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Abstract

We prove the flow tree formula conjectured by Alexandrov and Pioline, which computes
Donaldson–Thomas invariants of quivers with potentials in terms of a smaller set of
attractor invariants. This result is obtained as a particular case of a more general flow
tree formula reconstructing a consistent scattering diagram from its initial walls.
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1. Introduction

Donaldson–Thomas (DT) theory is a topic at the intersection of algebraic geometry, symplectic
geometry, representation theory, and theoretical physics. Given a triangulated category C which
is Calabi–Yau of dimension three (CY3) together with a choice of Bridgeland stability condition
θ (see [Bri07]), DT invariants are defined by virtually counting θ-semistable objects in C (see
[DT98, Tho00, JS12, KS08]). In quantum field theory and string theory, they play an important
role as counts of Bogomol’nyi–Prasad–Sommerfield (BPS) states and D-branes [ABC+09].

Quivers with potentials [DWZ08] provide a natural source of examples of CY3 categories
coming from representation theory [Gin06, Kel08]. Owing to its more algebraic nature, DT
theory of quivers with potentials is an ideal setting to study and explore many questions which
are also of interest in the geometric incarnations of DT theory given by counts of semistable
objects in the derived category of coherent sheaves on Calabi–Yau 3-folds [Tho00] and by counts
of special Lagrangian submanifolds in Calabi–Yau 3-folds [TY02, Joy02].

A key phenomenon in DT theory is wall-crossing in the space of stability conditions: DT
invariants are constant in the complement of countably many real codimension-one loci in the
space of stability conditions called walls, but they jump discontinuously in general when the sta-
bility condition crosses a wall. The precise description of this jumping behavior of DT invariants
across walls in the space of stability conditions is given by the wall-crossing formula of Joyce
and Song [JS12] and Kontsevich and Soibelman [KS08], which is a universal algebraic expression
that contains some amount of combinatorial complexity.

By successive applications of the wall-crossing formula, one can show that the DT invariants
of a quiver with potential are determined by a much smaller subset of attractor DT invariants
defined by picking particular stability conditions [KS14, AP19]. In [AP19], Alexandrov and
Pioline conjectured, based on string-theoretic predictions, a new formula that expresses DT
invariants in terms of the attractor DT invariants as a sum over trees, called the flow tree
formula. Their conjecture reduces the general wall-crossing formula to an iterative application
of the much simpler primitive wall-crossing formula. The main result of the present paper is a
proof of the flow tree formula. In fact, we prove a version of the flow tree formula in the more
general context of consistent scattering diagrams.

The flow tree formula is a new tool to unravel some of the deep and hidden structures
in DT theory. For example, versions of the flow tree formula are a major tool in the recent
formulation of the conjectural proposal of [AP20] (see also [AMP20]) for the construction of
modular completions for generating series of DT invariants counting coherent sheaves supported
on surfaces inside Calabi–Yau 3-folds.

1.1 Background
A quiver with potential (Q,W ) is given by a finite oriented graph Q, and a finite formal linear
combination W of oriented cycles in Q. We assume that Q does not contain oriented 2-cycles,
and we denote by Q0 the set of vertices of Q. For every dimension vector γ ∈ N := ZQ0 and
stability parameter

θ ∈ γ⊥ ⊂MR := Hom(N,R), (1.1)
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H. Argüz and P. Bousseau

where γ⊥ := {θ ∈MR | θ(γ) = 0}, the theory of King’s stability for quiver representations [Kin94]
defines a quasiprojective variety Mθ

γ , parametrizing S-equivalence classes of θ-semistable
representations of Q of dimension γ, and a regular function

Tr(W )θ
γ : M θ

γ −→ C. (1.2)

Assuming that θ is γ-generic in the sense that θ(γ′) = 0 implies γ′ collinear with γ, the DT
invariant Ωθ

γ is an integer which is a virtual count of the critical points of Tr(W )θ
γ . Applying

Hodge theory to the sheaf of vanishing cycles of Tr(W )θ
γ , the integer Ωθ

γ can be refined into a
Laurent polynomial Ωθ

γ(y, t) in two variables y and t and with integer coefficients, referred to as
refined DT invariants [JS12, KS08, Rei11, Rei10, MR19, DM15, DM20]. It is often convenient
to use the rational functions Ωθ

γ(y, t) ∈ Q(y, t) defined as in [JS12, KS08, MPS11] by

Ωθ
γ(y, t) :=

∑
γ′∈N

γ=kγ′, k∈Z≥1

1
k

y − y−1

yk − y−k
Ωθ

γ′(yk, tk), (1.3)

and referred to as rational DT invariants.
The DT invariants Ωθ

γ(y, t) are locally constant functions of the γ-generic stability parameter
θ ∈ γ⊥ and their jumps across the loci of non-γ-generic stability parameters are given by the
wall-crossing formula of Joyce and Song [JS12] and Kontsevich and Soibelman [KS08]. Using the
wall-crossing formula, the DT invariants can be computed in terms of the simpler attractor DT
invariants, which are DT invariants at specific values of the stability parameter.

Let 〈−,−〉 : N ×N → Z be the skew-symmetric form given by

〈γ, γ′〉 =
∑

i,j∈Q0

(aij − aji)γiγ
′
j , (1.4)

where aij is the number of arrows in Q from the vertex i to the vertex j. The specific point
〈γ,−〉 ∈ γ⊥ ⊂MR is called the attractor point for γ (see [AP19, MP20]). In general, the attractor
point 〈γ,−〉 is not γ-generic and we define the attractor DT invariants Ω∗

γ(y, t) by

Ω∗
γ(y, t) := Ωθγ

γ (y, t), (1.5)

where θγ is a small γ-generic perturbation of 〈γ,−〉 in γ⊥ (see [AP19, MP20]). One can check
that Ω∗

γ(y, t) is independent of the choice of the small perturbation [AP19, MP20].
For an acyclic quiver Q (and so W = 0), or more generally for a quiver Q with a non-

degenerate potential W admitting a green-to-red sequence [Mou19], the attractor DT invariants
are as simple as possible:

Ω∗
γ(y, t) =

{
1 if γ = (δij)i∈Q0 for some j ∈ Q0

0 otherwise,
(1.6)

where δij is the Kronecker delta. Similarly, for a quiver with potential (Q,W ) describing the
derived category of coherent sheaves on a local del Pezzo surface, it has recently been conjectured
[BMP21, MP20] that Ω∗

γ(y, t) = 0 unless γ = (δij)i∈Q0 for some j ∈ Q0 or unless γ is the class of
the skyscraper sheaf of a point. However, for quivers with potential (Q,W ) describing interesting
parts of the derived category of coherent sheaves on a compact Calabi–Yau 3-fold, the attractor
DT invariants are expected to be non-vanishing and to typically exhibit an exponential growth.
We refer to [DM11, MPS12, LWY12b, LWY12a, BBdB+12] for some explicit examples involving
n-gon quivers.
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The rational DT invariants Ωθ
γ(y, t) for general γ-generic stability parameters θ ∈ γ⊥ are

expressed in terms of the rational attractor DT invariants Ω∗
γ(y, t) by a formula of the form

Ωθ
γ(y, t) =

∑
r≥1

∑
{γi}1≤i≤r∑r

i=1 γi=γ

1
|Aut({γi}i)|

F θ
r (γ1, . . . , γr)

r∏
i=1

Ω∗
γi

(y, t), (1.7)

where the second sum is over the multisets {γi}1≤i≤r with γi ∈ N and
∑r

i=1 γi = γ. Here, the
denominator |Aut({γi}i)| is the order of the symmetry group of {γi}: ifmγ′ is the number of times
that γ′ ∈ N appears in {γi}i, then |Aut({γi}i)| =

∏
γ′∈N mγ′ !. The coefficients F θ

r (γ1, . . . , γr) are
element of Q(y) and are universal in the sense that they depend on (Q,W ) only through the
skew-symmetric form 〈−,−〉 on N . Our main result is the proof of an explicit formula, called
the flow tree formula and conjectured by Alexandrov and Pioline [AP19], which computes the
coefficients F θ

r (γ1, . . . , γr) in (1.7) combinatorially in terms of a sum over binary rooted trees,
and where the contribution of each tree is computed following the flow on the tree starting at
the root and ending at the leaves.

1.2 Main result: the flow tree formula
We introduce some notation which is necessary to state precisely the flow tree formula in
Theorem 1.1. We fix γ ∈ N , a γ-generic stability parameter θ ∈ γ⊥, and γ1, . . . , γr ∈ N such
that

∑r
i=1 γi = γ.

An essential ingredient in the formulation of the flow tree formula for F θ
r (γ1, . . . , γr) is

the choice of a generic skew-symmetric perturbation (ωij)1≤i,j≤r of the skew-symmetric matrix
(〈γi, γj〉)1≤i,j≤r. The matrix (ωij)1≤i,j≤r cannot be viewed in general as a skew-symmetric bilin-
ear form on the sublattice of N generated by γ1, . . . , γr because γ1, . . . , γr are not necessarily
linearly independent in N . Nevertheless, the matrix (ωij)1≤i,j≤r can always be interpreted as
a skew-symmetric bilinear form ω on a rank r free abelian group N :=

⊕r
i=1 Zei with a basis

{ei}1≤i≤r and such that ωij = ω(ei, ej). From this point of view, there is a natural additive map

p : N −→ N

ei �−→ γi,
(1.8)

which enables us to define a skew-symmetric bilinear form η on N as being the pullback of 〈−,−〉
on N , that is, η(ei, ej) := 〈γi, γj〉, and we consider a real-valued skew-symmetric form ω on N
obtained as a small enough generic perturbation of η. Let MR := Hom(N ,R) and q : MR → MR

be the map induced from p : N → N by duality. We denote by

α := q(θ) (1.9)

the image in MR of the stability parameter θ ∈MR by the map q.
The flow tree formula in Theorem 1.1 takes the form of a sum over trees. More precisely,

we consider rooted trees which apart from the root vertex have r univalent vertices, or leaves,
decorated by the basis elements e1, . . . , er of N . For such a tree T , we denote by V ◦

T the set of
interior, that is, non-univalent, vertices. We endow each such tree with the flow from the root to
the leaves. Given a vertex v in a tree, the vertex adjacent to v coming before v along the flow
is referred to as the parent of v and denoted by p(v), and the vertices adjacent to v and coming
after v along the flow are referred to as the children of v, as illustrated in Figure 1.1. Any vertex
that comes after v along the flow is a descendent of v. Let Tr be the set of such trees which are
binary, that is such that each interior vertex v of a tree T ∈ Tr has exactly two children. For
every tree T ∈ Tr and v a vertex of T , we define ev ∈ N as the sum of all elements that appear
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H. Argüz and P. Bousseau

Figure 1.1. A binary tree T with five leaves for N = Ze1 ⊕ Ze2 ⊕ Ze3 ⊕ Ze4 ⊕ Ze5.

as decorations on the leaves which are descendent of a vertex v. We denote by T η
r the set of trees

T ∈ Tr such that η(ev′ , ev′′) 	= 0 where v is the child of the root and v′, v′′ are the children of v.
For every tree T ∈ T η

r and v a vertex of T distinct from the leaves, we define θα,ω
T,v ∈ MR

recursively as follows: if v is the root vertex, then set θα,ω
T,v := α. If v is not the root, let p(v) be

the parent of v, and for any of the children, say v′ of v, and ιevω := ω(ev,−) ∈ MR, define

θα,ω
T,v := θα,ω

T,p(v) −
θα,ω
T,p(v)(ev′)

ω(ev, ev′)
ιevω. (1.10)

We show in Lemma 2.12 that this definition is independent of the choice of the child v′ of v.
Following [AP19], we call v �→ θα,ω

T,v the discrete attractor flow.
For every tree T ∈ T η

r and interior vertex v ∈ V ◦
T , we fix a labeling v′ and v′′ of the two

children of v, and we define

εα,ω
T,v := −

sgn(θα,ω
T,p(v)(ev′)) + sgn(ω(ev′ , ev′′))

2
∈ {0, 1,−1}, (1.11)

where sgn(x) ∈ {±1} is the sign of x ∈ R − {0}. We show in § 2 that for generic ω ∈
∧2 MR,

we have θα,ω
T,p(v)(ev′) 	= 0 and ω(ev′ , ev′′) 	= 0 and so the definition of εα,ω

T,v indeed makes sense.
Our main result is the following flow tree formula, conjectured in [AP19], which enables us to
determine the coefficients F θ

r (γ1, . . . , γr) in (1.7) expressing the DT invariants Ωθ
γ(y, t) in terms

of the attractor DT invariants Ω∗
γi

(y, t).

Theorem 1.1. For every choice a small enough generic perturbation ω ∈
∧2 MR of the skew-

symmetric bilinear form η, the universal coefficient F θ
r (γ1, . . . , γr) in (1.7) is given by the flow

tree formula:

F θ
r (γ1, . . . , γr) =

∑
T∈T η

r

∏
v∈V ◦

T

εα,ω
T,vκ(η(ev′ , ev′′)), (1.12)

where εα,ω
T,v is as in (1.11) and

κ(x) := (−1)x · y
x − y−x

y − y−1
(1.13)

for every x ∈ Z.

Theorem 5.5 presents a version of Theorem 1.1 in which we phrase more explicitly the
condition that ω should be a small enough generic perturbation of η.
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We also prove a variant of the flow tree formula recently conjectured by Mozgovoy [Moz22],
which relies on a perturbation of points in MR rather than the skew-symmetric form. We first
remark that θ ∈ γ⊥ implies that α ∈ MR defined in (1.9) satisfies α ∈ (

∑r
i=1 ei)

⊥. For β a small
perturbation of α in the hyperplane (

∑r
i=1 ei)

⊥, we define θβ,η
T,v ∈ MR and εβ,η

T,v ∈ {0, 1,−1} by
replacing α by β and ω by η in (1.10) and (1.11).

Theorem 1.2. For every choice β ∈ (
∑r

i=1 ei)
⊥ of small enough generic perturbation of α :=

q(θ) in the hyperplane (
∑r

i=1 ei)
⊥, the universal coefficient F θ

r (γ1, . . . , γr) is given by

F θ
r (γ1, . . . , γr) =

∑
T∈T η

r

∏
v∈V ◦

T

εβ,η
T,vκ(η(ev′ , ev′′)), (1.14)

where εα,ω
T,v is as in (1.11) and κ is as in (1.13).

In Theorem 5.6, we present a version of Theorem 1.2 in which we state more precisely the
condition that β should be a small enough generic perturbation of α.

1.3 Structure of the proof
The proof of Theorems 1.1 and 1.2 relies on the notion of a scattering diagram, introduced
in [GS11], based on the insights of [KS06], to provide an algebro-geometric understanding of the
mirror symmetry phenomenon in physics. To give the rough idea of a scattering diagram, which
we elaborate further in § 3.1, fix a nilpotent N+-graded Lie algebra g =

⊕
n∈N+ gn. There is an

associated unipotent algebraic group G with a bijective exponential map exp : g → G defined
using the Baker–Campbell–Hausdorff formula. Given these data, a (N+, g)-scattering diagram
is defined as the collection of real codimension-one cones in MR, called walls, which are deco-
rated by wall-crossing automorphisms, that are elements of G. We focus attention on scattering
diagrams relevant to DT and cluster theory, which have wall-crossing automorphism preserving
a holomorphic symplectic form as in [GPS10, GP10, KS14, Bri17, GHKK18, Mou19, Man21,
CM20, DM21], and not on the more general scattering diagrams that have wall-crossing auto-
morphisms preserving a holomorphic volume form, and which appear frequently in the context
of mirror symmetry [GS11, GHS22, AG20, KY19].

A codimension-two locus in MR along which distinct walls intersect is called a joint.
A scattering diagram is said to be consistent if for any joint, the path-ordered product of all wall-
crossing automorphisms of walls that are adjacent to the joint is identity. It is shown in [KS06,
GS11] that there is an algorithmic prescription for constructing a consistent scattering dia-
gram from the data of an initial set of walls. This prescription is based on inserting new walls,
along with wall-crossing automorphisms, which order-by-order decrease the divergence of the
path-ordered products of wall-crossing automorphisms around joints from being identity.

Given a quiver with potential (Q,W ), Bridgeland [Bri17] constructed from the DT invariants
of (Q,W ) a consistent scattering diagram in MR, called the stability scattering diagram, whose
initial walls are determined by the attractor DT invariants. The stability scattering diagram is
a very useful tool to study DT invariants of quivers. For example, the transformation proper-
ties of DT invariants under mutations of a quiver with potential, conjectured in [MPS14] and
[MP20, Conjecture 3.14], are proved in [Mou19, Theorem 4.22] by a study of the corresponding
transformation of the stability scattering diagram.

The main technical goal of the paper is to prove Theorems 4.22 and 4.24: they are flow tree
formulas for consistent scattering diagrams which express as a sum over binary trees the wall-
crossing automorphism attached to a general wall in terms of the wall-crossing automorphisms
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attached to the initial walls. In § 5, we then derive Theorems 1.1 and 1.2 from the flow tree
formulas for scattering diagram applied to the stability scattering diagram.

The proof of Theorems 4.22 and 4.24 is given in § 4 and consists of two parts. In the first
part of the proof, described in § 4.2, we relate the (N+, g)-scattering diagrams, which live in
MR, to auxiliary (N+, h)-scattering diagrams which live in MR, where h is a N+-graded Lie
algebra constructed from g. In the second part of the proof in § 4.3, we show that the discrete
attractor flow naturally defines a embedding of the binary rooted trees inside the walls of the
auxiliary scattering diagrams in MR. The images of the trees in MR are embedded graphs in
MR with a balancing condition satisfied at each vertex distinct from the root, that is, essentially
tropical disks in MR (see [NS06, Gro10, CPS22]). The generic perturbation of either the skew-
symmetric form or the position in MR of the root of the embedded trees guarantees that the
vertices of the embedded trees are always contained in double intersections of walls, but never in
triple intersections. The iteration of the local consistency condition around double intersection of
walls determines the contribution of each tree. In the language of DT invariants, this reduces the
general wall-crossing formula to an iteration of the much simpler primitive wall-crossing formula.

We note in Remark 4.25 that the perturbation of the position in MR of the root of the trees
used in the formulation of Theorems 1.2 and 4.24 is related to a way of perturbing scattering
diagrams going back to the work of Gross, Pandharipande, and Siebert [GPS10]. However the
perturbation of the skew-symmetric form used in the formulation of Theorems 1.1 and 4.22 seems
to be a completely new way to study scattering diagrams. Thus, most of the paper is focused
on the study of this perturbation of the skew-symmetric form and on the proof of Theorems 1.1
and 4.22.

1.4 Related work
1.4.1 Operads and wall-crossing. Very recently, while this paper was being completed,

Mozgovoy [Moz22] proved using an operadic approach to the wall-crossing formula, a differ-
ent formula for the coefficients F θ

r (γ1, . . . , γr), called the attractor tree formula and originally
conjectured in [MP20], following [AP20, AMP20]. The key differences between the flow tree
formula that we prove in this paper and the attractor tree formula proved in [Moz22] are the
following: the flow tree formula involves binary trees, requires a choice of generic perturbation,
and is naturally phrased in terms of Lie algebras, whereas the attractor tree formula involves
general (not necessarily binary) trees, does not require the choice of generic perturbation, and
is naturally phrased in terms of associative algebras. It is currently not known whether one of
these two formulas implies the other in a simple way.

Both the flow tree formula and the attractor tree formula, formulated precisely and proved
for DT invariants of quivers with potentials, are expected to have versions holding more generally
in DT theory as long as a global understanding of the space of stability conditions is available.
For example, the flow tree formula and the attractor tree formula play an important role in the
conjectural proposal of Alexandrov and Pioline [AP20] (see also [AMP20]) for the construction of
modular completions for generating series of DT invariants counting coherent sheaves supported
on surfaces inside Calabi–Yau 3-folds.

1.4.2 BPS states. From a physics perspective, a quiver with potential (Q,W ) defines a super-
symmetric quantum mechanical system with four supercharges [Den02] and the (refined) DT
invariants are counts of supersymmetric ground states, which often can be identified with super-
symmetric indices counting BPS particles in four-dimensional N = 2 supersymmetric quantum
field theories [Fio06, CV13, ACC+14, ACC+13, CNV10] and BPS configurations of black holes
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in four-dimensional N = 2 string compactifications [Den02, MPS12, MPS11, MPS13, LWY12b,
LWY12a, DM11, dBES+09, BBdB+12]. In particular, the definition of the attractor point, as
well as the attractor invariants, is motivated by the attractor mechanism for BPS black holes in
N = 2 supergravity [FKS95, Str96]. The attractor invariants are closely related but not equal
in general to the single-centered invariants [MPS12], which are expected to count micro-states
of a single, spherically symmetric black hole, but whose conceptual definition is still mysteri-
ous mathematically. The flow tree formula conjectured by Alexandrov and Pioline [AP19], that
we prove in this paper, is motivated by the split attractor flow picture in N = 2 supergravity
[Den00, DGR01, DM11]. The idea that the supergravity attractor flow could be replaced by a
discrete attractor flow using sign functions was first suggested by Manschot [Man11].

1.4.3 Tropical curves and mirror symmetry. In [GPS10, CPS22, FS15, Man21], the perturba-
tion of scattering diagrams originally introduced by Gross, Pandharipande, and Siebert [GPS10]
is used to express general walls of a consistent scattering diagram in terms of the initial walls
using sums over tropical curves. The connection between scattering diagrams and tropical geom-
etry is particularly interesting from the point of view of mirror symmetry and connection
with Gromov–Witten theory, as shown in dimension two by Gross, Pandharipande, and
Siebert [GPS10] in genus zero and the second author [Bou20] in higher genus, and generalized
to higher dimensions in the work of the first author with Gross [AG20].

However, the point of view adopted in the present paper is different: the main interest of the
flow tree formula is that it is not written as a sum over tropical curves but as a sum over abstract
trees. The resulting formula is therefore entirely combinatorial, and more amenable to formal
manipulations, as exemplified in [AP19, AP20, AMP20]. In particular, the flow tree formula can
be easily implemented efficiently on a computer, as done in [Pio20].

1.5 Plan of the paper
In § 2, we introduce our notation for trees and the discrete attractor flow, and we prove the
existence of suitably generic perturbations of the skew-symmetric form. In § 3, we first review
the reconstruction of consistent scattering diagrams from initial data, and then we state the flow
tree formula for scattering diagrams. The technical heart of the paper is § 4 in which we prove the
flow tree formula for scattering diagrams. Finally, we prove in § 5 the flow tree formula for DT
invariants of quivers with potentials by applying the flow tree formula for scattering diagrams
to the stability scattering diagram.

2. Trees and flows

In §§ 2.1 and 2.2, we introduce elementary notions on trees and skew-symmetric forms that are
used throughout the paper. In § 2.3, we review the discrete attractor flow following [AP19]. In
§ 2.4, we prove the existence of sufficiently generic skew-symmetric bilinear forms to allow the
definition of the flow tree map in § 2.5.

Throughout this section we fix a free abelian group N of finite rank r, and let M :=
HomZ(N ,Z) and MR := M⊗Z R. We introduce the notation I := {1, . . . , r}, we fix a basis
{ei}i∈I of N , and we use the notation

N+ :=
{ ∑

i∈I

aiei | ai ≥ 0,
∑
i∈I

ai > 0
}
. (2.1)
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Figure 2.1. Decorated binary rooted trees with at most three leaves.

We also fix a skew-symmetric bilinear form η ∈
∧2 M on N , a subset J ⊂ I of cardinality |J |,

and let
eJ :=

∑
i∈J

ei. (2.2)

Finally, for every non-zero n ∈ N , we denote by n⊥ := {θ ∈ MR | θ(n) = 0} the corresponding
hyperplane in MR.

2.1 Trees
Definition 2.1. A rooted tree T is a connected tree with a finite number of vertices and edges,
with no divalent vertices, together with the additional data of a distinguished univalent vertex
referred to as the root. We denote by VT the set of vertices of T , by RT the set with the root
for unique element, V ◦

T the set of interior vertices, which are vertices of valency greater than
one, and by V L

T the set of univalent vertices that are not the root, that is the set of leaves of T .
An isomorphism between two rooted trees T and T ′ is a bijection ϕ : VT → VT ′ , which maps
adjacent vertices of T to adjacent vertices of T ′ and the root of T to the root of T ′.

Definition 2.2. A J-decorated rooted tree is a rooted tree T endowed with a decoration of
the leaves of T by {ei}i∈J , that is, a bijection ψ : V L

T → {ei}i∈J . An isomorphism between two
J-decorated rooted trees (T, ψ) and (T ′, ψ′) is an isomorphism of tree ϕ : VT → VT ′ compatible
with the decorations, in the sense that ψ = ψ′ ◦ ϕ.

Definition 2.3. Let T be a rooted tree. The parent of a vertex v ∈ VT \ RT is the unique vertex
denoted by p(v) which is adjacent to v and lies on the shortest path between v and the root.
A child of a vertex v ∈ VT is a vertex for which v is a parent, and a descendant of v is any vertex
which is either the child of v or is (recursively) the descendant of any of the children of v.

Definition 2.4. A rooted tree T is binary if the root has exactly one child and each interior
vertex has two children.

Remark 2.5. We illustrate in Figure 2.1 some decorated binary rooted trees. Our binary rooted
trees are unordered in the sense that we do not fix an order on the set of children of a vertex.
In a binary rooted tree T , for every vertex v ∈ V ◦

T , we denote by {v′, v′′} the set of the children
of v, without specifying an ordering. Nonetheless, for some constructions in what follows it is
sometimes useful to choose an ordering for the children. At any occasion where such a choice is
made we show that the result of the construction is in fact independent of this choice.

Lemma 2.6. Let T be a J-decorated binary rooted tree. Then, T has 2|J | vertices and 2|J | − 1
edges.

Proof. The proof is by induction on the cardinality |J | of J . The result is immediate for |J | = 1.
For |J | > 1, write J = {i0}  {i}i∈|J ′| with |J ′| = |J | − 1. Removing from T the leg decorated

2214

https://doi.org/10.1112/S0010437X22007801 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007801


Flow tree formula for DT invariants of quivers with potentials

by ei0 , and erasing the resulting divalent vertex, we obtain a J ′-decorated binary rooted tree T ′.
The result follows because T ′ has two fewer edges and two fewer vertices than T . �
Lemma 2.7. The set TJ of isomorphism classes of J-decorated binary rooted trees is of

cardinality (2|J | − 3)!! =
∏|J |−1

k=1 (2k − 1).

Proof. The proof is by induction on the cardinality |J | of J . The result is immediate for |J | = 1.
For |J | > 1, write J = {i0}  {i}i∈|J ′| with |J ′| = |J | − 1. Removing from T the leg decorated
by ei0 , we obtain a J ′-decorated binary rooted tree T ′ with an added divalent vertex on one of
its edges E. Conversely, given a J ′-decorated binary rooted tree T ′ and an edge E of T ′, then
adding a divalent vertex v in the middle of E and gluing a leg decorated by ei0 to v, we obtain
a J-decorated binary rooted tree. Therefore, we have a bijection between TJ and the set of pairs
(T ′, E), where T ′ ∈ TJ ′ and E is an edge of T ′. By Lemma 2.6, a J ′-decorated binary rooted tree
has 2|J ′| − 1 edges, and so |TJ | = (2|J ′| − 1)|TJ ′ | = (2|J | − 3)|TJ ′ |. �

2.2 Skew-symmetric bilinear forms
We view elements ω ∈

∧2 MR as R-valued skew-symmetric bilinear forms on N , given by

ω : N ×N −→ R

(v1, v2) �−→ ω(v1, v2).
(2.3)

Definition 2.8. For every tree T ∈ TJ , and a vertex v ∈ VT , we define an associated element
ev ∈ N+, referred to as the charge of v as follows: let JT,v ⊂ J be the subset of indices with
which the leaves that are descendant to v are labeled, that is, j ∈ JT,v if and only if the leaf
decorated by ej is a descendant of v. Then, we set

ev := eJT,v
=

∑
i∈JT,v

ei. (2.4)

Note that if v is the leaf decorated by ei, then the associated charge ev = ei. For v ∈ V ◦
T , the

sets JT,v′ and JT,v′′ are disjoint, and we have ev = ev′ + ev′′ . If v is the root of T or the child of
the root of T , then JT,v = J and ev = eJ .

Lemma 2.9. For every tree T ∈ TJ and interior vertex v ∈ V ◦
T , the linear form

∧2MR −→ R

ω �−→ ω(ev′ , ev′′)
(2.5)

is not identically zero.

Proof. As {ei}i∈I is a basis of N , the linear forms ω �→ ω(ei, ej) for i, j ∈ I and i < j form a
basis of the space of linear forms on

∧2 MR. We have

ω(ev′ , ev′′) =
∑

j′∈JT,v′

∑
j′′∈JT,v′′

ω(ej′ , ej′′). (2.6)

As the sets JT,v′ and JT,v′′ are disjoint, each basis element ω �→ ω(ej′ , ej′′) with j′ < j′′ appears up
to sign at most once in the sum (2.6). In particular, there are no cancellations and ω �→ ω(ev′ , ev′′)
is not the zero linear form. �
Proposition 2.10. Let UJ ⊂

∧2 MR be the subset of ω ∈
∧2 MR such that for every tree

T ∈ TJ and interior vertex v ∈ V ◦
T , we have ω(ev′ , ev′′) 	= 0. Then, the following hold:

(i) UJ is open and dense in
∧2 MR;
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(ii) for every ω ∈ UJ , T ∈ TJ and v ∈ V ◦
T , we have ω(ev, ev′) 	= 0 and ω(ev, ev′′) 	= 0;

(iii) for every J2 ⊂ J1 ⊂ I, we have UJ1 ⊂ UJ2 .

Proof. By Lemma 2.9, UJ is the complement of finitely many hyperplanes in
∧2 MR. Thus,

statement (i) follows. To show part (ii), observe that as ev = ev′ + ev′′ , we have ω(ev, ev′) =
ω(ev′′ , ev′) and ω(ev, ev′′) = ω(ev′ , ev′′). Finally, part (iii) follows from the fact that every J2-
decorated binary rooted tree can be realized as a subtree of a J1-decorated binary rooted tree. �

2.3 Discrete attractor flow
We review the description of the discrete attractor flow introduced in [AP19, § 2.6].

Definition 2.11. Fix a tree T ∈ TJ , a skew-symmetric bilinear form ω ∈ UJ ⊂
∧2 MR and a

point α ∈ e⊥J ⊂ MR. We also fix a labeling v′, v′′ of the children of the vertices v ∈ V ◦
T . The

discrete attractor flow for (T, ω, α) is the map

θα,ω
T : RT ∪ V ◦

T −→ MR

v �−→ θα,ω
T,v

(2.7)

defined inductively, following the flow on T starting at the root and ending at the leaves, as
follows.

(i) For the root vertex v ∈ RT , we set
θα,ω
T,v := α. (2.8)

(ii) For v ∈ V ◦
T , and a child v′ of v, we set

θα,ω
T,v = θα,ω

T,p(v) −
θα,ω
T,p(v)(ev′)

ω(ev, ev′)
ιevω, (2.9)

where p(v) is the parent of v, and for every n ∈ N , ιnω = ω(n,−) ∈ MR.

Note that because ω ∈ UJ , we have ω(ev, ev′) 	= 0 for every v ∈ V ◦
T by Proposition 2.10, and

so (2.9) makes sense.

Lemma 2.12. Using the notation of Definition 2.11, we have for every v ∈ V ◦
T :

θα,ω
T,v ∈ e⊥v′ ∩ e⊥v′′ ⊂ e⊥v , (2.10)

and

θα,ω
T,v = θα,ω

T,p(v) −
θα,ω
T,p(v)(ev′′)

ω(ev, ev′′)
ιevω. (2.11)

In particular, the discrete flow θα,ω
T defined as in (2.11) is independent of the choice of labeling

v′ and v′′ of children of vertices v ∈ V ◦
T .

Proof. We prove the result inductively following the flow on T starting at the root and ending
at the leaves. If v ∈ V ◦

T is the child of the root of T , then θα,ω
T,v is given by (2.9). By (2.8), we

have θα,ω
T,p(v) = α and so

θα,ω
T,v (ev′) = α(ev′) − α(ev′)

ω(ev, ev′)
ω(ev, ev′) = 0. (2.12)

On the other hand, as α ∈ e⊥J , we have α(ev) = α(eJ) = 0, and so, using ev = ev′ + ev′′ , we have
α(ev′′) = −α(ev′). As we also have ω(ev, ev′) = −ω(ev, ev′′), we finally obtain

θα,ω
T,v (ev′′) = α(ev′′) +

α(ev′′)
ω(ev, ev′)

ω(ev, ev′′) = 0. (2.13)
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Similarly, if v ∈ V ◦
T is not the root of T , then θα,ω

T,v is given by (2.9) and so

θα,ω
T,v (ev′) = θα,ω

T,p(v)(ev′) −
θα,ω
T,p(v)(ev′)

ω(ev, ev′)
ω(ev, ev′) = 0. (2.14)

By the induction hypothesis, we have θα,ω
T,p(v)(ev) = 0 and so, using ev = ev′ + ev′′ , we have

θα,ω
T,p(v)(ev′′) = −θα,ω

T,p(v)(ev′). As we also have ω(ev, ev′) = −ω(ev, ev′′), we finally obtain (2.11)
and

θα,ω
T,v (ev′′) = θα,ω

T,p(v)(ev′′) +
θα,ω
T,p(v)(ev′′)

ω(ev, ev′)
ω(ev, ev′′) = 0. (2.15)

�

2.4 Generic skew-symmetric bilinear forms
Recall that we are fixing a skew-symmetric bilinear form η ∈

∧2 M on N .

Definition 2.13. We denote by T η
J the set of trees T ∈ TJ such that η(ev′ , ev′′) 	= 0 where v is

the child of the root of T .

Definition 2.14. A point α ∈ MR is (J, η)-generic if α ∈ e⊥J and for every tree T ∈ T η
J , we

have α(ev′) 	= 0, where v is the child of the root of T .

Note that for T ∈ T η
J and v the child of the root of T , we have ev′ + ev′′ = ev = eJ , and so, if

α ∈ e⊥J , then α(ev′) 	= 0 is equivalent to α(ev′′) 	= 0. Equivalently, a point α ∈ e⊥J is (J, η)-generic
if α /∈ e⊥J ′ for every strict subset J ′ of J such that η(eJ , eJ ′) 	= 0.

Definition 2.15. Let α ∈ e⊥J be a (J, η)-generic point. A skew-symmetric bilinear form ω ∈
UJ ⊂

∧2 MR is called (J, α)-generic if for every T ∈ T η
J and v ∈ V ◦

T , we have

θα,ω
T,p(v)(ev′) 	= 0 and θα,ω

T,p(v)(ev′′) 	= 0. (2.16)

We denote by UJ,α ⊂ UJ the set of (J, α)-generic skew-symmetric bilinear forms.

Lemma 2.16. Using the notation of Definition 2.15, for every T ∈ T η
J and v ∈ V ◦

T , we have
θα,ω
T,p(v)(ev) = 0 and θα,ω

T,p(v)(ev′) = −θα,ω
T,p(v)(ev′′).

Proof. As ev = ev′ + ev′′ , it is enough to show that θα,ω
T,p(v)(ev) = 0. If v is the child of the root,

then θα,ω
T,p(v) = α by (2.8), and so, as α ∈ e⊥J , we have α(ev) = α(eJ) = 0. If v is not the child of

the root, the result follows by (2.10) of Lemma 2.12 applied to the parent p(v) of v. �
Lemma 2.17. Let α ∈ e⊥J be a (J, η)-generic point, T ∈ T η

J , and v ∈ VT . Denote by v0, . . . , vm

the unique sequence of vertices of T such that v0 is the root of T , vm = v, and for every 0 ≤ a ≤
m− 1, va+1 is a child of va. Then, the following hold.

(i) The elements ev0 , . . . , evm are linearly independent in N .
(ii) For every 0 ≤ a ≤ m− 1 and 0 ≤ b ≤ m, the map

UJ −→ R

ω �−→ θα,ω
T,va

(evb
)

is a rational function with R-coefficients, in the variables given by the linear maps

UJ −→ R

ω �−→ ω(eva′ , evb′ )

for 0 ≤ a′, b′ ≤ m and min(a′, b′) ≤ a.
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(iii) For every 0 ≤ a ≤ m− 2, the map

UJ −→ R

ω �−→ θα,ω
T,va

(eva+2)

is not identically zero.

Proof. (i) Assume that
∑m

i=0 aievi = 0 with some ai 	= 0. Let imin be the smallest index i such
that ai 	= 0. There exists j ∈ JT,vimin

such that j /∈ JT,vi for every i > i′, and so we obtain a
contradiction.

(ii) We prove this by induction on a from 0 to m− 1. For a = 0, v0 is the root of T , and so
by (2.8) we have θα,ω

T,v0
(evb

) = α(eb) which is constant as a function of ω. Now, assume that the
result holds for a ≥ 0 and that a+ 1 ≤ m− 1. Then, we have va+1 ∈ V ◦

T , and so by (2.9),

θα,ω
T,va+1

(evb
) = θα,ω

T,va
(evb

) −
θα,ω
T,va

(eva+2)

ω(eva+1 , eva+2)
ω(eva+1 , evb

). (2.17)

By the induction hypothesis, θα,ω
T,va

(evb
) and θα,ω

T,va
(eva+2) are rational functions in the variables

ω(eva′ , evb′ ) with min(a′, b′) ≤ a and so, in particular, with min(a′, b′) ≤ a+ 1. The only extra
variables appearing in θα,ω

T,va+1
(evb

) are ω(eva+1 , eva+2) and ω(eva+1 , evb
), which are both of the

form ω(eva′ , evb′ ) with min(a′, b′) ≤ a+ 1. This shows the result for a+ 1.
(iii) First note that by part (i), the elements ev0 , . . . , evm are linearly independent in N , and

so the linear forms ω �→ ω(eva , evb
) with a < b are linearly independent.

We prove the result by induction on a from 0 to m− 2. For a = 0, v0 is the root of T and we
have by (2.8) that θα,ω

T,v0
(ev2) = α(ev2), which is non-zero because T ∈ T η

J and α is (J, η)-generic
(see Definition 2.14).

Assume that the result holds for a and that a+ 1 ≤ m− 2. We have to show that the result
holds for a+ 1. As a+ 1 ≤ m− 2, we have in particular va+1 ∈ V ◦

T and so, by (2.9),

θα,ω
T,va+1

(eva+3) = θα,ω
T,va

(eva+3) −
θα,ω
T,va

(eva+2)

ω(eva+1 , eva+2)
ω(eva+1 , eva+3). (2.18)

By Lemma 2.17(ii), ω �→ θα,ω
T,va

(eva+2) and ω �→ θα,ω
T,va

(eva+3) are rational functions in the linear
forms ω �→ ω(eva′ , evb′ ) with min(a′, b′) ≤ a. In particular, they are algebraically independent of
ω �→ ω(eva+1 , eva+2) and ω �→ ω(eva+1 , eva+3). On the other hand, by the induction hypothesis,
ω �→ θα,ω

T,va
(eva+2) is not identically zero. We conclude that ω �→ θα,ω

T,va+1
(eva+3) is not identically

zero. �

Proposition 2.18. Let α ∈ e⊥J be a (J, η)-generic point. Then the set UJ,α ⊂ UJ ⊂
∧2 MR

defined in Definition 2.15 is the complement of finitely many algebraic hypersurfaces in UJ . In
particular, UJ,α is open and dense in UJ , and so in

∧2 MR.

Proof. By Lemma 2.17(ii) and (iii), for every T ∈ T η
J , v ∈ V ◦

T and v′ child of v, the map ω �→
θα,ω
T,p(v)(ev′) is a not identically zero rational function. Therefore, the set

{ω ∈ UJ | θα,ω
T,p(v)(ev′) 	= 0}

is the complement of an algebraic hypersurface in UJ . By definition, UJ,α is the intersection of the
finitely many sets of this form obtained by varying T , v, and v′. Hence, UJ,α is the complement
of finitely many algebraic hypersurfaces in UJ and is open and dense in UJ . By Proposition 2.10,
UJ is open and dense in

∧2 MR, and so it is also the case for UJ,α. �
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We end this section in a different direction: instead of fixing α ∈ e⊥J and looking for
(J, α)-generic ω ∈

∧2 MR, we look for all α ∈ e⊥J such that the fixed η ∈
∧2 MR is (J, α)-generic.

Lemma 2.19. Let T ∈ T η
J and v ∈ VT . Denote by v0, . . . , vm the unique sequence of vertices of

T such that v0 is the root of T , vm = v, and for every 0 ≤ a ≤ m− 1, va+1 is a child of va. Then
for every 0 ≤ a ≤ m− 2, the map

e⊥J −→ MR

α �−→ θα,η
T,va

(2.19)

is linear, and the linear form

e⊥J −→ R

α �−→ θα,η
T,va

(eva+2)
(2.20)

is not identically zero.

Proof. The result is easily proved by induction on a, using Lemma 2.17(i) and the fact that the
linear form α �→ θα,η

T,va
(eva+2) is equal to the sum of the linear form α �→ α(eva+2) and of a linear

combination of the linear forms α �→ α(evb
) with b < a+ 2. �

Proposition 2.20. Let VJ,η be the set of α ∈ e⊥J ⊂ MR such that α is (J, η)-generic and η is
(J, α)-generic. Then VJ,η is open and dense in e⊥J .

Proof. It follows from Definition 2.14 and Lemma 2.19 that VJ,η is the complement of finitely
many hyperplanes in e⊥J . �

2.5 The flow tree map
Let h =

⊕
n∈N+ hn be a Lie algebra over Q which is N+-graded, that is, such that [hn1 , hn2 ] ⊂

hn1+n2 for every n1, n2 ∈ N+. We say that h is finitely N+-graded if its support Supp(h) := {n ∈
N+ | hn 	= 0} is finite. Note that a finitely N+-graded Lie algebra is nilpotent. In what follows,
we fix h =

⊕
n∈N+ hn a finitely N+-graded Lie algebra. For every x ∈ R − {0}, we denote by

sgn(x) the sign of x defined as follows:

sgn(x) =

{
1 if x > 0,
−1 if x < 0.

(2.21)

Definition 2.21. Fix a (J, η)-generic point α ∈ e⊥J ⊂ MR, a skew-symmetric bilinear form ω ∈
UJ,α ⊂

∧2 MR as in Definition 2.15, a tree T ∈ T η
J , and for every interior vertex v ∈ V ◦

T a labeling
v′ and v′′ of the children of v. We define a multilinear map

Aα,ω
J,T,v :

∏
i∈JT,v

hei −→ hev (2.22)

for every v ∈ V L
T ∪ V ◦

T inductively, following the flow on T starting at the leaves and ending at
the root, as follows.

(i) If v ∈ V L
T , that is, if v is a leaf of T decorated by some ei, we define Aα,ω

J,T,v : hei → hei as the
identity map.

(ii) If v ∈ V ◦
T , we set

εα,ω
T,v := −

sgn(θα,ω
T,p(v)(ev′)) + sgn(ω(ev′ , ev′′))

2
∈ {0, 1,−1}, (2.23)
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and
Aα,ω

J,T,v := εα,ω
T,v [Aα,ω

J,T,v′ , A
α,ω
J,T,v′′ ], (2.24)

where [Aα,ω
J,T,v′ , A

α,ω
J,T,v′′ ] is the composition of the maps Aα,ω

J,T,v′ :
∏

j∈Jv′
hej −→ hev′ and

Aα,ω
J,T,v′′ :

∏
j∈Jv′′

hej −→ hev′′ with the Lie bracket [−,−] : hev′ × hev′′ −→ hev′+ev′′ = hev .

Note that by the definition of UJ , we have ω(ev′ , ev′′) 	= 0 for every v ∈ V ◦
T . Moreover, by

Definition 2.15 of UJ,α, we have θα,ω
T,p(v)(ev′) 	= 0. Hence, both of the signs sgn(ω(ev′ , ev′′)) and

sgn(θα,ω
T,p(v)(ev′)) in (2.23) make sense.

Lemma 2.22. Using the notation of Definition 2.21, for every v ∈ V ◦
T , we have

Aα,ω
J,T,v = −

sgn(θα,ω
T,p(v)(ev′′)) + sgn(ω(ev′′ , ev′))

2
[Aα,ω

J,T,v′′ , A
α,ω
J,T,v′ ]. (2.25)

In particular, the map Aα,ω
J,T,v is independent of the choice of the labeling of the children v′ and

v′′ of v ∈ V ◦
T .

Proof. As the Lie bracket is skew-symmetric, we have [Aα,ω
J,T,v′′ , A

α,ω
J,T,v′ ] = −[Aα,ω

J,T,v′ , A
α,ω
J,T,v′′ ].

Moreover, because ω is skew-symmetric, we have sgn(ω(ev′′ , ev′)) = − sgn(ω(ev′ , ev′′)). Finally,
by Lemma 2.16, we have sgn(θα,ω

T,p(v)(ev′′)) = − sgn(θα,ω
T,p(v)(ev′)). �

Definition 2.23. For every (J, η)-generic α ∈ e⊥J , ω ∈ UJ,α and T ∈ T η
J , let

Aα,ω
J,T :

∏
i∈J

hei −→ heJ (2.26)

be the linear map associated with T , defined by Aα,ω
J,T := Aα,ω

J,T,v, where v is the child of the root
of T . For every (J, η)-generic α ∈ e⊥J and ω ∈ UJ,α, we define the flow tree map Aα,ω

J with initial
point α, by summing over all the trees in T η

J :

Aα,ω
J :=

∑
T∈T η

J

Aα,ω
J,T . (2.27)

3. Scattering diagrams

In § 3.1, we review the concept of consistent scattering diagram, mainly following [Bri17, KS14,
GHKK18]. In § 3.2, we recall the notion of initial data for scattering diagrams. Finally, in § 3.3,
we make explicit the universal nature of the reconstruction of consistent scattering diagrams
from their initial data.

3.1 Consistent scattering diagrams
Throughout this section, we fix a free abelian group N of finite rank �, and let M := Hom(N,Z)
and MR := M ⊗Z R. We fix a basis {si}1≤i≤� of N , and we use the notation

N+ :=
{ �∑

i=1

aisi | ai ∈ Z≥0,
�∑

i=1

ai > 0
}
. (3.1)

For every n ∈ N − {0}, we denote n⊥ := {θ ∈MR | θ(n) = 0}, and for every subset d ⊂MR, we
use the notation d⊥ := {n ∈ N+ | θ(n) = 0 for every θ ∈ d}. Finally, we fix a finitely N+-graded
Lie algebra g =

⊕
n∈N+ gn over Q, that is, a N+-graded Lie algebra whose support

Supp(g) := {n ∈ N+ | gn 	= 0} (3.2)

is a finite set. In particular, g is a nilpotent Lie algebra.
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For us, a cone in MR is a closed, convex, rational, polyhedral cone in MR, that is, a subset
of MR of the form

σ =
{ q∑

i=1

λimi |λi ∈ R≥0

}
, m1, . . . ,mq ∈M. (3.3)

By definition, the codimension of a cone is the codimension of the subspace of MR it spans.
A wall is a cone of codimension 1 and a joint is a cone of codimension 2. If d is a wall in MR,
we denote by nd the unique primitive element in N+ ∩ d⊥, referred to as the normal vector to
the wall. A face of a cone σ is a subset of the form σ ∩ n⊥ where n ∈ N satisfies θ(n) ≥ 0 for all
θ ∈ σ. Note that every face of a cone is itself a cone, and every intersection of faces of a given
cone is also a face. Finally, a cone complex in MR is a finite collection S of cones in MR, such
that any face of a cone in S is also a cone in S, and the intersection of any two cones in S is a
face of each.

Definition 3.1. For every finite subset P ⊂ N+, we denote by SP the cone complex in MR

whose cones are indexed by partitions P = P+  P0  P− with P0 non-empty and given by

σ(P+, P0, P−) := {θ ∈MR | θ(n) = 0 for n ∈ P0, ±θ(n) ≥ 0 for n ∈ P±}.

We denote by WallP the set of walls in SP .

In what follows, we take for the finite set P ⊂ N+ in Definition 3.1 the support Supp(g) ⊂ N+

of the Lie algebra g defined by (3.2).

Definition 3.2. A (N+, g)-scattering diagram is a map

φ : WallSupp(g) −→ g

with the property that

φ(d) ∈
⊕

n∈Z≥1nd

gn ⊂ g

for every d ∈ WallSupp(g). For every n ∈ Z≥1nd, the projection of φ(d) on gn is denoted by φ(d)n.

Definition 3.3. A smooth path p : [0, 1] →MR is g-generic if:

(i) the endpoints p(0) and p(1) do not lie in any wall d ∈ WallSupp(g);
(ii) p does not meet any cone of SSupp(g) of codimension greater than one;
(iii) all intersections of γ with walls d ∈ WallSupp(g) are transversal.

Note that, given a g-generic path p : [0, 1] →MR there is a finite set of points

0 < t1 < · · · < tk < 1 (3.4)

for which p(ti) lies in
⋃

d∈WallSupp(g)
d, and for each of these points ti there is a unique wall

di ∈ WallSupp(g) such that p(ti) ∈ di. Given a (N+, g)-scattering diagram φ and a g-generic path
p : [0, 1] →MR, we define the path-ordered product along p of φ by

Ψp,φ := exp(εkφ(dk)) · exp(εk−1φ(dk−1)) · · · exp(ε2φ(d2)) · exp(ε1φ(d1)) ∈ G, (3.5)

where εi ∈ {±1} is the sign of the derivative of t �→ −p(t)(ndi) at t = ti, G is the unipotent group
associated with the nilpotent Lie algebra g, and exp: g → G is the exponential map.

Definition 3.4. A (N+, g)-scattering diagram φ is consistent if Ψp1,φ = Ψp2,φ for every two
g-generic paths p1 and p2 with the same endpoints.
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Note that Definition 3.4 is equivalent to the definition of the consistency mentioned in the
introduction, which requires the composition of all wall-crossing automorphisms on walls adjacent
to a given joint to be identity. We set M+

R
:= {θ ∈MR | θ(n) > 0 ∀ n ∈ N+} and M−

R
:= {θ ∈

MR | θ(n) < 0 ∀ n ∈ N+}. The cone complex SSupp(g) is disjoint from M+
R

and M−
R

. Therefore,
if φ is a consistent (N+, g)-scattering diagram, we can consider the element Ψp,φ of G, where p

is a g-generic path with initial point in M+
R

and final point in M−
R

. By consistency of φ, Ψp,φ is
independent of the particular choice of p, and we set Ψφ := Ψp,φ ∈ G.

Proposition 3.5. The map φ �→ Ψφ is a bijection between consistent (N+, g)-scattering
diagrams and elements of the group G.

Proof. In the setting of scattering diagrams as cone complexes, this is exactly Proposition 3.3
of [Bri17]. In the setting of scattering diagrams as set of walls, this result is originally
Theorem 2.1.6 of [KS14] (see also Theorem 1.17 of [GHKK18]). Note that Proposition 3.3
of [Bri17] in fact shows that these two possible points of view on scattering diagrams are, in
fact, equivalent. �

3.2 Initial data for scattering diagrams
From now on, we assume given a real-valued skew-symmetric bilinear form 〈−,−〉 on N such
that the finitely N+-graded Lie algebra g =

⊕
n∈N+ gn satisfies

[gn1 , gn2 ] = 0 as soon as 〈n1, n2〉 = 0. (3.6)

In this section we review the notion of initial data for a (N+, g)-scattering diagram.
For every primitive n ∈ N+, we have a direct sum decomposition g = gn,+ ⊕ gn,0 ⊕ gn,− of g

into Lie subalgebras

gn,+ :−
⊕

n∈N+

〈n,n〉>0

gn, gn,0 :−
⊕

n∈N+

〈n,n〉=0

gn, gn,− :−
⊕

n∈N+

〈n,n〉<0

gn. (3.7)

It follows that, denoting by Gn,+ :− exp(gn,+), Gn,0 :− exp(gn,0), Gn,− :− exp(gn,−) the cor-
responding subgroups of G, every element g ∈ G can be written uniquely as a product
g = gn,+gn,0gn,− with gn,+ ∈ Gn,+, gn,0 ∈ Gn,0, gn,− ∈ Gn,−. We have a further decomposition
gn,0 = g

‖
n,0 ⊕ g⊥n,0, where

g
‖
n,0 :−

⊕
n∈Z≥1n

gn, g⊥n,0 :−
⊕

n∈N+

〈n,n〉=0
n/∈Z≥1n

gn. (3.8)

If n1 + n2 = kn with 〈n, n1〉 = 0 and 〈n, n2〉 = 0, then 〈n1, n2〉 = 0 and so [gn1 , gn2 ] = 0 by (3.6).
In particular, we have [gn,0, g

⊥
n,0] ⊂ g⊥n,0. Hence, g⊥n,0 is a Lie ideal in gn,0 and so the subgroup

G⊥
n,0 :− exp(g⊥n,0) is normal. We denote by

πn,0 : Gn,0 −→ Gn,0/G
⊥
n,0 = G

‖
n,0 (3.9)

the quotient group morphism, where G
‖
n,0 := exp(g‖n,0). Given g = gn,+gn,0gn,−, set g

‖
n,0 :−

πn,0(gn,0). This defines a map

πn : G −→ G
‖
n,0

g �−→ g
‖
n,0.

(3.10)
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Proposition 3.6. The map

π : G −→
∏

n∈N+

n primitive

G
‖
n,0

g �−→ (πn(g))n

(3.11)

is a bijection.

Proof. This is Proposition 3.3.2 of [KS14]. See also Proposition 1.20 of [GHKK18]. �

Definition 3.7. For every n ∈ N+, the initial data Iφ,n of a consistent (N+, g)-scattering
diagram φ is the projection on gn of

log(πn(Ψφ)) ∈ g
‖
n,0 =

⊕
n′∈Z≥1n

gn′ , (3.12)

where n is the unique primitive element of N+ such that n ∈ Z≥1n, and Ψφ is the element of G
attached to φ as in Proposition 3.5.

Proposition 3.8. The map φ �→ (Iφ,n)n∈N+ is a bijection between equivalence classes of con-
sistent (N+, g)-scattering diagrams and elements of g =

⊕
n∈N+ gn. In other words, for every

(In)n∈N+ ∈ g =
⊕

n∈N+ gn, there exists a unique consistent (N+, g)-scattering diagram φ with
initial data (Iφ,n)n∈N+ = (In)n∈N+ .

Proof. This is an immediate consequence of Propositions 3.5 and 3.6. �

The next Proposition 3.9 describes how to read the initial data Iφ,n of a consistent (N+, g)-
scattering diagram φ from the walls.

Proposition 3.9. Let φ be a consistent (N+, g)-scattering diagram, n ∈ N+, and let n be the
unique primitive element of N+ such that n ∈ Z≥1n. For every wall d ∈ WallSupp(g) with nd = n
and containing the attractor point 〈n,−〉 ∈MR for n, we have

φ(d)n = Iφ,n. (3.13)

Proof. This follows from Theorem 1.21(1) of [GHKK18]. �

Note that in the context of Proposition 3.9 there are, in general, several walls d with nd = n
and containing the attractor point 〈n,−〉. Proposition 3.9 implies, in particular, that φ(d)n does
not depend on the choice of d.

3.3 Universality of the reconstruction of scattering diagrams from initial data
The next proposition shows that the elements φ(d) ∈ g assigned to walls d ∈ WallSupp(g) by
a consistent (N+, g)-scattering diagram φ are determined by the initial data (Iφ,n)n∈N+ via
universal formulas.

Definition 3.10. A finite multiset Γ = {γi}1≤i≤r of elements of N+ is a finite unordered collec-
tion γ1, . . . , γr of elements of N+ where multiple occurrences of elements are allowed. For every
n ∈ N+, the multiplicity mΓ(n) ∈ Z≥0 of n in Γ is the number of occurrences of n in Γ. Given a
multiset Γ, we denote by Γ the set of n ∈ N+ such that mΓ(n) 	= 0. The set of finite multisets
of elements of N+ is denoted by mult(N+).
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Proposition 3.11. For every Γ ∈ mult(N+) and d ∈ WallSupp(g), there exists a unique map

F g,d
Γ :

∏
n∈Γ

gn −→ g∑
n∈Γ n, (3.14)

which is a homogeneous polynomial map of degree mΓ(n) in restriction to the factor gn, and
such that for every consistent (N+, g)-scattering diagram φ and γ ∈ Z≥1nd ∈ N+, the component
φ(d)γ of φ(d) in gγ is given by

φ(d)γ =
∑

Γ∈mult(N+)∑
n∈Γ n=γ

F g,d
Γ ((Iφ,n)n∈Γ), (3.15)

where the sum is over all finite multisets Γ of N+ whose elements sum up to γ.

Proof. We first prove the uniqueness part. Assume that we have two collections (F g,d
Γ )1 and

(F g,d
Γ )2 of maps satisfying the conditions of Proposition 3.11. By Proposition 3.8, there exists a

consistent (N+, g)-scattering diagram for every initial data. Therefore, (3.15) implies the equality
of maps ∑

Γ∈mult(N+)∑
n∈Γ=γ

(F g,d
Γ )1 =

∑
Γ∈mult(N+)∑

n∈Γ n=γ

(F g,d
Γ )2. (3.16)

For every Γ ∈ mult(N+) with
∑

n∈Γ n = γ, isolating on both sides of (3.16) the part homogeneous
of degree mΓ(n) in restriction to each factor gn, we obtain (F g,d

Γ )1 = (F g,d
Γ )2.

We now prove the existence claim. Let δ : N → Z be an additive map such that δ(N+) ⊂ Z≥1.
For every k ∈ Z≥0, we define the Lie subalgebra g>k :=

⊕
n∈N+

δ(n)>k

gn ⊂ g. We prove by induction

on k that for every k ∈ Z≥0, Γ ∈ mult(N+) and d ∈ WallSupp(g), there exists a map

F g,d
k,Γ :

∏
n∈Γ

gn −→ g∑
n∈Γ n, (3.17)

such that for every consistent (N+, g)-scattering diagram φ and γ ∈ Z≥1nd, we have

φ(d)γ =
∑

Γ∈mult(N+)∑
n∈Γ n=γ

F g,d
k,Γ((Iφ,n)n∈Γ) mod g>k. (3.18)

As g is nilpotent, we have g>k = 0 for k large enough, and so it will be enough to take F g,d
Γ := F g,d

k,Γ

for k large enough.
For the base step of the induction, we have g>0 = g, so φ(d)γ = 0 mod g>0 for every φ, d,

γ, and so we can take F g,d
0,Γ = 0 for every Γ and d. For the induction step, fix k ≥ 0, and assume

that the existence of the maps F g,d
k,Γ is known. We have to show the existence of the maps F g,d

k+1,Γ.
For every wall d ∈ WallSupp(g) and for every consistent (N+, g)-scattering diagram φ, define

φ(d) :=
∑

Γ∈mult(N+)∑
n∈Γ n∈Z≥1nd

F g,d
k,Γ((Iφ,n)n∈Γ). (3.19)

By the induction hypothesis, we have

φ(d) = φ(d) mod g>k. (3.20)
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By [GHKK18, Definition-Lemma C.2], a joint j ∈ SSupp(g), that is a codimension-two cone,
is perpendicular if for every wall d ∈ WallSupp(g) containing j, the contraction ιnd 〈−,−〉 = 〈nd,−〉
of 〈−,−〉 with the normal vector nd to d is not contained in the R-linear span of j. For every
perpendicular joint j ∈ SSupp(g), let Wall(j) be the set of walls d ∈ WallSupp(g) containing j, and
let pj : [0, 1] →MR be a g-generic loop around j, intersecting only once each wall d ∈ Wall(j)
and no other wall. For every wall d ∈ Wall(j), denote by tjd ∈ [0, 1] the point such that pj(tjd) ∈ d,
and denote by εjd ∈ {±1} the sign of the derivative of t �→ −pj(t)(nd) at t = tjd. We label d1, . . . , dm

the elements of Wall(j) so that 0 < tjd1
< · · · < tjdm

< 1. By Definition 3.4 the relation

exp(εjdm
φ(dm)) · exp(εjdm−1

φ(dm−1)) · · · exp(εjd2
φ(d2)) · exp(εjd1

φ(d1)) = 1 (3.21)

holds for every consistent (N+, g)-scattering diagram φ. Therefore, it follows from (3.20) that

log(exp(εjdm
φ(dm)) · · · exp(εjd1

φ(d1))) =
∑

γ∈N+

δ(γ)≥k+1

gj
φ,γ (3.22)

for some gj
φ,γ ∈ gn. Using the Baker–Campbell–Hausdorff formula to compute the left-hand side

of (3.22), together with (3.19), we deduce that for every Γ ∈ mult(N+), there exists a map
Gj

Γ :
∏

n∈Γ gn → g∑
n∈Γ n, which is a homogeneous polynomial map of degree mΓ(n) in restriction

to the factor gn, such that for every consistent (N+, g)-scattering diagram φ and γ ∈ N+ with
δ(γ) ≥ k + 1, we have

gj
φ,γ =

∑
Γ∈mult(N+)∑r

i=1 γi=γ

Gj
Γ((Iφ,n)n∈Γ), (3.23)

where the sum is over multisets Γ = {γi}i∈I for some index set I, whose elements sum up to γ.
According to Appendix C.1 of [GHKK18] (see the equations defining D̃k+1 and D[j] before
Lemma C.6), for every wall d ∈ WallSupp(g) we have

φ(d) = φ(d) +
∑

γ∈Z≥1nd

δ(γ)=k+1

Iφ,γ −
∑

γ∈Z≥1nd

∑
j

εjdj
gj
φ,γ mod g>k+1, (3.24)

where the sum over j is over the perpendicular joints j such that d ⊂ j − R≥0〈nd,−〉, and where
dj ∈ Wall(j) is the wall containing j and contained in j − R≥0〈nd,−〉. Therefore, for every Γ ∈
mult(N+) with

∑
n∈Γ n ∈ Z≥1nd, we can take

F g,d
k+1,Γ = F g,d

k,Γ + Id
k+1,Γ −

∑
j

εjdj
Gj

Γ, (3.25)

where Id
k+1,Γ is the identity map gγ → gγ if Γ = {γ} with γ ∈ Z≥1nd such that δ(γ) = k + 1, and

Id
k+1,Γ = 0 otherwise. �

4. Flow tree formula for scattering diagrams

In this section we prove our main result, Theorem 4.22, which provides an explicit description
of the maps F g,d

Γ in (3.14) in terms of the (specialization of the) flow tree maps.

4.1 (N+, h)-scattering diagrams
As in § 3, we work with (N+, g)-scattering diagrams. We fix a wall d ∈ WallSupp(g), an
element γ ∈ Z≥1nd ⊂ N+ proportional to the normal vector nd to d, and a multiset
Γ = {γi}i∈I ∈ mult(N+) of elements of N+ such that

∑
i∈I γi = γ, where I = {1, . . . r} is some
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index set. Applying Proposition 3.11 to the multiset Γ = {γi}i∈I and to the wall d, we obtain a
map

F g,d
Γ :

∏
n∈Γ

gn −→ gγ . (4.1)

Our goal is to state a formula for the map F g,d
Γ . As a first step to achieve this goal, we define in

this section another class of scattering diagrams, referred to as (N+, h)-scattering diagrams.
We introduce a rank-r free abelian group N :=

⊕
i∈I Zei with a basis {ei}i∈I , and the additive

map

p : N −→ N

ei �−→ γi.
(4.2)

For every J ⊂ I, let

eJ :=
∑
i∈J

ei. (4.3)

In particular, we have p(eI) = γ. Following the notation set up in § 2, we use the notation M :=
Hom(N ,Z), MR := M⊗ R, and N+ := {

∑
i∈I aiei | ai ≥ 0,

∑
i∈I ai > 0}. The map p : N → N

defines by duality a linear map

q : MR −→ MR

θ �−→ θ ◦ p.
(4.4)

We define a skew-symmetric bilinear form η ∈
∧2 M by

η(ei, ej) := 〈γi, γj〉 (4.5)

for every i, j ∈ I. In other words, η is the pullback of 〈−,−〉 by p.

Definition 4.1. We define a N+-graded Lie algebra h =
⊕

n∈N+ hn as follows. First, we
introduce the finite set

N+
e :=

{ ∑
i∈I

aiei ∈ N+ | ai ∈ {0, 1} ∀ i ∈ I

}
= {eJ | J ⊂ I, J 	= ∅} ⊂ N+. (4.6)

Then, as vector spaces, we set hn := gp(n) if n ∈ N+
e , and hn := 0 otherwise. For x ∈ hn1 and y ∈

hn2 , we define the bracket [x, y] as being the bracket [x, y] in hn1+n2 = gp(n1)+p(n2) if n1, n2, n1 +
n2 ∈ N+

e , and as being zero otherwise.

One checks easily that this defines a Lie bracket on h and that the resulting Lie algebra is
finitely N+-graded: by construction, the support Supp(h) = {n ∈ N+ | hn 	= 0} of h is contained
in N+

e . It follows from (3.6) that [hn1 , hn2 ] = 0 if η(n1, n2) = 0. Thus, we can consider (N+, h)-
scattering diagrams as in Definition 3.2 and their initial data as in Definition 3.7, where N+, g

and 〈−,−〉 ∈
∧2M are replaced by N+, h, and η ∈

∧2 M.
Let e ∈ WallSupp(h) be a wall in MR with normal vector ne = eI and which contains the image

q(d) of the wall d ∈ WallSupp(g) by the map q : MR → MR as in (4.4). Applying Proposition 3.11
to the multiset Γe := {ei}i∈I ∈ mult(N+) of elements of N+ and to the wall e ∈ WallSupp(h), we
obtain a map

F h,e
Γe

:
∏
i∈I

hei −→ heI , (4.7)

where we used that, as {ei}i∈I is a basis of N , we have Γe = Γe = {ei}i∈I .
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4.2 From (N+, g) to (N+, h)-scattering diagrams
The main result of this section, Theorem 4.9, provides a comparison of the map F g,d

Γ in (4.1)
and the map F h,e

Γe
in (4.7). To prove it, we first need to compare the Lie algebras g and h. We

do this by going through an intermediate N+-graded Lie algebra

g̃ =
⊕

n∈N+

g̃n (4.8)

defined using the map p : N → N in (4.2) and the finite subset N+
e ⊂ N+ in (4.6).

4.2.1 The Lie algebra g̃.

Definition 4.2. Define the Lie algebra g̃ as follows: as vector spaces, we set g̃n := gn if n ∈
p(N+

e ), and g̃n := 0 otherwise. For x ∈ g̃n1 and y ∈ g̃n2 , we define the bracket [x, y] as being the
bracket [x, y] in g̃n1+n2 = gn1+n2 if n1, n2, n1 + n2 ∈ p(N+

e ), and as being zero otherwise.

One checks easily that this defines a Lie bracket on g̃ and that the resulting Lie algebra
is finitely N+-graded. It follows from (3.6) that [g̃n1 , g̃n2 ] = 0 if 〈n1, n2〉 = 0. As γ = p(e) ∈
Supp(g̃), there exists a unique wall d̃ ∈ WallSupp(g̃) such that d ⊂ d̃. Applying Proposition 3.11
for (N+, g̃)-scattering diagram to the multiset Γ ∈ mult(N+) and the wall d̃, we obtain a map

F g̃,d̃
Γ :

∏
n∈Γ

g̃n −→ g̃γ . (4.9)

Proposition 4.3. The maps F g,d
Γ in (4.1) and F g̃,d̃

Γ in (4.9) are equal: F g,d
Γ = F g̃,d̃

Γ .

Proof. By definition of g̃, we have g̃n = gn for every n ∈ Γ ∪ {γ}, and so the maps F g,d
Γ and F g̃,d̃

Γ

have the same domain and codomain. The result then follows from the fact that the algorithmic
construction of F g,d

Γ reviewed in the proof of Proposition 3.11 involves only brackets [x, y] with
x ∈ gn1 , y ∈ gn2 , [x, y] ∈ gn1+n2 and n1, n2, n1 + n2 ∈ p(N+

e ). �

In what remains, we compare the Lie algebras g̃ and h.

Proposition 4.4. Let q : MR → MR be the linear map defined in (4.4). Then:

(i) for every n ∈ N , the preimage q−1(n⊥) of the hyperplane n⊥ ⊂MR by the map

q : MR −→ MR

is the hyperplane (p(n))⊥ ⊂ MR;
(ii) for every cone σ ∈ SSupp(g̃), the image q(σ) of σ by q : MR → MR is a cone q(σ) ∈ SSupp(h).

Proof. Part (i) of the lemma follows immediately because we have θ ∈ q−1(n⊥) if and only if
(q(θ))(n) = 0 if and only if θ(p(n)) = 0.

To show part (ii), first note that by Definition 3.1, the assumption σ ∈ SSupp(g̃) implies that
there exists a partition of the set Supp(g̃) ⊂ N+ into subsets Supp(g̃) = P+  P0  P− such that

σ := {θ ∈MR | θ(n) = 0 for n ∈ P0, ±θ(n) ≥ 0 for n ∈ P±}. (4.10)

Define Q± := {n ∈ Supp(h) | p(n) ∈ P±} and Q0 := {n ∈ Supp(h) | p(n) ∈ P0}. As Supp(g̃) =
p(Supp(h)), we have Supp(h) = Q+ Q0 Q−. Using that θ(p(n)) = (q(θ))(n) for every n ∈ N ,
we obtain q(σ) = {θ ∈ MR | θ(n) = 0 for n ∈ Q0, ±θ(n) ≥ 0 for n ∈ Q±}. Hence, q(σ) ∈ SSupp(h)

by Definition 3.1. �
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Figure 4.1. Paths around a codimension-two cone σ.

Proposition 4.5. For every n ∈ N , the attractor points 〈p(n),−〉 for p(n) and ιnη = η(n,−)
for n as in Proposition 3.9 are related by

q(〈p(n),−〉) = ιnη, (4.11)

where η ∈
∧2 M is defined by (4.5).

Proof. For every m ∈ N , we have

(q(〈p(n),−〉))(m) = 〈p(n), p(m)〉 = η(n,m) = (ιnη)(m), (4.12)

where the first equality uses (4.4) and the second equality uses (4.5). �

4.2.2 The (N+, g̃)-scattering diagram and consistency. In this section, we construct a
consistent (N+, g̃)-scattering diagram φρ starting from a consistent (N+, h)-scattering diagram ρ.

Let ρ : WallSupp(h) → h be a consistent (N+, h)-scattering diagram. Following [Mou19, §2],
we start by defining an extension ρ : SSupp(h) → h of ρ where the set of walls WallSupp(h) is
replaced by the set SSupp(h) of all cones. For a cone σ ∈ SSupp(h), there exists by Definition 3.1
a decomposition Supp(h) = P+  P0  P− such that

σ := {θ ∈ MR | θ(n) = 0 for n ∈ P0, ±θ(n) ≥ 0 for n ∈ P±}. (4.13)

We use the notation

σ+ := {θ ∈ MR | θ(m) > 0, ∀ m ∈ P+ ∪ P0, and θ(m) < 0, ∀ m ∈ P−}

and

σ− := {θ ∈ MR | θ(m) > 0, ∀ m ∈ P+, and θ(m) < 0, ∀ m ∈ P0 ∪ P−}.

Let p : [0, 1] → MR be a h-generic path with p(0) ∈ σ+ and p(1) ∈ σ− (see Figure 4.1). By (3.5),
we have the corresponding path-ordered product Ψp,ρ ∈ H := exp(h), and we define

ρ(σ) := log Ψp,ρ ∈ h. (4.14)

By consistency of ρ, this definition of ρ(σ) is independent of the choice of the path p.
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By Definitions 4.1 and 4.2, we have g̃ =
⊕

n∈p(N+
e ) gn and h =

⊕
n∈N+

e
gp(n). We denote by

ν : h → g̃ the natural projection map sending hn = gp(n) onto gp(n) = g̃p(n). We now define a
(N+, g̃)-scattering diagram φρ : WallSupp(g̃) → g̃. For every wall σ ∈ WallSupp(g̃), the image q(σ)
of σ by q is a cone in SSupp(h) by Proposition 4.4(ii). Therefore, one can apply ρ to q(σ) to obtain
ρ(q(σ)) ∈ h, and finally ν : h → g̃:

φρ(σ) := ν(ρ(q(σ))) ∈ g̃. (4.15)

Lemma 4.6. For every consistent (N+, h)-scattering diagram ρ : WallSupp(h) → h, the (N+, g̃)-
scattering diagram φρ : WallSupp(g̃) → g̃ defined by (4.15) is consistent.

Proof. Let p : [0, 1] →MR be a g̃-generic loop. Let q be a small generic perturbation of t �→ q(p(t))
such that, for every σ ∈ WallSupp(g̃) and t′ ∈ [0, 1] with p(t′) ∈ σ, the perturbed path t �→ q(t)
goes from (q(σ))− to (q(σ))+, or from (q(σ))+ to (q(σ))−, in a small neighborhood of t′. By the
definition of φρ in (4.15), the group element Ψp,φρ is the image in G̃ = exp(g̃) of the group element
Ψq,ρ by exp(ν) : H → G̃. By consistency of ρ we have Ψq,ρ = id and, hence, Ψp,φρ = id. �
Lemma 4.7. For every consistent (N+, h)-scattering diagram ρ : WallSupp(h) → h, the initial
data of ρ and of the (N+, g̃)-scattering diagram φρ : WallSupp(g̃) → g̃ defined by (4.15) are related
as follows: for every n ∈ Supp(g̃) = p(Supp(h)), we have

Iφρ,n =
∑

m∈Supp(h)
p(m)=n

ν(Iρ,m), (4.16)

where Iφρ,n and Iρ,m are the initial data of φρ and ρ as in Definition 3.7.

Proof. Let σ ∈ WallSupp(g̃) be a wall containing the attractor point 〈n,−〉 for n and such that
n ∈ Z≥1nσ. By Proposition 3.9 applied to φ, we have

Iφ,n = (φ(σ))n. (4.17)

Let Δ ⊂ Supp(h) be the subset of primitive m ∈ Supp(h) such that p(m) ∈ Z≥1nσ. By
Proposition 4.4, for every primitive m ∈ Supp(h), the hyperplane m⊥ contains the cone q(σ) if
and only if m ∈ Δ.

Let p : [0, 1] → MR be a h-generic path with p(0) ∈ (q(σ))+ and p(1) ∈ (q(σ))−. For every
m ∈ Δ, we have θ(m) > 0 for every θ ∈ (q(σ))+ and θ(m) < 0 for every θ ∈ (q(σ))−. Therefore, up
to straightening p, one can assume that for every m ∈ Δ, the path p intersects the hyperplane m⊥

exactly once. We can also assume that for everym ∈ Δ, the intersection of p withm⊥ lies in a wall
dm ⊂ m⊥ containing the cone q(σ). For every m,m′ ∈ Δ, we have η(m,m′) = 〈p(m), p(m′)〉 = 0,
and so [ρ(dm), ρ(dm′)] = 0. Thus, it follows from the definition (4.15) of φρ that

φρ(σ)n =
∑

m∈Δ, k∈Z≥1

p(km)=n

ν(ρ(dm)km). (4.18)

By Proposition 4.5, for every m ∈ Δ and k ∈ Z≥1 such that p(km) = n, we have ιkmη =
q(〈n,−〉) ∈ q(σ) ⊂ dm. We deduce from Proposition 3.9 applied to ρ that

ρ(dm)km = Iρ,km. (4.19)

Equation (4.16) follows from (4.17)–(4.19). �
Definition 4.8. Given a map ϕ :

∏
i∈I hei → heI , the specialization of ϕ is the map

ϕ̂ :
∏

n∈Γ gn → gγ defined as follows. For (xn)n∈Γ ∈
∏

n∈Γ gn, define (yi)i∈I ∈
∏

i∈I hei by
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yi := xp(ei), where p : N → N is as in (4.2), and set

ϕ̂((xn)n∈Γ) := ϕ((yi)i∈I). (4.20)

Theorem 4.9. Let d ∈ WallSupp(g) be a wall in MR and Γ = {γi}i∈I ∈ mult(N+) a multiset

of elements in N+ such that d ⊂ γ⊥, where γ =
∑

i∈I γi. Let Γe = {ei}i∈I ∈ mult(N+), and
e ∈ WallSupp(h) a wall in MR such that e ⊂ e⊥I and containing the image q(d) of d by the map

q : MR → MR as in (4.4). Then, the maps F g,d
Γ in (4.1) and F h,e

Γe
in (4.7) satisfy

F g,d
Γ =

1∏
n∈N+ mΓ(n)!

F̂ h,e
Γe
, (4.21)

where F̂ h,e
Γe

is the specialization of F h,e
Γe

as in Definition 4.8.

Proof. By Proposition 4.3, it is enough to show that

F g̃,d̃
Γ =

1∏
n∈N+ mΓ(n)!

F̂ h,e
Γe
. (4.22)

Let Δ ⊂ Supp(h) be the subset of primitive m ∈ Supp(h) such that p(m) ∈ Z≥1nd̃. As p(e) = γ,
we have e ∈ Δ. By Proposition 4.4, for primitive m ∈ Supp(h), the hyperplane m⊥ contains the
cone q(d̃) if and only if m ∈ Δ. Arguing as in the proof of Lemma 4.7, one can find a h-generic
path p : [0, 1] → MR with p(0) ∈ (q(d̃))+, p(1) ∈ (q(d̃))−, and such that for every m ∈ Δ, the
path p intersects the hyperplane m⊥ at a single point, lying in a wall dm ⊂ m⊥ which contains
the cone q(d̃). We can also assume that de = e.

Let ρ : WallSupp(h) → h be a consistent (N+, h)-scattering diagram and φρ : WallSupp(g̃) → g̃

the corresponding consistent (N+, g̃)-scattering diagram defined by (4.15). As in the proof of
Lemma 4.7, for every m,m′ ∈ Δ, we have [ρ(dm), ρ(dm′)] = 0 and so it follows from the definition
(4.15) of φρ that

φρ(d̃)γ =
∑

m∈Δ, k∈Z≥1

p(km)=γ

ν(ρ(dm)km). (4.23)

We show in the following that the equality (4.22) follows from identifying on both sides of (4.23)
the terms homogeneous of degree mΓ(n) in the initial data Iφρ,n.

By Proposition 3.11 applied to φρ, we have

φρ(d̃)γ =
∑

Γ′={γ′}∈mult(N+)
γ′∈Supp(g̃),

∑
γ′∈Γ′ γ′=γ

F g̃,d̃
Γ′ ((Iφρ,γ′)γ′∈Γ′). (4.24)

The only term homogeneous of degree mΓ(n) in the initial data Iφρ,n in (4.24) is obtained for

Γ′ = Γ and is equal to F g̃,d̃
Γ ((Iφρ,n)n∈Γ).

On the other hand, by Proposition 3.11 applied to ρ, the right-hand side of (4.23) is equal to∑
m∈Δ, k∈Z≥1

p(km)=γ

∑
Γ′={n′}∈mult(N+)

n′∈Supp(h),
∑

n′∈Γ′ n′=km

ν(F h,dm

Γ′ ((Iρ,n′)n′∈Γ′)). (4.25)

The only term homogeneous of degree 1 in the initial data Iρ,ei in (4.25) is obtained for Γ′ = Γe

and is equal to ν(F h,e
Γe

((Iρ,ei)1≤i≤r)).
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Finally, by Lemma 4.7, we have for every n ∈ Γ,

Iφρ,n =
∑

ei,p(ei)=n

ν(Iρ,ei). (4.26)

Note that the sum in (4.26) contains mΓ(n) terms. Therefore, (4.22) follows from the following
algebraic claim applied to (xi)i = (Iφρ,n)n, (yij)ij = (ν(Iρ,ei))i, f = F g̃,d̃

Γ and g = ν(F h,e
Γe

).

Claim. Let f((xi)1≤i≤s) be a polynomial function of s variables which is homogeneous of degree
ai in the variable xi. Write each variable xi as a sum of ai variables yij : xi =

∑ai
j=1 yij , and let

g((yij)1≤i≤r, 1≤j≤ai) be the component of f((
∑ai

j=1 yij)1≤i≤s) which is homogeneous of degree one
in each variable yij . Finally, let ĝ((xi)1≤i≤s) be the function obtained from g((yij)1≤i≤s, 1≤j≤ai)
by the specialization of variables yij �→ xi, for every 1 ≤ i ≤ s and 1 ≤ j ≤ ai. Then, we have

ĝ((xi)1≤i≤s) =
( s∏

i=1

ai!
)
f((xi)1≤i≤s). (4.27)

Proof of the Claim. It is enough to prove the result for f =
∏s

i=1 x
ai
i . For f =

∏
i x

ai
i , g

is the term proportional to
∏

i,j yij in
∏

i(
∑

j yij)ai . Thus, g = (
∏

i ai!)
∏

i,j yij and so ĝ =
(
∏

i ai!)
∏

i x
ai
i = (

∏
i ai!)f . Hence, the result follows. �

4.3 (N+, h)-scattering diagrams and flow tree maps
This section includes the technical heart of the paper, Theorem 4.14. The key result of the paper,
the flow tree formula in Theorem 4.22, will follow from Theorems 4.14 and 4.9.

4.3.1 Small enough generic perturbations of the skew-symmetric bilinear form. In this
section, we define small enough generic perturbations of the skew-symmetric bilinear form
η ∈

∧2 M defined by (4.5).

Definition 4.10. We denote by Uη the set of ω ∈
∧2 MR such that for every n1, n2 ∈ N+

e with
η(n1, n2) non-zero, ω(n1, n2) is non-zero and has the same sign as η(n1, n2). We have η ∈ Uη and
Uη is an open neighborhood of η in

∧2 MR.

For a fixed (I, η)-generic point α ∈ e⊥I ⊂ MR as in Definition 2.14, we call a perturbation ω
of η generic if it belongs to the open dense subset UI,α ⊂

∧2 MR, as in Definition 2.15, and we
say that the perturbation is small enough if ω belongs to the open neighborhood Uη ⊂

∧2 MR,
as in Definition 4.10. Hence, ω is a small enough generic perturbation of η ∈

∧2 M if

ω ∈ UI,α ∩ Uη. (4.28)

4.3.2 Embedding trees in MR via the discrete attractor flow. We fix a (I, η)-generic point
α ∈ e⊥I ⊂ MR as in Definition 2.14 and ω ∈ UI,α as in Definition 2.15. In this section we use
the discrete attractor flow defined in § 2.3 to define an embedding of binary trees in MR as
follows. For every tree T ∈ TI , where TI is defined as in Lemma 2.7, we denote by T ◦ the graph
obtained from T by removing all the leaves v ∈ V L

T , and extending the resulting open intervals
to unbounded edges. For every tree T ∈ TI , we fix a continuous map

jα,ω
T : T ◦ −→ MR (4.29)

such that:

(i) for every vertex v ∈ RT ∪ V ◦
T , we have

jα,ω
T (v) = θα,ω

T,v ; (4.30)
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(ii) for every bounded edge E of T ◦, connecting vertices v and v′, the image of the map jα,ω
T

restricted to E is the line segment in MR with endpoints θα,ω
T,v and θα,ω

T,v′ ;
(iii) for every unbounded edge E of T ◦ obtained by removing the leaf decorated by ei, the image

of the map jα,ω
T restricted to E is the half-line θα,ω

T,v + R≥0ιeiω in MR, where v is the vertex
in V ◦

T incident to E.

Remark 4.11. For every tree T ∈ TI , the embedded graph jα,ω
T (T ◦) ⊂ MR in (4.29) defined using

the discrete flow has a natural structure of tropical disks in MR (see [NS06, GPS10, CPS22])
if ω ∈

∧2 M⊗Z Q ⊂
∧2 MR: edges have then rational weighted directions of the form ιevω and

the tropical balancing condition at vertices distinct from the root follows from the relation
ev = ev′ + ev′′ in Definition 2.8.

Proposition 4.12. For every tree T ∈ T η
I and interior vertex v ∈ V ◦

T , we have jα,ω
T (v) /∈

jα,ω
T (p(v)), that is, the edge connecting v and p(v) is not contracted to a point by jα,ω

T .

Proof. From the assumption ω ∈ UI,α and Definition 2.15 of UI,α, we have θα,ω
T,p(v)(ev′) 	= 0, and

so θα,ω
T,p(v) 	= θα,ω

T,v by (2.9). �

Definition 4.13. We denote by Fα,ω the union of all the images of the trees T ◦ by the maps
jα,ω
T for T ∈ T η

I :

Fα,ω :=
⋃

T∈T η
I

jα,ω
T (T ◦) ⊂ MR. (4.31)

We view Fα,ω as a graph embedded in MR. Note that we have α ∈ Fα,ω because α is the common
image by the maps jα,ω

T of the roots of the trees T ∈ T η
I .

4.3.3 Scattering diagrams via flow tree maps. Now we are ready to state our main theorem
of this section, that allows us to describe scattering diagrams in terms of flow tree maps. This is
the technical heart of this paper.

Theorem 4.14. Fix a (I, η)-generic point α ∈ e⊥I ⊂ MR as in Definition 2.14 and a small enough
generic perturbation ω ∈ UI,α ∩ Uη of η as in § 4.3.1. Let J ⊂ I be a non-empty index set, and
x ∈ e⊥J a (J, η)-generic point such that x ∈ Fα,ω and the line segment (x+ RιeJω) ∩ Fα,ω is not
a point. Let σ ∈ WallSupp(h) be a wall containing x and with normal vector nσ = eJ . Then for
every consistent (N+, h)-scattering diagram φ constructed from initial data Iφ,n that satisfies
Iφ,n = 0 if n /∈ {ei}i∈I , we have

φ(σ)eJ = Ax,ω
J ((Iφ,ei)i∈J), (4.32)

where φ(σ)eJ ∈ heJ is the component of φ(σ) ∈ h in heJ , and Ax,ω
J is the flow tree map with

initial point x as in Definition 2.23.

Proof. The proof is done by induction on the cardinality of the subset J ⊂ I. For the initial step
of the induction, let J be a singleton, that is, J = {i} for some i ∈ J . Then by Lemma 2.7, TJ

consists of a single tree T , with one root and one leg connected by a single edge. Therefore by item
(i) of Definition 2.21, the map Ax,ω

J,T : gei → gei is the identity map. Hence, Ax,ω
J (Iφ,ei) = Iφ,ei . On

the other hand, let σ be a wall with nσ = ei. As ei does not admit any non-trivial decomposition
as a sum of elements of Supp(h) ⊂ N+

e , it follows from the algorithmic construction of scattering
diagrams from initial data reviewed in the proof of Proposition 3.11 that φ(σ)ei = Iφ,ei for every
consistent (N+, h)-scattering diagram φ. Therefore, we conclude φ(σ)ei = Ax,ω

J (Iφ,ei) and, hence,
the initial step of the induction.
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For the induction step, let J ⊂ I of cardinality |J | > 1. We assume that Theorem 4.14 holds
for every J ′ ⊂ I with |J ′| < |J |. Let σ ∈ WallSupp(h) be a wall such that nσ = eJ and let x ∈
Fα,ω ∩ σ be a (J, η)-generic point such that (x+ RιeJω) ∩ Fα,ω is a non-trivial line segment.

In the remaining part of the section, we show that the statement of the theorem holds for J ,
x, and σ in the following four steps.

Step I. We define a set of relevant joints J , and show in Lemma 4.15 that if two walls contained
in e⊥J intersect along any joint that is not relevant, then the elements of the Lie algebra
h associated to these walls are the same. This enables us to partition the hyperplane e⊥J
into regions where any wall in a given region has the same associated element of the Lie
algebra, which we denote by φi−1,i ∈ heJ in (4.34), for i ∈ {1, . . . , k}, and φk,∞ ∈ heJ

in (4.35).
Step II. Using the genericity of ω, we prove Lemma 4.16 and we obtain (4.36), expressing the

difference φi−1,i − φi,i+1 in terms of some Lie brackets. On the other hand, using that
ω is close enough to η, we prove that φk,∞ = 0.

Step III. Using the consistency condition around the relevant joints and the induction hypoth-
esis, we determine explicitly the Lie brackets appearing in (4.36).

Step IV. Using the explicit expression obtained in Step III for the difference in (4.36), we
obtain the expression (4.35) for φ(σ)eJ . This, together with φk,∞ = 0 shown in Step II,
concludes the proof.

We expand each of these steps in the remaining part of this section.

Step I. We define the set J of relevant joints: a joint j ∈ SSupp(h), that is, a codimension-
two cone of the cone complex SSupp(h) is relevant if there exists a subindex set J ′ ⊂ J with
j ⊂ e⊥J ′ ∩ e⊥J and η(eJ ′ , eJ) 	= 0. Note that the point x is not contained in a relevant joint because
of the assumption that x is (J, η)-generic. Let 0 = t0 < t1 < · · · < tk be an increasing sequence of
positive real numbers, such that the intersection points of the half-line x+ R≥0ιeJω with relevant
joints j ∈ J correspond to points

xi = x+ tiιeJω ⊂ e⊥J ⊂ MR, (4.33)

for i ∈ {1, . . . , k}, as illustrated in Figures 4.2 and 4.3.

Lemma 4.15. Let φ be a consistent (N+, h)-scattering diagram, such that Iφ,n = 0 if n /∈ {ei}i∈J .
Let σ1, σ2 ∈ WallSupp(h) such that nσ1 = nσ2 = eJ . Assume that the intersection σ1 ∩ σ2 is a joint
not belonging to J . Then we have φ(σ1)eJ = φ(σ2)eJ .

Proof. By consistency of φ applied around the joint σ1 ∩ σ2, the difference φ(σ′)eJ − φ(σ)eJ is
an element of heJ equal to a sum of iterated Lie brackets in the elements φ(dk), where dk ∈
WallSupp(h) are the walls containing σ1 ∩ σ2 apart from σ1 and σ2. As, by assumption, σ1 ∩ σ2 /∈
J , for every such wall dk, we have either ndk

= eJ ′ for J ′ ⊂ I not contained in J , or ndk
= eJ ′ with

J ′ ⊂ J and η(eJ , eJ ′) = 0. If J ′ ⊂ I is not contained in J , then [heJ′ , h] ∩ heJ = {0} and so in this
case the wall dk does not contribute non-trivially to the sum of iterated Lie brackets. If J ′ ⊂ J
and η(eJ ′ , eJ) = 0, then η(eJ ′ , n) = 0 and [eJ ′ , hn] = 0 for every n ∈ N such that eJ = eJ ′ + n,
and so also in this case the wall dk does not contribute to the sum of iterated Lie brackets. We
conclude that φ(σ1)eJ − φ(σ2)eJ = 0. �

By Lemma 4.15, for any i ∈ {1, . . . , k}, if σ1, σ2 are two walls with nσ1 = nσ2 = eJ such
that σ1 ∩ (x+ R≥0ιeJω) and σ2 ∩ (x+ R≥0ιeJω) are non-trivial line segments contained in
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Figure 4.2. Joints on the wall e⊥J , the perturbation ιeJ
ω of ιeJ

η, and the half line x+ R≥0ιeJ
ω.

Figure 4.3. Walls intersecting along joints (left panel) and the wall σi−1,i ⊂ e⊥J (right panel).

x+ [ti−1, ti]ιeJω, then φ(σ1)eJ = φ(σ2)eJ . We denote this common value by

φi−1,i ∈ heJ . (4.34)

Note that φ(σ)eJ = φ0,1. Similarly, for every walls σ1, σ2 with nσ1 = nσ2 = eJ such that σ1 ∩ (x+
R≥0ιeJω) and σ2 ∩ (x+ R≥0ιeJω) are non-trivial line segments contained in x+ [tk,∞)ιeJω, we
have φ(σ1)eJ = φ(σ2)eJ , and we denote this common value by

φk,∞ ∈ heJ . (4.35)

Step II. In this step, we show that the differences between φi−1,i and φi,i+1 have the form given
by (4.36), and we prove that φk,∞ = 0.

Lemma 4.16. Let ω ∈ UI,α as in Definition 2.15. Let J = J1  · · ·  Js be a partition of J in s
subsets such that xi ∈ e⊥J1

∩ · · · ∩ e⊥Js
. Then, we have s ≤ 2.

Proof. If s ≥ 3, then writing J ′
1 = J1, J ′

2 = J2 and J ′
3 =

⋃s
k=3 Jk, we have J = J ′

1  J ′
2  J ′

3 and
xi ∈ e⊥J ′

1
∩ e⊥J ′

2
∩ e⊥J ′

3
. Thus, it is enough to prove that the case s = 3 cannot happen.
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Figure 4.4. A tree T̃ as in the proof of Lemma 4.16.

Thus, we assume by contradiction that there exists a partition J = J1  J2  J3 such that
xi ∈ e⊥J1

∩ e⊥J2
∩ e⊥J3

. As we are assuming that (x+ RιeJω) ∩ Fα,ω is a non-trivial line segment,
there exists a tree T ∈ T η

I and an edge E of T such that, denoting by v the vertex of T incident
to E on the path from E to the leaves, x is in the interior of jα,ω

T (E) and the charge ev as in
Definition 2.8 is given by ev = eJ .

We choose a tree T12 ∈ TJ1J2 such that, denoting by v12 the child of the root of T12, we
have ev′

12
= eJ1 and ev′′

12
= eJ2 . We also choose a tree T3 ∈ TJ3 . We construct a new tree T̃ ∈ T η

I

from T , T12, and T3 as follows (see Figure 4.4). First, let T be the tree obtained by removing
from T all the edges and vertices descendant from v, so that v becomes a leaf of T . Then, we
obtain T̃ by gluing the three trees T , T12, and T3: we identify the leaf v of T with the roots of
T12 and T3. We still denote by v the vertex of T̃ where T , T12, and T3 are glued together, and
by E the edge of T̃ incident to v on the path from v to the root. We have ev = eJ , and we label
v′ and v′′ the children of v so that ev′ = eJ1 + eJ2 , ev′′ = eJ3 , and (v′)′ and (v′)′′ the children of
v′ so that e(v′)′ = eJ1 and e(v′)′′ = eJ2 .

By (4.30), we have jT̃ (v) = θα,ω

T̃ ,v
and it follows from Lemma 2.12 that jT̃ (v) ∈ (eJ1 + eJ2)

⊥ ∩
e⊥J3

. As we also have jT̃ (E) ⊂ x+ RιeJω, we deduce that jT̃ (v) is the intersection point of the
line x+ RιeJ with (eJ1 + eJ2)

⊥ ∩ e⊥J3
and so jT̃ (v) = xi. As we are assuming xi ∈ e⊥J1

∩ e⊥J2
∩ e⊥J3

,
we have in particular θα,ω

T̃ ,v
(eJ1) = 0, so θα,ω

T̃ ,v
(e(v′)′) = 0, in contradiction with our assumption that

ω ∈ UI,α and Definition 2.15 of UI,α. �

For every i ∈ {1, . . . , k}, we pick a relevant joint ji ∈ J containing the point xi. By consis-
tency of φ around the joint ji, the difference φi−1,i − φi,i+1 can be written in terms of the walls
containing ji as a sum of iterated Lie brackets. By Lemma 4.16, φi−1,i − φi,i+1 only receives
contributions from two-terms decompositions eJ = eJ1 + eJ2 . Denote by Pji the set of {J1, J2}
with J1, J2 ⊂ J , J = J1  J2, ji ⊂ e⊥J1

∩ e⊥J2
, and η(eJ1 , eJ2) 	= 0. Then, we have

φi−1,i − φi,i+1 =
∑

{J1,J2}∈Pji

gji
J1,J2

, (4.36)

where gji
J1,J2

is a scalar multiple of a Lie bracket produced by the walls contained in the
hyperplanes e⊥J1

and e⊥J2
and intersecting along the joint ji. It follows from Lemma 4.16

that one can compute each term gji
J,J ′ as if the only walls intersecting along the joint ji

were contained in the hyperplanes e⊥J1
, e⊥J2

and e⊥J . The precise form of gji
J1,J2

is given
in Lemma 4.18.
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Proposition 4.17. For ω ∈ Uη, we have φk,∞ = 0.

Proof. As the set of walls WallSupp(h) is finite, there exists a wall σ∞ ∈ WallSupp(h) such that
nσ∞ = eJ and x+ tιeJω ⊂ σ∞ for t large enough, as illustrated in Figure 4.2. As σ∞ is a cone
in MR, this last condition is only possible if ιeJω ∈ σ∞. As Supp(h) ⊂ N+

e , it follows from the
assumption ω ∈ Uη and from the Definition 4.10 of Uη that ιeJη ∈ σ∞: indeed the condition
that ω(eJ , n) has the same sign as η(eJ , n) for all n ∈ N+

e exactly means that there are no
hyperplane n⊥ with n ∈ N+

e and separating the points ιeJω and ιeJω. Therefore, we have by
Proposition 3.9 that φ(σ∞)eJ = Iφ,eJ

. However, we are assuming that Iφ,n = 0 if n /∈ {ei}i∈I and
|J | > 1, so Iφ,eJ

= 0. We conclude that φk,∞ = φ(σ∞)eJ = 0. �

Step III. In this step, we apply the consistency condition for φ around the joint ji through
the point xi = x+ tiιeJω to compute the quantities gji

J1,J2
appearing in (4.36).

We denote by σi−1,i (respectively, σi,i+1) the wall containing ji such that nσi−1,i = eJ and
σi−1,i ⊂ ji − R≥0ιeJω (respectively, σi,i+1 ⊂ ji + R≥0ιeJω), as illustrated in Figures 4.2 and 4.3.
We have φ(σi−1,i) = φi−1,i and φ(σi,i+1) = φi,i+1.

Let {J1, J2} ∈ Pji . We denote by din
1 , din

2 , dout
1 and dout

2 the walls containing ji such that
ndin

1
= ndout

1
= eJ1 , ndin

2
= ndout

2
= eJ2 ,

din
1 ⊂ ji + R≥0ιeJ1

ω, din
2 ⊂ ji + R≥0ιeJ2

ω (4.37)

dout
1 ⊂ ji − R≥0ιeJ1

ω, dout
2 ⊂ ji − R≥0ιeJ2

ω. (4.38)

By Lemma 4.16, there are no non-trivial decompositions eJ1 =
∑s

j=1 nj with nj ∈ N+
e and

ji ⊂ ∩s
j=1n

⊥
j , and so it follows from the consistency of φ around ji that φ(dout

1 )eJ1
= φ(din

1 )eJ1
.

Similarly, we have φ(dout
2 )eJ2

= φ(din
2 )eJ2

.

Lemma 4.18. Let p : [0, 1] → MR be a h-generic oriented loop around ji intersecting successively
din
2 , σi,i+1, din

1 , dout
2 , σi−1,i, and dout

1 (see Figure 4.5). Then, we have

gji
J1,J2

= − sgn(ω(eJ1 , eJ2))[φ(din
1 )eJ1

, φ(din
2 )eJ2

]. (4.39)

Proof. Denote by ε1 (respectively, ε2 and ε) the sign of the derivative of t �→ −p(t)(eJ1) (respec-
tively, −p(t)(eJ2) and −p(t)(eJ)) at the intersection point of p with din

1 (respectively, din
2 and

σi,i+1). According to (3.5), we have

Ψp,φ = e
−ε1φ(din

1 )eJ1 e−εφi−1,ie
−ε2φ(din

2 )eJ2 e
ε1φ(din

1 )eJ1 eεφi,i+1e
ε2φ(din

2 )eJ2 . (4.40)

Therefore, the consistency of φ around ji implies

ε(φi,i+1 − φi−1,i) + ε1ε2[φ(din
1 )eJ1

, φ(din
2 )eJ2

] = 0 (4.41)

and so

gji
J1,J2

= εε1ε2[φ(din
1 )eJ1

, φ(din
2 )eJ2

]. (4.42)

We show − sgn(ω(eJ1 , eJ2)) = εε1ε2 in the remaining part of the proof. We work in the plane
transverse to ji spanned by ιeJ1

ω, ιeJ2
ω, and we view (eJ1 , eJ2) as coordinates on this plane. Up

to smoothly deforming p, one can assume that p intersects pin
2 (respectively, σi,i+1 and din

1 ) at the
point ji + ιeJ2

ω (respectively, ji + ιeJω and ji + ιeJ1
ω), which has coordinates (−ω(eJ1 , eJ2), 0)

(respectively, (−ω(eJ1 , eJ2), ω(eJ1 , eJ2)) and (0, ω(eJ1 , eJ2))).
By definition, ε2 is minus the sign of variation of the coordinate eJ2 when p crosses din

2 .
When p goes from ji + ιeJ2

ω to ji + ιeJω, the variation of the coordinate eJ2 is ω(eJ1 , eJ2),
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Figure 4.5. Consistency around the joint ji.

and so ε2 = − sgn(ω(eJ1 , eJ2)). Similarly, one checks that ε = − sgn(ω(eJ1 , eJ2)) and
ε1 = − sgn(ω(eJ1 , eJ2)). �

Lemma 4.19. We can apply the induction hypothesis to J1, din
1 , xi and J2, din

2 , xi. Hence,

φ(din
1 ) = Axi,ω

J1
((Iφ,ej )j∈J1), (4.43)

φ(din
2 ) = Axi,ω

J2
((Iφ,ej )j∈J2). (4.44)

Proof. To show we can apply the induction hypothesis to J1, d
in
1 , xi and J2, din

2 , xi, we need to
show that:

(i) the point xi is (J1, η)-generic and (J2, η)-generic;
(ii) the intersections (xi + RιeJ1

ω) ∩ Fα,ω and (xi + RιeJ1
ω) ∩ Fα,ω are non-trivial line

segments.

To prove part (i), first note that xi ∈ ji ⊂ e⊥J1
∩ e⊥J2

. If there were J ′
1 � J1 such that xi ∈

e⊥J ′
1
, then, writing J1 = J ′

1  J ′′
1 , one would have eJ = eJ ′

1
+ eJ ′′

1
+ eJ2 and xi ∈ e⊥J ′

1
∩ e⊥J ′′

1
∩ e⊥J2

, in
contradiction with Lemma 4.16. Therefore, xi is (J1, η)-generic. Exchanging the roles of J1 and
J2, this also proves that xi is (J2, η)-generic.

To prove part (ii), we follow the same logic as in the proof of Lemma 4.16. As we are assuming
that x+ RιeJω ⊂ F is a non-trivial line segment, there exists a tree T ∈ T η

I and an edge E of T
such that, denoting by v the vertex of T incident to E on the path from E to the leaves, x is in
the interior of jα,ω

T (E) and ev = eJ .
We choose trees T1 ∈ TJ1 and T2 ∈ TJ2 . We construct a new tree T̃ ∈ T η

I from T , T1, and
T2 as follows (see Figure 4.6). First, let T be the tree obtained by removing from T all the
edges and vertices descendant from v, so that v becomes a leaf of T . Then, we obtain T̃ by
gluing the three trees T , T1, and T2: we identify the leaf v of T with the roots of T1 and T2.
We still denote by v the vertex of T̃ where T , T1, and T2 are glued together and by E the
edge of T̃ incident to v on the path from v to the root. We have ev = eJ and we label v′ and
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H. Argüz and P. Bousseau

Figure 4.6. A tree T̃ as in the proof of Lemma 4.19.

v′′ the children of v so that ev′ = eJ1 and ev′′ = eJ2 . Let E′ (respectively, E′′) be the edge
of T̃ connecting v to v′ (respectively, v′′). We have jT̃ (ev) = θα,ω

T̃ ,v
, and so by Lemma 2.12,

jT̃ (ev) ∈ e⊥J1
∩ e⊥J2

. As we also have jT̃ (E) ⊂ x+ RιeJω, we deduce that jT̃ (v) = xi. We conclude
that jT̃ (E′) ⊂ (xi + RιeJ1

ω) ∩ Fα,ω and jT̃ (E′′) ⊂ (xi + RιeJ2
ω) ∩ Fα,ω. By Proposition 4.12,

jT̃ (E′) and jT̃ (E′′) are non-trivial line segments and hence the proof of part (ii) follows. �
Thus, we can rewrite Lemma 4.18 as

gji
J1,J2

= − sgn(ω(eJ1 , eJ2))[A
xi,ω
J1

, Axi,ω
J2

]((Iφ,ej )j∈J). (4.45)

By Definition 2.23 of the flow tree maps as sum over trees, this can be rewritten as

gji
J1,J2

= −
∑

T1∈T η
J1

∑
T2∈T η

J2

sgn(ω(eJ1 , eJ2))[A
xi,ω
J1,T1

, Axi,ω
J2,T2

]((Iφ,ej )j∈J). (4.46)

Step IV. As a final step, we show that

φ(σ)eJ = φk,∞ +Ax,ω
J ((Iφ,ej )j∈J). (4.47)

To prove (4.47), first observe that summing (4.36) side by side for all values i ∈ {1, . . . , k}
we obtain φ(σ)eJ = φk,∞ +

∑k
i=1

∑
{J1,J2}∈Pji

gji
J1,J2

. Then, using (4.46), we get

φ(σ)eJ = φk,∞ −
k∑

i=1

∑
{J1,J2}∈Pji

∑
T1∈T η

J1

∑
T2∈T η

J2

sgn(ω(eJ1 , eJ2))[A
xi,ω
J1,T1

, Axi,ω
J2,T2

]((Iφ,ej )j∈J). (4.48)

On the other hand, we have Ax,ω
J =

∑
T∈T η

J
Ax,ω

J,T by Definition 2.23, and so, using Definition 2.21:

∑
T∈T η

J

Ax,ω
J,T = −

∑
T∈T η

J

sgn(x(ev′
T
)) + sgn(ω(ev′

T
, ev′′

T
))

2
[Ax,ω

J,T,v′
T
, Ax,ω

J,T,v′′
T
], (4.49)

where vT is the child of the root of the tree T , and v′T , v
′′
T are the children of vT .

Comparing (4.48) and (4.49), it remains to show that
k∑

i=1

∑
{J1,J2}∈Pji

∑
T1∈T η

J1

∑
T2∈T η

J2

sgn(ω(eJ1 , eJ2))[A
xi,ω
J1,T1

, Axi,ω
J2,T2

] (4.50)

=
∑

T∈T η
J

sgn(x(ev′
T
)) + sgn(ω(ev′

T
, ev′′

T
))

2
[Ax,ω

J,T,v′
T
, Ax,ω

J,T,v′′
T
]. (4.51)
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Figure 4.7. Trees T1, T2, and T .

Given T ∈ T η
J and writing J1 = JT,v′

T
and J2 = JT,v′′

T
, we obtain a tree T1 ∈ TJ1 (respectively,

T2 ∈ TJ2) by considering the subtree of T made of vT and its descendant through the child v′T
(respectively, v′′T ) (see Figure 4.7). If the contribution of T in (4.51) is non-zero, we have in fact
T1 ∈ T η

J1
and T2 ∈ T η

J2
. We claim that x(eJ1) and ω(eJ1 , eJ2) are of the same sign if and only if the

intersection point of the line x+ RιeJω with e⊥J1
∩ e⊥J2

is contained in the half-line x+ R≥0ιeJω.
Indeed, the intersection point of the line x+ RιeJω with e⊥J1

∩ e⊥J2
is the point

x− x(eJ1)
ω(eJ , eJ1)

ιeJω. (4.52)

Thus, if sgn(x(eJ1)) + sgn(ω(eJ1 , eJ2)) 	= 0, the intersection point of the line x+ RιeJω with
e⊥J1

∩ e⊥J2
is equal xi for some 1 ≤ i ≤ k such that {J1, J2} ∈ ji, and we have

xi = x− x(eJ1)
ω(eJ , eJ1)

ιeJω = θx,ω
T,v . (4.53)

Then, it follows from Definitions 2.21 and 2.23 that Axi,ω
J1,T1

= Ax,ω
J,T,v′

T
and Axi,ω

J2,T2
= Ax,ω

J,T,v′′
T
.

Conversely, for every 1 ≤ i ≤ k and {J1, J2} ∈ Pji , every T1 ∈ T η
J1

and T2 ∈ T η
J2

are obtained in
this way. Hence, (4.47) follows.

From (4.47) together with Proposition 4.17, we obtain φ(σ)eJ = Ax,ω
J ((Iφ,ej )j∈J) and so

Theorem 4.14 holds for J , σ, and x. Hence, this concludes our proof of Theorem 4.14. �

4.4 The flow tree formula for scattering diagrams
Definition 4.20. A point τ ∈ γ⊥ ⊂MR is γ-generic if for every γ′ ∈ N , θ(γ′) = 0 implies that
γ′ is collinear with γ.

Lemma 4.21. Let τ ∈ γ⊥ ⊂MR be a γ-generic point as in Definition 4.20. Then, the image
α := q(τ) ∈ e⊥I ⊂ MR of τ by the map q : MR → MR given by (4.4) is (I, η)-generic as in
Definition 2.14.

Proof. Assume by contradiction that α is not (I, η)-generic, which means by Definition 2.14 that
there exists a tree T ∈ T η

I such that α(ev′) = 0, where v is the child of the root of T . Thus,
we have τ(p(ev′)) = 0, that is, τ ∈ p(ev′)⊥, and so the condition that τ is γ-generic implies by
Definition 4.20 that p(ev′) is collinear with γ = p(eI). Recalling that ev = eI , this implies that
η(ev′ , ev) = η(ev′ , eI) = 〈p(ev′), p(eI)〉 = 0, in contradiction with the assumption that T ∈ T η

I and
the Definition 2.13 of T η

I . �
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Let τ ∈ γ⊥ be a γ-generic point as in Definition 4.20. By Lemma 4.21, the point α :=
q(τ) ∈ e⊥I is (I, η)-generic. Therefore, by Proposition 2.18 the set UI,α of (I, α)-generic skew-
symmetric bilinear form is open and dense in

∧2 MR, and for every ω ∈ UI,α the flow tree map
Aα,ω

I :
∏

i∈I hei → he is defined by Definition 2.23.
Finally, we arrive at our main theorem of this section, the flow tree formula for scattering

diagrams I.

Theorem 4.22. Let d ∈ WallSupp(g) be a wall in MR and Γ = {γi}i∈I ∈ mult(N+) a multiset

of elements of N+ such that d ⊂ γ⊥, where γ =
∑

i∈I γi. Let τ ∈ d be a γ-generic point and
α := q(τ) ∈ MR the image of τ by the map q : MR → MR as in (4.4). For every small enough
generic perturbation ω ∈ UI,α ∩ Uη of η as in 4.3.1, the map F g,d

Γ in (3.14) is given by the ‘flow
tree formula for scattering diagrams I’:

F g,d
Γ =

1∏
n∈N+ mΓ(n)!

Âα,ω
I , (4.54)

where Âα,ω
I is as in Definition 4.8 the specialization of the flow tree map Aα,ω

I defined in
Definition 2.23.

Proof. Let e ∈ WallSupp(h) be a wall in MR containing q(d) such that e ⊂ e⊥I . In particular, we
have α ∈ e. By Theorem 4.9, we have

F g,d
Γ =

1∏
n∈N+ mΓ(n)!

F̂ h,e
Γe
. (4.55)

On the other hand, as α is (I, η)-generic by Lemma 4.21, we can apply Theorem 4.14 for J = I,
σ = e, x = α, and we obtain

F h,e
Γe

= Aα,ω
I . (4.56)

The result follows from (4.55) and (4.56). �
We provide also a variant of the flow tree formula for scattering diagrams, the flow tree

formula for scattering diagrams II, which involves perturbing the points in MR rather than the
skew-symmetric bilinear form, as in Theorem 4.22.

Note that from Proposition 2.20 that the set VI,η of β ∈ e⊥I ⊂ MR such that β is
(I, η)-generic and η is β-generic is open and dense in e⊥I . For every β ∈ VI,η, we define the flow
tree maps Aβ,η

I :
∏

i∈I hei → he as in Definition 2.23 and its specialization Âβ,η
I :

∏
n∈Γ gn → gγ

as in Definition 4.8. For every β ∈ VI,η, we define F β,η as Fα,ω in (4.31) and replacing α with
β, and ω with η. We also define V α ⊂ e⊥I as the set of β ∈ e⊥I such that there exists a wall
e ∈ WallSupp(h) with e ⊂ e⊥I which contains both α and β. We have α ∈ V α and V α is an open
neighborhood of α in e⊥I . We say that β is a small enough generic perturbation of α in e⊥I if

β ∈ VI,α ∩ V α. (4.57)

Theorem 4.23. Fix a (I, η)-generic point α ∈ e⊥I ⊂ MR as in Definition 2.14 and a small enough
generic perturbation β ∈ VI,α ∩ V α of α in e⊥I . Let J ⊂ I be a non-empty index set, and x ∈ e⊥J
a (J, η)-generic point such that x ∈ F β,η and the line segment (x+ RιeJω) ∩ F β,η is not a point.
Let σ ∈ WallSupp(h) be a wall containing x and with normal vector nσ = eJ . Then for every
consistent (N+, h)-scattering diagram φ such that Iφ,n = 0 if n /∈ {ei}i∈I , we have

φ(σ)eJ = Ax,η
J ((Iφ,ei)i∈J) (4.58)

Proof. The proof is analogous to the proof of Theorem 4.14, with α, ω replaced by β, η, respec-
tively, and with an extra simplification in Proposition 4.17: for t positive large enough, x+ tιeJη
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is contained in a wall σ∞, which thus necessarily contains ιeJη and so φk,∞ = 0 follows from
Proposition 3.9. �

Theorem 4.24. Let d ∈ WallSupp(g) be a wall in MR and Γ = {γi}i∈I ∈ mult(N+) a multiset

of elements of N+ such that d ⊂ γ⊥, where γ =
∑

i∈I γi. Let τ ∈ d be a γ-generic point and
α := q(τ) ∈ MR the image of τ by the map q : MR → MR as in (4.4). For every small enough
generic perturbation β ∈ VI,α ∩ V α of α in e⊥I , the universal map F g,d

Γ in (3.14) is given by the
‘flow tree formula for scattering diagrams II’:

F g,d
Γ =

1∏
n∈N+ mΓ(n)!

Âβ,η
I . (4.59)

Proof. Let e ∈ WallSupp(h) be a wall in MR such that e ⊂ e⊥I and containing both q(d) and β.
By Theorem 4.9, we have

F g,d
Γ =

1∏
n∈N+ mΓ(n)!

F̂ h,e
Γe
. (4.60)

On the other hand, as α is (I, η)-generic by Lemma 4.21, we can apply Theorem 4.23 for J = I,
σ = e, x = β, and we obtain

F h,e
Γe

= Aβ,η
I . (4.61)

The result follows from (4.60) and (4.61). �

Remark 4.25. We compare briefly the passage from scattering diagrams in N with scattering
diagrams in N and the perturbation of scattering diagrams introduced in [GPS10]. Using
our notation, the perturbation of [GPS10] consists in replacing the hyperplanes γ⊥i = {θ ∈
MR | θ(γi) = 0} by the affine hyperplanes {θ ∈MR | θ(γi) = εi} where εi ∈ R are generic per-
turbation parameters. On the other hand, denoting by K the kernel of p : N → N , we obtain by
duality a surjective map π : MR → K∨

R
, where K∨

R
:= Hom(K,R). We claim that our scattering

diagram in MR is a universal family of perturbed scattering diagrams in the sense of [GPS10].
Indeed, fixing ε ∈ K∨

R
is equivalent to fixing the perturbation parameters εi of [GPS10], and the

intersections of our scattering diagram in MR with the fibers π−1(ε) are essentially the perturbed
scattering diagrams of [GPS10].

The embedded trees jβ,η
T (T ◦) used in the proof of Theorem 4.24 are all contained in the fiber

π−1(π(β)) of π. Indeed, all edges have directions of the form ιevη, and so for every k ∈ K, we have
ιevη(k) = η(ev, k) = 0 because η is the pullback of 〈−,−〉 by p. Therefore, these embedded trees
viewed inside π−1(π(β)) essentially coincide with the tropical curves contained in the perturbed
scattering diagrams considered in [GPS10] (see also [Man21, CM20]).

By contrast, the embedded trees jα,ω
T (T ◦) used in the proof of Theorem 4.22 are not contained

in a given fiber of π in general: one cannot use the perturbed scattering diagrams in the sense
of [GPS10] and it is essential to work with scattering diagrams in MR.

5. The flow tree formula for DT invariants

In §§ 5.1–5.2, we review the definition of DT invariants of quivers with potentials. In § 5.3, we
state the flow tree formula, which computes DT invariants in terms of a smaller set of attractor
DT invariants. We prove the flow tree formula for DT invariants in § 5.4 by applying the flow
tree formula for scattering diagrams to the stability scattering diagram introduced by Bridgeland
in [Bri17].
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5.1 Quivers with potentials
A quiver Q is a finite oriented graph. A potential W ∈ CQ for Q is a finite linear combination
of oriented cycles of Q in the path algebra CQ of Q. We assume that Q does not contain
oriented 2-cycles and we denote by Q0 the set of vertices of Q, and set N := ZQ0 , with dual
MR := Hom(N,R), and

N+ := NQ0\{0} ⊂ N. (5.1)

Definition 5.1. A representation E of Q is a finite-dimensional left-module over the path
algebra CQ, that is, the data of a finite-dimensional C-vector space Ei for each vertex i ∈ Q0

and of a linear map fα : Ei → Ej for every arrow α : i→ j in Q. Every non-zero representation
of Q has a dimension vector (dimEi)i∈Q0 ∈ N+.

Definition 5.2. Given γ ∈ N+ and a stability parameter θ ∈ γ⊥ = {θ′ ∈MR | θ′(γ) = 0}, a rep-
resentation E of Q of dimension vector γ is θ-semistable (respectively, θ-stable) if for every
non-zero strict subrepresentation F � E, we have θ(F ) ≤ 0 (respectively, θ(F ) < 0).

It is shown in [Kin94] that there exists a smooth quasiprojective variety Mθ−st
γ parametriz-

ing isomorphism classes of θ-stable representations of Q of dimension vector γ, and a generally
singular quasiprojective variety Mθ

γ parametrizing S-equivalence classes of θ-semistable repre-
sentations of Q of dimension vector γ. A potential W ∈ CQ defines regular functions Tr(W )θ

γ on
the moduli spaces M θ

γ as follows: given a representation E = (Ei, fα)i,α ∈M θ
γ and an a oriented

cycle c = αr . . . α0 in Q starting and ending at the vertex i0 ∈ Q0, the composition

fc := fαr ◦ · · · ◦ fα0 (5.2)

of the linear maps fαi along the arrows of the cycle is an endomorphism of Ei0 , and we define the
evaluation of the function Tr(c)θ

γ on E as being the trace of this endomorphism. More generally,
W is a linear combination

∑
k akck of oriented cycles ck and we define Tr(W )θ

γ by linearity, that
is, Tr(W )θ

γ :=
∑

k ak Tr(ck)θ
γ .

5.2 DT invariants of quivers with potentials and flow trees
Let (Q,W ) be a quiver with potential, γ ∈ N+ a dimension vector, and θ ∈ γ⊥ ⊂MR a stability
parameter. We assume that θ is γ-generic in the sense that θ(γ′) = 0 implies γ′ collinear with γ.
Then, the (refined) DT invariant of (Q,W ) for the dimension vector γ and the stability parameter
θ is a Laurent polynomial

Ωθ
γ(y, t) ∈ Z[y±, t±] (5.3)

in two variables y and t, and with integer coefficients. In the ideal case where Mθ
γ is smooth and

the critical locus of Tr(W )θ
γ is non-degenerate, Ωθ

γ(y, t) coincides with the (signed symmetrized)
Hodge polynomial of the critical locus of Tr(W )θ

γ . In general, the singularities of M θ
γ and the

degeneracy of the critical locus require the use of the theory of perverse sheaves [BBD82] and of
the theory of vanishing cycles [DK73], respectively. We review the definition of Ωθ

γ(y, t) following
the approach of [MR19, DM20] and referring to [DM20] for technical details.

We define the DT sheaf DT θ
γ on M θ

γ by

DT θ
γ =

{
φTr(W )θ

γ
(ICMθ

γ
) if M θ−st

γ 	= ∅
0 otherwise,

(5.4)

where ICMθ
d

denotes the intersection cohomology sheaf on Mθ
γ and φTr(W )θ

γ
is the vanishing cycle

functor defined by the function
Tr(W )θ

γ : M θ
γ −→ C. (5.5)
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The cohomological DT invariant DT θ
γ is then defined as the cohomology of the DT sheaf:

DT θ
γ := H∗(M θ

γ ,DT θ
γ ). (5.6)

By Saito’s theory of mixed Hodge modules [Sai90], the graded vector space DT θ
γ is naturally

endowed with a (monodromic) mixed Hodge structure, and so in particular with an increasing
weight filtration W and a decreasing Hodge filtration F. The Hodge–Deligne numbers of DT θ

γ

are
hp,q :=

∑
i∈Z

(−1)i dimGrp
FGr

W
p+qH

i(M θ
γ ,DT θ

γ ), (5.7)

where Gr∗F and GrW∗ are the graded pieces of the filtrations F and W. The (refined) DT invariant
Ωθ

γ(y, t) is by definition a Laurent polynomial with coefficients the Hodge–Deligne numbers of
DT θ

γ :

Ωθ
γ(y, t) :=

∑
p,q

hp,qyp+qtp−q ∈ Z[y±, t±]. (5.8)

The flow tree formula is more naturally formulated in terms of the rational DT invariants
Ωθ

γ(y, t) ∈ Q(y, t) defined by

Ωθ
γ(y, t) :=

∑
γ′∈N+

γ=kγ′, k∈Z≥1

1
k

y − y−1

yk − y−k
Ωθ

γ′(yk, tk). (5.9)

It is proved in [DM15, DM20] that the dependence on θ of the invariants Ωθ
γ(y, t) is given by the

wall-crossing formula of Joyce and Song [JS12] and Kontsevich and Soibelman [KS08], and that
the invariants Ωθ

γ(y, t) coincide with those previously defined in [JS12, KS08] using the motivic
Hall algebra.

5.3 Attractor invariants and the flow tree formula
In this section we state our main result, the flow tree formula in Theorem 5.5, which expresses
the DT invariants in terms of a smaller subset of invariants, referred to as attractor invariants
and defined as follows.

Let 〈−,−〉 : N ×N → Z be the skew-symmetric bilinear form defined by

〈γ, γ′〉 :=
∑

i,j∈Q0

(aij − aji)γiγ
′
j , (5.10)

where aij is the number of arrows in Q from the vertex i to the vertex j.

Definition 5.3. For every γ ∈ N+, the rational attractor invariant Ω∗
γ(y, t) is defined by

Ω∗
γ(y, t) := Ωθγ

γ (y, t), (5.11)

where Ωθγ

γ (y, t) is as in (5.9), and θγ is a small γ-generic perturbation of the attractor point
〈γ,−〉 ∈MR.

Remark 5.4. Definition 5.3 of rational attractor invariants is independent of the choice of the
small γ-generic perturbation (see [MP20, Theorem 3.1]): indeed, if there is a wall of marginal
stability associated to a decomposition γ = γ′ + γ′ passing through the attractor point 〈γ,−〉,
then 〈γ, γ′〉 = 0 and so Ωθ

γ(y, t) does not jump through this wall according to the wall-crossing

formula. Replacing Ωθγ

γ (y, t) in Definition 5.3 by Ωθγ
γ (y, t) in (5.8), we obtain the definition of
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an attractor invariants, which are related to rational attractor invariants via the formula (5.9).
In what follows, we often make use of the rational attractor invariants, which are better suited
to wall-crossing computations.

By iteration of the wall-crossing formula, the DT invariants Ωθ
γ(y, t) for any γ-generic stability

parameter θ ∈ γ⊥ can be expressed in terms of the attractor invariants Ω∗
γ by a formula of the

form

Ωθ
γ(y, t) =

∑
r≥1

∑
{γi}1≤i≤r∑r

i=1 γi=γ

1
|Aut({γi}i)|

F θ
r (γ1, . . . , γr)

r∏
i=1

Ω∗
γi

(y, t), (5.12)

where the second sum is over the multisets {γi}1≤i≤r with γi ∈ N and
∑r

i=1 γi = γ. Here, the
denominator |Aut({γi}i)| is the order of the symmetry group of {γi}: ifmγ′ is the number of times
that γ′ ∈ N appears in {γi}i, then |Aut({γi}i)| =

∏
γ′∈N mγ′ !. The coefficients F θ

r (γ1, . . . , γr) are
universal in the sense that they depend on (Q,W ) only through the skew-symmetric form 〈−,−〉
on N . The flow tree formula gives an explicit formula for coefficients F θ

r (γ1, . . . , γr) as a sum over
binary trees. We state the flow tree formula in Theorem 5.5 after introducing some notation.

Let γ1, . . . , γr ∈ N such that
∑r

i=1 γi = γ. As in (4.2)–(4.4), we set I := {1, . . . , r} and we
introduce a rank-r free abelian group N =

⊕
i∈I Zei, along with the map p : N → N as in (4.2)

and the map q : MR → MR = Hom(N ,R) defined as in (4.4). We also define a skew-symmetric
bilinear form η ∈

∧2 M on N by η(ei, ej) := 〈γi, γj〉, and consider the image α of the stability
parameter θ by q:

α := q(θ) ∈ MR. (5.13)

By Lemma 4.21 the assumption that θ is γ-generic implies that α is (I, η)-generic and so we can
consider a small enough generic perturbation ω ∈ UI,α ∩ Uη of η as in Definitions 2.15 and 4.10.

In the following theorem we state our main result, the flow tree formula, which provides an
explicit description for the universal coefficient F θ

r (γ1, . . . , γr) that appears in the formula (5.12)
expressing the DT invariants Ωθ

γ(y, t) in terms of the attractor invariants Ω∗
γi

(y, t).

Theorem 5.5. For every small enough generic perturbation ω ∈ UI,α ∩ Uη ⊂
∧2 MR of η ∈∧2 MR, the universal coefficients F θ

r (γ1, . . . , γr) in (5.12) are given by the flow tree formula:

F θ
r (γ1, . . . , γr) =

∑
T∈T η

r

∏
v∈V ◦

T

εα,ω
T,vκ(η(ev′ , ev′′)), (5.14)

where the sum is over binary trees as in § 2.1, εα,ω
T,v ∈ {0, 1,−1} is as in (2.23) and

κ(x) := (−1)x · y
x − y−x

y − y−1
(5.15)

for every x ∈ Z.

The flow tree formula stated in Theorem 5.5 was conjectured by Alexandrov and Pioline
in [AP19]. The assumption ω ∈ UI,α ∩ Uη in Theorem 5.5 makes precise and explicit the condi-
tions ‘small enough’ and ‘generic’ which were left slightly vague in the statement of Theorem 1.1
given in the introduction and in the original formulation of the conjecture in [AP19]: ω ∈ Uη is
the condition ‘small enough’, and ω ∈ UI,α is the condition ‘generic’.

We also prove a variant of the flow tree formula recently conjectured by Mozgovoy [Moz22]
in which one perturbs points in MR rather than the skew-symmetric form. Recall that we denote
eI :=

∑
i∈I ei. By Proposition 2.20, the set VI,η of β ∈ e⊥I ⊂ MR such that β is (I, η)-generic and
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η is β-generic is open and dense in e⊥I . Finally, we denote by V α the open neighborhood of α
in e⊥I defined by: β ∈ V α if and only if for every n ∈ N+

e such that α(n) is non-zero, β(n) is
non-zero and of the same sign as α(n).

Theorem 5.6. For every small enough generic perturbation β ∈ VI,η ∩ V α of α in e⊥I , the uni-
versal coefficient F θ

r (γ1, . . . , γr) which appears in the formula (5.12) expressing the DT invariants

Ωθ
γ(y, t) in terms of the attractor invariants Ω∗

γi
(y, t) is given by

F θ
r (γ1, . . . , γr) =

∑
T∈T η

r

∏
v∈V ◦

T

εβ,η
T,vκ(η(ev′ , ev′′)), (5.16)

where the sum is over binary trees as in § 2.1, εα,ω
T,v is as in (2.23), and κ is as in (5.15).

In Theorem 5.6, the assumption β ∈ VI,η ∩ V α makes precise and explicit the expres-
sion ‘small enough generic perturbation’ used in the statement of Theorem 1.2 given in the
introduction: β ∈ V α is the condition ‘small enough’, and β ∈ VI,η is the condition ‘generic’.

5.4 Proofs of Theorems 5.5 and 5.6
We derive the proof of the flow tree formula in Theorem 5.5 (and of its variant in Theorem 5.6),
from the flow tree formula for scattering diagrams in Theorem 4.22 (and from its variant in
Theorem 4.24, respectively). We do this by applying the latter formulas to the stability scattering
diagram, which is a (N+, g)-scattering diagram as in Definition 3.2, introduced by Bridgeland.
We roughly review its description here, and for details refer to [Bri17].

Let (Q,W ) be a quiver with potential, and γ ∈ N+ be a dimension vector. Define a
N+-graded Lie algebra over Q(y, t) by

g̃ :=
⊕

n∈N+

Q(y, t)zn, (5.17)

where the Lie bracket [−,−] is given by

[zn1 , zn2 ] := κ(〈n1, n2〉)zn1+n2 , (5.18)

where κ is as in (5.15). Let δ : N → Z be an additive map such that δ(N+) ⊂ Z≥1. Then

g̃>n(γ) :=
⊕

n∈N+

δ(n)>δ(γ)

Q(y, t)zn (5.19)

is a Lie ideal of g̃ and we consider the quotient Lie algebra

g := g̃/g̃>δ(γ), (5.20)

which is finitely N+-graded. The support of g is Supp(g) = {n ∈ N+ | δ(n) ≤ δ(γ)}.
For every wall d ∈ WallSupp(g), pick a point xd ∈ d such that xd /∈ d′ for all d′ ∈ WallSupp(g)

distinct from d. The stability scattering diagram

φ : WallSupp(g) −→ g (5.21)

is defined by

φ(d) :=
∑
k≥1

δ(knd)≤δ(γ)

Ωxd

knd
(y, t)zknd , (5.22)

for every wall d ∈ WallSupp(g), where Ωxd

knd
(y, t) are rational DT invariants defined as in (5.9).

The definition of φ is, in fact, independent of the choices of the points xd: by the wall-crossing
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formula, the DT invariants Ωθ
n(y, t) with δ(n) ≤ δ(γ) do not jump as long as θ stays in the interior

of a wall d ∈ WallSupp(g). The following key theorem is due to Bridgeland [Bri17, Theorem 1.1].

Theorem 5.7 (Bridgeland [Bri17]). The stability scattering diagram is consistent.

More precisely, the main results of [Bri17] are stated in terms of the rational DT invariants
defined by Joyce and Song [JS12] using the motivic Hall algebra. The comparison with the
rational DT invariants defined as in (5.9) is established in [DM15, § 6.7]. Moreover, [Bri17,
Theorem 1.1] is only stated for the ‘unsigned unrefined’ invariants (virtual Euler characteristics),
but the proof by applying an integration map to the Hall algebra scattering diagram immediately
generalizes to the case of the ‘signed refined’ invariants (virtual signed Hodge polynomials) (see
also [DM21, § 7.1]).

By Theorem 5.7, we can apply Theorems 4.22 and 4.24 to the stability scattering diagram φ.
By Proposition 3.9, the initial data of φ are given by the attractor DT invariants:

Iφ,n = Ω∗
n(y, t)zn, (5.23)

for every n ∈ N+ with δ(n) ≤ γ, and so Theorems 5.5 and 5.6 follow.
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