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Abstract

The goal of machining scheme selection (MSS) is to select the most appropriate machining scheme for a previously designed
part, for which the decision maker must take several aspects into consideration. Because many of these aspects may be con-
flicting, such as time, cost, quality, profit, resource utilization, and so on, the problem is rendered as a multiobjective one.
Consequently, we consider a multiobjective optimization problem of MSS in this study, where production profit and ma-
chining quality are to be maximized while production cost and production time must be minimized, simultaneously.
This paper presents a new discrete method for particle swarm optimization, which can be widely applied in MSS to find
out the set of Pareto-optimal solutions for multiobjective optimization. To deal with multiple objectives and enable the de-
cision maker to make decisions according to different demands on each evaluation index, an analytic hierarchy process is
implemented to determine the weight value of evaluation indices. Case study is included to demonstrate the feasibility and
robustness of the hybrid algorithm. It is shown from the case study that the multiobjective optimization model can simply,
effectively, and objectively select the optimal machining scheme according to the different demands on evaluation indices.

Keywords: Analytic Hierarchy Process; Discrete Particle Swarm Optimization; Machining Scheme Selection;
Multiobjective Optimization

1. INTRODUCTION

Machining scheme selection (MSS) plays a key role in the
manufacturing systems of enterprises for maintaining a com-
petitive position in fast-changing markets. It is a crucial activ-
ity of process planning (Cicirello & Regli 2002; Babic et al.,
2011; Sibalija et al., 2011). One of the core activities in it is to
decide which manufacturing resources to select and in which
sequence to use them, mainly based on the objective of
achieving the correct quality, the minimal manufacturing
cost, and ensuring good manufacturability (Guo et al.,
2009). However, one part usually has more than one machin-
ing scheme, economical efficiency of each machining
scheme is different, and the states of manufacturing resources
are altering constantly, so the selection of machining opera-
tions and manufacturing resources for one part has a few fac-

tors to be considered. Because of the diversity of evaluation
factors and the different demands of decision makers, the
MSS is a multiobjective decision-making problem.

In traditional approaches, MSS is carried out mainly based
on knowledge and experience, which cannot fully consider
all kinds of influencing factors. Therefore, it is very important
to develop effective, efficient, and advanced technologies and
approaches for the multiobjective optimization problem of
MSS. Thus far, many approaches have been developed, that
is, the fuzzy optimization algorithm (Zhao, 1995), the hybrid
algorithm (Li et al., 2010), the artificial neural network (Vos-
niakos et al., 2009), the genetic algorithm (GA; Li et al.,
2005; Salehi & Tavakkoli-Moghaddam, 2009; Shao et al.,
2009), ant colony optimization (Leung et al., 2010), the particle
swarm optimization (PSO) algorithm (Chen & Lin, 2009) and
so on. Particularly, the evolutionary algorithms has become the
research focus, because their convergence speed to the global
or nearly global optimal solution is better than other techniques
(Yıldız, 2009). Therefore, evolutionary algorithms such as GA,
ant colony optimization, and PSO have been used to improve
the solution of optimization problems with complex natures.
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Among evolutionary algorithms, GA has been studied
thoroughly in MSS, and many improved versions have
achieved better performance. In recent years, the PSO algo-
rithm also has been used in many areas, such as multiobjec-
tive optimization (Rabbani et al., 2010), pattern recognition
(Kalyani & Swarup, 2011), fuzzy control systems (Marinaki
et al., 2010), parameter selection (Wu, 2011), and so on. The
results showed that the PSO algorithm is simpler, quicker,
and better in convergence performance than GA.

The focus of this paper is on researching the application of
PSO in MSS. Discrete PSO is needed to deal with the charac-
teristics of integer programming. However, some discrete
methods (Yeh, 2009; Yeh et al., 2009; Unler and Murat,
2010) are not fit for MSS, because they are not aiming at inte-
ger programming. This paper develops a new discrete method
by analyzing the characteristics of MSS. This method has been
proved concise and efficient by one case study in this paper.

Although some improvements regarding multiobjective
optimization of MSS have been achieved, because of the
complexity of MSS with conflicting objectives and con-
straints, the multiobjective optimization problem of MSS still
presents an important topic of investigation. One method for
multiobjective optimization is to combine the individual ob-
jective functions into a single composite function. The single
objective is determined by the method, such as utility theory,
the weighted sum method, and so on, but it may be very dif-
ficult to select proper weights or utility functions accurately.
Aiming at the problem, many approaches have been devel-
oped (Chan et al., 2005; Topaloglu, 2006; Wang et al.,
2010). In this research, a new hybrid algorithm based on a
novel discrete PSO (DPSO) algorithm and analytic hierarchy
process (AHP) is presented to tackle the problem of MSS.
Using the proposed hybrid algorithm, the weights of evalu-
ation indices are formulated and obtained by AHP; then,
weights, objectives, and constraints are combined and solved
by PSO; and finally, a set of machining scheme is presented
to the user as an outcome. The proposed approach not only
can consider the different evaluation indices synthetically
but also can assign the different weights to the indices accord-
ing to the different preference of the decision maker.

The rest of this paper is organized as follows. Section 2 is a
literature review. Section 3 presents the problem model. A
new DPSO for MSS is given in Section 4. Section 5 uses
the improved AHP algorithm to calculate weights of evalu-
ation indices. An application example of the developed hy-
brid algorithm is shown and analyzed in Section 6. Finally,
conclusions are summarized in Section 7.

2. LITERATURE REVIEW

2.1. PSO algorithm

PSO is an evolutionary computation technique developed by
Kennedy and Eberhart (1995) and then modified by Shi (Shi
& Eberhart, 1998). It is inspired by the social behavior of bird
flocking and fish schooling. Similar to GA, it is initialized

with a population of random solutions called particle posi-
tions in PSO. Each potential solution is also assigned a ran-
dom velocity. Every particle is affected by three factors: its
own velocity, the best position it has achieved so far (pbest),
and the global best position achieved by all particles (gbest).
A particle in swarm changes its velocity based on these three
factors.

2.2. AHP method

AHP is a combination of the qualitative and quantitative anal-
ysis methods for multicriteria decision making developed by
Saaty (1985, 1990). It has been studied widely and applied in
many fields related with multicriteria decision making such
as manufacturing (Nagahanumaiah et al., 2007), management
(Rezaei & Dowlatshahi, 2010), education (Melón et al.,
2008), government (Huang et al., 2008), and so on. The
widely variety of applications is due to its simplicity, ease
of use, and flexibility of integration with other technologies.
It mainly includes three operations: hierarchy construction,
priority analysis, and consistency verification. Its main char-
acteristic is that it is based on pairwise comparison judgment.

3. REPRESENTATION OF MSS AND THE
MULTIOBJECTIVE OPTIMIZATION MODEL

3.1. Representation of MSS

A practical industrial environment exhibits a high degree of
complexity where multiple machining schemes exist. There
are multiple objectives, that is, minimized cost, maximized
quality, maximized profit, and so on, and thus obtaining an
optimal or near-optimal machining scheme has long been a
difficult task in the manufacturing research community.
However, traditional selection of machining scheme usually
takes only one specific evaluation index into consideration
in the whole problem. In this way, it can make the problem
easy, but it also may lead to a unilateral result about the selec-
tion of the machining scheme. There are many factors that can
affect the selection of machining scheme, such as production
cost, production time, machining quality, production profit,
and so on. At the same time, the selection can also be affected
by the state and diversity of manufacturing resources, the
structure of the part, the shape of the surface, the skill of
the operator, and so on. The MSS is a typical multiobjective
decision-making problem. In this research, the MSS mainly
considers the aspect that the machining operation is fixed
and the manufacturing resources are limited in one workshop.

The AHP approach is used to determine the weights of
evaluation indices by constructing stair hierarchy models
and forming pairwise comparison matrixes. In this research,
there are three levels in the stair hierarchy model for evalu-
ation. Level A is the goal level, the selection of machining
scheme, while Level B and Level D are the major evaluation
indices and subevaluation indices, respectively. Production
cost, production time, machining quality, and production
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profit are regarded as the major evaluation indices. The fac-
tors that can affect production cost mainly include material
cost of the part, wage of the worker, electricity price of the
machine tool, depreciation expense of the special machine
and the universal machine, repair cost of the special machine
and the universal machine, expense of the special fixture and
the universal fixture, expense of the tool, and so on. This pa-
per assumes that the material cost for various schemes is the
same, so this factor is neglected in production cost evaluation.
In order to further simplify the evaluation of production cost,
if the expenses that are used by various schemes are the same
or similar, the expenses will be neglected. At the same time,
the factors that have little effect on MSS are also neglected.
Furthermore, in this research, the manufacturing resources
that can be selected are in the same workshop or the distance

between the locations of those manufacturing resource is
short, so the transportation time and cost are not taken into ac-
count. Here, an automobile gear is taken as the research ob-
ject, so the subfactors of production cost are made up of
wage of operator, cost of wear and tear of machine, cost of
craft equipment, and expense of tool or grinding wheel. Pro-
duction time is made up of cutting time, noncutting time, ser-
vicing time, and time of rest, and machining quality is made
up of machining quality of the first group tolerance, machin-
ing quality of the second group tolerance, machining quality
of the third group tolerance (Wu et al., 1994), and surface
quality. Production profit is the difference between the selling
price of a single product and the total cost of product manu-
facturing. The stair hierarchy model of evaluation indices is
shown in Figure 1.

Fig. 1. The stair hierarchy model for evaluation.
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3.2. Multiobjective optimization model

Real engineering problems usually need to optimize N objec-
tives, and those objectives are often noncommensurable and
conflict with each other. Without loss of generality, all objec-
tives are of the minimization type (a maximization type
objective can be converted to a minimization type by multi-
plying by a negative unit). A minimization multiobjective de-
cision problem with N objectives is formulated as

min F(x) ¼ (f1(x), f2(x), . . . , fn(x)),

such that

g(x) ¼ (g1(x), g2(x), . . . , gp(x)) � 0,

where x ¼ (x1, x2, . . . , xn) is a vector of n-dimensional deci-
sion variable, F(x) is an objective function, and g(x) is a con-
straint function.

Minimization cost is most commonly used as an optimiza-
tion objective by many researchers. However, in this pro-
posed optimization problem, four objectives are considered:
production cost (C ), production time (T ), machining quality
(Q), and production profit (P). These four objectives are mu-
tually conflicting. The objective functions were built accord-
ing to the lowest cost, the least production time, the best qual-
ity, and the highest profit.

There are m machining operations while machining a part,
and P¼ fp1, p2, . . . , pmg pi is used to denote the ith machin-
ing operation. Corresponding to machining operation pi, there
are manufacturing resources Ri ¼ fr1, r2, . . . , rnig, where ni is
the number of manufacturing resources that could be adopted
in machining operation pi (ni is not constant, namely, ni may
be variable according to different machining operation pi),
and rni is the nith manufacturing resources in Ri. The design
variable is xij (i ¼ 1, 2, . . . , m; j ¼ 1, 2, . . . , ni), and if ma-
chining operation Pi uses the jth manufacturing resources in
Ri, the value of xij is 1 or 0. The objective function is de-
scribed as follows:

f1 ¼ min C ¼
Xm

i¼1

Xni

j¼1
Cijxij, (1)

f2 ¼ min T ¼
Xm

i¼1

Xni

j¼1
Tijxij, (2)

f3 ¼ min (�Q) ¼
Xm

i¼1

Xni

j¼1
[�(Q1ij þ Q2ij þ Q3ij þ Q4ij)xij], (3)

f4 ¼ min (�P) ¼
Xm

i¼1

Xni

j¼1
(�Pijxij), (4)

where Cij, Tij, Qij, and Pij indicate the production cost, pro-
duction time, machining quality, and production profit corre-
sponding to machining operation pi that is applied by manu-
facturing resource j, respectively. The function of C and T are
minimization type, and the function of Q and P are maximi-

zation type. To maintain the generality, the function of Q and
P are converted to a minimization type by multiplying by a
negative unit.

In this paper, in order to solve the multiobjective optimiza-
tion problem, a weight Wi is assigned to each normalized
objective function so that the problem is converted to a sin-
gle objective problem with a scalar objective function as fol-
lows:

f (x) ¼ W1

Xm

i¼1

Xni

j¼1
Cijxij þW2

Xm

i¼1

Xni

j¼1
Tijxij

þW3

Xm

i¼1

Xni

j¼1
[� (Q1ij þ Q2ij þ Q3ij þ Q4ij)xij]

þW4

Xm

i¼1

Xni

j�1
(� Pijxij): (5)

4. DPSO FOR MSS

4.1. Fitness function

How to determine the fitness value is an important issue in
multiobjective optimization (Sun, Chu, et al., 2012; Sun,
Mu, et al., 2012). Each particle represents a machining
scheme, and the fitness value of each particle reflects the
good or bad of the particle based on its achievement of objec-
tives. There are many different approaches to defining fitness
functions in the literature (Zhang & Smart, 2006; Chen et al.,
2007; Nelson et al., 2009). In this research, the final objective
function is directly used as the fitness function, as shown in
Equation (5), and the minimum value of the fitness function
is the best fitness. Constraints are defined as follows:

Xni

j¼1
xij ¼ 1: (6)

4.2. The proposed DPSO

The process of implementing the PSO algorithm is as follows:

1. Generate initial swarm population with random positions
and velocities on m-dimensions in the problem space.

2. Calculate the fitness value for each particle.
3. Compare a particle’s fitness value with the particle’s

pbest. If the current value is better than pbest, then set
current value as the new pbest.

4. Compare a particle’s fitness value with the population’s
previous gbest. If the current value is better than gbest,
then set current value as the new gbest.

5. Change the velocity and position of particle according
to Eqs. (7) and (8), respectively:

vik(t þ 1) ¼ v� vik(t)þ c1 � r1(pik � xik(t))þ c2

� r2(pgk � xik(t)), (7)
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xik(t þ 1) ¼ xik(t)þ vik(t þ 1),

i ¼ 1, 2, . . . , d, k ¼ 1, 2, . . . , m, (8)

where v is inertia weight, c1 is cognitive coefficient and
c2 is social coefficient, r1 and r2 are random numbers
between 0 and 1, t is the iterative generation, d is pop-
ulation size, m is the particle’s dimension; vik and xik

are the respective velocity and position of the ith parti-
cle on dimension index of k, and pik and pgk are pbest
and gbest positions on dimension index of k.

6. Loop to the second step until the maximum iterations or
minimum error criteria is met.

To solve the problem of MSS by using PSO, the problem
needs to be abstracted by encoding. The coding method is in-
teger coding, X ¼ (x1, x2, . . . , xi, xm); the number of dimen-
sions is m, which denotes the number of machining opera-
tions; the value of xi is a positive integer between 1and ni;
and ni is the number of corresponding manufacturing re-
sources that machining operation pi adopts. A group of cod-
ing responds to one machining scheme. For example, if a
group of coding is X ¼ (2, 1, 4, 5, 4), it indicates that the
part has five machining operations, the first operation is car-
ried out by using the second manufacturing resource in R1,
and the second operation is carried out with the first manufac-
turing resource in R2.

By analyzing the characters of MSS, this paper proposes a
new discrete method. Integral operation for particle position
is used, and it is programmed by Matlab 7.0, so particle posi-
tion is updated by the following equation on every iteration:

xik(t þ 1) ¼ fix(xik(t)þ vik(t þ 1)),

i ¼ 1, 2, . . . , d, k ¼ 1, 2, . . . , m, (9)

in which Fix( f) is getting the integer part of f. When the value
of xik is bigger than ni (the number of corresponding manu-
facturing resources) or smaller than 1, generate xik randomly
between 1and ni. The other variables are the same as Eq. (8).
Particle velocity is updated by Eq. (7). When vik is bigger than
vmax, make vik ¼ vmax; when vik is smaller than vmin, make
vik ¼ vmin. The inertia weight v is updated by Eq. (10).

v ¼ vmax �
t � (vmax � vmin)

tmax
, (10)

where vmax is the biggest value of v, vmin is the smallest
value of v, tmax is the maximum of iterative generation, and
t is the current iterative generation.

The DPSO algorithm implementation in MSS is shown in
Figure 2.

5. AHP FOR ASSIGNING WEIGHTS TO
EVALUATION INDICES

In MSS, the evaluation indices play different roles and have
different contributions to the selection. Therefore, the evalu-

ation indices have to be assigned with different weights. An
AHP method is introduced to assign weighting factors to
evaluation indices.

The pairwise comparison method developed by Saaty
(1985, 1990) is used to get the relative weights of evaluation
indices. After the stair hierarchy model of the problem is set
up, the priorities need to be calculated. Weights are assigned
to each level. The 1–9 scale is the traditional scale for AHP to
indicate importance. However, expertise will be considered in
weights calculation, and the mean value of the expertise will
get a nonintegral value. In order to close the subject of judg-
ment more, the modified 1–9 scale, as shown in Table 1, is
used to build a pairwise comparison matrix, and the eigenvec-
tor corresponding to the largest eigenvalue of the matrix is
computed (Guo & Zheng, 1995). The eigenvector is normal-
ized, and the resultant weights are obtained. If there are n
evaluation indices, the resultant weighting factors are Wi ¼

(W1, W2, . . . , Wn)T (0 �Wi � 1) (i¼ 1, 2, . . . , n). The resul-
tant weighting factors Wi (i¼ 1, 2, . . . , n) and the eigenvector
corresponding to the largest eigenvalue of the matrix lmax are
calculated using the following equations:

Wi ¼
1
n

Xn

j¼1
(aij=

Xn

k¼1
akj) (i ¼ 1, 2, . . . , n), (11)

lmax ¼
1
n

Xn

i¼1

(AW)i

Wi
, (12)

where aij and akj are elements of the matrix, and A is the judg-
ment matrix.

The decision maker’s subjective judgments are quantified by
using AHP. The modified 1–9 scale is used to quantify the
magnitude of the importance of the pairwise comparison. The
evaluation indices have a connection with a part structure also,
so the size of the pairwise comparison matrix and the values
of comparison weights between these indices are likely to
change according to different parts complexity. The pairwise
comparison matrix of each level is created. For example, the
pairwise comparison matrix of layer A–B is shown in Table 2.
Here, B1, B2, B3, and B4 are production cost, production time,
machining quality, and production profit, respectively. In this
case, B4 is the most important one, B1 is slightly more important
than B2, and B2 is slightly more important than B3, so the value
of comparison weight between B1 and B2 is 1.22, between B2

and B3 it is 1.22, between B1 and B3 it is 1.5, between B1 and
B4 it is 1/1.22, between B2 and B4 it is 1/1.5, and between B3

and B4 it is 1/1.86.
The pairwise comparison matrixes of layer B–D are shown

in Table 3, Table 4, and Table 5. D1, D2, D3, and D4 are wage
of operator, cost of wear and tear of machine, cost of craft
equipment, and expense of tool or grinding wheel, respec-
tively; D5, D6, D7, and D8 are cutting time, noncutting
time, servicing time, and time of rest, respectively; and D9,
D10, D11, and D12 are machining quality of the first group
tolerance, machining quality of the second group tolerance,
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machining quality of the third group tolerance, and surface
quality, respectively.

To prove the consistency of the judgment matrix, the con-
sistency index CI¼ (lmax – n)/(n – 1) and the consistency ra-

tio CR¼ [CI/RI(n)] (RI is the random consistency indexand n
is the size of matrix) are calculated. If CR � 0.1, it can satisfy
the consistency, or the judgment matrix should be adjusted.
The random consistency index RI is computed according to
the method proposed by Saaty, and the values of RI are shown
in Table 6.

The results of parewise comparison matrix A–B and B–D
are shown in Table 7. The consistency of the judgment matrix

Table 1. Modified 1–9 scale for evaluation indices

Wi Definition

5:5 ¼ 1 Indices i and j are of equal importance
6:4 ¼ 1.5 Index i is slightly more important than index j
7:3 ¼ 2.33 Index i is moderately more important than index j
8:2 ¼ 4 Index i is strongly more important than index j
9:1 ¼ 9 Index i is absolutely more important than index j
5.5:4.5 ¼ 1.22
6.5:3.5 ¼ 1.86
7.5:2.5 ¼ 3
8.5:1.5 ¼ 5.67

Values for compromise in judgment of importance
between 1 and 1.5, 1.5 and 2.33, 2.33 and 4, 4
and 9, respectively

Reciprocal of 1 9 If index i is as x times importance as j, then j is as
1/x importance as i

Table 2. Pairwise comparison matrix
for layer A–B

A B1 B2 B3 B4

B1 1 1.22 1.5 1/1.22
B2 1/1.22 1 1.22 1/1.5
B3 1/1.5 1/1.22 1 1/1.86
B4 1.22 1.5 1.86 1

Fig. 2. The flow chart of the hybrid algorithm.
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is satisfied because every CR is� 0.1; therefore, the judgment
matrix is logical.

The overall weight vector W, the consistency ratio CI0, and
the random consistency index RI0 are computed using Eq. (13):

W ¼ WBi�DW(A�B)i
,

CI0 ¼ (CI1, CI2, CI3, CI4)WA�B,

RI0 ¼ (RI1, RI2, RI3, RI4)WA�B: (13)

The overall consistency index CI0 ¼ 0.0065 and the overall
random consistency index RI0 ¼ 0.1738, so the consistency ra-
tio CR0 ¼CI0/RI0 ¼ 0.04, and it can satisfy the consistency. The
results of the overall weight vector W are shown in Table 8.

6. PRACTICAL EXAMPLE AND ANALYSIS

The proposed hybrid algorithm of DPSO and AHP is tested
with machining the intermediate shaft gear of four-range for

an automobile transmission, and the sketch is shown in Fig-
ure 3.

The main parameters of gear include module 1.94, tooth
number 40, reference pressure angle 198, reference helix an-
gle 328, drum-shaped size along tooth trace 0.005 (+0.002)
mm, shape deviation of tooth profile 0.009 mm, angle devia-
tion of tooth profile 0.0075 mm, individual circular pitch er-
ror 0.011 mm, and total cumulative pitch error 0.037 mm. The
material and accuracy class of the gear are 20CrMnTiH and 7,
respectively. The admissible machining schemes of cylindri-
cal gear for automobile transmission are shown in Figure 4. In
this paper, the scheme of “hobbing—tooth-end processing—
heat treatment—refined base correction—gear grinding” is
adopted. Some typical machining methods for each operation
that can meet the machining needs are shown in Table 9. Be-
cause “tooth-end processing” and “refined base correction”
are not the main machining operations of gear manufacturing,
the typical processing equipment of the two operations are not
given. Table 10 gives the estimated value of the 13 evaluation
indices for some machining methods to illustrate the validity
of the proposed algorithm.

A set of weights has been determined by the AHP in Tables
2–8. It is shown as follows: W ¼ [0.0926, 0.0753, 0.0404,
0.0613, 0.1275, 0.0407, 0.0301, 0.0218, 0.0363, 0.0444,
0.0444, 0.0543, 0.3309].

By fixing the value of level D and changing the value of
level B, the result is a new set of weights W 0. The weight vec-
tor of the first level is (0.1157, 0.2732, 0.2732, 0.3379); the
overall weight vector W 0 is as follows: W 0 ¼ [0.0398,
0.0323, 0.0173, 0.0263, 0.1583, 0.0505, 0.0374, 0.0270,
0.0553, 0.0676, 0.0676, 0.0826, 0.3379].

The proposed algorithm was implemented in Matlab 7.0.
Each population has 20 particles, and the initial population
is randomly generated. The iteration stops when it reaches
the maximum 100 generations. The two different sets of
weights that are gotten from the AHP are regarded as input
variables and computed in the program. The results of the

Table 3. Pairwise comparison matrix
for production cost

B1 D1 D2 D3 D4

D1 1 1.22 2.33 1.5
D2 1/1.22 1 1.86 1.22
D3 1/2.33 1/1.86 1 1/1.5
D4 1/1.5 1/1.22 1.5 1

Table 4. Pairwise comparison matrix
for production time

B2 D5 D6 D7 D8

D5 1 2.33 4 9
D6 1/2.33 1 1.22 1.5
D7 1/4 1/1.22 1 1.22
D8 1/9 1/1.5 1/1.22 1

Table 5. Pairwise comparison matrix
for machining quality

B3 D9 D10 D11 D12

D9 1 1/1.22 1/1.22 1/1.5
D10 1.22 1 1 1/1.22
D11 1.22 1 1 1/1.22
D12 1.5 1.22 1.22 1

Table 6. Random consistency index (RI)

Size of Matrix 1 2 3 4 5 6 7 8 9

RI 0 0 0.1690 0.2598 0.3287 0.3694 0.4007 0.4167 0.4370

Table 7. Result of pairwise comparison matrix

Layer W lmax CI CR

A–B [0.2696, 0.2201, 0.1794, 0.3309] 4.0 0 0
B1–D [0.3436, 0.2792, 0.1497, 0.2275] 4.0001 0 0
B2–D [0.5795, 0.1847, 0.1369, 0.0989] 4.0883 0.0294 0.1
B3–D [0.2025, 0.2475, 0.2475, 0.3025] 4.0 0 0
B4–D 1.0 1.0 0 0

Note: CI, consistency index; CR, consistency ratio.
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program run are shown in Table 11. The relationship between
the fitness function value and the number of generation for
the first set of weights is shown in Figure 5.

It is shown in Table 11 that the smallest fitness function
value is 10.9087 and 11.2276 for two different sets of weights,
respectively, and the most optimal particle is (21311) and
(11212), respectively. According to Table 10, the machining
schemes are Y3180H—chamfering machine—MXL00—inter-
nal grinder—YK7236B and GENESIS 130H— chamfering ma-
chine—TQ-2-type, no. 25 furnace—internal grinder—RZ362A,
respectively.

The weights of the first level (level B) of influence factors
are (0.2696, 0.2201, 0.1794, 0.3309) and (0.1157, 0.2732,
0.2732, 0.3379). According to the values, production profit
is the most important factor in both sets. For the first set, pro-
duction cost is slight more important than production time and
machining quality; for the second set, production time and ma-
chining quality are strongly more important than production
cost. Because of the different demand of evaluation indices,
there are two different machining schemes. The first machining
scheme mainly adopts economic-type equipment as a machin-
ing method, which has lower production cost than the other
machining schemes; the second machining scheme mainly
adopts the multifunctional-type equipment as a machining
method, which decreases production time and improves ma-
chining quality obviously. According to the result, the pro-

Table 8. Priority matrix for the selection of machining scheme

A–B

B1 B2 B3 B4
Overall Weight

B–D 0.2696 0.2201 0.1794 0.3309 Vector W

D1 0.3436 0 0 0 0.0926
D2 0.2792 0 0 0 0.0753
D3 0.1497 0 0 0 0.0404
D4 0.2275 0 0 0 0.0613
D5 0 0.5795 0 0 0.1275
D6 0 0.1847 0 0 0.0407
D7 0 0.1369 0 0 0.0301
D8 0 0.0989 0 0 0.0218
D9 0 0 0.2025 0 0.0363
D10 0 0 0.2475 0 0.0444
D11 0 0 0.2475 0 0.0444
D12 0 0 0.3025 0 0.0543
D13 0 0 0 1.0 0.3309

Fig. 3. The intermediate shaft gear of the four range.
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posed algorithm can get more exact weights of evaluation in-
dices based on the different demands of the decision maker.
This algorithm can reach convergence soon. The results
show that the proposed algorithm is effective and simple.
The processing equipment of each operation can be added,
so the proposed method can handle larger size problems.

In this research, the MSS is mainly about machining
methods based on equipment, not the selection of specific
processing equipment, so the resource utilization degree

and the state of the equipment are not taken into account.
That is the next work of this research.

7. CONCLUSION

This paper developed a multiobjective optimization model
for solving the problem of MSS having to simultaneously
consider four objectives: minimizing production cost, mini-
mizing production time, maximizing machining quality,

Fig. 4. Admissible machining schemes.

Table 9. The typical machining method

Operation Processing Equipment

Hobbing 1. GENESIS 130H CNC hobbing machine, Gleason
2. Y3180H ordinary hobbing machine, Chongqing Machine Tool Group, China
3. CNC high-production gear hobbing machine model YKX3132M, Nanjing No. 2 Machine Tool Works, China
4. Mitsubishi GE15A hobbing machine, Japan

Tooth-end processing Chamfering machine

Heat treatment 1. VBEs 200/200 pit furnace, Aichelin
2. Sealed box-type multipurpose furnace TQ-2-type no. 25 furnace, Ipsen
3. Sealed box-type multipurpose furnace model MXL00, Changchun Faw Jiaxin Heat Treatment Technology Co. Ltd., China
4. Large pit gas carburizing furnace MDR/C2000x2000, Suzhou Minsheng Electric Heating Engineering Co., Ltd., China

Refined base correction Internal grinder

Gear grinding 1. YK7236B CNC worm wheel gear grinding machine, Qinchuan Machine Tool Plant, China
2. RZ362A CNC worm wheel gear grinding machine,
Reishauer Company, Switzerland
3. FKP-326-10 gear grinding machine with worm grinding wheel, Cepel Company, Hungary
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and maximizing production profit. In addition, a new DPSO
method was developed according to the characters of MSS,
which can simply and efficiently reach the optimal solutions
of the multiobjective optimization problem. The hybrid algo-
rithm of DPSO and AHP is used to do quantitative analysis of
varied processing methods. The algorithm not only has an
ability of global search but also can get more accurate and ob-
jective weights by building the stair hierarchy model for
evaluation indices. The mathematical model is simple and
easy to extend. An example of the intermediate shaft gear
of four-range for an automobile transmission was provided
to illustrate the application of the hybrid algorithm. This ex-
ample shows that the hybrid algorithm of DPSO and AHP
can do the selection of machining scheme according to differ-
ent demands of the decision maker.

This research provides an academic and practical basis for
further refining evaluation indices and developing a more

Fig. 5. The relationship between fitness function value and the number of generations.

Table 11. Results of discrete particle swarm optimization

Weight I Weight II
(0.2696, 0.2201, 0.1794,

0.3309)
(0.1157, 0.2732, 0.2732,

0.3379)

Terminal Fitness Function Terminal Fitness Function
Number Particle Value Particle Value

1 11311 11.2684 21213 11.2904
2 21312 11.2272 31212 11.2678
3 21413 11.1567 21211 11.2538
4 21411 11.0712 21211 11.2538
5 21313 10.9882 21212 11.2406
6 21313 10.9882 21212 11.2406
7 21311 10.9087 11212 11.2276
8 21311 10.9087 11212 11.2276
9 21311 10.9087 11212 11.2276

10 21311 10.9087 11212 11.2276

Table 10. Data of machining method

Hobbing 1. GENESIS 130H 1.6, 4, 3, 3, 0.3, 0.2, 0.3, 0.3, 1.8, 1.8, 1.8, 1.5, 0.5
2. Y3180H 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
3. YKX3132M 1.5, 3, 2, 3, 0.7, 0.5, 0.7, 0.7, 1.5, 1.5, 1.5, 1.5, 0.7
4. GE15A 1.6, 3, 2.5, 3, 0.5, 0.3, 0.5, 0.5, 1.8, 1.8, 1.8, 1.5, 0.4

Tooth-end processing 1. Chamfering machine 1, 1, 0.8, 0.4, 0.8, 0.5, 0.8, 0.8, 1.1, 1.1, 1.1, 1.1, 0.7

Heat treatment 1. VBEs200/200 1.5, 9, 1, 0, 10, 5, 5, 5, 0.7, 0.7, 0.7, 0.8, 5
2. TQ-2-type, no. 25 furnace 1.5, 10, 1.1, 0, 9, 3, 3, 3, 0.9, 0.9, 0.9, 0.9, 4.5
3. MXL00 1.2, 5, 1, 0, 10, 5, 5, 5, 0.8, 0.8, 0.8, 0.8, 5
4. MDR/C2000x2000 1.2, 7, 1, 0, 10, 5, 5, 5, 0.7, 0.7, 0.7, 0.7, 5

Refined base correction 1. Internal grinder 1, 1, 0.8, 0.4, 0.8, 0.5, 0.8, 0.8, 1, 1, 1, 1, 0.7

Gear grinding 1. YK7236B 1.5, 3, 1.5, 1.5, 3, 2, 2, 1.5, 2, 2, 2, 1.6, 2.2
2. RZ362A 3, 6, 2, 3, 2.3, 1.7, 1.7, 1.4, 2.5, 2.5, 2.5, 1.8, 2.1
3. FKP-326-10 1.5, 4, 1.6, 1.6, 3, 2, 2, 1.5, 2, 2, 2, 1.6, 2.2

Note: The data are the values of the 13 indices.
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practical selection model, which can help a decision maker do
the selection of machining scheme based on different require-
ments more effectively. This paper also provides a good foun-
dation for further research of the application of PSO in MSS.
A more practical selection model will be studied in the future.
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