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Water entry of small hydrophobic spheres
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We present the results of a combined experimental and theoretical investigation of
the normal impact of hydrophobic spheres on a water surface. Particular attention
is given to characterizing the shape of the resulting air cavity in the low Bond
number limit, where cavity collapse is driven principally by surface tension rather
than gravity. A parameter study reveals the dependence of the cavity structure on the
governing dimensionless groups. A theoretical description based on the solution to the
Rayleigh–Besant problem is developed to describe the evolution of the cavity shape
and yields an analytical solution for the pinch-off time in the zero Bond number limit.
The sphere’s depth at cavity pinch-off is also computed in the low Weber number,
quasi-static limit. Theoretical predictions compare favourably with our experimental
observations in the low Bond number regime, and also yield new insight into the
high Bond number regime considered by previous investigators. Discrepancies are
rationalized in terms of the assumed form of the velocity field and neglect of the
longitudinal component of curvature, which together preclude an accurate description
of the cavity for depths less than the capillary length. Finally, we present a theoretical
model for the evolution of the splash curtain formed at high Weber number and
couple it with the underlying cavity dynamics.

1. Introduction
Worthington & Cole (1897, 1900) used single-spark photography to examine the

air cavity formed by the vertical entry of spheres into water and so initiated the
scientific investigation of solid–liquid impacts. Subsequent studies by Mallock (1918)
and Bell (1924) provided some qualitative explanation for the observed cavity shapes
and sphere trajectories. The advent of high-speed cine-photography allowed for
quantitative measurements, the first series of which explored the influence of the
atmospheric pressure on the water entry of missiles (Gilbarg & Anderson 1948;
Richardson 1948). Additional investigations of the water-entry cavity and surrounding
flow field were performed by Birkhoff & Caywood (1949), Birkhoff & Isaacs (1951),
Birkhoff & Zarantonello (1957) and Abelson (1970), but the most extensive ones were
conducted by May (1951, 1952, 1975) with a view to naval ordinance applications.

Military applications also prompted studies of the impact forces generated during
landing and sliding of planes on liquid surfaces (von Karman 1929; Wagner 1932).
During World War II, Barnes Wallis developed a spinning cylindrical bomb that could
skip along the water surface towards its target, thereby bypassing underwater nets
(Whalley 2002). Commonly known as Dam Busters, these bombs were successfully
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Figure 1. Schematic of (a) the experimental apparatus and (b) the impact parameters. The
advancing contact angle is θa , and the cavity cone angle is θc .

used to breach the Moehne and Eder dams. Drag reduction on underwater projectiles
via supercavitation, a process that surrounds the projectile with a sustained vapour
cavity, is currently being explored and holds promise in air-to-sea weaponry (Ashley
2001).

Impacts also arise in both geophysical and astrophysical settings. High-energy
meteorite impacts may liquify both the impactor and the target, leading to features (e.g.
crater formation, secondary meteorites, impact jetting) reminiscent of high Reynolds
number solid–liquid impacts. For a review of cratering mechanics associated with
meteorite impacts, see for example Melosh (1980) and Melosh & Ivanov (1999).
Fluidlike flow of granular materials has been demonstrated in the laboratory by
dropping metal spheres into loosely packed sand. Granular impacts possess several
similarities to their fluid counterparts, including void collapse and jet formation
(Thoroddsen & Shen 2001; Lohse et al. 2004a), and offer insight into the dynamics
of quicksand (Lohse et al. 2004b).

Biological applications of solid–liquid impacts include locomotion at the air–water
interface (Bush & Hu 2006). Large water walkers such as basilisk lizards and some
shore birds rely on inertial forces generated by the impact of their driving leg for
weight support. Glasheen & McMahon (1996a) demonstrated that a basilisk lizard
supports itself on water by slapping the surface and stroking its foot downwards
to create an expanding air cavity. The lizard then retracts its foot before the cavity
collapses in order to minimize drag. By studying the vertical water entry of disks,
Glasheen & McMahon (1996b) found an empirical relationship for the time of cavity
closure. Small water walkers such as insects and spiders rely on surface tension for
both weight support and propulsion, and their rough hairy surface renders them
water-repellent (Bush, Prakash & Hu 2008). The impact of small hydrophobic bodies
on a water surface thus has implications for the locomotion of small water walkers.
Moreover, the dynamics of small-scale cavity closure is relevant to a number of
insects, including predacious diving beetles and the ichneumon wasp, which violently
penetrate the free surface in search of prey (Ward 1992).

Consider a solid sphere with density ρs and radius R0 impacting a horizontal
water surface with vertical speed U0 as depicted in figure 1(b). The impact may
be characterized by five dimensionless groups: Weber number W = ρU 2

0 R0/σ , Bond
number B = ρgR2

0/σ , Reynolds number Re = ρU0R0/η, solid–liquid density ratio
D = ρs/ρ and the air–liquid density ratio D̃ = ρa/ρ, where σ is the surface tension, η
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the dynamic viscosity of the liquid, ρ the liquid density, ρa the air density and g the
gravitational acceleration. We note that W describes the relative magnitude of fluid
inertia to capillary forces, while B describes the relative magnitude of gravitational
to capillary forces. High B (B � 1) impacts are typically classified by their Froude
number F = U 2

0 /gR0 = W/B and may be divided into distinct dynamical regimes
based upon the type of cavity collapse. One may also introduce a sixth parameter θa ,
the advancing contact angle, to characterize the surface properties of the solid. For
air–water entry, this parameter has been shown to determine the threshold impact
speed for air entrainment and hence cavity formation. Duez et al. (2007) demonstrate
that for W � 103, hydrophilic spheres require a larger impact velocity to produce
a cavity than do their hydrophobic counterparts. We shall observe a similar trend
at lower W . Finally, for high-speed impacts, cavitation bubbles may form if the
cavitation number Q =(p − pv)/(1/2ρU 2

0 ) < 1, where p is the local pressure and pv

the water vapour pressure. In our study, Q � 1, and so the creation of cavitation
bubbles in the liquid need not be considered.

The initial stage of water entry has been considered by Korobkin & Pukhnachov
(1988), Howison, Ockendon & Wilson (1991) and Oliver (2007). Thoroddsen et al.
(2004) observed that for Re > 2 · 104, a nearly horizontal sheet may emerge from the
edge of an impacting sphere within 100 μs of impact, accounting for an estimated
90 % of the total kinetic energy transferred from the sphere to the liquid in this initial
stage. Although our camera is not capable of recording events at this time scale, the
values of Re in our study are well below this critical value.

The growth and pinch-off of cavities at high B were investigated by Gilbarg &
Anderson (1948), Birkhoff & Isaacs (1951), May (1952), Glasheen & McMahon
(1996b) and Gaudet (1998) for various F ranges. Gekle et al. (2008) investigated
the cavity formed behind a vertical cylinder pulled at a constant speed through a
water surface. They observed two asymptotic F scalings for the dimensionless pinch-
off depth, one for F � 10, the other for F � 10, separated by discrete jumps. The
discontinuous behaviour was rationalized in terms of the capillary waves initiated
when the top of the cylinder passed the water surface; numerical simulations confirmed
this rationale. In § 2, we will observe analogous behaviour for low B impacts, the
rationale for which will be provided in § 6.1.

Lee, Longoria & Wilson (1997) investigated the cavity formed by the vertical water
entry of arbitrarily shaped projectiles at high B and F � 150. A theoretical model
was developed by assuming that the kinetic energy lost by the projectile equals that
fed into a horizontal fluid section. Their model predicted that pinch-off would occur
near the surface at a time independent of F but dependent on D̃. Their model
was found to be in good agreement with the experiments of Gilbarg & Anderson
(1948), who investigated the influence of the air density on the cavity evolution.
Bergmann et al. (2006) considered the pinch-off of a cylindrical cavity created when
a disk is pulled through a water surface at B ≈ 125 and provided evidence against
the self-similarity of cavity collapse. Grumstrup, Keller & Belmonte (2007) elucidated
the volume oscillations that may be observed on the bubble attached to the body
following pinch-off.

Duclaux et al. (2007) investigated the cavity formed by the vertical water entry of
both spheres and cylinders at high B and 1 � F � 80. They developed a theoretical
model for the cavity evolution based on an extension of the method used to solve the
Rayleigh–Besant problem: the collapse of a spherical cavity in a fluid of infinite extent
(Besant 1859; Rayleigh 1917). By considering a purely radial flow that is initiated by
the passing of the projectile, Duclaux et al. (2007) derived an approximate analytical
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expression for the evolution of the cavity and thus rationalized the empirical scalings
found by Glasheen & McMahon (1996b) and Lohse et al. (2004a). A similar approach
will be taken in our theoretical developments.

Studies of low B solid–liquid impacts have been primarily limited to
low W . Vella, Lee & Kim (2006a, b), for example, consider the forces acting on a low
W impactor, and show that a quasi-static description of the resulting cavity is sufficient
in order to describe the contact line motion. Further insight into the maximum weight
supportable by an interface is provided by Vella & Metcalfe (2007), who study the
impact of a line mass in which the liquid inertia is entirely negligible. Lee & Kim
(2008) investigated a striking phenomenon in which a small superhydrophobic sphere
may bounce off a water surface, even for D > 1, and propose a rebound criterion that
is in good agreement with the experiment. For a detailed study of the forces acting on
and between floating bodies, see for example Mansfield, Sepangi & Eastwood (1997)
and Kralchevsky & Denkov (2001).

In the present study, we restrict our attention to dense hydrophobic spheres that
sink even at low W and focus on the shape of the resulting air cavity. One expects a
small sphere (B � 1) impacting at sufficiently high speed to generate a slender cavity
with characteristic radius R0. If the cavity dynamics are dominated by surface tension,
one then might further expect its breakup to be governed by a Rayleigh–Plateau-like
instability, which will result in its pinching off into a chain of bubbles of characteristic

volume Ω ≈ 13πR3
0 after a time tpinch ≈ 1.2

√
ρR3

0/σ (Chandrasekhar 1961). We shall
demonstrate that this physical picture is incomplete on two grounds. First, even at
low B , gravity becomes important in the cavity pinch-off at depths greater than l2c /R0,
where lc =

√
σ/(ρg) ≈ 0.27 cm is the capillary length. Second, the cavity expands

radially following impact, and its W -dependent shape necessarily influences pinch-off.
We extend the work of Duclaux et al. (2007) by including the effects of surface

tension and aerodynamic pressure on the cavity evolution. In § 2 we describe our
experimental technique and the variety of cavity types observed in our study. The
sphere’s trajectory is discussed in § 3, and a theoretical model for the cavity dynamics
is developed in § 4. In § 5 we examine impacts for which inertia can be neglected, and
in § 6 we consider impacts for which inertia becomes important. Particular attention is
given to rationalizing the pinch-off time and depth of the cavity and the dependence
of the cavity shape on the governing dimensionless groups. A theoretical model for
the evolution of the splash curtain is presented in § 7, and in § 8 we summarize the
value and limitations of our models.

2. Experimental study
Figure 1(a) is a schematic of our experimental apparatus. A hydrophobic steel

sphere is held by an electromagnet at a height H0 above a water tank 40 cm long,
20 cm wide and 25 cm deep. The sphere is released from rest and falls towards the
water, reaching it with a speed U0 ≈

√
2gH0. The impact sequence is recorded at 2000

to 5000 frames per second using a Vision Research Phantom V5.1 high-speed video
camera. Midas 2.1 imaging software is used to analyse the images and measure the
precise impact speed.

A hydrophobic spray coating, WX2100 by Cytonix Corp., was used to
prepare the spheres. Two coats were applied, the second a day after the first.
The coatings did not appreciably affect the sphere density ρs = 7.7 ± 0.1g cm−3

or radii 0.6 mm <R0 < 9mm but did increase the advancing contact angle from
θa = 90 ± 5◦ to θa = 120 ± 5◦, values measured using the sessile drop method (Hiemenz
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Dimensionless group Symbol Definition Order of magnitude

Weber number W
ρU 2

0 R0

σ
10−1 − 103

Bond number B
ρgR2

0

σ
10−2 − 10

Reynolds number Re
ρU0R0

η
102 − 104

Density ratio (solid-liquid) D
ρs

ρ
10

Density ratio (air-liquid) D̃
ρa

ρ
10−3

Advancing contact angle θa θa 115◦ − 125◦

Froude number F
U 2

0

gR0

10−1 − 105

Cavitation number Q
p − pv

1/2ρU 2
0

10 − 104

Table 1. Relevant dimensionless groups and their characteristic values in our experimental
study. Sphere radii were between R0 = 0.6 mm and 9 mm and impact velocities between
U0 = 10 cms−1 and 1 000 cms−1.

(a) (b)

Figure 2. The influence of surface coating on a water-entry cavity at low B . (a) Polished
steel sphere. (b) Steel sphere with hydrophobic coating. Both photographs were taken 3.4 ms
after impact. The level of the undisturbed free-surface corresponds to the top of each image;
B = 0.2; W = 170; D = 7.7.

& Rajagopalan 1997). Surface roughness measurements were made using a Tencor
P-10 surface profilometer. The root mean square displacements of the roughness
profiles were computed for the polished spheres (0.0318 μm ± 5 %) and coated spheres
(1.824 μm ± 0.01 %) and indicate a 50-fold increase due to the surface treatment. The
experiments were performed at atmospheric pressure and the temperature of the
water remained between 21◦ and 23◦C. The relevant dimensionless groups and their
range in our experimental study are listed in table 1.

An important foundation of the present study is the observation reported by Duez
et al. (2007) that hydrophobicity promotes air entrainment by impacting spheres.
In figure 2, two steel spheres, identical in every aspect but their surface coatings,
are shown 3.4 ms after impact. The polished sphere (figure 2a) entrains relatively
little air; the sphere with a hydrophobic coating (figure 2b) generates a substantial
axisymmetric air cavity with a well-defined shape. Coated, hydrophobic bodies were
examined in all subsequent experiments.
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Figure 3. Idealized model of surface roughness illustrating the possibility of two wetting
states. Pockets of air are trapped between the solid and water in the Cassie-Baxter state,
while in the Wenzel state, the solid surface is entirely wetted. The roughness is exposed to an
intrusion pressure ρU 2 cos2 β + ρgZ.

The presence or absence of an air film trapped between the water and the
impacting sphere determines whether the surface is in a Cassie-Baxter or Wenzel
state, respectively, and may be rationalized by the simple model illustrated in figure 3.
Let the roughness be represented by a periodic array of posts with separation w

and height h, and let the sphere centre have depth Z and speed U . Pockets of air
will remain trapped between the posts if the characteristic curvature pressure (σh/w2

if h < w and σ/w if h � w) exceeds the impregnation pressure (ρU 2 cos2 β + ρgZ),
which has both dynamic and hydrostatic components (De Gennes, Brochard-Wyart &
Quere 2004). Estimates of the characteristic post spacing w ≈ 20 μm and post height
h ≈ 1 μm were deduced from the profilometer measurements. Hydrostatic pressure
will cause impregnation beyond a wetting depth Zw ∼ σh/(ρgw2) ∼ 2 cm. Likewise,
dynamic pressure will cause impregnation for speeds exceeding a wetting speed

Uw ∼
√

σh/(ρw2 cos2 β) ∼ 40 cm s−1. Note that the latter condition depends on β; so
the sphere could have a mixed state, Wenzel at the nose and Cassie-Baxter at the
equator (figure 3).

For high-speed impacts, it is difficult to observe the detailed contact line dynamics;
in lieu of a detailed examination thereof, we introduce the parameter, θc, defined as
the angle that the cavity makes as it leaves the sphere with respect to the vertical
tangent (see figure 1b). We call this the ‘cone angle’ and observe that, after an initial
adjustment phase, it is approximately constant as a function of depth and body speed
for a given surface material. Thus, it can be measured by a single experiment. We do
not attempt to characterize the relation between θc and the advancing contact angle
θa in this study but instead simply report that 160◦ <θc < 170◦ for the impacting
spheres studied.

For the impact of hydrophobic spheres at low B , we have observed four distinct
cavity types that we will describe in turn. A typical low W impact of a hydrophobic
sphere is shown in figure 4. The sphere sinks and is completely immersed in water
after ∼ 0.01 s. Both the vertical and radial extents of the cavity are of the order
of the capillary length. The measured contact angle remains nearly constant as the
contact line slips around the sphere, an observation consistent with those of Ablett
(1923) for a hydrophobic solid at an air–water interface and Vella et al. (2006b) for
the sinking of a dense horizontal cylinder. Cavity collapse occurs when the contact
line approaches the apex of the sphere (figure 4h), at a depth of approximately lc.
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3 mm
a b c

d e f

g h i

Figure 4. Quasi-static impact cavity. Video sequence of the water entry of a hydrophobic steel
sphere at low B (R0 = 0.14 cm, ρs = 7.7 g cm−3, U0 = 30 cms−1). The time between successive
images is 1.1 ms; W =1.9; B = 0.27.

3 mm

a b c d e f g h i j

Figure 5. Shallow seal impact cavity. Video sequence of the water entry of a hydrophobic
steel sphere at low B (R0 = 0.10 cm, ρs = 7.7 g cm−3, U0 = 230 cms−1). The time between
successive images is 1.9 ms; W =72; B = 0.14.

Air entrainment is minimal. Only a tiny bubble remains attached to the sphere after
pinch-off (figure 4i ). We also observe what appears to be an air layer surrounding
the sphere, as indicated by the sphere’s halo in figure 4. In this regime, we expect the
dominant balance to be between gravity and surface tension as for a static meniscus.
We thus define this regime as ‘quasi-static’: at the leading order, the cavity should
take the shape of a static meniscus adjoining the sphere at the advancing contact
angle. The maximum vertical extent of a two-dimensional static meniscus is of the
order of the capillary length (Mansfield et al. 1997). The analogous axisymmetric,
quasi-static impact is considered in § 5, where we demonstrate that the sphere’s depth
at cavity pinch-off can be significantly less than the capillary length.

As W increases, the impact generates a substantial air cavity and ripples that
propagate down the resulting free surface at speeds less than that of the sphere
(figure 5). In Appendix B, we will show that these ripples correspond roughly to
the capillary waves expected to arise on a cylindrical cavity. Following an initial
adjustment phase, the contact line appears fixed near the level of the sphere’s equator,
from which the interface is swept upwards, resulting in a highly sloped cavity wall.
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3 mm

a b c d e f g h i

Figure 6. Deep seal impact cavity. Video sequence of the water entry of a hydrophobic
steel sphere at low B (R0 = 0.079 cm, ρs = 7.7 g cm−3, U0 = 310 cms−1). The time between
successive images is 1.9 ms; W = 109; B = 0.088.

Deceleration of the sphere is minimal, and after descending 13 sphere diameters,
the cavity first pinches at a depth of the order of the capillary length, entraining
a volume of air much greater than that of the sphere. The entrained bubble may
subsequently pinch off at depth, the likelihood of which is determined by the bubble
size. This impact regime is characterized by its near-surface collapse and the presence
of capillary waves and is henceforth referred to as ‘shallow seal’.

Further increases in W give rise to a cavity of the form shown in figure 6. The
impact is reminiscent of the shallow seal regime, generating a substantial air cavity
and ripples that propagate down the resulting free surface. However, the pinch-off
occurs at a greater depth, approximately halfway between the surface and the sphere.
Moreover, the ripples are observed to propagate at speeds less than half of that of
the sphere (see Appendix B), and thus do not appear to influence the pinch-off depth.
This impact regime is henceforth referred to as ‘deep seal’.

At the highest W considered, the cavity dynamics are as shown in figure 7. Here, the
deep seal (figure 7j ) is preceded by a closure event at the surface, known as ‘surface
seal’ (figure 7e). The splash curtain created at impact domes over to seal the cavity
from above, its collapse due to some combination of the curvature pressures O (σ/R0)
and aerodynamic pressures O

(
ρaU

2
0

)
acting on the splash curtain, the ratio of which

is prescribed by WD̃. After the surface seal, the underlying cavity expands, and its
pressure decreases, resulting in detachment from the surface (figure 7f ). As the depth
of water above the cavity increases, a Rayleigh–Taylor instability develops on the top
of the cavity, and a water jet penetrates the cavity from above (figure 7g). This occurs
when the hydrostatic pressure ρgzc, where zc is the minimum cavity depth, surpasses
the curvature pressure σ/R, i.e. when ρgRzc/σ � 1. In the underlying cavity, multiple
pinch-offs may occur, with each successive pinch-off producing a bubble of decreasing
volume.

A parameter study was conducted by varying the sphere size and release height,
thus elucidating the influence of W and B on the water-entry cavity (see figure 8).
At low B , the cavity type transitions from quasi-static to shallow seal to deep seal
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3 mm

a b c d e f g h i j k l m n o p q r s

Figure 7. Surface seal impact cavity. Video sequence of the water entry of a hydrophobic
steel sphere at low B (R0 = 0.10 cm, ρs = 7.7 g cm−3, U0 = 540 cms−1). The time between
successive images is 1.9ms; W = 420; B = 0.14.

10–1 100 10110–1

100

101

102

103

B = ρgR0
2/σ

W
 =

 ρ
U

2 0R
0/
σ

Figure 8. Regime diagram indicating the dependence of the observed cavity type on B and
W for θa = 120◦. The triangle, asterisk, circle and diamond symbols denote the quasi-static,
shallow seal, deep seal and surface seal regimes, respectively. The dash-dotted line is defined
by (6.23a), and the solid curve by equating the pinch-off times defined by (5.5) and (6.3) for
α = 0.065 (θc = 166◦), θa =120◦ and Ca = 1/2. The dashed line is given by the empirical fit
W = 320 at low B (present study) and F = (1/6 400)D̃−2 at high B (Birkhoff & Isaacs 1951).

to finally surface seal as W is increased. The transition between the quasi-static and
shallow seal regimes is slightly arbitrary but was taken as the W at which a volume
of air comparable to that of the sphere is entrained by the sphere. The distinction
between the shallow, deep and surface seal regimes was made on the basis of the
pinch-off depth, z′

pinch: for 0 <z′
pinch < 2lc, the pinch-off was considered shallow, and
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Quasi-static
Shallow

seal
Deep
seal

Surface
seal

W = ρU0
2 R0/σ

z′ p
in

ch
/R

0

Figure 9. The dependence on W of the dimensionless pinch-off depth of the cavity generated
by an impacting sphere for B = ρgR2

0/σ = 0.088, corresponding to R0 = 0.079 cm and

ρs = 7.7 g cm−3. The cavity types quasi-static, shallow seal, deep seal and surface seal are
denoted by the triangle, asterisk, circle and diamond symbols, respectively. The solid line
denotes our theoretical prediction for the pinch-off depth of a quasi-static or shallow seal
cavity and is given by (5.4b) for θa = 120◦. The dashed curve denotes our theoretical prediction
for the pinch-off depth of a deep seal cavity, defined by (6.21a) with α = 0.065 (θc =166◦).
Characteristic error bars are shown.

3 mm

a b c d e f g h i j k l m n o p

Figure 10. Video sequence of the water entry of a hydrophobic steel sphere, illustrating two
nearly simultaneous pinch-off events (R0 = 0.079 cm, ρs = 7.7 g cm−3, U0 = 280 cms−1). The
time between successive images is 1 ms; W = 88; B = 0.088.

for z′
pinch � 2lc, the pinch-off was considered deep. The theoretical curves demarcating

the transitions between the regimes will be rationalized in § 6.
For a particular B = 0.088 (R0 = 0.079 cm, ρs = 7.7g cm−3), the cavity evolution was

studied in detail for 10−1 < W < 103 and the pinch-off depth and time recorded. In
figure 9, the observed W dependence of the pinch-off depth is shown. In the quasi-
static regime, the pinch-off depth is approximately constant and equal to 75 % of
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1
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Figure 11. The dependence on W of the dimensionless pinch-off time of the cavity generated
by an impacting sphere for B = ρgR2

0/σ = 0.088, corresponding to R0 = 0.079 cm, and

ρs =7.7 g cm−3. The cavity types quasi-static, shallow seal, deep seal and surface seal are
denoted by the triangle, asterisk, circle and diamond symbols, respectively. The solid line
denotes our theoretical prediction for the time of shallow seal, defined by (6.9) with α = 0.065
(θc = 166◦). The dashed lines denote our theoretical prediction for the time of shallow seal and
deep seal in the appropriate asymptotic limits, defined respectively by (6.10a) and (6.22a) with
α = 0.065 (θc = 166◦). The dash-dotted line denotes our theoretical prediction for the time of
quasi-static pinch-off, defined by (5.5) with θa = 120◦. Characteristic error bars are shown.

the capillary length. In the shallow seal regime, a local maximum is achieved for
W = 35. Gekle et al. (2008) observed analogous non-monotonic behaviour for B =50
and attributed it to the capillary waves generated at impact that propagate down the
cavity walls. In § 6.1, we will demonstrate that this explanation is also valid for low B

impacts. Further increases in W result in the pinch-off depth increasing progressively
until the surface seal regime is reached, upon which the pinch-off depth goes to
zero. The abrupt increase in pinch-off depth observed between the shallow seal and
deep seal regimes is exemplified in figure 10, where two nearly simultaneous pinch-off
events are observed, one deep, the other shallow. In figure 11, the W dependence of
the pinch-off time is shown. The pinch-off time is roughly independent of W for a
given B in the quasi-static regime and then increases in the shallow seal and deep
seal regimes, before finally decreasing in the surface seal regime. The observed W

dependence of the pinch-off depths and times reported in figures 9 and 11 will be
rationalized in §§ 5 and 6.

For W � 1, the dependence on B of the depth of the sphere’s equator at
which its cavity collapses (henceforth, the ‘penetration depth’) was recorded for
0.03 <B < 3. This dependence is shown in figure 12 and will be rationalized in § 5.
Impacts for W � 1 were obtained by attaching the spheres to rigid wires that were
connected to a mechanical traverse. The spheres were then lowered into the water at
speeds 0.4 cm s−1 <U 0 < 1 cm s−1 to achieve impact Weber numbers in the range
10−4 <W < 10−2.
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10–2 10–1 100 101100

101

B = ρg R0
2/σ

Z
′ ma

x
/R

0

Figure 12. Penetration depth of a low speed (W � 1) impactor with a quasi-static cavity. The
triangles denote the experimental data for impacting spheres (10−4 <W < 10−2), and the solid
curve is defined by (5.3) for θa = 120◦, corresponding to the measured advancing contact angle.
A characteristic error bar is shown.

3. Preliminary theoretical considerations
Following impact, the sphere sinks under the combined influence of gravity and

its own inertia and is resisted by buoyancy, capillary and hydrodynamic forces. A
vertical force balance on the sphere may be expressed as

(m + ma)Z̈
′ = mg − F ′

b − F ′
c − F ′

h, (3.1)

where Z′(t) is the mean depth of the sphere, the sphere’s mass is m =(4/3)ρsπR3
0 ,

and primes denote dimensional quantities. F ′
b = ρg

∫ ∫
A

zdA is the upward buoyant
force due to hydrostatic pressure acting over the sphere’s wetted surface area A.
F ′

c = 2πR0σ sinβ sinψ is the upward force due to surface tension σ , where ψ is
the angle the cavity adjoining the sphere makes with respect to the horizontal and
2πR0 sinβ is the length of the contact ring (see figure 14). The vertical component
of the total hydrodynamic force is given by F ′

h = −
∫ ∫

A
n̂ · T · ẑ dA, where T = −

pd I + 2ηE is the stress tensor. We have separated the unsteady component of F ′
h,

the force required to accelerate the surrounding fluid, and expressed it in terms of
an added mass, ma ≈ CmρR3

0 , where Cm is the added mass coefficient. For a sphere
moving in an unbound fluid, Cm =2/3, which we take as the leading order estimate
for the water entry of a sphere, while anticipating Cm to be a function of time (Miloh
1991). Substituting the dimensionless variables

Z =
Z′

R0

, t = t ′
(

U0

R0

)
(3.2)

and forces

Fc =
F ′

c

R0σ
, Fb =

F ′
b

ρgR2
0Z

′ , Fh =
F ′

h

ρR2
0U

2
0

(3.3)
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n̂

g

Water

Air

0
r

(a) (b)

R (z, t)

R (t = 0)

R (t = 0)
Ṙ (t = 0) dt

Z (t)

Z (t)

z z

r

Z+ dtdZ
dt( ) θc

Figure 13. Sketch of (a) cavity model and (b) contact line model for shallow, deep and surface
seal cavities. The cone angle, θc , is shown. A sketch of the contact line model for quasi-static
cavities is illustrated in figure 14.

into (3.1) yields

Z̈ =

(
D

D + Cm

)
B

W
− BZ

(D + Cm)W
Fb − 1

(D + Cm)W
Fc − Re − 1

(D + Cm)Re
Fh. (3.4)

Although Fb, Fc and Fh are not explicitly known, their magnitudes are O (1), allowing
us to simplify the description of the sphere’s trajectory in various limits.

In our experimental study, D ≈ 7.7, B � 1, Re � 1 and 10−1 <W < 103. Thus, the
gravitational, buoyancy and hydrodynamic forces given in (3.4) are negligible with
respect to the curvature force, which gives rise to a characteristic dimensionless
deceleration of the order (WD)−1. For WD � 1, (3.4) further reduces to Z̈ = 0, and
although the sphere’s speed may thus be treated as constant at the leading order in
this limit, we will retain a term for the velocity of the sphere, U (z), in our model,
as it is straightforward to do so. We note that while the relevant parameter for
determining the constancy of the sphere speed is WD, the relevant parameter for
the cavity dynamics is W , as will be shown in § 4. A study of the trajectory of an
impacting sphere at low B was presented by Lee & Kim (2008). Here, we focus on the
cavity dynamics for which the sphere trajectory simply provides a boundary condition
for the evolution of the cavity.

4. Cavity dynamics: general formulation
The impact creates an axisymmetric air cavity that expands radially before

closing under the combined influence of hydrostatic pressure, surface tension and
aerodynamic pressure. A sketch of the cavity is shown in figure 13(a). We proceed
by developing a general theoretical description of the cavity evolution and then
examining the limits corresponding to the four observed cavity types: quasi-static,
shallow seal, deep seal and surface seal. Particular attention is given to answering
the question that motivated this study: at low B , when and where does the cavity
collapse?

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

43
82

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008004382


58 J. M. Aristoff and J. W. M. Bush

In the high Re limit, the motion of the liquid may be described at the leading order
by the Euler equations:

∂u
∂t

+ u · ∇u = − 1

ρ
∇p, ∇ · u = 0. (4.1a, b)

Defining a velocity potential φ such that u = ∇φ, we integrate (4.1a) to obtain the
unsteady Bernoulli equation:[

∂φ

∂t
+

u2

2
+

p

ρ
− gz

]B

A

= 0, (4.2)

where A and B represent any two points in the fluid. Choosing A to be at the interface
and B to be far from the cavity but at the same depth gives

∂φ

∂t

∣∣∣∣
R

+
u2

2

∣∣∣∣
R

=
σ∇ · n̂ + CaρaU

2
0 + ρgz

ρ
, (4.3)

where R(t, z) is the radius of the cavity. In (4.3), we have included the pressure jump
across the interface due to surface tension σ∇ · n̂ and that due to air entering the cavity
with characteristic speed U0, where Ca is assumed to be a constant. This assumption
is consistent with previous experiments that found that at high B , 7.5 <Ca < 10, and
no appreciable pressure gradients arose within the cavity over a range of impact
speeds (Abelson 1970). In writing (4.3), we neglect any unsteadiness in the airflow,
an assumption that is likely to be violated when the cavity becomes constricted near
pinch-off. Next, we seek an appropriate potential φ that satisfies compressibility:
∇2φ =0.

Experiments conducted by Birkhoff & Caywood (1949) on water entry at high B

and W have shown that the cavity motion is primarily radial or perpendicular to the
cavity axis. We assume that this is likewise true at low B and so assume a purely radial
motion ru =RṘ, prescribed by that of the cavity walls having radial speed Ṙ(t, z).
This approach thus yields a variant of the Rayleigh–Besant problem, the collapse of
a spherical cavity (Rayleigh 1917; Besant 1859), and suggests a potential of the form

φ =

⎧⎨
⎩RṘ ln

(
r

R∞

)
for R < r < R∞,

0 for r > R∞,

(4.4)

where R∞ is a function of time that ensures that the energy in a horizontal cross-
section is finite, to be prescribed later. Duclaux et al. (2007) demonstrated the range of
validity of cavity shapes predicted on the basis of (4.4) for high B impacts. Note that
by choosing (4.4), we eliminate the axial fluid motion that typically accompanies the
capillary instability of a vertical fluid cylinder, in particular, both travelling waves and
classical Rayleigh–Plateau (Chandrasekhar 1961). Nevertheless, we shall demonstrate
in § 6 that (4.4) provides an adequate description of the flow at low B , where the
collapse is expected to be driven by surface tension.

Using (4.4), the total kinetic energy of a radially expanding fluid layer with thickness
dz is

T =
1

2

∫ R∞

R

2πrρu2drdz = πρṘ2R2 ln (R∞/R)dz. (4.5)

Following Duclaux et al. (2007), we assume that ln(R∞/R) ≈ 1 and thus find that
the radial fluid motion extends over a region comparable to the size of the cavity
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(R∞ ≈ 2.7R). Substituting (4.4) into (4.3) yields

RR̈ +
3

2
Ṙ2 = −gz − σ

ρ
(∇ · n̂) − Ca

ρa

ρ
U 2

0 , (4.6)

which is a form of the Rayleigh–Plesset equation with the addition of the
hydrostatic and aerodynamic terms (Plesset & Prosperetti 1977). We proceed by
non-dimensionalizing lengths by R0 and time by R0/U0. In doing so, (4.6) becomes

W

(
RR̈ +

3

2
Ṙ2

)
= −Bz − (∇ · n̂) − CaD̃W. (4.7)

To describe the time-dependent axisymmetric interface, we define the cavity surface
f (r, z, t) = r − R (z, t) . The normal to the surface and its divergence are then

n̂ =
∇f

|∇f | =
r̂ − Rz ẑ(

1 + R2
z

)1/2
and ∇ · n̂ =

(
1 + R2

z

)
/R − Rzz(

1 + R2
z

)3/2
, (4.8)

where Rz = ∂R/∂z. We assume that the cavity walls have large slopes (Rz � 1) and
that the longitudinal component of the curvature is negligible (Rzz � 1) to obtain

W

(
RR̈ +

3

2
Ṙ2

)
= −Bz − 1

R
− CaD̃W. (4.9)

These assumptions provide a good description of the cavity sufficiently far from the
surface (z > lc/R0), where the cavity is narrow and deep. There, we may consider the
water entry problem in terms of independent horizontal fluid layers, each governed
by (4.9).

The initial radial velocity of the cavity wall, Ṙ(t = 0), is related to the cone angle, θc,
via a geometric argument illustrated in figure 13(b). Consider a contact line adjoining
the sphere at depth Z. After an infinitesimal time dt , the sphere descends a distance
(dZ/dt)dt, and the cavity expands by an amount Ṙ(t = 0)dt. Provided the contact
line remains fixed with respect to the sphere, we find

tan

(
θc − π

2

)
=

(dZ/dt)dt

Ṙ(t = 0)dt
=

U (z)/U0

Ṙ(t = 0)
=

1√
α

, (4.10)

where we have defined

Ṙ(t = 0) =
√

α
U (z)

U0

. (4.11)

Note that as α → 0, θc → 180◦. The assumption of the contact line remaining fixed
near the sphere’s equator was validated experimentally for the shallow, deep and
surface seal regimes. Thus, we take R (t = 0) = 1.

At a given z, (4.9) may be integrated once in R to obtain

Ṙ2 =

(
α

U (z)2

U 2
0

+
2Bz

3W
+

1

W
+

2

3
CaD̃

)
1

R3
− 2Bz

3W
− 1

WR
− 2

3
CaD̃, (4.12)

where we have used the initial condition (4.11). The maximum radius achieved by the
cavity at a given depth, R∗, is found by setting (4.12) equal to zero and solving the
resulting cubic to find

R∗ = m +
3

√
q +

√
q2 − m6 +

3

√
q −

√
q2 − m6, (4.13)
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where

m = − 1

2Bz + 2CaD̃W
(4.14)

and

q = m3 − 3m

2

(
αW

U (z)2

U 2
0

+ 1

)
+

1

2
. (4.15)

In the high W , high F , zero D̃ limit of (4.12), Ṙ = 0 has no solution, and thus the
cavity expands for all time and its radius evolves according to

R(t, z) =

(
5

2
t
√

α
U (z)

U0

+ 1

)2/5

∼ t2/5 (4.16)

as t goes to infinity. The time dependence of the cavity radius at a given depth is
analogous to that of a blast wave generated by a nuclear explosion (Taylor 1950).
Surface tension, gravity and air flow are negligible in this limit, and the cavity
expansion is resisted only by the inertia of the fluid.

The cavity profile at time t∗ is readily determined by integrating (4.12) from z = 0
to z = Z (t∗) , the dimensionless depth of the sphere’s centre, and for each z from
t = 0 to t = t∗ − t (z), the time elapsed since the sphere passed the depth z, with the
initial condition R (t = 0) =1. While (4.12) gives an expression for the cavity velocity,
numerical integration is generally required to find the cavity evolution and pinch-off
time. Nevertheless, in a few interesting limits, (4.12) may be integrated analytically.

5. Quasi-static impacts: W � 1

While the dynamics of cavity collapse is the thrust of our paper, we here briefly
describe the quasi-static case, for which W � 1; (4.7) reduces to the Young–Laplace
equation; and the cavity adjoining the object is in hydrostatic equilibrium. In this
limit, the cavity shape, R(z), is given by

Bz = −∇ · n̂ =
Rzz −

(
1 + R2

z

)
/R(

1 + R2
z

)3/2
(5.1)

with the boundary conditions

Rz(z = Z∗) = cotψ, (5.2a, b)

R(z = 0) → ∞,

where Z∗ = Z +cos β is the height of the contact line and ψ = θa +β − π as illustrated
in figure 14. The time dependence enters only through the first boundary condition,
rendering the problem quasi-static. We note that in the analogous planar problem, for
the case of an infinitely long horizontal cylinder, it is possible to find a closed-form
solution for the cavity shape (Ku, Ramsey & Clinton 1968). In the axisymmetric case,
however, the boundary value problem given by (5.1) and (5.2a, b) must be solved
numerically.

The penetration depth can now be understood as the maximum depth of the
sphere’s centre for which a solution to the boundary value problem exists. Let us
denote this dimensionless depth as Zmax = Z′

max/R0, where we use the prime symbol
to signify dimensional quantities. In order to calculate Zmax , we use the following
method: First, for a given B and θa , we pick a depth Z and search for a solution
to (5.1) and (5.2a, b) over all possible positions of the contact ring (parameterized
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n̂

g

r

z

Z (t)

θc

β

ψ Z∗

0

Air

Water

Figure 14. A hydrophobic sphere sinking through an air–water interface at W � 1. In this
quasi-static limit, inertial effects are negligible, and the interface shape is prescribed by a static
meniscus.

by β). If a solution exists, we increase Z and repeat the search. If no solution exists,
we have found a depth for which a static meniscus cannot reach the sphere with the
required contact angle. This method is repeated until the penetration depth is found.

Our results indicate that for B → 0, the meniscus makes an angle ψ ≈ θa/2 with
the horizontal when Z = Zmax . The maximum sphere density that an interface can
support for B → 0 is also attained when ψ ≈ θa/2 (Vella et al. 2006a) and thus
provides validation of our numerical algorithm in this limit. On the other hand, we
find that for B � 1, pinch-off takes place at the apex of the sphere, ψ ≈ θa , as one
expects. Anticipating this asymptotic penetration depth dependence on the contact
angle, the penetration depth data for 10−2 <B < 102, shown in figure 15, is fit to the
curve

Z′
max/R0 ≈ 0.83B−0.035 log10 B − 0.31

(
sin

θa

2

)1.6

+ 1, (5.3)

given by the solid curve in figure 15 (inset). Note that the maximum penetration depth
occurs for θa =180◦ and that the penetration depth predicted by (5.3) does not scale
with the capillary length, as would be the case for a sinking horizontal cylinder, where
the meniscus is two-dimensional and Zmax ∼ B−1/2 (Vella et al. 2006b). In figure 12, we
plot (5.3) for θa = 120◦ as the solid curve along with the accompanying experimental
data for W � 1. Satisfactory agreement is observed.

For W � 1, the pinch-off depth, zpinch , and penetration depth satisfy the geometric
relation

zpinch =

{
Zmax − 1 for B � 1,

Zmax + cos
(
π − θa

2

)
for B � 1,

(5.4a, b)

where the numerically deduced dependence of ψ on the contact angle has been
incorporated. Likewise, we can express the pinch-off time in terms of the pinch-off
depth

t ′
pinch

U0

R0

=
z′

pinch

R0

+ 1, (5.5)

where we take t =0 to correspond with Z =0. The theoretically predicted pinch-off
time (5.5) differs from that proposed by Lee & Kim (2008), who estimated the pinch-
off time to be the time for a capillary–gravity wave to travel the capillary length,
leading to tpinch ∼ W 1/2.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

43
82

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008004382


62 J. M. Aristoff and J. W. M. Bush
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B = ρgR0
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θa = 120°
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Figure 15. Penetration depth for a W � 1 impact. Theoretically predicted dependence of the
dimensionless penetration depth on B for four values of the advancing contact angle, θa . Inset:
data collapse showing that the solid curve, defined by (5.3), captures the dependence of the
penetration depth on B and θa .

In figure 9, the pinch-off depth predicted by (5.4b) is given by the solid line, and in
figure 11, the pinch-off time predicted by (5.5) is given by the dash-dotted line, in both
cases for B = 0.088 and θa = 120◦. We note that inertia has been entirely neglected
in the derivation of (5.5). For W = O(1), the observed pinch-off time is greater than
that given by (5.5), since dynamic effects, specifically the inertia of the radial outflow,
presumably become significant and act to resist cavity collapse.

6. High speed impacts: W > 1

For W > 1, the inertial resistance to collapse must be included, but we may render
the problem tractable by assuming Rz � 1 and Rzz � 1, as is appropriate for z/lc � 1.
The collapse time for a particular depth is found by integrating (4.12):

tc (z) =

R=R∗∫
R=1

G

(
R, W, Bz, CaD̃, α

U 2

U 2
0

)
dR +

R=R∗∫
R=0

G

(
R, W, Bz, CaD̃, α

U 2

U 2
0

)
dR,

(6.1)
where

G =

((
α

U (z)2

U 2
0

+
2Bz

3W
+

1

W
+

2

3
CaD̃

)
1

R3
− 2Bz

3W
− 1

WR
− 2

3
CaD̃

)−1/2

(6.2)

and R∗ is defined by (4.13). The pinch-off time is the minimum time over depths
0 <z < ∞ of the cavity collapse:

tpinch = min
0<z<∞

(t (z) + tc (z)) , (6.3)
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where t (z) is the time taken for the sphere to arrive at depth z. We note that t =0
corresponds to Z = 0, and zpinch corresponds to the depth of fluid pinch-off. We
proceed by seeking the pinch-off time and depth in the low and high B limits.

6.1. Shallow seal

For Bz � 1 and 1 <W � D̃−1, hydrostatic and aerodynamic pressures are negligible
with respect to curvature pressures, and we expect pinch-off near the surface (see
figure 5). This may be understood by considering the zero B limit of (4.12), which
reduces to

Ṙ2 =

(
α

U (z)2

U 2
0

+
1

W

)
1

R3
− 1

WR
. (6.4)

According to (6.4), the evolution of the cavity depends on depth only through U (z).
For |U0 − U (z)|/U0 � 1, the speed of cavity collapse is depth-independent; therefore
pinch-off occurs where the cavity was first initiated, at z = 0, and at a time given by
(6.3), which reduces to

tpinch =

∫ R=R∗

R=1

dR√(
α + 1

W

)
1

R3 − 1
WR

+

∫ R=R∗

R=0

dR√(
α + 1

W

)
1

R3 − 1
WR

. (6.5)

The maximum radial extent of the cavity (4.13) reduces to

R∗ =
√

αW + 1, (6.6)

and by making the substitution R = R∗ sinϑ and noting that R∗ ∈ [1, ∞), we reduce
(6.5) to

tpinch = R∗3/2
√

W

(∫ π/2

ϑ∗
sin3/2 ϑdϑ +

∫ π/2

0

sin3/2 ϑdϑ

)
, (6.7)

where ϑ∗ = sin−1 R∗−1. The integrals in (6.7) can be expressed in terms of the elliptic
integral of the first kind,

J (Φ, m) =

∫ Φ

0

(1 − m sin2 x)−1/2dx, (6.8)

to yield

3tpinch

R∗3/2W 1/2
= 2J

(
π − 2θ∗

4
, 2

)
+

√
2K

(
1

2

)
+ 2 cos θ∗ sin1/2 θ∗, (6.9)

where K(m) = J (π/2, m). The asymptotic limits of (6.9) are found to be

tpinch =

{
2C0α

3/4W 5/4 for αW � 1,

C0

√
W for αW � 1,

(6.10a, b)

where

C0 =

√
2

3
K

(
1

2

)
≈ 0.874. (6.11)

In figure 11, we plot the theoretically predicted pinch-off time (6.9) along with
the asymptotic prediction (6.10a). The agreement between experiment and theory is
good for W < 100, above which (6.9) and (6.10a) begin to overpredict the pinch-
off time. Here, we no longer observe shallow seal cavities but instead observe that
pinch-off occurs at greater depths (see figure 6), where hydrostatic pressure becomes
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3 mm

Figure 16. Zero B cavity model (6.4) alongside video sequence of shallow seal (R0 = 0.1 cm,
ρs = 7.7 g cm−3, U0 = 110 cms−1). The time between successive images is 1.1 ms; W = 17;
B =0.14 (experiment); B = 0 (model). Note that the model predicts pinch-off at the surface
owing to the neglect of the longitudinal component of curvature.

increasingly important and accelerates pinch-off. The influence of hydrostatic pressure
on the cavity evolution in this low B regime will be considered in § 6.2.

The theoretically predicted pinch-off time (6.10a, b) may also be understood by
considering a simple balance between inertia and surface tension (ρU 2 ∼ σ/a0), which
leads to cavity collapse over a characteristic time scale

t ′
pinch ∼

(
ρa3

0

σ

)1/2

. (6.12)

Note that the same scaling is obtained through consideration of the capillary instability
of a hollow inviscid cylindrical jet in the absence of gravity, a variant of the classic
Rayleigh–Plateau instability (Tomotika 1935; Chandrasekhar 1961). If we take a0 to
be the maximum radial extent of the cavity walls, R0R

∗, where R∗ is defined by (6.6),
(6.12) may be expressed as

t ′
pinch

U0

R0

∼
{

α3/4W 5/4 for αW � 1,√
W for αW � 1.

(6.13a, b)

We thus conclude that the theoretically predicted pinch-off time of a shallow seal
cavity (6.10a, b) is consistent with its being a Rayleigh–Plateau-like instability, if one
accounts for the initial expansion of the cavity walls as predicted by our theoretical
model. The classic Rayleigh–Plateau pinch-off time, tpinch ∼

√
W , is retained only

when αW � 1; i.e. the cavity walls do not expand. This limit is described further in
Appendix A in the context of impacting vertical cylinders, for which the

√
W scaling

is indeed observed.
A comparison between the zero B model (6.4) and a particular shallow seal cavity

is shown in figure 16, where we estimate θc = 168◦ and prescribe the sphere trajectory
from the video images. While the pinch-off time is predicted to be within 5 % of
its observed value, we observe that shallow seal occurs not at the surface but at
a depth of roughly the capillary length (see figures 5, 9 and 16). This discrepancy
between experiment and theory may be attributed to the neglect of the longitudinal
component of curvature in our theoretical model that resists collapse for z < lc and
so tends to increase the pinch-off depth from z′

pinch =0 to z′
pinch ≈ lc. Moreover, the
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ripples observed on the cavity walls are not predicted by our theoretical model due
to the use of a purely radial velocity potential, and hence do not appear in the model
results shown in figure 16. For certain W ranges, we observe that the ripples reach the
pinch-off depth at approximately the pinch-off time. The precise pinch-off depth is
therefore influenced by the propagation of these waves, whose presence may account
for the non-monotonic behaviour illustrated in figure 9. We note that the shallow seal
regime is the most poorly described by our model, which neglects the longitudinal
component of curvature that dominates the dynamics for z/lc � 1.

The transition W from the quasi-static to shallow seal pinch-off may be estimated
by equating the corresponding pinch-off times, (5.5) and (6.10a, b). In doing so, we
find

W ∗
1 =

{
(2C0)

−4/5α−3/5t
4/5
pinch for αW ∗

1 � 1,

C−2
0 t2

pinch for αW ∗
1 � 1.

(6.14a, b)

When αW ∗
1 = O(1), the pinch-off time given by (6.9) rather than (6.10a, b) should be

used to estimate the transition W . We do so numerically for α = 0.065 (θc = 166◦)
and θa = 120◦, values appropriate for the impacting spheres used in our experiments,
in order to deduce the solid curve in figure 8 for B < 1. The discrepancy may be
attributed to the neglect of inertia in the derivation of (5.5), which resists collapse for
W > 1 and would thus tend to increase both tpinch and W ∗

1 .

6.2. Deep seal

The zero B model presented in § 6.1 predicts that pinch-off occurs at the surface z = 0.
We expect this result to be flawed for two reasons. First, it neglects the longitudinal
component of curvature that necessarily resists pinch-off at the surface. Second,
hydrostatic pressure becomes important at depth, specifically, when Bz ∼ O(1). Thus,
provided the W is sufficiently large so that the sphere reaches a dimensionless depth
B−1 prior to pinch-off, hydrostatic pressure will be dynamically important during
cavity collapse, and favour pinch-off at depth (see figure 9). We proceed by developing
a description of deep seal pinch-off.

For Bz � 1 and F � D̃−1, hydrostatic pressure dominates cavity collapse and (4.12)
reduces to

Ṙ2 =

(
α

U (z)2

U 2
0

+
2z

3F

)
1

R3
− 2z

3F
, (6.15)

where we recall that W = BF . Provided that |U0 − U (z)|/U0 � 1, the collapse time,
(6.1), reduces to

tc(z) =

∫ R=R∗

R=1

dR√(
α + 2z

3F

)
1

R3 − 2z
3F

+

∫ R=R∗

R=0

dR√(
α + 2z

3F

)
1

R3 − 2z
3F

, (6.16)

where

R∗ =
3

√
3αF

2z
+ 1. (6.17)

Substituting R = R∗ sin2/3 ϑ reduces (6.16) to

tc(z) = R∗
√

2F

3z

(∫ π/2

ϑ∗
sin2/3 ϑdϑ +

∫ π/2

0

sin2/3 ϑdϑ

)
, (6.18)

where ϑ∗ = sin−1 R∗−3/2. For αF/z � 1 (R∗ → 1, ϑ∗ → π/2), the first integral in (6.18)
vanishes, and for αF/z � 1 (R∗ → ∞, ϑ∗ → 0), the two integrals become equal. Thus,
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(6.18) may be expressed as

tc(z) =

⎧⎨
⎩

2C1α
1/3

(
3F
2z

)5/6
for αF/z � 1,

C1

(
3F
2z

)1/2
for αF/z � 1,

(6.19a, b)

where C1 may be expressed in terms of the gamma function:

C1 =
2
√

πΓ (11/6)

5Γ (4/3)
≈ 0.747. (6.20)

By solving (6.3) using (6.19a, b), we find the pinch-off depth

zpinch =

{
C2α

2/11F 5/11 for αF 2/3 � 1,

C3F
1/3 for αF 2/3 � 1,

(6.21a, b)

where C2 = (1/6)(3)10/11(10C1)
6/11 and C3 = (1/2)(3C2

1 )
1/3. Note that in our experiments,

5 <αF 2/3 < 15 for 60 <W < 315. In this W range, the theoretically predicted pinch-off
depth (6.21a), represented by the dashed curve in figure 9, is in good agreement
with experiment. This W range corresponds to the deep seal regime, where the cavity
evolution is prescribed by (6.15), and it is safe to neglect surface tension. The pinch-off
time, t(zpinch) + tc(zpinch), is given by

tpinch =

{
C4α

2/11F 5/11 for αF 2/3 � 1,

C5F
1/3 for αF 2/3 � 1,

(6.22a, b)

where C4 = (11/5)C2 and C5 = 3C3. The theoretically predicted pinch-off time (6.22a),
given by the dashed line in figure 11, is also in good agreement with experiment
in this deep seal regime. We note that both (6.21a, b) and (6.22a, b) are compatible
with the approximate analytical solutions and experimental observations of Duclaux
et al. (2007), in which they propose tpinch ∼ α1/4F 1/2 for αF 2/3 � 1, and tpinch ∼ F 1/3 for
αF 2/3 � 1.

The lower boundary of the deep seal regime, that is the W at which the cavity type
transitions from shallow to deep seal, may be estimated by equating the shallow seal
and deep seal pinch-off times, (6.10a, b) and (6.22a, b) respectively. Doing so yields
the following transition W in various limits:

W ∗
2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
C4

2C0

)44/35

α−5/7B−4/7 for αF 2/3 � 1 and αW ∗
2 � 1,(

C4

C0

)22

α4B−10 for αF 2/3 � 1 and αW ∗
2 � 1,(

C5

2C0

)12/11

α−9/11B−4/11 for αF 2/3 � 1 and αW ∗
2 � 1,(

C5

C0

)6

B−2 for αF 2/3 � 1 and αW ∗
2 � 1.

(6.23a–d)

We plot (6.23a) as the dash-dotted line in figure 8 for α = 0.065, appropriate for our
impacting spheres. The discrepancy for B = O(1) likely arises from the admittedly
arbitrary use of 2lc as the cut-off depth used to distinguish between the deep and
shallow seal regimes in our experiments.

In figure 17, we show a comparison between the theoretical model that includes both
surface tension and hydrostatic pressure (4.12) and an experimentally observed deep
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3 mm

Figure 17. Cavity model (4.12) alongside video sequence of deep seal at low B (R0 = 0.08 cm,
ρs =7.7 g cm−3, U0 = 310 cms−1). The time between successive images is 2.3 ms; W = 109;
B = 0.088.

seal cavity, where we prescribe the sphere trajectory from video images and estimate
θc = 160◦. The model captures the significant features of the cavity evolution, with
the exception of the capillary waves and near-surface profile, shortcomings that result
from neglecting vertical fluid motion and the longitudinal component of curvature.
Despite the limitations of our theoretical model, the pinch-off time is predicted within
10 % of its observed value and the pinch-off depth to within 20 %.

For B � 1, one may estimate the transition from quasi-static to deep seal regimes
by equating the corresponding pinch-off times (5.5) and (6.22a, b) to find

F ∗
1 =

{
C6α

−2/5 for αF ∗2/3
1 � 1,

C7 for αF ∗2/3
1 � 1,

(6.24a, b)

where C6 = C
−11/5
4 and C7 = C−3

5 . Note that the shallow seal regime does not exist for
B � 1, nor does the deep seal regime exist for B � 1.

7. Surface seal
While the theoretical model developed in § 6 does not allow us to consider events

above the surface, it does allow for consideration of the dependence of the cavity
evolution on aerodynamic pressure. For W � D̃−1 and F � D̃−1, we may neglect
curvature and hydrostatic pressures in favour of aerodynamic pressure. As described
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in § 6.1, provided that |U0 − U (z)|/U0 � 1, pinch-off occurs where the cavity was first
initiated, at z = 0. In this limit, (6.1) and (6.3) reduce to

tpinch =

∫ R=R∗

R=1

dR√(
α + 2

3
CaD̃

)
1

R3 − 2
3
CaD̃

+

∫ R=R∗

R=0

dR√(
α + 2

3
CaD̃

)
1

R3 − 2
3
CaD̃

, (7.25)

and (4.13) becomes

R∗ =
3

√
3α/(2CaD̃) + 1. (7.26)

Substituting R = R∗ sin2/3 ϑ into (7.25) yields

tpinch = R∗

√
2

3CaD̃

(∫ π/2

ϑ∗
sin2/3 ϑdϑ +

∫ π/2

0

sin2/3 ϑdϑ

)
, (7.27)

where ϑ∗ = sin−1 R∗−3/2. Depending on the magnitude of α/D̃, (7.27) reduces to the
following:

tpinch =

{
C8α

1/3(CaD̃)−5/6 for α/D̃ � 1,

C9(CaD̃)−1/2 for α/D̃ � 1,
(7.4a, b)

where C8 = 2C1(3/2)5/6, C9 = C1(3/2)1/2 and C1 is given by (6.20). We note that a
simple balance between inertia and aerodynamic pressure

(
ρU 2 ∼ ρaU

2
0

)
leads to the

dimensionless pinch-off time scaling tpinch ∼ D̃−1/2, which is retained when α/D̃ � 1 in
(7.4a, b) and is in accord with a theoretical result obtained by Lee et al. (1997).

The theoretically predicted pinch-off time (7.4a, b) is found without considering the
splash curtain dynamics; nevertheless, we expect it to set an upper bound for the
time of surface seal. Moreover, we will demonstrate that our cavity model provides
a good approximation of the initial conditions for the splash curtain. We proceed by
considering the splash curtain dynamics.

For high B impacts, the time of surface seal is determined by the evolution of the
splash curtain (Gilbarg & Anderson 1948; May 1952). At low B , we observe likewise
(see figure 7) and so propose the following supplement to our cavity model: As
illustrated in figure 18(a), we consider the splash curtain to be an axisymmetric liquid
sheet with thickness δ(s) and speed V (s), the evolution of which results in a closed bell
shape (Clanet 2007). Provided that Fs = V 2

0 /(gH ) � 1, where H is the characteristic
splash height, H ≈ R0 and V0 the initial ejection speed, we can safely neglect gravity.
Provided that air friction is negligible, one may further assume that V (s) = V0. The
evolution of the water bell is then described by a balance of inertia, surface tension
and aerodynamic pressure. In dimensional variables, this balance takes the form(

WsR
′(t∗) − r ′) dϕ

ds ′ = − cos ϕ − �p

2σ
r ′, (7.5)

where Ws = ρV 2
0 δ0/(2σ ) is the Weber number of the sheet, s ′ the arc length along

the sheet centreline and �p the pressure difference between the outside and inside
of the bell (Clanet 2007). R′(t∗) is the radial position at a time t∗ = t ′ − s ′/V0 of
the underlying cavity at z′ = 0, which evolves according to (4.12) and so couples the
dynamics of the cavity and splash curtain. Note that the existence of the splash
curtain requires that V0 > Vc, where Vc =

√
2σ/(ρδ) is the retraction speed owing to

surface tension (Taylor 1959; Culick 1960); thus, necessarily, Ws > 1.
The shape of the splash at time t ′ is obtained by integrating (7.5)

from s ′ = 0 to s ′ = V0t
′, with the initial conditions r ′(s ′ = 0) = R′(t ′, z′ = 0) and
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(a)

5 mm

(b) (c)
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Figure 18. (a) Sketch of splash curtain model. (b) Video sequence of surface seal at W = 570,
B = 0.27 (R0 = 0.14 cm, ρs = 7.7 g cm−3, U0 = 540 cms−1). The time between successive images
is 1 ms. (c) Predicted shape of splash curtain at times corresponding to experiment, where we
measure V0/U0 = 0.25±75 % and choose δ0 = 0.02 cm, corresponding to Ws = 2.5 and Fs = 130.

tan ϕ(s ′ = 0) = Ṙ′(t ′, z′ = 0)/U0, corresponding to the position and slope of the
underlying cavity. Note that in writing (7.5), we assume that the initial sheet thickness
δ0 is independent of time. If one takes the characteristic pressure, length scale and time
scale to respectively be ρaU

2
0 , R0 and R0/V0, (7.5) may be written in dimensionless

form as

(WsR(t − s) − r)
dϕ

ds
= − cos ϕ +

WD̃

2
r. (7.6)

In the present study, W � 2D̃−1 ≈ 1 700; therefore, the collapse of the splash curtain
is driven primarily by surface tension, and aerodynamic pressure may be safely
neglected. Since the splash is axisymmetric, the initial sheet curvature draws the
sheet inwards, resulting in a closed bell. The closure time of the splash curtain is
obtained by considering the trajectory of the sheet’s leading edge as prescribed by
(7.6) for t = s, the time elapsed since impact, with the initial conditions r(s = 0) = 1
and ϕ(s = 0) = π − θc. The solution is the catenary

r ′

R0

= Ws − C10 cosh

(
z′

R0
− C11

C10

)
(7.7)

with integration constants

C10 = (1 − Ws) cos θc and C11 = C10 ln

(
1 + sin θc

− cos θc

)
, (7.8)

where the dependence on the cavity growth enters through the cone angle θc, the
initial slope of the cavity wall defined by (4.11). Surface seal occurs when the sheet
tip reaches zero radius, that is when r ′ = 0 in (7.7). Using the relation s ′ =V0t

′, the
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closure time is simply the arclength of (7.7) from z = 0 to r = 0:

t ′
closure

V0

R0

= C10

⎡
⎣

√(
Ws

C10

)2

− 1 +
cos2 θc − (sin θc + 1)2

2 (sin θc + 1) cos θc

⎤
⎦ . (7.9)

A comparison between model (7.6) and experiment is made in figure 18(b–c). In
the experiment, we measured V0/U0 = 0.25±75 %. While direct measurements of δ(s)
were not possible, we used δ0 = 0.02 cm to initialize our simulations, which yielded
a reasonable agreement. The dimensionless sheet thickness (δ0/R0 = 0.14) is roughly
consistent with those measured by Cossali et al. (2004), 0.1 <δ(t ′)/R0 < 1, in an
investigation of droplet impact on thin films for 140 <W < 430. Using δ0 = 0.02 cm,
we find Vc = 85 cm s−1, which is small relative to U0 ∼ 540 cm s−1; the difference
between impact and sheet speeds thus cannot be rationalized wholly in terms of the
rim retraction speed.

It is worth highlighting that the assumptions required to derive (4.12), including
the neglect of the longitudinal component of curvature, are well satisfied in the
surface seal regime. Specifically, since ϕ0 ≈ 0 in the experiments, (4.12) provides a
good approximation for the radius and slope of the splash curtain at z = 0. The
principal shortcoming of our model for the splash curtain results from uncertainties
in the sheet thickness and ejection speed, which may be influenced by sheet instability
and droplet ejection (figure 18b). Nevertheless, our investigation has made clear that
both the cavity and splash curtain need be considered to provide a full description of
a surface seal cavity, and our model represents the first attempt to do so.

8. Discussion
We have presented the results of a combined theoretical and experimental

investigation of the normal impact of hydrophobic bodies at low B , where the
resulting cavity collapse is caused by both surface tension and gravity. This limit is
relevant for the entry of small bodies (R0 � 2.7 mm) into water. Our parameter study
has revealed four distinct cavity types that arise as the W is progressively increased:
quasi-static, shallow seal, deep seal and surface seal. In the quasi-static regime, the
cavity takes the shape of a hydrostatic meniscus, and air entrainment is minimal.
Both the shallow seal and deep seal regimes are characterized by considerable air
entrainment, a long slender cavity and the occurrence of capillary waves but differ in
terms of their pinch-off locations. In the surface seal regime, the splash created upon
impact domes over to seal the cavity prior to its pinch off at depth.

A theoretical model based on the solution to the Rayleigh–Besant problem has
been developed to describe the evolution of the cavity shape. The principal advantage
of our model over full numerical simulations is its relative simplicity. It provides exact
solutions for the evolution of the cavity and simple expressions for the pinch-off time
and depth. Our theoretical developments also provide insight into the high B regime,
where gravity is dominant with respect to surface tension. A summary of our new
results for the cavity dynamics is given in table 2.

We have considered the influence of both curvature and aerodynamic pressures on
the cavity evolution. The inclusion of surface tension allows us to describe low B

impacts. Aerodynamic pressures become significant to the cavity dynamics when both
FD̃ � 1 and WD̃ � 1. We may interpret the two distinct F scaling regimes observed
by Gekle et al. (2008) for B = 50 as manifestations of the quasi-static and deep seal
cavity types. We similarly observe a W regime in which the depth of pinch-off does
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Limit Result Equation

W � 1 Zmax ≈ 0.83B−0.035 log10 B−0.31
(
sin θa

2

)1.6
+ 1 (5.3)

B =0, 1< W � D̃−1, αW � 1 tpinch =2C0α
3/4W 5/4 (6.10a)

B =0, 1< W � D̃−1, αW � 1 tpinch =C0

√
W (6.10b)

B � 1, 1<F � D̃−1, αF 2/3 � 1 tpinch = C4α
2/11F 5/11 (6.22a)

B � 1, 1<F � D̃−1, αF 2/3 � 1 zpinch = C2α
2/11F 5/11 (6.21a)

B � 1, 1<F � D̃−1, αF 2/3 � 1 tpinch = C5F
1/3 (6.22b)

B � 1, 1<F � D̃−1, αF 2/3 � 1 zpinch =C3F
1/3 (6.21b)

W � D̃−1, F � D̃−1, α/D̃ � 1 tpinch � C8α
1/3(CaD̃)−5/6 (7.4a)

W � D̃−1, F � D̃−1, α/D̃ � 1 tpinch � C9(CaD̃)−1/2 (7.4b)

W � 1, F � 1, D̃ =0 R (t, z) =
(

5
2
t
√

α(U (z)/U0) + 1
)2/5

(4.16)

Table 2. Summary of cavity pinch-off results for the water entry of dense hydrophobic
bodies, where tpinch has been scaled by R0/U0, Zmax and zpinch by R0. Recall that W = BF.
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Present study Previous studies

Surface seal

Quasi-static

Deep seal

Shallow seal

104
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2 0
/(
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B = ρgR2
0/σ

101

100

10–1

10–2 10–1 100 101 102 103

Figure 19. Regime diagram for the air–water entry of hydrophobic spheres, indicating the
scope of the present study and observed cavity types (see § 2). For all studies, Re � 1, D > 1,
Q � 1 and D̃ = 1.2 × 10−3. The theoretically predicted boundaries between the cavity regimes
are given in § 6, with the exception of the deep seal to surface seal boundary, given by the
empirical fit W = 320 at low B (present study) and F = (1/6 400)D̃−2 at high B (Birkhoff &
Isaacs 1951). Note that cavitation is expected to arise at sufficiently high speed – specifically,
when Q = (p − pv)/(1/2ρU 2

0 ) < 1, where pv is the liquid vapour pressure.

not increase monotonically. In figure 19, we thus present an expanded picture of the
cavity dynamics of water entry, where the predicted cavity type depends on both F

and B .
Our theoretical model captures the essential features of the water-entry cavity, as

demonstrated by its ability to adequately predict the cavity shape, pinch-off time and
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pinch-off depth. Our simplified description of the contact line dynamics provides a
potential source of error, although the model does particularly well in the quasi-static,
shallow seal and deep seal regimes. In the shallow seal and deep seal regimes, there are
several possible sources of discrepancy between model predictions and experiment.
First and foremost, the model neglects the longitudinal component of curvature, thus
precluding adequate treatment of the near-surface region. Second, the model velocity
field is purely radial, an assumption that is also likely to be violated in the near-surface
region. Taken together, these assumptions preclude treatment of either the capillary
waves propagating along the cavity walls or the classic Rayleigh–Plateau instability.
Third, the two-dimensional geometry of the cavity obliged us to approximate the
radial extent of the fluid motion generated by impact. The cavity model’s ability
to predict the time of surface seal is limited, as one expects the dynamics of the
splash, which domes over to seal the cavity, to become important. Therefore, we have
presented a supplemental model for the splash curtain dynamics that couples with
our model of the cavity evolution. The splash is described as a water bell that evolves
under the combined influence of surface tension, aerodynamic pressure and inertia.
We thus obtain the dependence of the time of surface seal (7.9) on the sheet Weber
number.

There are several outstanding questions that warrant further consideration, a
number of which are currently under investigation. Lee & Kim (2008) consider sphere
trajectories in the low B , low W regime and derive criteria for sphere rebound. We
likewise intend to quantify the deceleration of impacting spheres at higher W . Second,
while relatively high-speed, cavitating impacts have been examined experimentally by
Shi, Itoh & Takami (2000) and Shi & Kume (2004), little has been done in terms of
characterizing the influence of cavitation on the cavity shape. Finally, our study has
made clear the important influence on the cavity dynamics of the wetting properties
of the impactor. While the dependence of the cavity shape on the cone angle θc has
been quantified, the precise relation between θc and θa has yet to be elucidated. A
more detailed investigation of the wetting properties on both the cavity dynamics and
impactor trajectory is ongoing.

The authors thank Christophe Clanet and Matthew Hancock for valuable
discussions, Tadd Truscott and Daniel Hochbaum for their assistance with the
experimental study and Alexandra Techet for access to her laboratory. J.W. M.B.
gratefully acknowledges the financial support of the National Science Foundation
through Grants CTS-0130465 and CTS-0624830, and J.M.A. of the National Defense
Science and Engineering Graduate Fellowship Program.

Appendix A. Water entry of small hydrophobic cylinders
The cavity created in the wake of a vertical cylinder was examined in order to yield

insight into the θc → 180◦ (α → 0) limit and, specifically, to test (6.10b). One expects
to observe an earlier pinch-off time with respect to that of a sphere of equal values of
W and B , because in this limit the cavity collapses without initially expanding. For
a particular set of experiments, hydrophobic steel cylinders with radii R0 = 0.8 mm
were released from an electromagnet and the resulting cavity evolution recorded
using high-speed video. The cylinders were sufficiently long (12 cm) so that the cavity
formed following the initial entry of the cylinder had collapsed by the time the top
of the cylinder entered the water. The cylinders were coated in the same manner as
the spheres.
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1 mm

a b c d e f g

Figure 20. Quasi-static impact cavity. Video sequence of the top water entry of a steel cylinder
at low B (R0 = 0.079 cm, ρs = 7.7 g cm−3, U0 = 60 cms−1). The time between successive images
is 1 ms; W = 4; B = 0.088.

1 mm

a b c d e f g

Figure 21. Shallow seal impact cavity. Video sequence of the top water entry of a steel cylinder
at low B (R0 = 0.079 cm, ρs =7.7 g cm−3, U0 = 141 cms−1). The time between successive images
is 0.7ms; W = 23; B = 0.088.

For the impact of hydrophobic cylinders, we observed two distinct cavity types at
low B according to W . A typical low W impact of a vertical cylinder is shown in
figure 20. As the top edge of the cylinder enters the water, a transient air cavity is
formed. The free surface attaches to the rim of the cylinder and is pulled downwards,
taking the shape of a static meniscus. The radial extent of the cavity is comparable
to the cylinder radius, and pinch-off occurs when the top of the cylinder reaches a
depth on the order of the capillary length. Air entrainment is minimal. We denote
this cavity type as ‘quasi-static’.

As the W increases, a substantial air cavity is formed in the wake of the cylinder (see
figure 21). Following water entry, the contact line becomes pinned to the cylinder’s
trailing edge, and the angle between the free surface and the vertical remains fixed
at nearly 180◦. The radial extent of the cavity is of the order of the cylinder’s radius,
and the top of the cylinder is deeper than the capillary length at pinch-off. The
cavity pinches off at a depth of approximately the capillary length. The free surface is
smooth, and we do not observe the generation of ripples. We denote this cavity type
as ‘shallow seal’.

For W � 1, we predict the pinch-off depth for the axisymmetric meniscus adjoining
a cylinder by using a method similar to the one described in § 5. Let the cylinder
have length 2l and radius R0. As the cylinder sinks below the surface, the contact
ring, located at depth Z∗, is pinned to the top edge of the cylinder, and ψ becomes
independent of the contact angle. Thus, we have Z∗ =Z − l/R0 and allow ψ to take
any value in the range 0 � ψ � π. Given a depth Z of the cylinder, we search for a
solution to (5.1) with the boundary conditions given by (5.2a, b). In this case, the
maximum depth is achieved for ψ ≈ π/2, and the pinch-off depth is given by

z′
pinch/R0 ≈ B−0.052 log10 B − 0.35 (A 1)

for 10−2 <B < 102. Note the asymptotic behaviour in the limit of σ = 0 (B → ∞):
z′

pinch → 0. In this limit, complete immersion takes place once the top edge of the
cylinder reaches the surface.
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Figure 22. Dimensionless pinch-off depth of the cavity generated by an impacting vertical
cylinder versus W for B = ρgR2

0/σ =0.088, corresponding to R0 = 0.079 cm. The cavity types
quasi-static and shallow seal are denoted by the triangles and asterisks respectively. The solid
line denotes our theoretical prediction for the pinch-off depth of a quasi-static or shallow seal
cavity and is given by (A 1). Characteristic error bars are shown.

For B = 0.088, we present in figure 22 the experimentally observed pinch-off depths
for the cavity created in the wake of a cylinder, along with the theoretically predicted
pinch-off depth defined by (A 1). The small discrepancy in the quasi-static regime
may be attributed to the neglect of inertia in the derivation of (A 1), which resists
collapse for W > 1 and tends to increase zpinch . The deviation between experiment
and theory is expected to increase with increasing W . In figure 23, we present the
experimentally observed pinch-off times, which are in reasonable agreement with our
theoretical predictions; specifically (6.10b), given by the solid line and (A 1), given
by the dash-dotted line. The neglect of inertia in the derivation of (A 1) leads to a
discrepancy in the quasi-static regime. In the shallow seal regime, the neglect of the
longitudinal component of curvature, which necessarily resists pinch-off, may account
for the discrepancy. The study of impacting cylinders demonstrates that our theoretical
model reasonably describes the cavity evolution in the limit αW → 0, where, according
to (6.13b), the standard Rayleigh–Plateau pinch-off time tpinch ∼

√
W is obtained.

Appendix B. Cavity ripples
In § 2, we observed the presence of waves propagating along the vertical cavity

walls (see figures 5 and 6). We here briefly examine the dynamics of these waves,
which we propose may be understood by considering the stability of a hollow,
inviscid cylindrical jet in the absence of gravity. Tomotika (1935) demonstrated that
axisymmetric perturbations with wavelength λ less than the jet circumference 2πa0

are neutrally stable and propagate along the jet with the dispersion relation

ω2 =
σ

ρa3
0

ζK1(ζ )

K0(ζ )

(
ζ 2 − 1

)
, ζ = ka0, (B 1)
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101

100 101 102

102

Quasi-static Shallow seal

1

1/2

W = ρU2
0 R0/σ

t′ p
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ch
U

0
/R

0

Figure 23. Dimensionless pinch-off time of the cavity generated by an impacting vertical
cylinder versus W for B = ρgR2

0/σ = 0.088, corresponding to R0 = 0.079 cm. The cavity types
quasi-static and shallow seal are denoted by the triangles and asterisks respectively. The solid
line denotes the theoretical pinch-off time of a shallow seal cavity and is given by (6.10b). The
dash-dotted line denotes the theoretical pinch-off time of a quasi-static cavity, corresponding
to (A 1) for B = 0.088. Characteristic error bars are shown.
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Figure 24. Analysis of ripples on a deep seal cavity for W = 109. Observed phase speed versus
theoretical phase speed for the capillary waves supported by an inviscid cylindrical cavity in
the absence of gravity. The theoretical phase speed is found by substituting the local values of
a0 and k = 2π/λ into (B 1). A characteristic error bar is shown.

where K0 and K1 are modified Bessel functions of the second kind of orders
zero and one respectively, a0 is the radius, k is the wave vector, and ω is the
frequency.
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The initial disturbance is presumably associated with the large curvature at the
surface, created by the sphere impact. Provided that the impact speed exceeds the
capillary wave speed, that is W > 1, we may apply Tomotika’s theory to the ripples
on the water-entry cavity, noting that the condition W > 1 roughly coincides with
the onset of the shallow seal regime. In our experiment, the Ohnesorge number
O = η2/(ρR0σ ) is low (10−6 <O < 10−4); so waves are not be greatly affected by
viscosity. By tracking the positions of the wave crests for the deep seal impact shown
in figure 6, we estimate the phase speed c = ω/k and dominant wavelength λ= 2π/k

for each crest. In figure 24, we compare the observed phase speed for a given k and
local radius a0 to the theoretically expected behaviour for capillary waves (B 1). The
reasonable agreement suggests that the observed ripples are indeed capillary waves
generated by the impacting body. Possible sources of error include the use of linear
theory to describe the waves, as well as the neglected influence of the cavity motion
on their propagation.
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