free and bounded higher harmonic
incident and reflected waves are of the same order) and the relevant conclusion are still
useful as wave components of various wave frequencies co-exist in real seas.

We also note that, although the introduction of this small ’artificial’ free second
harmonic incident wave in the system is unintentional, its existence did not affect the
investigation of higher-order/nonlinear Bragg resonance (the focus of the present work).
Hence, no further improvement in the wave generation is made.

The parasitic beating is not observed, however, for class III Bragg resonance, as shown
in figure 14. This is due to the fact that only the incident bounded and the incident free
second-order waves (rather than all four components mentioned above) are actually of
significance for class III super-harmonic Bragg resonance, while the incident bounded and
the reflected free second-order waves dominate class III sub-harmonic Bragg resonance.
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Nonlinear Bragg scattering of surface waves

5. Multi-Bragg resonance system

We now move on to investigate if the higher harmonic waves, hence the complex local
wave field close to the periodic structure mentioned above, would introduce Bragg
resonance at various orders. That is, if a multi-Bragg resonance system exists for the same
bottom configuration.

Figure 16 summarizes the transmission and reflection coefficients of both the linear and
second-order free wave components for various surface wave conditions studied in this
work. Note that these are example results for the relatively large bottom configuration,
i.e. b/h = 0.48, for which we expect a stronger nonlinearity. It is clear that there are five
relatively large peaks; 1 for the reflection curve of the linear component (a), 2 for the
reflection curve of the second-order free waves (b) and 3 for the transmission curve of the
second-order free waves (c).

The peak in the linear reflection coefficient curve should correspond to the classic
class I Bragg resonance incurred by the linear wave component that has a wavenumber
of k(1). As expected, 2k(1)/kb ∼ 1 here, which is indicated by the bottom horizontal
axis in figure 16(a). A small shift in the actual Bragg resonance points, and a larger
effective frequency bandwidth, are also expected due to the strong nonlinearity involved,
as discussed above in § 3.

For the reflection coefficient curve of the second-order free waves (b), the expected
peak at (2k(1) − kb)/k(2) ∼ (−1) is observed close to which class III sub-harmonic Bragg
resonance occurs. Recall that the wavenumber in this work is a scalar, and hence no
information on the direction is provided. Thus, the minus sign in front of 1 indicates that
this is for the reflected wave. In addition, another strong reflection at (2k(1) − kb)/k(2) ∼
(−0.14) is observed. After a throughout analysis, it is found that the surface wavenumbers
of the first and second harmonic waves, k(1) and k(2), and the bottom wavenumber kb here
satisfy a relationship of 2k(1) + k(2) − 2kb = 0, as indicated by the top horizontal axis.
This follows the generalized Bragg conditions at m = 4 in Liu & Yue (1998)

k(1) ± k(2) ± k(3) ± kb1 ± kb2 = 0,

ω(1) ± ω(2) − ω(3) = 0.

}
(5.1)

For the case of k(1) = k(2) = k(1), and kb1 = kb2 = kb

k(2) = k(3) = 2k(1) ± 2kb,

ω(2) = ω(3) = 2ω(1).

}
(5.2)

This Bragg resonance is then denoted class IV Bragg resonance, following the
convention of Liu & Yue (1998). This type of Bragg resonance is captured, for (we believe)
the first time, by either numerical or physical experiments.

Peaks in the transmission coefficient curve of the second-order free waves at (2k(1) +
kb)/k(2) ∼ 1 and (2k(1) + kb)/k(2) ∼ 2.82 (c) can also be found. The former corresponds
to class III super-harmonic Bragg resonance at second order, consistent with that in
Liu & Yue (1998). While the latter is found to overlap with class III sub-harmonic
Bragg resonance condition at which the second-order reflected wave is significant
due to the resonance (cf. (2k(1) − kb)/k(2) ∼ (−1); b). Note that for the condition of
(2k(1) + kb)/k(2) ∼ 2.82, k(2) equals 3.29 m−1 and we know that the bottom wavelength
kb = 2π m−1. That is, 2k(2)/kb ∼ 1, suggesting that class I Bragg resonance condition is
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Figure 16. Reflection and transmission coefficients for waves over a periodic structure with kbb = 0.94, b/h =
0.48 and n = 10, showing that multi-Bragg resonances occur for the same bottom configuration. The incident
wave amplitude a(1) = 0.01 m. Panels (a) to (c) show: reflection and transmission coefficients of the linear
wave component, reflection coefficients of the second-order free waves, and transmission coefficients of the
second-order free waves, respectively. The blue arrows indicate the linearized Bragg resonance points derived
in Liu & Yue (1998).

satisfied here. Class I Bragg resonance at second order is excited here by the resonant
reflected waves of class III Bragg resonance.

We note that the formation mechanism for the smallest peak (among the five) is still
under exploration, and we leave this for the future.

We highlight that this multi-Bragg resonance system is of importance as, in practical
applications, the incident wave field often contains multiple wave components. They
themselves and their combinations may satisfy the resonance conditions to generate
resonant waves. These resonant waves may then satisfy and/or engage in multiple
resonances with the incident components, e.g. the observed class I Bragg resonance at
second order in figure 16. The wave field becomes increasingly complex, and may generate
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Figure 17. Spatial distribution of the free surface elevation along the centreline of the wave flume at t = 45T
at class IV Bragg resonance. The black dash-dotted lines indicate the limits of the periodic bottom structure.

a certain type of wave, e.g. long infragravity, that is of special importance to coastal
processes and engineering applications.

The spatial distributions of the free surface elevation along the centreline of the
wave flume at t = 45T(1) under the aforementioned class IV Bragg resonance condition
are shown in figure 17. Similar to figure 12, both linear and nonlinear solutions are
included. As expected, a highly distorted wave profile (even more distorted than that
in figure 12 for class Bragg III resonance) is found in nonlinear solutions before and
above the periodic structures, suggesting that resonance is actually excited in nonlinear
higher harmonic reflected waves. This is consistent with the mathematical behaviour in
(5.1)–(5.2).

6. Conclusions

In this work, numerical simulations are carried out to investigate nonlinear waves
propagating over a periodic structure, and the subsequent Bragg resonant waves. The
numerical model, the so-called fully nonlinear NWT, solves the Poisson equation as well
as the fully nonlinear kinematic and dynamic free surface boundary conditions based
on the HOBEM in time domain. This allows the various nonlinearity involved to be
considered properly.

The numerical results are verified by comparing with the published experimental
measurements on class III Bragg resonance, and are extended to explore the hydrodynamic
behaviours of the system to a wider range of surface and bottom waves of practical interest.
Thus, the fully nonlinear NWT is demonstrated to be an effective tool for exploring
the physics of wave–multi-structure interactions that leads to various types of Bragg
resonance. Accurate predictions of the local wave field and transmitted as well as reflected
waves are obtained.

Six distinct sets of numerical experiments are carefully designed to explore the
characteristics of class III Bragg resonance extensively. The results show that the
amplitudes of both Bragg resonant reflected and transmitted waves increase quadratically
and linearly with the surface wave steepness, and the ripple number of the periodic
structure, respectively. This is consistent with the perturbation solutions by Liu & Yue
(1998). However, there is a quadratic rather than linear relationship (e.g. as suggested by
Liu & Yue 1998) with the bottom slope if the bottom size increases to a certain level,
i.e. b/h equals or is larger than 0.48 in this work. In this case, the assumption of small
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ripple amplitude in the perturbation solutions may no longer be valid. Accordingly, a new
parameter of n[k(1)a(1)]2(kbb)2 is introduced to characterize class III Bragg resonance,
which further emphasizes the bottom nonlinearity.

It is found that the extent of the frequency shift (the difference between the actual
Bragg resonance conditions and the corresponding linearized solutions) becomes more
significant when the system nonlinearity (represented by the parameters n, [k(1)a(1)]2

and (kbb)2) increases. Generally, the nonlinearities in surface and bottom waves would
decrease and increase the free surface wavenumber, respectively. The latter is found to be
dominant when the bottom size increases to a certain level, as discussed above. Thus, at
larger n, [k(1)a(1)]2 and (kbb)2), an upshift is found for class III super-harmonic Bragg
resonance, while a downshift for class III sub-harmonic Bragg resonance is observed.
This contrasts with the widely studied class I Bragg resonance for which a downshift
is always observed. It is the coupling of these two opposite effects rather than the
nonlinearity arising from each alone that is of importance. Additionally, the effective
frequency bandwidth is found to increase with the bottom slope, while it decreases with
the wave steepness and the ripple number.

Higher harmonic generation over a submerged periodic structure at Bragg resonances is
also investigated. The interplay between these two phenomena (i.e. harmonic generation
and Bragg resonance) are of concern. The phenomena of beating (i.e. periodic oscillations
in space) and parasitic beating (i.e. additional beating riding on top of the original one) are
observed at the top of, and/or behind the periodic bottom structure. These occur when the
free and bounded second harmonic (transmitted and/or reflected) waves are of the same
order (induced by the Bragg resonances) and are in phase, leading to a large local water
surface motion (up to 5 times of the corresponding bounded waves) in front of the depth
transition. This could play an important role in an enhanced probability of extreme waves
on wavy bottom.

Various types of Bragg resonance, i.e. a multi-Bragg resonance system, are observed,
including the well-known class I and III Bragg resonances that occur in linear components
at close to the incident wave frequency, and second harmonic components at frequencies
that are close to twice the fundamental frequency, respectively. In addition, class I Bragg
resonant transmitted waves at second order and class IV Bragg resonant reflected waves at
second order are captured, for (we believe) the first time, by numerical experiments. Class
IV Bragg resonance is a result of free surface and bottom nonlinearities involving resonant
interaction among two bottom and three surface wave components. This multi-resonance
system is of significance for investigating the behaviours of the local wave field near the
shore, and designing the so-called Bragg breakwaters.
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Appendix A. Numerical methods

This appendix presents the details (theoretical formulation, solution algorithm etc.) of the
numerical method, i.e. the fully nonlinear NWT, employed in this work.
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Nonlinear Bragg scattering of surface waves

A.1. Theoretical formulation
The Cartesian coordinate system shown in figure 1 is used, i.e. the horizontal x-axis and
the vertical z-axis are positive when pointing to the right and upwards, respectively, and
x = 0 is defined at the left end of the domain (excluding the damping zone in the left) and
z = 0 is on the mean water level.

Let t denote the time, the velocity potential φ(x, z, t) is then introduced to describe the
fluid motion in the NWT, assuming that the fluid is incompressible, inviscid and the flow is
irrotational and two-dimensional. The Laplace equation (i.e. ∇2φ(x, z, t) = 0) is generally
used to accurately describe the behaviour of velocity potentials in the whole computational
domain. However, because we use the method of source generation for generating incident
waves in this work (details to follow), the Poisson equation is used instead (Brorsen &
Larsen 1987)

∇2φ(x, z, t) = q∗ (A1)

where q∗ = q∗(xs, z) is the volume flux density of the source distribution, and is related to
the incident wave kinematics (details to follow). Here, xs is the horizontal position of the
vertical source distribution, which is 0 in this work (i.e. at the left end of the computational
domain excluding the damping zone in the left).

As shown in figure 1, the fluid is bounded by the left inlet boundary SI , the bottom
SB (including both the horizontal seabed Shb and the periodic structure Sb), the outflow
boundary SO and the free surface SF. Each boundary should satisfy the corresponding
boundary condition to complete the BVP considered.

On the free surface SF we have both fully nonlinear kinematic and dynamic boundary
conditions

∂η

∂t
= ∂φ

∂z
− ∂φ

∂x
∂η

∂x
,

∂φ

∂t
= −gη − 1

2
|∇φ|2,

⎫⎪⎪⎬
⎪⎪⎭ (A2)

where η is the free surface elevation, and g the acceleration due to gravity.
In this work, the hybrid Euler–Lagrangian method is used to track the instantaneous

free surface, and the method of numerical beach is applied for absorbing reflected waves
from the domain, should they be present. Hence, the free surface boundary conditions are
re-written as

dX
dt

= ∂φ

∂z
− μ(x)(X − X 0),

dφ

dt
= −gη + 1

2
|∇φ|2 − μ(x)φ,

⎫⎪⎪⎬
⎪⎪⎭ (A3)

where d/dt = ∂/∂t + u·∇ in which u is the fluid velocity, X = (x, z) is the instantaneous
position of the water particle on the free surface and X 0 = (x, 0) is the position of the free
surface at the initial stage, i.e. mean water level. The damping term μ(x) satisfies

μ(x) =
⎧⎨
⎩ν

(
x − x1,2

Lb

)2

, x ≤ x1 or x ≥ x2,

0, x1 < x < x2,

(A4)

where ν (= 1 in this work) is the damping coefficient, and Lb is the length of the damping
zones, which is selected as twice the wavelength λ in this work; x1 and x2 are the starting
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positions of the left and right damping zones, respectively. Note that the values of ν and
Lb are empirically determined.

On the bottom SB and at the outflow boundary SO, the impermeable boundary condition
is satisfied

∂φ

∂n
= 0, (A5)

where n is the unit normal vector.
As mentioned previously, the method of source generation is applied in which a set of

pulsating sources are distributed evenly along the inlet boundary SI , extending from the
bottom to the free surface. The desired waves are then generated by controlling the volume
flux density of the vertical source distribution (Brorsen & Larsen 1987)

q∗ = 2vδ(x − xs), (A6)

where δ(x − xs) is the Dirac delta function, and v = v(x, z, t) is the horizontal fluid
velocity corresponding to the wave we want to generate. The volume flux from the area
dy dz on the source distribution is q∗ dy dz. Here, dy = 1 for two-dimensional flows. Note
that a factor of 2 is introduced because two waves that propagate in opposite directions are
generated simultaneously by the pulsating flux density.

In this work, the fluid velocity v at the inlet boundary SI is specified based on the
second-order Stokes theory (Koo & Kim 2007)

v = kga
ω

coshk(z + h)

coshkh
cos(kx − ωt)

+ 3
4

kga2ω
cosh2k(z + h)

sinh4kh
cos 2(kx − ωt), (A7)

where h is the water depth above the horizontal seabed, a the incident wave amplitude,
ω the incident wave circular frequency and k the wavenumber satisfying the dispersion
equation

ω2 = gktanhkh. (A8)

It is noted that, without introducing any misunderstanding, the superscript (1) indicating
the order of the wave components is omitted in this appendix for brevity.

The initial conditions are required in order to perform a time-domain analysis. Here, we
assume that the free surface is stationary and flat initially

φ(x, z, 0) = 0,

η(x, 0) = 0.

}
(A9)

A.2. Boundary integral equation
The aforementioned BVP ((A1)–(A5)) can be reformulated as an integral equation by
using the second Green’s theorem (Brebbia & Walker 2016)

α( p)φ( p) =
∫

S

[
φ(q)

∂G( p, q)

∂n
− G( p, q)

∂φ(q)

∂n

]
dS

+
∫

Ω

[q∗G( p, q)] dΩ, (A10)

where p = (x0, z0) is the source point, q = q(x, z) is the field point and α( p) is the solid
angle coefficient associated with the surface geometry of the source point position; Ω is
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the volume of the computational domain, and the bounded surface of the computational
domain S consists of the free surface SF, the periodic structure Sb, the inlet boundary SI
and the outflow boundary SO.

Here, the Green function G( p, q) is calculated to extend the computational domain by
adding its mirror image with respect to the horizontal part of the seabed (Newman 1992)

G( p, q) = 1
2π

(ln r1 + ln r2), (A11)

where

r1 =
√

(x − x0)2 + (z − z0)2,

r2 =
√

(x − x0)2 + (z + z0 + 2 h)2.

⎫⎬
⎭ (A12)

Hence, r1 is actually the distance between the field point and the source point, and r2
is the distance between the field point and the image of the source point reflected about
the bottom. In this case, the horizontal part of the seabed is excluded from the integral,
reducing the computational effort.

The solid angle coefficient α( p) is given by

α( p) =
⎧⎨
⎩

1, when p is inside the domain,

0, when p is outside the domain,

1 − β/2π, when p is on the boundary surfaces,
(A13)

where β is the solid angle.

A.3. Higher-order boundary element method
The HOBEM is applied in this work to solve the boundary integral equation (A10) in
which the boundary surface is discretized into a set of three-node elements for the 2-D
wave tank. Note that for 3-D problems, the node number can also be eight or six for curved
quadrilateral and triangular elements, respectively.

By introducing the quadratic shape function hk(ξ) in each surface element, the position
coordinate, the velocity potential and its derivatives within an element can be transformed
to the local intrinsic coordinate system (ξ, η), and can be represented in terms of nodal
values in the following forms:

X (ξ, η) =
K∑

k=1

hk(ξ)X k,

φ(ξ, η) =
K∑

k=1

hk(ξ)φk,

∂φ(ξ, η)

∂ξ
=

K∑
k=1

∂hk(ξ)

∂ξ
φk,

∂φ(ξ, η)

∂η
=

K∑
k=1

∂hk(ξ)

∂η
φk,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A14)
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where K(= 3) is the number of nodes in each element; X k and φk are the nodal positions
and potentials, respectively. The quadratic shape function hk(ξ, η) in this work is given by

h1(ξ) = ξ(ξ − 1)

2
,

h2(ξ) = (1 + ξ)(1 − ξ),

h3(ξ) = ξ(ξ + 1)

2
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A15)

The elements are so-called isoperimetric elements as both the geometry/coordinates
of each element and its dependent physical variables (e.g. φ and its derivatives) are
represented by the same shape function, as shown in (A14).

Substituting the representation of (A14) into (A10), the integral equation in discrete
form can be formulated

α(X i)φ(X i) −
Ne2∑
j=1

∫ 1

−1

K∑
k=1

hk(ξ)φjk
∂G(X i, X j(ξ, η))

∂n
|Jj(ξ)| dξ dη

+
Ne1∑
j=1

∫ 1

−1

K∑
k=1

hk(ξ)G(X i, X j(ξ, η))
∂φjk

∂n
|Jj(ξ)| dξ dη

=
Ne1∑
j=1

∫ 1

−1
φj

∂G(X i, X j(ξ, η))

∂n
|Jj(ξ)| dξ dη

−
Ne2∑
j=1

∫ 1

−1
G(X i, X j(ξ, η))

∂φjk

∂n
|Jj(ξ)| dξ dη

+
Ne3∑
j=1

∫ 1

−1
q∗G(X i, X j(ξ, η))|Jj(ξ)| dξ dη, (A16)

where Ne1 , Ne2 and Ne3 are the number of elements on the free surface SF, the periodic
structure Sb and at the inlet boundary SI , respectively. At this stage, X i is an arbitrary point
on the free surface and other discretized boundaries, and Jj(ξ) is the Jacobian relating the
global coordinates and the local intrinsic coordinates in the jth element.

After assembling the equations for each element, we obtain the following set of linear
equations:

[A]Ne×Ne =
{

∂φ

∂n
φ

}
Ne

= [B]Ne, (A17)

where Ne = Ne1 + Ne2 .
At a given time step, either the velocity potential or its normal derivative on each part

of the boundary is known from the corresponding boundary conditions, and the rest can
be obtained by solving the above discretized equations.

The boundary surfaces S are re-meshed and updated at each time step to maintain the
quality of the mesh, i.e. to minimize the distortion of the mesh. Then the boundary integral
equation is re-built and solved accordingly. The standard fourth-order Runge–Kutta
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method is used to advance the solution process in time, in an iterative manner. Once the
(A17) is solved, the time histories of the free surface elevation at an arbitrary point inside
the computational domain can be obtained for postprocessing, such as spectrum analysis
and calculation of reflection/transmitted coefficients.

Appendix B. Mathematical elucidation of ‘beating’ and ‘parasitic beating’

If we include all terms to second order, the free surface elevation to second order η(2) at the
weather side of the periodic structure can be written as the superposition of the bounded
and free second harmonic incident and reflected wave components (neglecting the phase
angle)

η(2) = a(2)
LI cos 2(k(1)x − ω(1)t) + a(2)

FI cos(k(2)x − 2ω(1)t)

+ a(2)
LR cos 2(k(1)x + ω(1)t) + a(2)

FR cos(k(2)x + 2ω(1)t), (B1)

where a(2)
LI , a(2)

FI , a(2)
LR and a(2)

FR are the wave amplitudes of the bounded and free second
harmonic incident and reflected wave components, respectively. The subscripts ‘L’ and ‘F’
denote that these are terms corresponding to locked/bounded and free waves, respectively
and the subscripts ‘I’ and ‘R’ represent incident and reflected waves, respectively. As
discussed previously, the free second harmonic incident wave is introduced to the system
due to the mismatch between the wave generation at the inlet boundary and the applied
fully nonlinear free surface boundary condition.

Equation (B1) can also be rewritten as (via trigonometric transformation)

η(2) =
(

a(2)
LI − a(2)

FI − (a(2)
LR − a(2)

FR)
)

cos 2
(

k(1)x − ω(1)t
)

+ 2
(

a(2)
FI − a(2)

FR

)
cos

(
2k(1) − k(2)

2
x

)
cos

(
2k(1) + k(2)

2
x − 2ω(1)t

)

+ 2(a(2)
LR cos 2k(1)x + a(2)

FR cos k(2)x) cos 2ω(1)t, (B2)

where the second term represents the group effect, and the last two terms associated with
the reflected waves are standing waves. Example spatial distributions of these four terms
along the centreline of the wave flume are shown in figure 18 to show the variation of
the wave motion envelopes. It is clear that the beating lengths (periodic variations of the
envelopes) of these four terms are rather different, and their superposition results in the
‘parasitic beating’ if they are of the same order in magnitude. The beating length of the
first term (figure 18a) can be considered to be infinite, i.e. there is no variation in the wave
amplitude in space.

If only two wave components (e.g. bounded and free second harmonic incident wave
components) are of significance, the terms associated with reflected waves can then be
dropped

η(2) = (a(2)
LI − a(2)

FI ) cos 2(k(1)x − ω(1)t)

+ 2a(2)
LI cos

(
2k(1) − k(2)

2
x

)
cos

(
2k(1) + k(2)

2
x − 2ω(1)t

)
. (B3)

Again, the second term represents the group effect, and the distance between the two
adjacent maximum or minimum values of this term is the beating length mentioned above.
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Figure 18. Example spatial distributions of wave components represented by the four terms in (B2) along the
centreline of the wave flume at various time instants, showing the variation of the wave motion envelopes. From
(a) to (d) are the results corresponding to the first, second, third and fourth terms, respectively.

The beating length L satisfies

1
2(k(2) − 2k(1))L = π. (B4)

Hence,

L = 2π

k(2) − 2k(1)
. (B5)
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