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For a Markov chain on a finite partially ordered state space, we show that its Siegmund
dual exists if and only if the chain is Möbius monotone. This is an extension of Siegmund’s
result for totally ordered state spaces, in which case the existence of the dual is equiva-
lent to the usual stochastic monotonicity. Exploiting the relation between the stationary
distribution of an ergodic chain and the absorption probabilities of its Siegmund dual,
we present three applications: calculating the absorption probabilities of a chain with two
absorbing states knowing the stationary distribution of the other chain; calculating the
stationary distribution of an ergodic chain knowing the absorption probabilities of the
other chain; and providing a stable simulation scheme for the stationary distribution of
a chain provided we can simulate its Siegmund dual. These are accompanied by concrete
examples: the gambler’s ruin problem with arbitrary winning/losing probabilities; a non-
symmetric game; an extension of a birth and death chain; a chain corresponding to the
Fisher–Wright model; a non-standard tandem network of two servers, and the Ising model
on a circle. We also show that one can construct a strong stationary dual chain by taking
the appropriate Doob transform of the Siegmund dual of the time-reversed chain.

Keywords: Doob h-transform, gambler’s ruin problem, Markov chains, Möbius monotonicity,
partial ordering, Siegmund duality, strong stationary duality

1. INTRODUCTION

Siegmund [27] introduced a notion of duality (today called Siegmund duality) for discrete
time Markov chains with a general state space with a total ordering. This duality is intended
to relate the stationary distribution of the process with the absorption probability of its
dual. In the case of a total ordering, Siegmund showed that the dual chain exists if and only
if the original chain is stochastically monotone (w.r.t. the total ordering). The aim of this
note is to generalize this result to state spaces, which are only partially ordered. Liggett in
his famous book [16] (Chapter II, Section 3, page 87) writes (about Siegmund’s result for
the total ordering):

“This result depends heavily on the fact that the state space of the processes is totally
ordered. In the particle system context, the state spaces are only partially ordered, and
unfortunately the analogous result fails. [. . . ] having a (reasonable) dual is a much more
special property than being monotone, when the state space is not totally ordered.”

c© Cambridge University Press 2017 0269-9648/17 $25.00 495

https://doi.org/10.1017/S0269964817000341 Published online by Cambridge University Press

file:Pawel.Lorek@math.uni.wroc.pl
https://doi.org/10.1017/S0269964817000341


496 P. Lorek

As our main result, we show that the existence of the Siegmund dual is equivalent to
the Möbius monotonicity of the chain (a concept introduced in Lorek and Szekli [21]) w.r.t.
a fixed partial ordering. In this case, we give the transitions of the dual.

It turns out that the usual stochastic monotonicity of a chain does not imply the
existence of the Siegmund dual for general partial orderings (it does for linear orderings,
since then stochastic monotonicity is equivalent to Möbius monotonicity). In general, the
required Möbius monotonicity is not stronger, but different than stochastic monotonicity
(examples are provided in Section 7).

There is a one-to-one correspondence (the relation is given in (2.4)) between the sta-
tionary distribution of an ergodic chain and the absorption probabilities of its Siegmund
dual. We will present three potential applications of this relation. The first application is
that given a chain with two absorbing states (gambler’s ruin-like), we can find an ergodic
chain for which the original one is the Siegmund dual. Then finding the stationary dis-
tribution of this chain determines the absorption probabilities. We present two examples
for this application: (a) we recover the ruin/winning probabilities in the gambler’s ruin
problem with arbitrary winning/losing probabilities; (b) we present a non-symmetric game
which turns out to be the Siegmund dual of the non-symmetric random walk on the cube
considered in Lorek and Szekli [21]. Second application: given an ergodic chain, the task
is to find its stationary distribution. We can calculate its Siegmund dual, and finding the
absorption probabilities of the dual recovers the stationary distribution of the ergodic chain.
Two examples of this application are provided: (a) the chain for which the Siegmund dual
corresponds to the gambler’s ruin with catastrophes considered in Hunter et al. [14], for
which the absorption probabilities are calculated therein explicitly; (b) the chain for which
the Siegmund dual turns out to be the so-called Fisher–Wright model. In the latter case,
we also give the eigenvalues of the corresponding transition matrix. Third application: this
is similar to the second one; we are given an ergodic chain, and the task is again to find its
stationary distribution. Calculating the Siegmund dual can be relatively easy, but finding
the absorption probabilities is often a challenging task. However, if we are able to simulate
the dual, then we can have a stable simulation scheme for the stationary distribution of the
ergodic chain via simply estimating the absorption probabilities. In contrast to most Monte
Carlo Markov chains (MCMC) methods, we do not require a priori any knowledge about
the rate of convergence, the mean absorption time, etc. Besides, MCMC are designed to
provide a sample from the stationary distribution, whereas a stable simulation scheme lets
us estimate the stationary distribution at a specific state. As examples, we present the Ising
model on a circle and a tandem network of two servers. The latter example is a modification
of the standard tandem (for which the stationary distribution is known): when one of the
servers is empty, the rates of the other are changed. It turns out that then the stationary
distribution is not known. Foley and McDonald [10] considered a similar modified tandem
(if the server is idle it helps the other) showing large deviations and rough asymptotics for
the stationary distribution. In particular, they showed that such changes on the borders
imply dramatic changes in the stationary distribution.

Siegmund dualities appear in various contexts. The original paper of Siegmund [27] deals
with stochastically monotone chains w.r.t the total ordering. Many authors have focused
on birth and death chains, for example, Cox and Rösler [3], Diaconis and Fill [5] (where
connections to strong stationary duality are also given), Dette et al. [4] (where Siegmund
duality is related to Wall duality), and Huillet [12] (where a specific birth and death chain,
the Moran model, was considered). The observation that such duality holds for some random
walks on {0, 1, . . .} goes back to Lindley [17]. The duality was also studied in an insurance
context, where the probability that the steady-state queue length exceeds a level k equals
the probability that a dual-risk process starting at level k is ruined in a finite time. There
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have been some approaches to extend this to non-linear state spaces. B�laszczyszyn and
Sigman [2] considered Rd-valued Markov processes (their Siegmund dual was set-valued).
Recently, Huillet and Mart́ınez [13] considered dualities related to the Möbius matrix for
other non-linear state spaces, namely for Markov chains on partitions and sets. In Lorek and
Szekli [21], we consider general partial orderings and show that the Möbius monotonicity of
a time-reversed chain implies the existence of a strong stationary dual (SSD) chain on the
same state space (more details in Section 5).

Recently, in Fill and Lyzinski [9] and in Miclo [23], dualities for one-dimensional dif-
fusions were studied. Further research includes studying the existence of a Siegmund dual
in d-dimensional diffusions, for example, the ones studied in Harrison and Williams [11],
as well as developing the theory for Möbius monotone processes for continuous time and
general state space chains.

The rest of this note is organized as follows. In Section 2, we describe Siegmund duality
and the relations between the stationary distribution of a chain and the absorption proba-
bilities of its dual. In Section 3, we recall the notion of Möbius monotonicity. In Section 4, we
present our main result (Theorem 4.1) on the equivalence of Möbius monotonicity with the
existence of the Siegmund dual chain for general partial orderings. Section 5 gives a connec-
tion to strong stationary duality. In Section 6, we give three applications: in Section 6.1, we
recover the ruin probabilities for the gambler’s ruin problem with arbitrary losing/winning
probabilities and provide a similar result in a different game; in Section 6.2, we give the
stationary distributions of two chains exploiting existing results on ruin probabilities; in
Section 6.3, we present stable simulation schemes for some non-standard tandem queue-
ing system and for the Ising model on a circle. Finally in Section 7, we provide examples
of chains showing relations between Möbius monotonicity and stochastic monotonicity. In
particular, we show that Möbius monotonicity does not imply stochastic monotonicity.

2. SIEGMUND DUALITY

Let X ∼ (ν,PX) be a discrete-time Markov chain with the initial distribution ν, transition
matrix PX , and finite state space E = {e1, . . . , eM} partially ordered by �. Throughout
this paper, we assume that it is ergodic with stationary distribution π. We assume that
there exists a unique minimal state, say e1, and a unique maximal state, say eM . For
A ⊆ E, define PX(e, A) :=

∑
e′∈A PX(e, e′) and similarly π(A) :=

∑
e∈A π(e). Define also

{e}↑ := {e′ ∈ E : e � e′}, {e}↓ := {e′ ∈ E : e′ � e} and δ(e, e′) = 1(e, e′). Recall that the
chain X is stochastically monotone if

∀(e � e′)∀(U − up-set) PX(e,U) ≤ PX(e′,U), (2.1)

where U is an up-set if (ea � eb, ea ∈ U) implies eb ∈ U . We say that a Markov chain Z
with transition matrix PZ is the Siegmund dual of X if

∀(ei, ej ∈ E) ∀(n ≥ 0) Pn
X(ei, {ej}↓) = Pn

Z(ej , {ei}↑). (2.2)

Siegmund [27] showed that for a total ordering (let us then denote the elements of E by the
numbers {1, 2, . . . ,M}) such a dual exists if and only if X is stochastically monotone. The
main thing then is to show that (2.2) holds for the one-step transitions. Since the main part
of the proof is one line long, we include it here. We want to have PX(i, {j}↓) = PZ(j, {i}↑).
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We can calculate

PZ(j, i) = PZ(j, {i}↑)−PZ(j, {i + 1}↑) = PX(i, {j}↓)−PX(i + 1, {j}↓). (2.3)

The latter is non-negative if and only if X is stochastically monotone. Note that (2.3) does
not have to define the transition matrix, since we may have

∑
i PZ(j, i) < 1. Siegmund [27]

adds then one extra absorbing state, call it 0, and defines PZ(j, 0) = 1−∑M
i=1 PZ(j, i). In

a similar way, for a general partial ordering, if we are able to find a subprobability kernel
fulfilling (2.2) for all ei, ej ∈ E, we may be forced to add one extra absorbing state, call it
e0. Note that (2.2) implies that eM is an absorbing state, thus Z has two absorbing states.
Taking the limits as n→∞ on both sides of (2.2), we have

π({ej}↓) = lim
n→∞Pn

Z(ej , {ei}↑) = P (Z is absorbed in eM |Z0 = ej). (2.4)

The stationary distribution of X is related in this way to the absorption of its Siegmund
dual Z.

3. MÖBIUS MONOTONICITY

Let C(ei, ej) = 1(ei � ej). We can always rearrange the states so that ei � ej implies i ≤ j.
Then the matrix C is 0–1 valued, upper triangular, and thus invertible. The inverse C−1 is
often denoted by μ and is called the Möbius function. Let f, F̄ : E→ R. The famous Möbius
inversion formula (see, e.g., Rota [26]) states:

Let F̄ (e) =
∑
e′	e

f(e′), then f(e) =
∑
e′	e

μ(e, e′)F̄ (e′). (3.1)

We say that the function F̄ : E→ R is Möbius monotone if
∑

e′	e μ(e, e′)F̄ (e′) ≥ 0 for all
e ∈ E. This can be equivalently stated in matrix form: Let F̄ = (F̄ (e1), . . . , F̄ (eM )). The
Möbius monotonicity of F̄ means that C−1F̄ ≥ 0 (each entry is non-negative).

For each state e2 ∈ E write F̄e2(e′) = PX(e′, {e2}↓). We say that the chain X is Möbius
monotone if F̄e2 are Möbius monotone for all e2 ∈ E. Equivalently, the definition can be
stated in matrix form:

Definition 3.1: The Markov chain X with transition matrix PX is Möbius monotone w.r.t.
the partial order � if C−1PXC ≥ 0 (i.e., each entry is non-negative). In terms of the
transition probabilities, this means that

∀(ei, ej ∈ E)
∑
e	ei

μ(ei, e)PX(e, {ej}↓) ≥ 0.

Remark 3.2: In a similar way to (3.1), we have the following version of the Möbius inversion
formula:

Let F (e) =
∑
e′
e

f(e′), then f(e) =
∑
e′
e

μ(e′, e)F (e′).

This way, once π({ej}↓) is calculated for all ej ∈ E in (2.4), we can calculate π(ej) =∑
e
ej

μ(e, ej)π({e}↓).

For more details on Möbius monotonicity, see Lorek and Szekli [21].
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4. MAIN RESULT

In this section, we will show the existence of the Siegmund dual on the state space E∗ =
{e0} ∪ E, where we have added one extra absorbing state, e0. At each step, the process can
be possibly killed, that is, absorbed in this state.

Theorem 4.1: Let X ∼ (ν,PX) be a Markov chain on E = {e1, . . . , eM} with partial order-
ing �. Assume that e1 is the unique minimal state and eM is the unique maximal state.
Then there exists a Siegmund dual Z of X on E∗ = {e0} ∪ E if and only if X is Möbius
monotone. The transitions of the dual are as follows:

PZ(ej , ei) =
∑
e′	ei

μ(ei, e′)PX(e′, {ej}↓), ei, ej ∈ E,

PZ(e0, ej) = δ(e0, ej), ej ∈ E∗, (4.1)

PZ(ek, e0) = 1−
∑
e∈E

PZ(ek, e), ek ∈ E.

Proof: Note that the state space of the dual is enriched with one extra absorbing state,
called e0. We need Eq. (2.2) to hold for all states from E. One can think that e0 is incom-
parable to all the other states in E∗, which we assume, since it simplifies some of the
notation.

First, we show that (2.2) holds for n = 1, which can be rewritten as

PX(ei, {ej}↓) =
∑
e	ei

PZ(ej , e).

Using the Möbius inversion formula (3.1), we have

PZ(ej , ei) =
∑
e	ei

μ(ei, e)PX(e, {ej}↓), (4.2)

which is non-negative if and only if X is Möbius monotone. For a partial order with a
unique minimal element e1, the Möbius function satisfies

∑
ei∈E

μ(ei, e) = 1(e = e1) (to
see this, consider the first row of C−1 after applying the first elementary row operation
of Gauss–Jordan elimination). This implies that the right-hand side of (4.2) is not greater
than 1, since∑

ei∈E

PZ(ej , ei) =
∑
ei∈E

∑
e	ei

μ(ei, e)PX(e, {ej}↓)

(∗)
=
∑
ei∈E

∑
e

μ(ei, e)PX(e, {ej}↓)

=
∑
e

PX(e, {ej}↓)
∑
ei∈E

μ(ei, e) = PX(e1, {ej}↓) ≤ 1,

where in (∗) we used the fact that μ(ei, e) = 0 for ei � e (see, e.g., the proof of Proposition
1 in Rota [26]).

Note that the submatrix PZ with the column and row corresponding to state e0

excluded can be written as (C−1PXC)T , that is, we have PZ(ej , ei) = (C−1PXC)T (ej , ei)
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for ej , ei ∈ E. The Chapman–Kolmogorov equations allow extending the transition prob-
abilities to Pn

Z(ej , ei) for all ej , ei ∈ E∗ and n ≥ 0. Then the dual chain is defined. To
see that (2.2) holds for ej , ei ∈ E, note that since e0 is an absorbing state, we must have
Pn

Z = (C−1Pn
XC)T , that is,

C(Pn
Z)T = Pn

XC, (4.3)

which is (2.2) written in matrix form. �

Remark 4.2: Note that the Siegmund dual chain will have two absorbing states. Beside the
extra state e0, the state which is maximal w.r.t. � is also absorbing. Indeed,

PZ(eM , ei) =
∑
e′	ei

μ(ei, e′)PX(e′, {eM}↓)

=
∑
e′	ei

μ(ei, e′) = 1(ei = eM ).

Remark 4.3: The assumption of the existence of the minimal state cannot be relaxed, as the
following example shows (with the Hasse diagram of the ordering on the right-hand side):

PX =

⎛
⎜⎜⎜⎜⎜⎜⎝

4
6

1
6

1
6

4
6

1
6

1
6

1
6

1
6

4
6

⎞
⎟⎟⎟⎟⎟⎟⎠

, C =

⎛
⎜⎜⎝

1 0 1

0 1 1

0 0 1

⎞
⎟⎟⎠ ,

In other words, we have three states, say e1, e2, e3. The state e3 is a maximal one and
the states e1, e2 are incomparable. Then we can calculate

(C−1PXC)T =

⎛
⎜⎜⎜⎜⎝

1
2

1
2

1
6

0 0
1
6

0 0 1

⎞
⎟⎟⎟⎟⎠ .

Thus, the PZ given in (4.2) does not define a subprobability kernel.

Remark 4.4: For given X we can distinguish two Siegmund dual chains. The one defined in
(2.2) can be called the Siegmund↓ dual, say Z↓. The other, say Z↑, called the Siegmund↑

dual, is the one fulfilling

∀(ei, ej ∈ E) ∀(n ≥ 0) Pn
X(ei, {ej}↑) = Pn

Z(ej , {ei}↓).

The monotonicity defined in Lorek and Szekli [21] was actually called ↓-Möbius monotonic-
ity, whereas ↑-Möbius monotonicity was defined as (CT )−1PCT ≥ 0. In a similar way one
can have a version of Theorem 4.1, showing that the Siegmund↑ dual exists if and only
if X is ↑-Möbius monotone. We skip the details, noting that these monotonicities are not
equivalent (see Lorek and Markowski [20] for details).

The matrix form (4.3) implies the following corollary.

Corollary 4.5: Denote the eigenvalues of PZ by λ0 = 1, λ1, . . . , λM = 1 (the eigenvalues
λ0 and λM correspond to two absorbing states). Then λ1, . . . , λM are the eigenvalues of PX .
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5. SIEGMUND DUALITY AND STRONG STATIONARY DUALITY

In this section, we point out a connection with strong stationary duality. Diaconis and Fill
[5] show that their SSD chain can be constructed in three steps, where one step involves
calculating the Siegmund dual w.r.t. the total ordering. It turns out that the SSD chain
given in Lorek and Szekli [21] can be constructed in three similar steps, where one involves
calculating the Siegmund dual w.r.t. a fixed partial ordering.

Recall that X ∼ (ν,P) is an ergodic Markov chain on the finite state space E =
{e1, . . . , eM} with the stationary distribution π. Let E∗ = {e∗1, . . . , e∗N} be the, possibly
different, state space of the absorbing Markov chain X∗ ∼ (ν∗,P∗) whose unique absorbing
state is denoted by e∗N . An N ×M matrix Λ is called a link if it is a stochastic matrix
satisfying Λ(e∗N , e) = π(e). We say that X∗ is a SSD of X with link Λ if

ν = ν∗Λ and ΛP = P∗Λ.

Diaconis and Fill [5] prove that then the absorption time T ∗ of X∗ is the so called strong
stationary time for X. This is a random variable T such that XT has distribution π and
T is independent of XT . The main application is to studying the rate of convergence of an
ergodic chain to its stationary distribution, since for such a random variable we always have
dTV (νPk, π) ≤ sep(ν,Pk, π) ≤ P (T > k), where dTV stands for the total variation distance,
and sep stands for the separation “distance”. For details, see Diaconis and Fill [5].

In general, there is no recipe on how to find an SSD, that is, a triple E∗,P∗, Λ. Dia-
conis and Fill [5] give a recipe for a dual on the same state space E∗ = E provided that
the time-reversed chain

←−
X is stochastically monotone with respect to the total ordering.

For a given P, let h be its harmonic function, that is, a non-negative function h such
that Ph = h. By h we denote the vector h = (h(e1), . . . , h(eM )). Then Ph, defined as
Ph(e, e′) = P(e, e′)h(e′)/h(e) on {e : h(e) > 0}, is a transition matrix and is often called
the Doob h-transform of P. The SSD, in the case when the time-reversed chain is stochas-
tically monotone, is then given by the authors in three steps (Theorem 5.5 in Diaconis and
Fill [5]):

(i) Calculate the time reversal
←−
P of P.

(ii) Calculate the Siegmund dual (
←−
P)Z of

←−
P .

(iii) Calculate the Doob H-transform P∗ = ((
←−
P)Z)H of (

←−
P)Z , where H = πC with

π = (π(e1), . . . , π(eM )).

In the above procedure, the Siegmund dual must be calculated w.r.t. a total ordering, and
then we have C(e, e′) = 1(e ≤ e′).

In Lorek and Szekli [21], we give a recipe for an SSD on the same state space E∗ = E
for those chains whose time reversal is Möbius monotone with respect to a partial ordering
expressed by the matrix C(e, e′) = 1(e � e′). In matrix form, the transitions are given by

P∗ = diag(H)−1(C−1←−PC)T diag(H),

where H = πC (i.e., H = (H(e1), . . . , H(eM )) with H(e) =
∑

e′:e′
e π(e)) and diag(H)
denoting the diagonal matrix with the vector H on the diagonal. Thus, P∗ is a Doob H-
transform of (C−1←−PC)T , which is exactly the Siegmund dual of

←−
P from Theorem 4.1. In

other words, the SSD given in Lorek and Szekli [21] results from exactly the same steps
(i)–(iii) as in Theorem 5.5 in Diaconis and Fill [5].
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Remark 5.1: For a non-linear ordering, Möbius monotonicity and stochastic monotonicity
are, in general, different. In particular, we can have a chain, which is not stochastically
monotone, but for which we can construct both a Siegmund dual and a SSD, since it can be
Möbius monotone (for an example, see Section 7.2). According to our knowledge, Falin [7]
was the first who observed that these are two different notions of monotonicity (however,
connections to daulities were not given there). In a subsequent paper, Lorek and Markowski
[20], we gave more details on the relations between Möbius, realizable, weak, and the usual
stochastic monotonicities in chains on partially ordered state spaces.

6. APPLICATIONS

Let us recall the relation between the stationary distribution of X and the absorption
probabilities of its Siegmund dual Z (i.e., (2.4))

π({ej}↓) = P (Z is absorbed in eM |Z0 = ej).

This relation can have three potential applications:

(A1) Suppose we are given a Markov chain Z with two absorbing states (winning and
losing). To calculate the probability of being absorbed in one of them, we can find
an ergodic chain X for which Z is its Siegmund dual. Then the task reduces to
calculating the stationary distribution of X.

(A2) Suppose we are given an ergodic Markov chain X. The task is to find its stationary
distribution. Then we can calculate its Siegmund dual Z and if we are able to deter-
mine the absorption probabilities, then we have found the stationary distribution of
X.

(A3) Similarly to (A2): We are given an ergodic chain X. Assume that the approach given
in (A2) is infeasible: we can find the Siegmund dual, but we are unable to calculate
its absorption probabilities, but we are nevertheless able to simulate it. Then we
have a so-called stable simulation scheme for estimating the stationary distribution.
To estimate π({e}↓), we calculate the Siegmund dual Z of X and simulate it sev-
eral times, always starting the chain at e, and simply estimate the winning/losing
probabilities. The value of π(e) can be estimated by estimating π({e′}↓) at several
points e′, see Remark 3.2.

In this section, we provide two examples for each type of application. In Section 6.1 (A1), we
consider gambler’s ruin problems: first we give a simple proof of the ruin probability in the
gambler’s ruin problem with arbitrary winning/losing probabilities, then we solve another
version of the game. In Section 6.2 (A2), we exploit the results from the literature on the
ruin probabilities in the Fisher–Wright population model and on the “gambler’s ruin with
catastrophes” problem to determine the stationary distribution of some chains. In the first
one, we also determine its eigenvalues. Section 6.3 (A3) includes stable simulation schemes
and numerical results for the Ising model (on a circle) and a non-standard tandem network
of two stations. In both cases, an error analysis is provided.

Stable simulation schemes vs Markov chain Monte Carlo methods. Classical
Markov chain Monte Carlo methods are mainly used to obtain a sample from the stationary
distribution of given chain. They can however also be used to estimate π(A) for some subset
A of the state space. For example, a natural estimator of π(A) is the sample proportion
of visits to A, that is, π̂MCMC(A) = (1/n)

∑n
i=1 1A(Xj), where 1A is the indicator of A.
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However, the “quality” of the estimation depends strongly on the rate of convergence of X
to its stationary distribution. Such an estimator was considered in Athreya and Majumdar
[1]. Estimating the stationary distribution at one state was considered in Lee, Ozdaglar, and
Shah [15]. In contrast, for a stable simulation scheme, we do not need any knowledge about,
for example, the rate of convergence or the time to absorption, we simply run the Siegmund
dual Z until it is absorbed. We thus actually estimate the mean of a Bernoulli random vari-
able. This can be done by the Monte Carlo estimator, providing also a confidence interval
(thus an error analysis can also be provided, which is done in Section 6.3).

6.1. Application A1: Explicit Formulas for the Probabilities of Winning and Losing

6.1.1. Application A1: Recovering the ruin probability in the one-dimensional gambler’s
ruin problem with arbitrary winning/losing probabilities. Consider the chain Z on E∗ =
{0, 1, . . . ,M} with the transitions

PZ(i, j) =

⎧⎪⎨
⎪⎩

pi if j = i + 1,

qi if j = j − 1,

1− pi − qi if j = i

(6.1)

with positive pi, qi such that pi + qi ≤ 1 for i = 1, . . . , M − 1 and p0 = q0 = 0, pM = qM = 0.
This is a birth and death chain with two absorbing states, 0 and M , which can be thought
of as a generalized one-dimensional gambler’s ruin problem. We are interested in

ρ(i) = P (τM < τ0|Z0 = i),

where τi = inf{n ≥ 0 : Zn = i}. The case pi = p > 0, qi = q > 0 for i = 1, . . . , M is the clas-
sical gambler’s ruin problem. The formula for ρ(i) goes back to Parzen [24] (Section 6-6,
Eq. (6.27)). We will recover the result via Siegmund duality with an additional assumption.
This example is intended to present a simple, yet powerful, application of (2.4) in the case
of a total ordering.

Lemma 6.1: Consider the above generalized one-dimensional gambler’s ruin problem.
Assume that

pi−1 + qi ≤ 1, i = 1, . . . , M. (6.2)

Then we have

ρ(i) =
∑i

n=1

∏n−1
r=1 (qr/pr)∑M

n=1

∏n−1
r=1 (qr/pr)

.

Proof: Because of assumption (6.2), the matrix

PX(i, j) =

⎧⎪⎨
⎪⎩

qi if j = i + 1,

pi−1 if j = i− 1,

1− pi−1 − qi if j = i,
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is the transition matrix of a chain X on E = {1, . . . , M}. It turns out that Z is a Siegmund
dual of X. Using (2.3), that is, PZ(j, i) = PX(i, {j}↓)−PX(i + 1, {j}↓), we have

PZ(i, i− 1) = PX(i− 1, {i}↓)−PX(i, {i}↓) = 1− (1− qi) = qi, 1 < i ≤M,

PZ(i, i + 1) = PX(i + 1, {i}↓)−PX(i + 2, {i}↓) = pi, 1 ≤ i < M,

PZ(i, i) = PX(i, {i}↓)−PX(i + 1, {i}↓) = 1− qi − pi, i ≤M,

PZ(i, j) = 0, |i− j| > 1.

The first row is the only one which does not sum to 1 (it sums to 1− q1). Thus, we add one
extra absorbing state, “0” (i.e., E∗ = {0} ∪ E = {0, 1, . . . ,M}) and transition PZ(1, 0) = q1,
obtaining the chain given in (6.1). Note that X is a birth and death chain on E with birth rate
qi and death rate pi−1 (both given that we are at state i), thus its stationary distribution is

π(n) =
∏n−1

r=1 (qr/pr)∑M
k=1

∏k−1
r=1 (qr/pr)

.

Applying (2.4) completes the proof. �

Remark 6.2: The assumption (6.2) is equivalent to the stochastic monotonicity of the chain
(w.r.t. the total ordering, for which it is equivalent to Möbius monotonicity) and is not
essentially needed for a duality-based proof, see Lorek [19] for details (where the more
general, multidimensional gambler’s ruin problem is considered).

6.1.2. Application A1: A non-symmetric game: explicit formula for the probabilities of win-
ning and losing. In this section, we consider another “gambler-ruin like” game. The states
of the game are (0,WON,LOST ). The state 0 means we have not yet either won or lost.
The names of the other states speak for themselves. We start at state 0. At each step we
can win with probability p > 0, lose with probability q > 0, or nothing can happen with
probability 1− (p + q). Of course, eventually we will end up in the WON or LOST state
with probabilities p/(p + q) and q/(p + q), respectively.

Now consider the following generalization. We are given d games G1, . . . , Gd and param-
eters pi, qi, i = 1, . . . , d such that

∑d
i=1(pi + qi) ≤ 1. We win the whole game if we win all the

games G1, . . . , Gd and we lose the whole game if we lose at least one game Gi, i ∈ {1, . . . , d}.
If we win game Gi, we will not play it anymore. The generic state is either eL := LOST or
e = (e(1), . . . , e(d)), e(i) ∈ {0, 1}, i = 1, . . . , d, where e(i) = 1 means that we have already
won game Gi. Write eW := (1, . . . , 1). At each step we can win the new game Gi with prob-
ability pi (provided we have not won it already) or lose it with probability qi (in which case
we automatically lose the whole game), or we can do nothing, with the remaining probabil-
ity 1−∑i:e(i)=0(pi + qi). The described dynamics is a Markov chain, call it Z, on the state
space E∗ = {0, 1}d ∪ {eL}, with the following transitions:

PZ(e, e′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

pi if e′ = e + si,∑
i:e(i)=0

qi if e′ = eL, e �= eL,

1−
∑

i:e(i)=0

(pi + qi) if e′ = e �= eL,

1 if e′ = e = eL,

(6.3)
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where si = (0, . . . , 0, 1, 0, . . . , 0) with 1 at the ith coordinate. The chain has two absorbing
states: eL and eW (we lose or we win). Eventually, the chain will be absorbed in one of
them. A natural question arises: What is the probability of winning the whole game starting
with an arbitrary set of already won games e′ ∈ E? In other words, we want to calculate
the following probabilities:

ρ(e′) = P (τeM
< τeL

| Z0 = e′),

where τe := inf{n ≥ 0 : Zn = e}. To answer the question, consider first another chain, the
non-symmetric random walk X on E = {0, 1}d, defined for the same parameters pi, qi, i =
1, . . . , d, with the transitions

PX(e, e′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qi if e′ = e + si,

pi if e′ = e− si,

1−
∑

i:e(i)=0

qi −
∑

i:e(i)=1

pi if e′ = e.

Under the mild assumption that at least for one state e we have that PX(e, e) > 0, the
chain is ergodic with the stationary distribution

π(e) =
∏

i:e(i)=1

qi

pi + qi

∏
i:e(i)=0

pi

pi + qi
.

Let |e| = ∑d
i=1 e(i) (called a level of e). We consider the coordinate-wise ordering, that is,

e � e′ if e(i) ≤ e′(i) for all i = 1, . . . , d. The state e1 = (0, . . . , 0) is the unique minimal
state and eM = (1, . . . , 1) is the unique maximal one. Then (E,�) is a Boolean lattice with
the following Möbius function:

μ(e, e′) = (−1)|e
′|−|e|1(e � e′).

To calculate the Siegmund dual, we have to calculate

PZ(e, e′) =
∑

e2	e′
μ(e′, e2)PX(e2, {e}↓). (6.4)

Consider the case e′ = e + si. Then there is one state e2 � e + si in (6.4) for which
PX(e2, {e}↓) > 0, namely e2 = e + si. We have

PZ(e, e + si) =
∑

e2	e+si

μ(e + si, e2)PX(e2, {e}↓) = pi.

In Lorek and Szekli [21], we calculated SSD of PX . Thus, according to Section 5, we have
also calculated its Siegmund dual. That is why we skip the remaining calculations. It turns
out that PZ given in (6.3) is the Siegmund dual of X. The chain X is thus Möbius monotone
if and only if

∑d
i=1(pi + qi) ≤ 1. Note that for any e ∈ E, we have

∑
e′∈E

PZ(e, e′) = 1−∑
i:e(i)=0 qi. We add one extra absorbing state, call it eL, and we end up exactly with the
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transitions given in (6.3). Thus via (2.4), we have

ρ(e′) =
∑
e
e′

∏
i:e(i)=1

qi

pi + qi

∏
i:e(i)=0

pi

pi + qi
.

For example, if pi = p and qi = q for all i = 1, . . . , d, then we have

ρ(e′) =
1

(p + q)d

∑
e
e′

q|e|pd−|e|

=
1

(p + q)d

|e′|∑
k=0

(|e′|
k

)
qkpd−k =

(
p

p + q

)d−|e′|
.

Note that then of course the probability ρ(e′) depends only on the level |e′|. In particular,
for p = q we have that ρ(e′) = 2|e

′|−d.

Remark 6.3: The matrix PZ can be written as an upper triangular matrix, and thus we can
read off the eigenvalues from the diagonal. Corollary 4.5 implies that λA = 1−∑i∈A(pi +
qi), A ⊆ {1, . . . , d} are the eigenvalues of PX .

6.2. Application A2: Explicit Formulas for the Stationary Distribution of Some Chains

6.2.1. Application A2: Finding the stationary distribution of an extension of the birth
and death chain. Consider the classical birth and death chain on the state space E =
{1, 2, . . . , N} with constant birth rate q > 0 and death rate p > 0. Assume that p �= q and
p + q < 1. Let X be the following modification of this birth and death chain: in addition,
there is an extra probability 1− p− q of going from any state to the maximal state N .
Formally, the transitions of X are given by

PX(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q if j = i + 1, i = 1, . . . , N − 2,

1− p if (i = N − 1, j = N) or (i = j = N),

p if (j = i− 1, i = 2, . . . , N) or (i = j = 1),

1− p− q if i = 1, . . . , N − 2, j = N,

0 otherwise.

(6.5)

Theorem 6.4: Consider the Markov chain X on E = {1, . . . , N} with the transitions given
in (6.5). Assume that p �= q and p + q < 1. Then the stationary distribution of the chain is
given by

π(k) =

(
(1/2p)

∑� k−1
2 

j=0

(
k

2j+1

)
γj −∑� k

2 −1
j=0

(
k−1
2j+1

)
γj
)

∑�N−1/2
j=0

(
N

2j+1

)
γj

2(2p)N−k+2, (6.6)

where γ = (1− 4pq).

Proof: First, we will calculate the Siegmund dual of X. Consider the linear ordering �:=≤
on E. The transitions of the Siegmund dual are then calculated using (2.3), that is, PZ(j, i) =
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PX(i, {j}↓)−PX(i + 1, {j}↓). Considering all the cases, we have

PZ(j, j − 1) = PX(j − 1, {j}↓)−PX(j, {j}↓)

= q + p− p = q, j = 2, . . . , N,

PZ(j, j + 1) = PX(j + 1, {j}↓)−PX(j + 2, {j}↓)

= p− 0 = p, j = 1, . . . , N − 1,

PZ(N − 1, N) = PX(N, {(N − 1)}↓) = p,

PZ(N,N) = PX(N, {N}↓) = 1.

For every j = 1, . . . , N − 1 we have that
∑

i PZ(j, i) < 1, more precisely

N∑
i=1

PZ(1, i) = p < 1,

N∑
i=1

P(j, i) = p + q < 1, j = 2, . . . , N − 1.

Thus we add one extra state, call it “0”, obtaining the transition matrix of the Siegmund
dual Z on E∗ = {0, 1, . . . , N}:

PZ(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p if j = i + 1, i = 1, . . . , N − 1,

q if j = i− 1, i = 2, . . . , N − 1,

1− p if i = 2, j = 1,

1− p− q if i = 2, . . . , N − 1, j = 0,

1 if (i = j = 0) or (i = j = N),

0 otherwise.

(6.7)

These are exactly the transitions corresponding to the “gambler’s ruin with catastrophes”
considered in Hunter [14]. The ruin probability is given therein in Eq. (2.6), the winning
probability is (with ρ(0) = 0)

ρ(k) =

(
1 +

√
1− 4pq/2p

)k

−
(

1−
√

1− 4pq/2p
)k

(
1 +

√
1− 4pq/2p

)N

−
(

1−
√

1− 4pq/2p
)N

.

For a linear ordering, the relation (2.4) is π({k}↓) = ρ(k); thus

π(k) = ρ(k)− ρ(k − 1).

The above relation and some elementary calculations using the binomial expansion

(1 +
√

x)k − (1−√x)k = 2
√

x

�k−1/2∑
j=0

(
k

2j + 1

)
xj

yield (6.6), and thus complete the proof. �
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6.2.2. Application A2: Finding the stationary distribution, another example.

Lemma 6.5: Let X be a Markov chain on E = {1, . . . , 2N} with the following transition
matrix:

PX(i, j) =
1

(2N)2N

2N∑
r=i

(
2N

r

)[
jr(2N − j)2N−r − (j − 1)r(2N − j + 1)2N−r

]
.

Then the chain has a uniform stationary distribution, it is not reversible, and the eigenvalues
are

λk =
k!

(2N)k

(
2N

k

)
, k = 1, . . . , N.

Proof: We will calculate the transitions of the Siegmund dual Z of X with respect to the
total ordering. To shorten the notation, let us write PX(2N + 1, j) = 0 for any j. For any
i, s ∈ E, we have

PX(i, s)−PX(i + 1, s)

=
1

(2N)2N

(
2N

i

)[
si(2N − s)2N−i − (s− 1)i(2N − s + 1)2N−i

]
.

Using (2.3) we have

PZ(j, i) = PX(i, {j}↓)−PX(i + 1, {j}↓) =
j∑

s=1

(PX(i, s)−PX(i + 1, s))

=
1

(2N)2N

(
2N

i

)
ji (2N − j)2N−i =

(
2N

i

)(
j

2N

)i(
1− j

2N

)2N−i

.

For every j < 2N we have
∑

i PZ(j, i) < 1; thus we add one extra absorbing state, call it
“0”, and set P(j, 0) = 1−∑2N

s=1 PZ(j, s). These are exactly the transitions of the so-called
Fisher–Wright population model (see, e.g., Ewens [6]). The states 0 and 2N are absorbing.
It is known that for this model P (Z is absorbed in 2N |Z0 = i) = i/2N , thus the relation
(2.4) implies that π(1) = π({1}↓) = P (Z is absorbed in 2N |Z0 = 1) = 1/2N and for i > 1
we have π(i) = π({i}↓)− π({i− 1}↓) = (i/2N)− (i− 1/2N). It is easy to verify that X is
not reversible. The eigenvalues of the Fisher–Wright model are λk = k!/(2N)k

(
2N
k

)
, k =

0, . . . , N , as shown in Feller [8]. Applying Corollary 4.5 completes the proof. �

Remark 6.6: It is relatively easy to show directly that the uniform distribution is the sta-
tionary distribution of X. However, finding directly the eigenvalues seems to be a challenging
task.

6.3. Application A3: Stable Simulation Schemes

We will present two examples: a non-standard two-node closed tandem network with an
unknown stationary distribution, and the Ising model on a circle. In both cases, simulations
for some concrete sets of parameters are provided. The procedure is the following:

• For an ergodic chain X on E = {e1, . . . , eM} (denote its stationary distribution by
π), calculate its Siegmund dual Z with respect to a partial ordering � on E∗ =
{e0} ∪ E.
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• For all e, simulate n chains Z(1), . . . , Z(n) independently, each starting at e.
• Estimate π({e}↓) via (2.4) with the Monte Carlo estimator

π̂({e}↓) =
1
n

n∑
i=1

Yj ,

where Yj = 1(Z(j) is absorbed in eM |Z(j)
0 = e).

• Finally, approximate π(e) by (see Remark 3.2)

π̂(e) =
∑
e′
e

μ(e′, e)π̂({e′}↓),

where μ is the Möbius function of the partial ordering �.

Remark 6.7: In practice, we usually deal with chains on a huge state space, and our goal is
to approximate π at a given point e. We then do not have to start the chains at every state
(which is infeasible), but only for {e′ : μ(e′, e) �= 0}.

In other words, we estimate the mean of the Bernoulli random variable Y with π({e}↓)
being its success probability (and thus the mean). From the Central Limit Theorem, we know
that π({e}↓) is in the interval (Ŷn − z1−α/2(σY /

√
n), Ŷn + z1−α/2(σY /

√
n)) with probability

(approximately) 1− α, where σ2
Y = π({e}↓)(1− π({e}↓)) is the variance of Y and z1−α/2 is

the αth quantile of the standard normal distribution. For a typical α = 0.05 (then z1−0.025 =
1.96), we want to control the error err = 1.96σY /

√
n. Since σ2

Y ≤ 1/4, it is enough to run
at least

n =
(

1.96
2err

)2

(6.8)

simulations for any e.

6.3.1. Application A3: A stable simulation scheme for a non-standard tandem network of two
servers. In this section, we will present a two-node closed tandem network with an unknown
stationary distribution. Studying the absorption probability in the resulting Siegmund dual
chain is a rather complicated task. We will present a stable simulation scheme and will
estimate the stationary distribution for some concrete parameters. It is also worth noting
that the structure of the resulting Siegmund dual is interesting: for example, once it hits a
barrier, it will not leave it; for details see below.

Consider a tandem network of two stations, each with a finite buffer of size N . Denote
the chain by X ≡ (X)n≥0 with state space E = {0, . . . , N}2, where (x, y) is the state in
which there are x customers at server 1 and y customers at server 2.

When x > 0 and y < N , the system operates as the following classical tandem: with
probability λ1 there is an arrival at station 1 (if x < N); with probability λ2 there is an
arrival at station 2 (if y < N); with probability μ1 customers traverse from server 1 to
server 2; with probability μ2 the customer from server 2 leaves the network (if y > 0);
with the remaining probability nothing happens. Without loss of generality we may assume
that λ1 + μ1 + λ2 + μ2 = 1. However, at the borders x = 0 and y = N , the system operates
differently from the classical tandem: when x = 0, the probability of arrival at station 2
is λ2 + μ1 (if y < N) and when y = N there is a departure from server 1 with probability
μ1 (if x > 0). This can be seen as a modification of the standard Gordon-Newell network.
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A similar modification (of the Jackson network, that is, with a countable state space) was
considered in Foley and McDonald [10], where the rough asymptotics (and large deviations)
were derived, showing that a relatively slight modification (only at the borders) changes the
stationary distribution dramatically. The transitions of the chain are as follows:

PX((x, y), (x′, y′)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 if (x′ = x + 1, y′ = y)
or (x = x′ = N, 0 < y′ = y < N),

λ2 if (y′ = y + 1, x′ = x > 0)
or (0 < x′ = x < N, y′ = y = N),

μ1 if (x′ = x− 1, y′ = y + 1)
or (x′ = x− 1, y′ = y = N),

μ2 if (y′ = y − 1, x′ = x)
or (x′ = x < N, y′ = y = 0),

μ1 + λ2 if (y′ = y + 1, x′ = x = 0)
or (x′ = x = 0, y′ = y = N),

μ2 + λ1 if x′ = x = N, y′ = y = 0,

λ1 + λ2 if x′ = x = y′ = y = N.

(6.9)

Consider the coordinate-wise ordering, that is, (x, y) � (x′, y′) ⇐⇒ x ≤ x′ and y ≤ y′.
Then the Möbius function is

μ((x, y), (x′, y′)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if (x′ = x and y′ = y) or
(x′ = x + 1 and y′ = y + 1),

−1 if (x′ = x + 1 and y′ = y) or
(x′ = x and y′ = y + 1),

0 otherwise.

(6.10)

We will calculate the transition matrix PZ of the Siegmund dual Z directly from
Theorem 4.1:

PZ((x1, y1), (x2, y2)) =
∑

(x,y)	(x2,y2)

μ((x2, y2), (x, y))PY ((x, y), (x1, y1)↓),

where PY ((x, y), (x1, y1)↓) :=
∑

(x′,y′)
(x1,y1)
PY ((x, y), (x′, y′)). With our Möbius function

μ we have

PZ((x1, y1), (x2, y2)) = PY ((x2, y2), (x1, y1)↓)−PY ((x2 + 1, y2), (x1, y1)↓) (6.11)

−PY ((x2, y2 + 1), (x1, y1)↓) + PY ((x2 + 1, y2 + 1), (x1, y1)↓),

where we should understand that, for example, for y2 = N the corresponding terms, in this
case PY ((x2, y2 + 1), (x1, y1)↓) and PY ((x2 + 1, y2 + 1), (x1, y1)↓), are equal to 0. Let us
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start with the case x1, x2, y1, y2 > 1 and x1, x2, y1, y2 < N . Then using (6.11) we have, for
example,

PZ((x1, y1), (x1 − 1, y1)) = PY ((x1 − 1, y1), (x1, y1)↓)−PY ((x1, y1), (x1, y1)↓)

−PY ((x1 − 1, y1 + 1), (x1, y1)↓) + PY ((x1, y1 + 1), (x1, y1)↓)

= λ1 + μ2 − μ2 − μ2 + μ2 = λ1.

We also have PZ((x1, y1), (x1 − k, y1)) = 0 for k = 1, . . . , x1 − 1. Considering some possible
transitions to the border of the state space:

PZ((x1, y1), (0, y1 − 1)) = PX((0, y1 − 1), (x1, y1)↓)−PX((1, y1 − 1), (x1, y1)↓)

−PX((0, y1), (x1, y1)↓) + PX((1, y1), (x1, y1)↓)

= 1− 1− (λ1 + μ2) + (μ2 + λ1) = 0.

We will skip the rest of the (lengthy) calculations, but considering it on a case-by-
case basis, X turns out to be Möbius monotone. We add one extra state, let us name it
(+∞, +∞). The transitions of the Siegmund dual are as follows:

PZ((x, y), (x′, y′)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 if (N − 1 > x′ = x− 1, y′ = y)
or (x′ = x = N, y′ = y < N)
or (x = 0, y > 0, x′ = +∞, y′ = +∞),

λ2 if N − 1 > y′ = y − 1, x′ = x < N,

μ1 if x′ = x + 1, N − 1 > y′ = y − 1
or x′ = x + 1, y′ = y = N,

μ2 if x′ = x, y′ = y + 1,

μ1 + λ2 if (N − 1 > y′ = y − 1, x′ = x = N)
or (x > 0, y = 0, x′ = +∞, y′ = +∞),

μ2 + λ2 if x′ = x < N, y′ = y = N

λ1 + λ2 + μ1 if x = 0, y = 0, x′ = +∞, y′ = +∞,

1 if (x′ = x = y′ = y = N)

or (x′ = x = y′ = y = +∞).

(6.12)

Note that outside the borders, the transitions look like a reversed network (however,
note that this is not the usual time reversal). The behavior on the borders is different. First,
the chain can go to (+∞, +∞) only from states of the form (0, y) or (x, 0). Second, once the
process is on the “upper” ((x,N)) or the “right” ((N, y)) border, it behaves like the usual,
absorbing birth and death chain with probabilities of being killed only possible on (0, N)
and (N, 0), respectively. On the upper border, the birth rate is μ1 and the death rate is λ1,
whereas on the right border, the birth rate is μ2 and the death rate is μ1 + λ2.
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One can also notice a similar behavior (i.e., not leaving the borders) in the SSD for
the two-node network representing two independent servers, see Lorek and Szekli [22] for
details.

Stable simulation scheme. We will estimate the stationary distribution of the tandem
for N = 5 (thus the state space is E = {0, . . . , 5}2 with |E| = 36) with parameters λ1 =
3/16, λ2 = 1/16, μ1 = μ2 = 6/16. The simulations were performed in The Julia Language.
We consider two levels of accuracy: err1 = 0.005 and err2 = 0.0005. Using (6.8) we calculate
a sufficient number of simulations:

err1 = 0.005 :
(

1.96
0.01

)2

= 3.8416× 104 ≤ 4× 104 =: n1,

err2 = 0.0005 :
(

1.96
0.001

)2

= 3.8416× 106 ≤ 4× 106 =: n2.

Once we estimate π({x, y}↓) by π̂({x, y}↓), we estimate π(x, y) by (see Remark 3.2)

π̂(x, y) =
∑

(x′,y′)
(x,y)

μ((x′, y′), (x, y))π̂({(x′, y′}↓)

= π̂({(x, y)}↓)− π̂({(x− 1, y)}↓)

− π̂({(x, y − 1)}↓) + π̂({(x− 1, y − 1)}↓),

(6.13)

(where we should understand that π̂({(x, y)}↓) = 0 if some coordinate is negative). The
results of the simulations are presented in Table 1. Besides estimating the stationary dis-
tribution, we also estimate the mean (τ̂) and the standard deviation (σ̂2) of time till
absorption.

Although it is not included in Table 1, repeating the simulations for n2 = 4× 106 several
times yields estimators of π which always agree to the first three decimal places. The total
variation distance between two such estimations was always ≤ 0.0071.

6.3.2. Application A3: Stable simulation scheme for the Ising model on a circle. Let G =
(V,E) be a finite graph. Let E = {−1, 1}V (set of so-called configurations). The Ising model
on graph G with parameter β ≥ 0 is the probability measure on E given by

π(e) =
1

Cβ
exp

⎛
⎝β

∑
{x,y}∈E

e(x)e(y)

⎞
⎠ ,

where sum is over all edges of the graph and Cβ is a normalizing constant (hard to
compute in general). We shall consider G being a circle, that is, V = {0, . . . , N − 1} and
E = {(i, (i + 1) mod N) : i = 0, . . . , N − 1}. The distribution is then of form

π(e) =
1
Z

exp

(
β

N−1∑
i=0

e(i)e(i + 1)

)
, (6.14)
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Table 1. Results of n1 = 4× 104 and n2 = 4× 106 simulations for the non-standard tan-
dem queue system with N = 5, λ1 = 3/16, λ2 = 1/16, μ1 = μ2 = 6/16. Together with the
estimator π̂ ≡ π̂(x, y), x, y ∈ {0, . . . , N} the estimators of the expected time to absorption
(τ̂) and its variance (σ̂2) are presented. The total variation distance between the estimated
stationary distribution after n1 and n2 simulations was ≤ 0.056.

y\x 0 1 2 3 4 5

0
π̂ 0.030349 0.051093 0.064 0.089953 0.115488 0.152256
τ̂ 3.432581 6.516953 8.838628 10.490814 11.159698 10.898512

σ̂2 37.126458 71.878733 92.804187 107.71656 110.579045 107.214705

1
π̂ 0.027628 0.029558 0.046256 0.04214 0.053326 0.061907
τ̂ 5.174186 9.379605 12.625 14.243023 14.688047 13.80893

σ̂2 59.11922 89.951922 104.240892 102.786725 99.409276 96.261684

2
π̂ 0.02193 0.023814 0.018767 0.026605 0.01507 0.019116
τ̂ 5.92793 10.416093 13.449814 14.923465 14.533163 12.371256

σ̂2 68.774475 94.621951 97.120298 91.983189 90.545936 84.547763

3
π̂ 0.014721 0.011116 0.01714 4.7e-5 0.014814 0.004
τ̂ 6.109372 10.44014 13.141 13.863535 12.545814 9.115233

σ̂2 70.331045 92.117536 88.790347 84.163846 83.647753 72.533966

4
π̂ 0.00893 0.008651 0.00093 0.010442 0.005093 0.001233
τ̂ 5.829372 9.947884 12.078233 12.073163 9.741093 4.85114

σ̂2 62.136261 80.03354 81.073393 77.194024 74.588772 44.553598

5
π̂ 0.009233 0.001465 0.000953 0.006791 0.000651 0.001326
τ̂ 5.579488 9.188023 10.855837 10.235651 6.744186 0.0

σ̂2 55.045706 70.475751 71.311736 73.753556 66.707552 0.0

n1 = 4 × 104 (err1 = 0.005)

y\x 0 1 2 3 4 5

0 π̂ 0.029462 0.049277 0.067276 0.087678 0.115476 0.158547
τ̂ 3.42784 6.48493 8.857538 10.419037 11.117143 10.907459

σ̂2 35.946223 70.050356 93.86759 107.100301 111.100368 105.813727
1 π̂ 0.029505 0.033735 0.041213 0.046289 0.052367 0.051459

τ̂ 5.186866 9.447477 12.550259 14.317646 14.701667 13.70708

σ̂2 59.127635 91.033304 102.503483 102.602434 99.065673 94.155181

2
π̂ 0.02127 0.021866 0.020932 0.023654 0.021371 0.017472
τ̂ 5.892092 10.463687 13.501422 14.889388 14.544947 12.450019

σ̂2 68.901012 95.30462 97.564506 92.816501 89.189174 85.646968

3
π̂ 0.014304 0.012097 0.011997 0.009563 0.009726 0.00579
τ̂ 6.029211 10.440957 13.09187 13.842725 12.557437 9.142111

σ̂2 69.044913 90.025534 89.396487 84.83922 82.871419 72.118169

4
π̂ 0.008411 0.007586 0.005305 0.004613 0.003635 0.002299
τ̂ 5.846186 9.8955 12.065144 12.108027 9.742326 4.82419

σ̂2 63.076118 79.801387 79.770588 78.464214 74.763627 43.825968

5

π̂ 0.006554 0.003745 0.002153 0.001752 0.000802 0.000818
τ̂ 5.476035 9.225108 10.904013 10.212549 6.723262 0.0

σ̂2 53.437619 70.099047 72.300547 74.038874 65.987165 0.0

n2 = 4 × 106 (err2 = 0.0005)
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where we always perform addition modulo N . Let X on E be the classical Gibbs sampler
for this model, it has the following dynamics. Given Xk = e,

• Choose vertex i ∈ V with probability
1
N

.

• Take Uk+1, uniform random variable U(0, 1), independent of Uj , j ≤ k. Update the
value at vertex i:

Xk+1(i) =

⎧⎪⎨
⎪⎩

+1 if Uk+1 <
e2β(e(i+1)+e(i−1))

1 + e2β(e(i+1)+e(i−1))
,

−1 otherwise.

Denote the transition matrix of X by P. Let � denote coordinate-wise partial ordering of
E, that is, e � e′ if e(i) ≤ e′(i) for i = 0, . . . , N − 1. We will start with:

Numerical results. Let X be the Gibbs sampler for the Ising model on a circle with 3
points (N = 2). Let us enumerate the states in the following way: e1 = (−1,−1,−1), e2 =
(+1,−1,−1), e3 = (−1, +1,−1), e4 = (−1,−1, +1), e5 = (+1, +1,−1), e6 = (+1,−1, +1),
e7 = (−1, +1, +1), e8 = (+1, +1, +1). The transition matrix of X is following:

PX =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− q
1
3
q

1
3
q

1
3
q 0 0 0 0

1
3
− 1

3
q

1
3

+
1
3
q 0 0

1
6

1
6

0 0

1
3
− 1

3
q 0

1
3

+
1
3
q 0

1
6

0
1
6

0

1
3
− 1

3
q 0 0

1
3

+
1
3
q 0

1
6

1
6

0

0
1
6

1
6

0
2
3
− 1

3
p 0 0

1
3
p

0
1
6

0
1
6

0
2
3
− 1

3
p 0

1
3
p

0 0
1
6

1
6

0 0
2
3
− 1

3
p

1
3
p

0 0 0 0
1
3
− 1

3
p

1
3
− 1

3
p

1
3
− 1

3
p p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where p = e4β/1 + e4β and q = e−4β/1 + e−4β . The stationary distribution in this case is
given by:

π(e1) = π(e8) =
e3β

Cβ
, π(e2) = · · · = π(e7) =

e−β

Cβ
, Cβ = 2e3β + 6e−β .

Introducing coordinate-wise partial ordering, it is easy to calculate the Siegmund dual
chain Z on E∗ = E ∪ {e0}. Its transition matrix PZ is following (with states enumerated:
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e0, . . . , e8)

PZ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0

1− p1 0
1
3
p1

1
3
p1

1
3
p1 0 0 0 0

1
3

(1− p2) 0
1
3

1
6
p2

1
6
p2

1
6

1
6

0 0

1
3

(1− p2) 0
1
6
p2

1
3

1
6
p2

1
6

0
1
6

0

1
3

(1− p2) 0
1
6
p2

1
6
p2

1
3

0
1
6

1
6

0

1
3

(1− (q1 + q2)) 0 0 0 0
2
3

1
6
q2

1
6
q2

1
3
q1

1
3

(1− (q1 + q2)) 0 0 0 0
1
6
q2

2
3

1
6
q2

1
3
q1

1
3

(1− (q1 + q2)) 0 0 0 0
1
6
q2

1
6
q2

2
3

1
3
q1

0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

p1 =
1

1 + e−4β
, p2 =

1− e−4β

1 + e−4β
, q1 =

1
1 + e4β

, q2 =
e4β − 1
1 + e4β

.

We consider two different values for β, β1 = 0.01 and β2 = 0.1, and two levels of accuracy
err1 = 0.005 and err2 = 0.0005. These are the same accuracy levels as in Section 6.3.1,
thus similarly we take n1 = 4× 104 and n2 = 4× 106. The results, together with mean and
variance of absorption time (denoted by τ̂ and σ̂2) are given in Table 2.

For N = 2 of course the stationary distribution can be calculated, thus we can compare
it with simulations’ results. From Table 2 we can read that estimating π using n1 = 4× 104

simulations was more accurate for β = 0.1 then for β = 0.01 (total variation distance
between the estimated and the real stationary distribution being 0.003 and 0.01 respec-
tively). However, after n2 = 4× 106 simulations no significant differences can be observed.
Note also that each simulation took on average around 0.7 steps longer for β = 0.1 than for
β = 0.01.

Remark 6.8: In estimating the mean value of Bernoulli random variable one may want err
to be a fraction of variance σ2

Y . The variance is unknown; however, it can be first estimated
by running initially some number of simulations and calculating its sample variance. This
should be done separately for each e for which we want to estimate π({e}↓).

General N . We presented an example with three vertices (N = 2). In this case, we can
simply calculate PZ = (C−1PXC)T (and add an extra absorbing state). How should one
proceed with the general number of vertices? This chain was considered in Lorek and Szekli
[22] in the context of strong stationary duality (and studying the rate of convergence of the
chain to its stationary distribution), where the form of this dual for general N was given in
Conjecture 1. The conjecture translates into

Conjecture 6.9: Let X be the Gibbs sampler for the Ising model on a circle. Then it is
Möbius monotone with respect to the coordinate-wise partial ordering. The transitions of
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Table 2. Simulation results for two Ising models (with β = 0.01 and β = 0.1) on a circle with three vertices. We calculated: π̂(ei) –
the estimator of the stationary distribution; τ̂ , σ̂2 – estimators of expected number of steps till absorption and its variance. The actual
stationary distribution is bolded. The total variation distance between the stationary distribution and its estimation is given in last row.

β = 0.01 β = 0.1

n1 = 4 × 104 n2 = 4 × 106 n1 = 4 × 104 n = 4 × 106

(err1 = 0.005) (err2 = 0.0005) (err1 = 0.005) (err = 0.0005)

π π̂ τ̂ σ̂2 π̂ τ̂ σ̂2 π π̂ τ̂ σ̂2 π̂ τ̂ σ̂2

e1 0.129 0.128 2.563 5.587 0.129 2.564 5.574 0.166 0.166 3.235 9.463 0.166 3.237 9.498
e2 0.124 0.123 3.050 6.263 0.124 3.063 6.310 0.111 0.111 3.731 10.224 0.111 3.736 10.209
e3 0.124 0.128 3.062 6.328 0.124 3.063 6.312 0.111 0.110 3.742 10.297 0.111 3.735 10.226
e4 0.124 0.124 3.059 6.284 0.124 3.063 6.322 0.111 0.112 3.733 10.164 0.111 3.742 10.268
e5 0.124 0.116 3.062 6.329 0.123 3.060 6.314 0.111 0.113 3.731 10.229 0.112 3.735 10.233
e6 0.124 0.128 3.054 6.251 0.124 3.061 6.315 0.111 0.109 3.742 10.246 0.112 3.738 10.236
e7 0.124 0.122 3.065 6.337 0.124 3.061 6.319 0.111 0.111 3.743 10.240 0.112 3.736 10.243
e8 0.129 0.131 – – 0.128 – – 0.166 0.168 – – 0.165 – –
d(π, π̂) 0.010 0.001 0.003 0.001
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its Siegmund dual Z on E∗ = {e0} ∪ E are as follows:

PZ(e, e′) (6.15)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if e � e′,

1
N

S(e) if e = e′,

1
N

(
1− e2β(e(i+1)+e(i−1))

1 + e2β(e(i+1)+e(i−1))

)
if e′ = e + sv, e(v) = −1,

1
N

(
e2β(e(i+1)+e(i−1)+2)

1 + e2β(e(i+1)+e(i−1)+2)
− e2β(e(i+1)+e(i−1))

1 + e2β(e(i+1)+e(i−1))

)
if e′ = e(i↔ i + 1),

e(i)e(i + 1) = −1,

1−∑e′∈E
PZ(e, e′) if e′ = e0,

where sv = (0, . . . , 0, 2, 0, . . . , 0) (the 2 on the coordinate corresponding to vertex v), S(e) =∑N−1
i=0 111{e(v) = 1} and e(i↔ i + 1) denotes the state e with spins at vertices i and i + 1

swapped.

Note that if the conjecture is true, then it is easy to simulate the Siegmund dual. The
only non-zero transitions are: (i) the chain can stay at each state (except e = (0, . . . , 0));
(ii) it can change some coordinate from −1 to +1; (iii) if +1 and −1 are neighbors, then
they can be “swapped”; (iv) with the remaining probability the chain can be absorbed in
e0. Thus, it is easy to estimate π({e}↓). However, estimating π(e) for large N is not trivial.
Remark 3.2 (with the Möbius function of the coordinate-wise ordering on {0, 1}N ) implies
that we need to estimate π({e′}↓) for 2S(e) different states e′. Note that in the non-standard
queue example (Section 6.3.1), for each e = (x, y) we had to estimate π at at most four other
states (cf. (6.13)).

Note that for the minimal state, we have {e1}↓ = e1, thus to estimate π(e1) we need
only to run chains starting at this minimal state. For example, we can estimate then the
normalizing constant Cβ (often called a partition function) via Ĉβ = e3β/π̂(e1). For the
Ising model on a cirle with N vertices it is known that Cβ = (2 sinh(β))N + (2 cosh(β))N .

7. STOCHASTIC VS MÖBIUS MONOTONICITY

In Section 4, we showed that the Siegmund dual exists if and only if the chain is Möbius
monotone. We also mentioned that this monotonicity and stochastic monotonicity are indeed
different. In this section, we will present two chains: (a) a chain which is stochastically but
not Möbius monotone, and (b) a chain which is Möbius but not stochastically monotone.

7.1. Example of a Chain that is Stochastically but not Möbius Monotone

Consider X on E = {e1, e2, e3, e4} with the following partial ordering (expressed by C, its
Hasse diagram is presented)

C =

⎛
⎜⎜⎝

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎞
⎟⎟⎠
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Table 3. Conditions for stochastic
monotonicity of X.

e � e′ U P(e,U) ≤ P(e,U)
e1 � e2 {e2, e3, e4} α1 + α2 + β1 ≤ 1
e1 � e3 {e2, e3, e4} α1 + α2 + β2 ≤ 1
e2 � e4 {e4} α2 + β1 + β2 ≤ 1
e3 � e4 {e4} α1 + β1 + β2 ≤ 1

Let α1, α2, β1, β2 be non-negative numbers such that

max(α1 + α2, β1 + α2, β1 + β2, α1 + β2) ≤ 1. (7.1)

Define the transition matrix

PX =

⎛
⎜⎜⎝

1− α1 − α2 α1 α2 0
β1 1− β1 − α2 0 α2

β2 0 1− α1 − β2 α1

0 β2 β1 1− β1 − β2

⎞
⎟⎟⎠ .

Simple computations yield

(C−1PXC)T =

⎛
⎜⎜⎝

1− α1 − α2 − β1 − β2 β1 β2 0
0 1− α2 − β2 0 β2

0 0 1− α1 − β2 β1

0 0 0 1

⎞
⎟⎟⎠ .

Thus, the chain is Möbius monotone iff α1 + α2 + β1 + β2 ≤ 1. As for stochastic monotonic-
ity, condition (2.1) is calculated for some e � e′ and some up-sets, the results are given in
Table 3.

It can be checked that the conditions from Table 3 imply all other conditions for
stochastic monotonicity. The chain is stochastically monotone iff

max
(

α1 + α2 + max
i=1,2
{βi}, β1 + β2 + max

i=1,2
{αi}

)
≤ 1.

Thus, in this example, Möbius monotonicity implies stochastic monotonicity but not vice

versa. For example, for α1 = α2 = β1 = β2 =
1
3

the chain is stochastically but not Möbius
monotone.

7.2. Example of a Chain that is Möbius Monotone but not Stochastically Monotone

This example is taken from Lorek and Markowski [20] (the chain with the transition matrix
P6). The detailed calculations were not given therein, which is why we include them
here. The state space is E = {e1, . . . , e6} and the partial order (and its Hasse diagram)
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is the following:

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
0 1 0 1 1 1
0 0 1 1 1 1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

The transitions are

PX =

⎛
⎜⎜⎜⎜⎜⎜⎝

17/24 0 0 1/8 1/8 1/24
1/8 5/16 5/16 1/12 1/12 1/12
1/8 5/16 5/16 1/12 1/12 1/12
1/12 1/12 1/12 5/16 5/16 1/8
1/12 1/12 1/12 5/16 5/16 1/8
1/24 1/8 1/8 0 0 17/24

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Simple calculations yield

(C−1PXC)T =

⎛
⎜⎜⎜⎜⎝

7/12 0 0 1/24 1/24 1/24
0 13/48 13/48 0 0 1/6
0 13/48 13/48 0 0 1/6
0 0 0 13/48 13/48 7/24
0 0 0 13/48 13/48 7/24

⎞
⎟⎟⎟⎟⎠ ,

thus the chain is Möbius monotone. Consider the up-set U = {e4, e5, e6}. For e1 � e2 we
have

P(e1,U) =
7
24
�≤ 1

4
= P(e2,U),

thus the chain is not stochastically monotone.

Remark 7.1: There are many chains where Möbius monotonicity implies stochastic mono-
tonicity. For example, the non-standard queue system considered in Section 6.3.1 was both
Möbius and stochastically monotone. If one considers a standard tandem (without changes
at the border), it turns out to be stochastically but not Möbius monotone. The exam-
ple from Section 7.1 is a special case of a nearest neighbor walk on the cube considered
in Lorek and Szekli [21] (Chapter 4, Eq. (4.1)). Roughly speaking, this is the following
chain on E = {0, 1}d. At any step, only at most one coordinate can be changed: a 0 on
the i-th coordinate can be changed to 1 with probability αi and a 1 on the i-th coordinate
can be changed to 0 with probability βi with proper sequences αi, βi, i = 1, . . . , d assur-
ing aperiodicity. Considering the coordinate-wise ordering, the chain is Möbius monotone
iff
∑d

i=1(αi + βi) ≤ 1 (Theorem 3 in Lorek and Szekli [21]), whereas it is stochastically
monotone iff

max

(
d∑

i=1

αi + max
i
{βi},

d∑
i=1

βi + max
i
{αi}

)
≤ 1

as was determined in Lorek [18] (Lemma 5.4.1). It can also be checked that in this example
Möbius monotonicity is equivalent to realizable monotonicity (required, e.g., for efficient
perfect simulation via the coupling from the past algorithm Propp and Wilson [25]).
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However, so far we do not have any “natural” example of a chain which is Möbius
but not stochastically monotone. By natural, we mean, for example, a chain having some
interpretation in terms of a random walk on some known structure, etc. (The example from
Section 7.2 – and taken from Lorek and Markowski [20] – was found ad hoc). Note that
such an example could potentially strongly benefit from the results of this paper.
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