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Abstract. We study topological properties of the escaping endpoints and fast escaping
endpoints of the Julia set of complex exponential exp(z)+ a when a ∈ (−∞,−1). We
show neither space is homeomorphic to the whole set of endpoints. This follows from a
general result stating that for every transcendental entire function f , the escaping Julia set
I ( f ) ∩ J ( f ) is first category.
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1. Introduction
For each a ∈ (−∞,−1), define fa : C→ C by fa(z)= ez

+ a. The Julia set J ( fa) is
known to be a Cantor bouquet consisting of an uncountable union of pairwise disjoint rays,
each joining a finite endpoint to the point at infinity [7, p. 50]; see Figure 1. Let E( fa)

denote the set of finite endpoints of these rays. Mayer proved E( fa) ∪ {∞} is connected,
even though E( fa) is totally disconnected [13]. The one-point compactification J ( fa) ∪

{∞} is a Lelek fan [1], so E( fa) is actually homeomorphic to the ‘irrational Hilbert space’
Ec := {x ∈ `2

: xi /∈Q for each i < ω} [12], which is almost zero-dimensional [9, 14].
This means E( fa) has a basis of open sets whose closures are intersections of clopen sets.
We note that by [8, Theorem 3.1] and [1, 5, 6], an almost zero-dimensional space X has
a one-point connectification if and only if X is homeomorphic to a dense set X ′ ⊆ E( fa)

with the property that X ′ ∪ {∞} is connected.
Alhabib and Rempe-Gillen recently discovered that Ė( fa) ∪ {∞} is connected, where

Ė( fa) is the set of escaping endpoints of J ( fa) [2, Theorem 1.4]. The even smaller set of
fast escaping endpoints Ë( fa) also has the property that its union with {∞} is connected [2,
Remark p. 68]. More can be said about the topologies of Ė( fa) ∪ {∞} and Ë( fa) ∪ {∞}

based on [8]. For example, Ė( fa) ∪ {∞} \ K is connected for every σ -compact set K ⊆
Ė( fa) [8, Theorem 4.6]. The primary goal of this paper is to investigate whether Ė( fa) and
Ë( fa) are topologically equivalent to Ec or the ‘rational Hilbert space’ E := {x ∈ `2

: xi ∈

https://doi.org/10.1017/etds.2019.111 Published online by Cambridge University Press

https://orcid.org/0000-0003-2224-5511
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/etds.2019.111&domain=pdf
https://doi.org/10.1017/etds.2019.111


A note on the topology of escaping endpoints 1157

FIGURE 1. Partial images of J ( f−2).

Q for each i < ω}. We show both sets are first category in themselves, implying neither
space is homeomorphic to Ec. We also show Ë( fa) 6' E. It is presently unknown whether
Ė( fa) is homeomorphic to E.

2. Preliminaries
Let f be an entire function.
• A set X ⊆ C is:

backward-invariant under f provided f −1
[X ] ⊆ X ;

forward-invariant under f provided f [X ] ⊆ X ; and
completely invariant under f if f −1

[X ] ∪ f [X ] ⊆ X .
• The backward orbit of a point z ∈ C is the union of pre-images

O−(z)=
⋃
{ f −n
{z} : n < ω}.

The forward orbit of z is the set O+(z)= { f n(z) : n < ω}.
• A point z ∈ C is exceptional if O−(z) is finite. There is at most one exceptional point

[4, p. 6].
• I ( f )= {z ∈ C : f n(z)→∞} is called the escaping set for f .
• Define the maximum modulus function M(r) := M(r, f )=max{| f (z)| : |z| = r} for

r ≥ 0. Choose R > 0 sufficiently large such that Mn(R)→+∞ as n→∞ and
let AR( f )= {z ∈ C : | f n(z)| ≥ Mn(R) for all n ≥ 0}. The fast escaping set for f is
defined to be the increasing union of closed sets

A( f )=
⋃
n≥0

f −n
[AR( f )].

It can be shown that the definition of A( f ) is independent of the choice of R when f
is transcendental [15, Theorem 2.2].

• Note that J ( f ), I ( f ), and A( f ) are completely invariant under f .
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Recall that for each a ∈ (−∞,−1), the endpoint set of J ( fa) is denoted by E( fa). We let

Ė( fa)= I ( fa) ∩ E( fa),

Ë( fa)= A( fa) ∩ E( fa)

denote the escaping endpoints and fast escaping endpoints of J ( fa), respectively.

3. Results for transcendental entire functions
In this section we assume f is a transcendental entire function, so that I ( f ) ∩ J ( f ) 6=∅
[10, Theorem 2]. We will make repeated use of [4, Lemma 4], which states that
O−(z)= J ( f ) for each non-exceptional point z ∈ J ( f ). This is a simple consequence
of Montel’s theorem. A topological space X is first category if X can be written as the
union of countably many (closed) nowhere dense subsets.

THEOREM 3.1. Every completely invariant subset of I ( f ) ∩ J ( f ) is first category.

Proof. Let X ⊆ I ( f ) ∩ J ( f ) be completely invariant under f . Let R = |z0| + 1 for some
z0 ∈ J ( f ). For each n < ω, let Xn = {z ∈ X : | f k(z)| ≥ R for all k ≥ n}. Since X ⊆ I ( f ),
we have X =

⋃
{Xn : n < ω}. It remains to show each Xn is nowhere dense in X . To that

end, fix n < ω. Let U be any open subset of J ( f ) such that U ∩ X 6=∅. We will show
U ∩ X 6⊆ Xn .

For any point z ∈ I ( f ), the forward orbit O+(z) is infinite. Since X is forward-
invariant, it contains O+(z) when z ∈ X . We assume X is non-empty, so X is infinite.
There is at most one exceptional point by Picard’s theorem, so there is a non-exceptional
point z1 ∈ X . By [4, Lemma 4], O−(z1) contains a dense subset of {z ∈ J ( f ) : |z|< R},
which is a perfect set [4, Theorem 3]. So there is a non-exceptional point z2 ∈ O−(z1)with
|z2|< R. The set of repelling periodic points is a dense subset of J ( f ) [4, Theorem 4].
Since I ( f ) contains no periodic point, we have J ( f ) \ I ( f )= J ( f ). For each k < ω,
we also note that f −k

{z2} is closed and f −k
{z2} ⊆ I ( f ). So each pre-image f −k

{z2}

is nowhere dense in J ( f ). Therefore V :=U \
⋃
{ f −k
{z2} : 0≤ k < n} is a non-empty

open subset of J ( f ). By [4, Lemma 4] there exists k < ω such that f −k
{z2} ∩ V 6=∅.

Then k ≥ n and f −k
{z2} ∩U 6=∅. Let z3 ∈ f −k

{z2} ∩U . Then | f k(z3)| = |z2|< R, so
z3 /∈ Xn . Since X is backward-invariant, z3 ∈ (U ∩ X) \ Xn as desired. Clearly Xn is a
relatively closed subset of X . We conclude that (U ∩ X) \ Xn is a non-empty X -open
subset of U ∩ X missing Xn . Recall U was an arbitrary open subset of J ( f ) intersecting
X , so this proves Xn is nowhere dense in X . �

COROLLARY 3.2. I ( f ) ∩ J ( f ) is first category.

Proof. Theorem 3.1 applies since I ( f ) ∩ J ( f ) is completely invariant under f . �

COROLLARY 3.3. J ( f ) \ I ( f ) is not first category.

Proof. J ( f ) is a closed subset of C, and is therefore not the union of two first category
sets. Since I ( f ) ∩ J ( f ) is first category (Corollary 3.2), J ( f ) \ I ( f ) is not. �

4. Applications to complex exponentials fa

THEOREM 4.1. I ( fa), A( fa), Ė( fa), and Ë( fa) are first category.
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Proof. These are completely invariant subsets of I ( fa). And I ( fa)⊆ J ( fa); this actually
holds for all a ∈ C [11, §2]. So Theorem 3.1 applies to each set. �

Remark 4.1. Complete invariance of Ė( fa) was also applied in [2, p. 68] to generalize the
main result in [13].

THEOREM 4.2. Neither Ė( fa) nor Ë( fa) is homeomorphic to E( fa).

Proof. E( fa) is completely metrizable (recall E( fa)' Ec, which is a Gδ-subset of `2),
so by the Baire category theorem E( fa) is not first category. The result now follows from
Theorem 4.1. �

THEOREM 4.3. Ë( fa) 6' E.

Proof. Ë( fa) is an absolute Gδσ -space because A( fa) and E( fa) are Fσ and Gδ subsets of
C, respectively. On the other hand, E is not absolute Gδσ because it has a closed subspace
homeomorphic to Qω; see [9, p. 23]. �

QUESTION 1. Is Ė( fa) homeomorphic to E?

QUESTION 2. Is Ë( fa) homeomorphic to Q× Ec?

Acknowledgements. Lasse Rempe-Gillen supplied the graphics for Figure 1. Philip
Rippon indicated a strengthening of Corollary 3.3. Namely, J ( f ) \ I ( f ) contains a dense
Gδ-subset of J ( fa) by [3, Lemma 1].
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