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The Van Kampen normal-mode method is applied in a comprehensive study of
the linear wave perturbations of a homogeneous, magnetized and finite-temperature
plasma, described by the collisionless Vlasov–Maxwell system in its non-relativistic
version. The analysis considers a stable, Maxwellian background, but is otherwise
completely general in that it allows for arbitrary wave propagation direction relative
to the equilibrium magnetic field, multiple plasma species and general polarization
states of the perturbed electromagnetic fields. A convenient formulation is introduced
whereby the generator of the time advance is a Hermitian operator, analogous to
the Hamiltonian in the Schrödinger equation of quantum mechanics. This guarantees
a real frequency spectrum and complete bases of normal modes. Expansions in
these normal-mode bases yield immediately the solutions of initial-value problems
for general initial conditions. With standard initial conditions and propagation
direction parallel to the equilibrium magnetic field, all the familiar results obtained
following Landau’s Laplace transform approach are recovered. Considering such
parallel propagation, the present work shows also explicitly and provides an example
of how to construct special initial conditions that result in different, damped but
otherwise arbitrarily prescribed time variations of the macroscopic variables. The
known dispersion relations for perpendicular propagation are also recovered.

Key words: plasma waves

1. Introduction
The Vlasov–Maxwell description was adopted around the middle of the past century

to formulate the linear theory of waves in finite-temperature, collisionless plasmas.
Beginning with the simplest, electron-Langmuir wave, two different albeit equivalent
approaches were developed. The first one was Landau’s (1946) method of analytic
continuation and complex contour integration for the Laplace-transformed solution
of initial-value problems. The second was Van Kampen’s (1955) and Case’s (1959)
derivation of a complete basis of normal modes with harmonic time dependence,
including the singular ones associated with a continuous frequency spectrum. These
methods were subsequently used to study other plasma waves. However, following
the comprehensive analysis of Bernstein (1958) based on Landau’s approach, this
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method became overwhelmingly the preferred one both in the research literature and
in the classroom. Thus, standard plasma textbooks, whether general such as Krall &
Trivelpiece (1973), Lifshitz & Pitaevskii (1981), Goldston & Rutherford (2000) and
Hazeltine & Waelbroeck (2004), or specialized in wave theory such as Stix (1962),
Brambilla (1998), Pecseli (2012) and Bers (2016), present the theory of plasma waves
according to Landau’s approach and perhaps apply Van Kampen’s normal-mode
approach only to the discussion of the electron-Langmuir wave. Nevertheless, the
normal-mode method has some specific virtues compared to the Laplace transform
method. In particular, it makes clear the nature of the Landau damping as the result
of the mixing of the phases of different spectral components of the perturbation,
not normal modes with complex frequency. More importantly, it allows for initial
conditions that do not necessarily have the analyticity properties required by the
standard derivation of ‘effective dispersion relations’ (by way of analytic continuation
and complex contour integration) in the Laplace transform approach.

The reason why a normal-mode-based theory of plasma waves as broad in scope
as Bernstein’s (1958) Laplace-transform-based theory has not been available, can be
attributed to the mathematical complexities of the former, as remarked in Bernstein’s
paper itself. Such complexities have two distinct roots. The first one is the fact
that, except for the special k‖ = 0 case of wave propagation perpendicular to the
equilibrium magnetic field, the spectrum of eigenfrequencies includes a continuum
and this continuum is in general highly degenerate. The degeneracy of the continuum
of eigenfrequencies arises from several causes. One is the multiple degrees of freedom
corresponding to the number of plasma species and the three possible polarizations
of the perturbed electromagnetic fields. Another and more insidious is the fact that
many differently perturbed distribution functions of the three-dimensional velocity
produce equivalent effects as far as the overall dynamics of the perturbation is
concerned. Finally, one has to take into account the continuum of so-called ballistic
modes, namely modes that perturb the distribution functions but do not perturb the
electromagnetic fields. The continuum degeneracy difficulty is greatly alleviated if the
equilibrium background has no magnetic field or if the wave propagation direction is
parallel to the magnetic field of a magnetized equilibrium because, in these cases, a
reduced problem can be formulated in terms of integrated distribution functions that
depend only on the velocity component parallel to the propagation wavevector, after
straightforward integration with respect to the perpendicular components. Moreover,
for unmagnetized equilibrium or parallel propagation, the three electromagnetic
polarization states are decoupled and can be analysed independently. Thus, most of the
normal-mode-based research carried out so far has been limited to these unmagnetized
equilibrium or parallel propagation situations (Van Kampen 1955; Pradhan 1957; Case
1959; Felderhof 1963a,b; Van Kampen & Felderhof 1967; Lambert, Best & Sluijter
1982; Ignatov 2017). The works of McCune (1966) and Watanabe (1968) did tackle
the far more difficult problem of wave propagation oblique to a non-zero equilibrium
magnetic field. However, these works simplified the continuum degeneracy difficulty
by considering a plasma with immobile ions and with the electrons as the single
dynamical species, and by assuming an electrostatic approximation with only one
polarization state. They derived perturbation solutions that resolved the dependence of
the electron distribution function on the three-dimensional velocity, but no attempts
were made to apply them to specific problems or to make contact with the results
available from the Laplace-transform-based methodology.

The second mathematically complex feature of the normal-mode approach is that,
as originally formulated, the Van Kampen normal modes are not eigenfunctions of a
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Hermitian operator. This necessitates the consideration of two mutually adjoint bases
of normal modes and the explicit demonstration of their completeness. However, this
difficulty can be avoided if the equilibrium distribution functions are Maxwellian
(or, more generally, isotropic and monotonic). In two recent studies of sound
(ion-acoustic) waves in the kinetic magnetohydrodynamics framework (Ramos 2017)
and electron-Langmuir waves in the Vlasov–Maxwell framework (Ramos & White
2018) with Maxwellian equilibria, bases of normal modes made of eigenfunctions
of self-adjoint operators were constructed. This simplifies the analysis significantly
because the completeness of such self-adjoint bases is guaranteed by the spectral
theorem without the need of any additional proof.

The present work carries out a comprehensive study of linear wave perturbations of
the non-relativistic Vlasov–Maxwell system, following the Van Kampen normal-mode
approach. The analysis considers a stable, Maxwellian background, but is otherwise
completely general in that it allows for arbitrary wave propagation direction relative
to a non-zero equilibrium magnetic field, multiple plasma species and general
polarization states of the perturbed electromagnetic fields. A state vector is defined
in two-dimensional velocity space (after Fourier-series expansion of the dependence
on the gyrophase coordinate) such that it obeys a first-order time evolution equation,
with a Hermitian operator as the generator of the time advance, analogous to the
Schrödinger equation of quantum mechanics. This guarantees automatically a real
frequency spectrum and a complete basis of normal modes. For k‖ 6= 0, suitable
integrations over the velocity coordinate perpendicular to the equilibrium magnetic
field yield a complete basis of normal modes in a space of state vectors with
countable components that depend only on the parallel velocity coordinate and whose
dynamical evolution is consistently determined, ignoring non-essential information
about the detailed dependence of the distribution function on the two-dimensional
velocity. Using this convenient formalism, and after the explicit determination of the
normal modes in such one-dimensional velocity space, arbitrary initial-value problems
are readily solved. In particular it is shown that, with standard initial conditions and
propagation direction parallel to the equilibrium magnetic field, all the familiar results
derived with Landau’s Laplace transform method are recovered. Considering such
parallel propagation, it is also shown how special initial conditions can be explicitly
constructed which result in different, damped but otherwise arbitrarily prescribed time
variations of the macroscopic variables. The perpendicular propagation case requires
a separate analysis, carried out in two-dimensional velocity space, with ballistic
mode eigenfrequencies that are severely degenerate and have singular eigenfunctions,
even though they are discrete. Otherwise, the known dispersion relations for k‖ = 0
(Bernstein 1958) are also recovered.

2. The linearized Vlasov–Maxwell system
In the collisionless and non-relativistic limit, the one-particle distribution function

for each plasma species, fs(v, x, t), satisfies Vlasov’s equation

∂fs

∂t
+ v ·

∂fs

∂x
+

es

ms
(E+ v×B) ·

∂fs

∂v
= 0, (2.1)

where ms and es are the mass and electric charge of the species particles and E and B
are the electromagnetic fields. The macroscopic charge and current densities are given
by the moments of the distribution function,

%s[ fs] = es

∫
d3v fs, js[ fs] = es

∫
d3v v fs. (2.2a,b)
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These provide the source terms in Maxwell’s equations for the electromagnetic fields,
which close the system

1
c2
∇ ·E=

∑
s

%s[ fs] (2.3)

1
c2

∂E
∂t
=∇×B−

∑
s

js[ fs] (2.4)

∇ ·B= 0 (2.5)
∂B
∂t
=−∇×E. (2.6)

The integral over velocity space of (2.1) yields the continuity equation

∂%s

∂t
+∇ · js = 0, (2.7)

which, combined with the divergence of (2.4), yields

∂

∂t

(
1
c2
∇ ·E

)
=
∂

∂t

(∑
s

%s[ fs]

)
. (2.8)

On the other hand, the divergence of (2.6) yields

∂(∇ ·B)
∂t

= 0. (2.9)

Therefore, (2.3) and (2.5) need only be imposed as constraints on the initial conditions,
after which one has to solve only the dynamical system of (2.1), (2.4) and (2.6) with
the definitions (2.2).

The subject of this work will be a linear wave analysis for small-amplitude
perturbations about a stable, homogenous, magnetized and Maxwellian equilibrium
without electric field or flows. Thus, the equilibrium magnetic field, densities and
temperatures (B0, ns0, Ts0) are constant, the equilibrium electric field, current densities
and total charge density are E0 = js0 = 0 and

∑
s esns0 = 0, and the equilibrium

distribution functions are

fs0 = fMs(v)=
ns0

(2π)3/2v3
ths

exp
(
−
v2

2v2
ths

)
, (2.10)

where the thermal velocities are defined as vths ≡ (Ts0/ms)
1/2.

The small-amplitude perturbation will be denoted with a tilde, so it will be written

E(x, t)= Ẽ(x, t), B(x, t)=B0 + B̃(x, t), fs(v, x, t)= fMs(v)+ f̃s(v, x, t). (2.11a−c)

Since the equilibrium is spatially homogeneous, the linear perturbation can be
analysed as a superposition of independent Fourier modes. Considering one such
spatial Fourier mode with wavevector k, the dependence on x is factorized as
exp(ik · x) and the linearized Vlasov–Maxwell system becomes

1
c2

∂E
∂t
= ik× B̃−

∑
s

js[f̃s], (2.12)
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∂B̃
∂t
=−ik×E, (2.13)

∂ f̃s

∂t
+ i(k · v)f̃s +

es

ms
(v×B0) ·

∂ f̃s

∂v
−

es

Ts0
(E · v)fMs(v)= 0, (2.14)

with k to be considered as a fixed real parameter and all the variables to be considered
as independent of x.

Introducing a Cartesian coordinate system with the z-axis along B0 and the x-axis
in the (B0, k) plane (i.e. B0 = B0ez, k = k⊥ex + k‖ez) and cylindrical coordinates in
velocity space,

vx = v⊥ cos ϕ, vy = v⊥ sin ϕ, vz = v‖, (2.15a−c)

equation (2.14) is rewritten as

i
∂ f̃s

∂t
= (k⊥v⊥ cos ϕ + k‖v‖)f̃s + iΩs

∂ f̃s

∂ϕ
+

ies

Ts0
fMs(v)[v⊥(Ex cos ϕ + Ey sin ϕ)+ v‖Ez],

(2.16)

where Ωs ≡ esB0/ms is the species cyclotron frequency (negative for electrons with
ee=−e). The next step is to consider the complex unitary basis formed by the vectors
{(ex− iey)/

√
2, (ex+ iey)/

√
2, ez} and to define, for any vector A=Axex+Ayey+Azez,

its unitary-basis components

A+ = (Ax + iAy)/
√

2, A− = (Ax − iAy)/
√

2, A‖ = Az. (2.17a−c)

In terms of these, the linearized Vlasov–Maxwell system takes the form

i
∂Ep

∂t
=−ic2

∑
p′

κp′
p B̃p′ − ic2

∑
s

jsp[f̃s], (2.18)

i
∂B̃p

∂t
= i
∑

p′

κp′
p Ep′, (2.19)

jsp[f̃s] = es

∫
∞

−∞

dv‖

∫
∞

0
dv⊥ v⊥

∫ 2π

0
dϕ v1−|p|

‖

(
v⊥
√

2

)|p|
eipϕ f̃s, (2.20)

i
∂ f̃s

∂t
= (k⊥v⊥ cos ϕ + k‖v‖)f̃s + iΩs

∂ f̃s

∂ϕ
+

ies

Ts0
fMs(v)

∑
p

v
1−|p|
‖

(
v⊥
√

2

)|p|
e−ipϕEp, (2.21)

where the indices p, p′ run through the ordered set {+, −, ‖}, with respectively
assigned numerical values {+1, −1, 0}, and κp′

p is the representation of the operator
−ik× in the unitary basis

κp′
p =

 k‖ 0 −k⊥/
√

2
0 −k‖ k⊥/

√
2

−k⊥/
√

2 k⊥/
√

2 0

 . (2.22)

As expressed by (2.18)–(2.21), the linearized Vlasov–Maxwell system poses a three-
dimensional problem in velocity space, the perturbed distribution functions depending
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on three velocity coordinates plus time: f̃s = f̃s(v‖, v⊥, ϕ, t). Since the dependence on
the gyrophase coordinate ϕ is periodic, it can be analysed as a Fourier series. First,
a change of dependent variables is carried out, from f̃s(v‖, v⊥, ϕ, t) to

φs(v‖, v⊥, ϕ, t)= f̃s(v‖, v⊥, ϕ, t) exp
(
−

ik⊥v⊥
Ωs

sin ϕ
)
= f̃s

∞∑
`=−∞

J`

(
k⊥v⊥
Ωs

)
e−i`ϕ,

(2.23)

where J` are the Bessel functions. Bringing this to (2.20) and (2.21), those equations
become

jsp[φs] = es

∫
∞

−∞

dv‖

∫
∞

0
dv⊥ v⊥

∫ 2π

0
dϕ

∞∑
`=−∞

J`−p

(
k⊥v⊥
Ωs

)
v

1−|p|
‖

(
v⊥
√

2

)|p|
ei`ϕ φs

(2.24)

and

i
∂φs

∂t
= k‖v‖φs + iΩs

∂φs

∂ϕ
+

ies

Ts0
fMs(v)

∑
`p

e−i`ϕJ`−p

(
k⊥v⊥
Ωs

)
v

1−|p|
‖

(
v⊥
√

2

)|p|
Ep. (2.25)

The original distribution function f̃s is periodic in ϕ and the factor exp(−ik⊥v⊥ sin ϕ/
Ωs) is also periodic. Therefore, φs is a periodic function of ϕ and, defining

φsm(v‖, v⊥, t)≡
1

2π

∫ 2π

0
dϕ eimϕφs(v‖, v⊥, ϕ, t) (2.26)

and

hsmp(v‖, v⊥)≡ Jm−p

(
k⊥v⊥
Ωs

)
v

1−|p|
‖

(
v⊥
√

2

)|p|
, (2.27)

where the index s ∈ {species} runs through the set of plasma species, m ∈ Z runs
through the set of all integers and p runs through the set {+, −, ‖} (or numerically
{+1,−1, 0}), equation (2.24) yields

jsp[φsm] = es

∞∑
m=−∞

∫
d3v hsmp φsm (2.28)

and (2.25) yields

i
∂φsm

∂t
= (k‖v‖ +mΩs)φsm +

ies

Ts0
fMs(v)

∑
p

hsmp Ep. (2.29)

In (2.28) and through the rest of the paper, when the integral operation
∫

d3v acts on
a function of (v‖, v⊥), it is understood to be

∫
d3v = 2π

∫
∞

−∞
dv‖
∫
∞

0 v⊥dv⊥.
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The closed, linearized Vlasov–Maxwell system of (2.18), (2.19), (2.28), (2.29) can
be written in compact form by defining the following state vector in two-dimensional
(v‖, v⊥) velocity space:

ψ(v‖, v⊥, t)≡

 Ep(t)
B̃p(t)

φsm(v‖, v⊥, t)

 , (2.30)

whose time variation is governed by a first-order linear equation analogous to the
Schrödinger equation of quantum mechanics,

i
∂ψ

∂t
=Hψ, (2.31)

where the linear operator H is

H

Ep

B̃p
φsm

=


0 −ic2
∑

p′

κp′
p −ic2

∑
sm

es

∫
d3v hsmp

i
∑

p′

κp′
p 0 0

iesT−1
s0 fMs

∑
p′

hsmp′ 0 k‖v‖ +mΩs


Ep′

B̃p′

φsm

 .

(2.32)

It will be shown next that, like the Hamiltonian in Schrödinger’s equation, the operator
H is self-adjoint.

3. Self-adjointness and formal solution of the initial-value problems

The above state vectors in two-dimensional (v‖, v⊥) velocity space will be called
two-dimensional (2-D) state vectors. The space of such 2-D state vectors can be given
a Hilbert space structure by defining the scalar product

(ψ |ψ ′)=
∑

p

(
1
c2

E∗pE′p + B̃∗pB̃′p

)
+

∑
sm

∫
d3v

Ts0

fMs(v)
φ∗sm(v‖, v⊥) φ

′

sm(v‖, v⊥). (3.1)

With this scalar product, the linear operator H (2.32) is self-adjoint because the
product (ψ |Hψ ′) can be cast in the Hermite-symmetric form

(ψ |Hψ ′) = i
∑
pp′

κp′
p (B̃

∗

pE′p′ − E∗pB̃′p′)+ i
∑
smp

es

∫
d3v hsmp (φ

∗

smE′p − E∗pφ
′

sm)

+

∑
sm

∫
d3v

Ts0

fMs
(k‖v‖ +mΩs) φ

∗

sm φ
′

sm. (3.2)

Since hsmp is real and κp′
p is real and symmetric with respect to the p, p′ indices, this

expression is invariant under the exchange of primed and unprimed variables followed
by complex conjugation, hence (ψ |Hψ ′)= (Hψ |ψ ′).
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From its time evolution equation (2.31), the dynamical solution for ψ(v‖, v⊥, t)
satisfying the initial condition ψ(v‖, v⊥, 0) is

ψ(v‖, v⊥, t)= exp(−itH) ψ(v‖, v⊥, 0). (3.3)

This solution is applicable both to positive and negative times. Since H is a Hermitian
operator and t is a real variable, exp(−itH) is a unitary operator, therefore the state
vector norm

(ψ |ψ) =

(
1
c2

E∗ ·E+ B̃
∗

· B̃
)
(t)+

∑
sm

∫
d3v

Ts0

fMs(v)
φ∗sm(v‖, v⊥, t) φsm(v‖, v⊥, t)

=

(
1
c2

E∗ ·E+ B̃
∗

· B̃
)
(t)+

∑
s

∫
d3v

Ts0

fMs(v)
f̃ ∗s (v‖, v⊥, ϕ, t) f̃s(v‖, v⊥, ϕ, t)

(3.4)

is independent of time. This norm has the physical interpretation that it equals
twice the quadratic contribution of the considered k-mode to the free energy,
E −

∑
s Ts0Ss, where E is the conserved total energy of the perturbation and Ss

are the conserved entropies of each species. The conservation of such a norm implies
that the Maxwellian equilibrium is linearly stable, as was first shown by Newcomb
and reported in the appendix of Bernstein (1958).

Another important consequence of the self-adjointness of H is the existence of a
complete basis made of normal modes, that spans the whole Hilbert space of 2-D
state vectors. These normal modes are separable solutions of (2.31) having the form

ψ(v‖, v⊥, t)=ψω,ν(v‖, v⊥) e−iωt, (3.5)

hence ψω,ν is an eigenfunction of the operator H with eigenvalue ω

Hψω,ν
=ωψω,ν (3.6)

and, again as the consequence of H being self-adjoint, the spectrum of normal-mode
eigenfrequencies ω is real. The additional index ν is meant to label generically the
different independent eigenfunctions that can have the same eigenvalue ω when the
latter is degenerate. Since the set of normal modes forms a complete basis for the
Hilbert space of state vectors, any initial condition belonging to such space can be
expanded as

ψ(v‖, v⊥, 0)=
∑̂
ω,ν

cω,ν ψω,ν(v‖, v⊥), (3.7)

where
∑̂

ω,ν indicates a sum if the index runs through a set of discrete values and
an integral if the index runs through a continuum. Then, the solution for ψ(v‖, v⊥, t)
(3.3) is simply

ψ(v‖, v⊥, t)=
∑̂
ω,ν

cω,ν ψω,ν(v‖, v⊥) e−iωt. (3.8)

So, the solution of any initial-value problem would be immediate if the complete
set of eigenfunctions of the operator H were available. The following sections will
be devoted to the investigation of such normal-mode eigenfunctions. This requires
separate consideration of the case of a wavevector not perpendicular to the equilibrium
magnetic field (k‖ 6= 0) from the k‖= 0 case of wave propagation perpendicular to the
equilibrium magnetic field.
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4. Continuum of singular 2-D normal modes for k‖ 6= 0

When k‖ 6= 0, the spectrum of normal-mode eigenfrequencies covers the set of
real numbers R. The eigenfunctions of this continuous spectrum are singular (they
are distributions in the mathematical sense that lie outside the Hilbert space of
normalizable state vectors) and the eigenvalues ω ∈R are highly degenerate. In order
to show this, consider the normal-mode system (2.32) for one such eigenfunction
satisfying Hψω

=ωψω

ωEωp =−ic2
∑

p′

κp′
p B̃ωp′ − ic2

∑
sm

es

∫
d3v hsmp φ

ω
sm (4.1)

ωB̃ωp = i
∑

p′

κp′
p Eωp′ (4.2)

(ω− k‖v‖ −mΩs)φ
ω
sm = iesT−1

s0 fMs

∑
p′

hsmp′Eωp′ . (4.3)

Eliminating B̃ωp , equations (4.1), (4.2) yield

∑
p′

[
δp′

p −
c2

ω2
(κ2)p

′

p

]
Eωp′ +

ic2

ω

∑
sm

es

∫
d3v hsmp φ

ω
sm = 0, (4.4)

where δp′
p is the Kronecker delta and (κ2)p

′

p =
∑

p′′ κ
p′′
p κ

p′

p′′ is the representation of the
operator −(k×)2 = k2

− kk in the unitary basis,

(κ2)p
′

p =

 k2
‖
+ k2
⊥
/2 −k2

⊥
/2 −k‖k⊥/

√
2

−k2
⊥
/2 k2

‖
+ k2
⊥
/2 −k‖k⊥/

√
2

−k‖k⊥/
√

2 −k‖k⊥/
√

2 k2
⊥

 . (4.5)

For k‖ 6= 0 and any real ω, equation (4.3) has the general solution

φωsm(v‖, v⊥)=
ies

Ts0

∑
p′

P
fMs(v) hsmp′(v‖, v⊥)

ω− k‖v‖ −mΩs
Eωp′ +

iω
2πc2es

λωsm(v⊥) δ(v‖ − v
ω
sm), (4.6)

where P stands for the Cauchy principal value, δ is the Dirac distribution, vωsm≡ (ω−
mΩs)/k‖ and the functions λωsm(v⊥) are arbitrary. Substituting this solution for φωsm in
(4.4), one gets the final condition∑

p′

ϑp′
p (ω)Eωp′ −

∑
sm

∫
∞

0
dv⊥ v⊥ λωsm(v⊥) hsmp(v

ω
sm, v⊥)= 0, (4.7)

where, for the real eigenfrequencies under consideration, ϑp′
p (ω) is the real and

symmetric tensor

ϑp′
p (ω)≡ δ

p′
p −

c2

ω2
(κ2)p

′

p −
∑

sm

c2e2
s

ωTs0

∫
d3vP

fMs(v) hsmp(v‖, v⊥) hsmp′(v‖, v⊥)

ω− k‖v‖ −mΩs
, (4.8)

which depends only on the frequency, plus the wavevector and equilibrium parameters.
Since the form of the functions λωsm(v⊥) is arbitrary in principle and (4.7) is just a
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set of three integral constraints, a large class of independent λωsm(v⊥) solutions exists
for each real ω. The precise identification of all of them is difficult and impractical.
However, this will not be necessary and, for the purposes of this work, all that will
be needed is the general classification of the normal-mode solutions into three broad
categories as described in appendix A.

Notice that (4.7), (4.8) are the expression of Maxwell’s equation for the normal
modes ∑

p′

[
δp′

p −
c2

ω2
(κ2)p

′

p

]
Eωp′ +

ic2

ω
jωp = 0, (4.9)

where jωp =
∑

s jωsp is the total electric current. It is customary to express this current as
the action of a conductivity tensor on the electric field, jωp =

∑
p′ σ

p′
p (ω)E

ω
p′ . For some

theories (and also in the special k‖ = 0 case of the present theory to be discussed in
§ 8), such conductivity tensor can be determined a priori as an intrinsic property of the
plasma equilibrium for each mode wavenumber and frequency. Then, the normal-mode
problem reduces to solving a dispersion relation, with the normal-mode electric field
as the corresponding non-trivial eigenvector in the null space of the dispersion tensor.
This is not true for the present theory in the k‖ 6= 0 case being considered now. For
the present k‖ 6= 0 normal modes (4.7), (4.8), a part of the current can be represented
as the action of an intrinsic conductivity tensor on the electric field and this has been
included as the last term of the tensor ϑp′

p (ω) defined in (4.8). However, the part of
the current given by the second term of the left-hand side of (4.7) depends on the
eigenvector solution for λωsm(v⊥) and can be related to the electric field only after such
a solution has been specified. Therefore, for the present k‖ 6= 0 normal modes, one can
only write

jωp =
∑

p′

[σ
p′
H,p(ω)+ σ

p′
N,p(ω; λ

ω
sm)]E

ω
p′, (4.10)

where σ p′
H,p(ω) is the intrinsic part of the conductivity tensor represented by the last

term of (4.8),

σ
p′
H,p(ω)=

∑
sm

ie2
s

Ts0

∫
d3vP

fMs(v) hsmp(v‖, v⊥) hsmp′(v‖, v⊥)

ω− k‖v‖ −mΩs
, (4.11)

and σ
p′
N,p(ω; λ

ω
sm) is the non-intrinsic part that corresponds to the part of the current

given by the second term of the left-hand side of (4.7). Since this non-intrinsic
part can only be determined after the normal-mode solution has been obtained, the
conductivity tensor concept is not useful here. Nevertheless, one can always evaluate
the intrinsic part (4.11) which is a standard calculation found in the traditional plasma
wave literature, more often expressed in Cartesian coordinates (see e.g. Brambilla
1998). After integrating over v⊥, one gets

σ
p′
H,p(ω)=

∑
sm

iω2
Ps

c2

∫
∞

−∞

dv‖ P
FMs(v‖) [αsm(v‖)]

p′
p

ns0 (ω− k‖v‖ −mΩs)
, (4.12)

where ω2
Ps ≡ c2e2

s ns0/ms is the squared plasma frequency of the species s, FMs(v‖) is
the 1-D Maxwellian distribution function

FMs(v‖)≡ 2π

∫
∞

0
dv⊥ v⊥ fMs(v)=

ns0

(2π)1/2vths
exp

(
−
v2
‖

2v2
ths

)
(4.13)
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and

[αsm(v‖)]
p′
p ≡

1
v4

ths

∫
∞

0
dv⊥ v⊥ exp

(
−
v2
⊥

2v2
ths

)
hsmp(v‖, v⊥) hsmp′(v‖, v⊥), (4.14)

with the explicit result

[αsm]
+

+
= e−bs[bsIm(bs)− (bs −m)Im−1(bs)] (4.15)

[αsm]
+

−
= [αsm]

−

+
=

bs

2
e−bs[Im+1(bs)+ Im−1(bs)− 2Im(bs)] (4.16)

[αsm]
−

−
= e−bs[bsIm(bs)− (bs +m)Im+1(bs)] (4.17)

[αsm(v‖)]
+

‖
= [αsm(v‖)]

‖

+
=

v‖ bs
√

2 vths

e−bs[Im−1(bs)− Im(bs)] (4.18)

[αsm(v‖)]
−

‖
= [αsm(v‖)]

‖

−
=

v‖ bs
√

2 vths

e−bs[Im(bs)− Im+1(bs)] (4.19)

[αsm(v‖)]
‖

‖ =
v2
‖

v2
ths

e−bsIm(bs), (4.20)

where Im are the modified Bessel functions and bs ≡ (k⊥vths/Ωs)
2. Then, the results

of the integrals over v‖ in (4.12) are given in terms of the real part of the plasma
dispersion function Z (Fried & Conte 1961) .

The determinant of the 3× 3 matrix [αsm(v‖)]
p′
p with indices p, p′ is

det[αsm(v‖)] =
v2
‖

v2
ths

e−3bs m2(1− bs)Im(bs)[I2
m(bs)− Im+1(bs)Im−1(bs)]. (4.21)

Therefore, the inverse matrix [α−1
sm ]

p′
p such that

∑
p′′[α

−1
sm ]

p′′
p [αsm]

p′

p′′ = δ
p′
p exists except

for v‖ = 0, for m= 0 and for the particular values of k⊥ that make bs = 0 or bs = 1.

5. Reduction to one-dimensional velocity space
The 2-D state vectors with infinite gyrophase harmonic components considered so

far, resolve completely the structure of the perturbed distribution functions. Thus, the
complete basis of normal modes needed to cover the space of all those state vectors
has to be very large. When k‖ 6= 0, it was indeed shown in the previous section that,
for each real ω, the subspace spanned by the eigenvectors that have that frequency
for eigenvalue still contains a large class of independent normal modes which are
difficult to specify. This makes the normal-mode expansion of the 2-D state vectors
impractical. However, a tractable normal-mode analysis is still possible by considering
a consistently defined space of state vectors which depend only on v‖ and t, and
which will be called 1-D state vectors. These are formed by a set of appropriately
weighted integrals of the 2-D distribution functions over v⊥ such that they contain
the minimum information needed to determine consistently their dynamical evolution,
ignoring detailed information about the distribution function dependence on the two-
dimensional velocity that is not essential. It will be shown that, in the collapsed space
of such 1-D state vectors, the continuum of frequency eigenvalues is still degenerate
but, for each ω, the subspace of its eigenvectors has countable-infinite dimension.
These 1-D eigenvectors can be completely specified, which makes the normal-mode
expansion tractable.
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Starting with the 2-D distribution functions φsm(v‖, v⊥, t) introduced in (2.26) and
taking integrals over v⊥ weighted with the hsmp(v‖, v⊥) functions (2.27), one defines
the following 1-D distribution functions:

Φsmp(v‖, t)≡ 2π

∫
∞

0
dv⊥ v⊥ hsmp(v‖, v⊥) φsm(v‖, v⊥, t), (5.1)

so that the expression (2.28) for the components of the electric current becomes

jsp[Φsmp] = es

∑
m

∫
∞

−∞

dv‖Φsmp. (5.2)

Now, taking the correspondingly weighted integrals of (2.29) and recalling the
definitions (4.13), (4.14), one obtains the evolution equation for Φsmp(v‖, t),

i
∂Φsmp

∂t
= (k‖v‖ +mΩs)Φsmp +

ies

ms
FMs(v‖)

∑
p′

[αsm(v‖)]
p′
p Ep′(t), (5.3)

which, together with (5.2) and (2.18), (2.19), form a consistently closed system. This
integrated system can be expressed in compact form by defining the state vector

Ψ (v‖, t)≡

 Ep(t)
B̃p(t)

Φsmp(v‖, t)

 (5.4)

whose time evolution is governed by

i
∂Ψ

∂t
= GΨ , (5.5)

and where the linear operator G is

G

 Ep

B̃p
Φsmp

=


0 −ic2
∑

p′

κp′
p −ic2

∑
sm

es

∫
∞

−∞

dv‖

i
∑

p′

κp′
p 0 0

iesm−1
s FMs

∑
p′

[αsm]
p′
p 0 k‖v‖ +mΩs


 Ep′

B̃p′

Φsmp

 .
(5.6)

The space of these 1-D state vectors has a Hilbert space structure with the scalar
product

〈Ψ |Ψ ′〉 =
∑

p

(
1
c2

E∗pE′p + B̃∗pB̃′p

)
+

∑
smp

∫
∞

−∞

dv‖
ms

FMs(v‖)
Φ∗smp(v‖)Φ

′

smp(v‖), (5.7)

but the operator G (5.6) is not self-adjoint with this scalar product. If the inverse
matrices [α−1

sm ]
p′
p existed for all s and m and were positive definite, a different scalar

product could be defined that would make G self-adjoint. This is not possible because
the determinant of [αsm]

p′
p (4.21) vanishes identically when m = 0. Nevertheless, it

will be possible to prove that, for k‖ 6= 0, a complete basis for the space of 1-D
state vectors can be constructed with the eigenfunctions of G, namely the 1-D normal
modes.
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6. The 1-D normal modes for general oblique propagation direction
The equations for the normal modes in the collapsed space of 1-D state vectors are

derived following a procedure analogous to the one shown in § 4 for the 2-D state
vectors. For a 1-D eigenfunction satisfying GΨ ω

=ωΨ ω, equation (5.6) becomes

ω Eωp =−ic2
∑

p′

κp′
p B̃ωp′ − ic2

∑
sm

es

∫
∞

−∞

dv‖Φω
smp, (6.1)

ω B̃ωp = i
∑

p′

κp′
p Eωp′, (6.2)

(ω− k‖v‖ −mΩs)Φ
ω
smp = iesm−1

s FMs

∑
p′

[αsm]
p′
p Eωp′, (6.3)

and, eliminating B̃ωp , equations (6.1), (6.2) yield

∑
p′

[
δp′

p −
c2

ω2
(κ2)p

′

p

]
Eωp′ +

ic2

ω

∑
sm

es

∫
∞

−∞

dv‖Φω
smp = 0. (6.4)

For k‖ 6= 0 and any real ω, equation (6.3) has the general solution

Φω
smp(v‖)=

ies

ms

∑
p′

P
FMs(v‖) [αsm(v‖)]

p′
p

ω− k‖v‖ −mΩs
Eωp′ +

iω
c2es

Λω
smp δ(v‖ − v

ω
sm), (6.5)

where, for each given ω, the coefficients Λω
smp are now arbitrary constants, independent

of the velocity. Substituting (6.5) in (6.4), one gets∑
p′

ϑp′
p (ω)Eωp′ −

∑
sm

Λω
smp = 0 (6.6)

and, according to (4.8), (4.11), (4.12),

ϑp′
p (ω)= δ

p′
p −

c2

ω2
(κ2)p

′

p +
ic2

ω
σ

p′
H,p(ω) (6.7)

or

ϑp′
p (ω)= δ

p′
p −

c2

ω2
(κ2)p

′

p −
∑

sm

ω2
Ps

ω

∫
∞

−∞

dv‖ P
FMs(v‖) [αsm(v‖)]

p′
p

ns0 (ω− k‖v‖ −mΩs)
. (6.8)

It is apparent that, with suitable choices of the coefficients Λω
smp, the normal-mode

equation (6.6) can be satisfied in many ways for any real frequency ω 6= 0 and any
electric field Eωp . Following a procedure that mirrors the 2-D analysis of appendix A,
the 1-D normal-mode solutions are classified in two categories. In the first one are the
modes whose electric field is not identically zero, which will be called ‘finite-EM-field
modes’ and will be denoted with a subscript A. In the second class are the modes
for which the electric field is identically zero, hence the perturbed magnetic field is
also zero. These modes, which perturb the distribution functions but do not perturb
the electromagnetic fields, are called ‘ballistic modes’ and will be denoted with a
subscript B. The finite-EM-field modes will be normalized such that the magnitude
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of the electric field is equal to 1 in some units (the choice of the dimensional unit
of electric field is inconsequential and does not need to be specified explicitly) and
solutions can be found for any of the three independent polarizations of the electric
field vector. Accordingly, a new index ρ ∈ {+,−, ‖} is introduced to label finite-EM-
field normal modes whose electric field in the adopted system of units is

Eω,ρA,p = δ
ρ
p . (6.9)

Such a choice of independent polarization states is natural and convenient, and it
affords complete generality because any other polarization is a linear combination of
them. For these, equation (6.6) becomes

ϑρp (ω)−
∑

sm

Λ
ω,ρ
A,smp = 0. (6.10)

This equation admits multiple independent solutions for every real ω 6= 0, which can
be labelled with the additional indices ς ∈ {species} and µ ∈ Z:

Λ
ω,ςµρ

A,smp = δ
ς
s δ

µ
mϑ

ρ
p (ω) (6.11)

and this characterizes completely the set of finite-EM-field normal-mode solutions. In
summary, the finite-EM-field normal modes are

Ψ
ω,ςµρ

A =

 δρp

iκρp /ω

Φ
ω,ςµρ

A,smp

 , (6.12)

with

Φ
ω,ςµρ

A,smp (v‖)=
ies

ms
P

FMs(v‖) [αsm(v‖)]
ρ
p

ω− k‖v‖ −mΩs
+

iω
c2es

δςs δ
µ
mϑ

ρ
p (ω) δ(v‖ − v

ω
sm). (6.13)

In this notation, the upper Greek indices (the continuous index ω and the discrete
indices ς, µ, ρ) label each normal mode, whose eigenfrequency is ω and whose
components are labelled by the discrete lower Latin indices s, m, p. Independent
normal modes with the same ω eigenvalue are characterized by different values of
the discrete indices ς, µ, ρ, and are therefore countable.

The ballistic modes have EωB,p = 0 and, for them, equation (6.6) reduces to∑
sm

Λω
B,smp = 0. (6.14)

Again, his equation admits multiple independent solutions for every real ω which can
be labelled with the indices ς , µ, ρ, and are

Λ
ω,ςµρ
B,smp = (δ

ς
s δ

µ
m − δ

ς0
s δ

µ0
m )δ

ρ
p , (6.15)

where (ς0,µ0) is one pair of particularly chosen (ς,µ) values. So, the ballistic normal
modes are

Ψ
ω,ςµρ

B =

 0
0

Φ
ω,ςµρ
B,smp

 , (6.16)
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with

Φ
ω,ςµρ
B,smp (v‖)=

iω
c2es

(δςs δ
µ
m − δ

ς0
s δ

µ0
m )δ

ρ
p δ(v‖ − v

ω
sm). (6.17)

As in the case of finite-EM-field modes, the independent ballistic modes with the same
ω eigenvalue are countable.

Since the operator G (5.6) is not self-adjoint with the scalar product (5.7),
one cannot invoke the spectral theorem in order to argue that the normal modes
{Ψ

ω,ςµρ

A , Ψ
ω,ςµρ

B } form a complete set that spans the Hilbert space of normalizable 1-D
state vectors. However, it can be easily proven that these 1-D normal modes do form
a complete set. The proof relies on the fact that the underlying ψω,ν normal modes
in the space of 2-D state vectors form a complete set there, because they are the
eigenvectors of a self-adjoint operator in that space, as discussed in § 3. If (Eω,νp , φω,νsm )

is a 2-D normal mode satisfying (4.4), (4.6), then (Eω,νp , 2π
∫
∞

0 dv⊥ v⊥hsmp φ
ω,ν
sm ) is

a 1-D normal mode satisfying (6.4), (6.5), so the set of 1-D normal modes can be
expected to be complete. The formal verification that this is actually the case takes
some straightforward algebra and is given in appendix B.

The set of 1-D normal modes {Ψ ω,ςµρ

A , Ψ
ω,ςµρ

B } is complete, but is not minimal
because not all its members are linearly independent of one another. From their
expression (6.12), (6.13), it is clear that the differences between two finite-EM-field
normal modes with the same ω and ρ values have zero electromagnetic fields, hence
they must be in the subspace of ballistic modes. In particular,

Ψ
ω,ςµρ

A −Ψ
ω,ς0µ0ρ

A =

 0
0

iω
c2es

(δςs δ
µ
m − δ

ς0
s δ

µ0
m )ϑ

ρ
p (ω) δ(v‖ − v

ω
sm)

 (6.18)

or, comparing with (6.16), (6.17),

Ψ
ω,ςµρ

A −Ψ
ω,ς0µ0ρ

A =

∑
ρ′

ϑ
ρ

ρ′(ω)Ψ
ω,ςµρ′

B . (6.19)

Therefore, if one defines

Ψ ω,ς0µ0ρ ≡Ψ
ω,ς0µ0ρ

A , Ψ ω,ςµρ
≡Ψ

ω,ςµρ
B for (ς, µ) 6= (ς0, µ0), (6.20a,b)

the set {Ψ ω,ςµρ
} (where ω∈R, ς ∈ {species}, µ∈Z and ρ ∈ {+,−, ‖}) is still complete.

Any normalizable initial condition Ψ (v‖, 0) can then be expanded as

Ψ (v‖, 0)=
∫
∞

−∞

dω
∑
ςµρ

Cςµρ(ω)Ψ
ω,ςµρ(v‖) (6.21)

and it will be shown next that this representation is unique, meaning that the complete
set {Ψ ω,ςµρ

} is a minimal basis. Then, the dynamical solution of the corresponding
initial-value problem is

Ψ (v‖, t)=
∫
∞

−∞

dω
∑
ςµρ

Cςµρ(ω)Ψ
ω,ςµρ(v‖) e−iωt. (6.22)
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In order to invert (6.21) and determine the coefficients Cςµρ(ω) for a given Ψ (v‖,0),
one takes the scalar products with a set of vectors that are orthogonal to Ψ ω,ςµρ . One
such set is {Ψ̂ ω,ςµρ

}, defined by

Ψ̂ ω,ς0µ0ρ ≡ Ψ̂
ω,ς0µ0ρ

A , Ψ̂ ω,ςµρ
≡ Ψ̂

ω,ςµρ
B for (ς, µ) 6= (ς0, µ0), (6.23a,b)

where

Ψ̂
ω,ς0µ0ρ

A =

 δρp

iκρp /ω

Φ̂
ω,ς0µ0ρ
A,smp

 , (6.24)

with

Φ̂
ω,ς0µ0ρ
A,smp (v‖)=

ies

ms
P

FMs(v‖) δ
ρ
p

ω− k‖v‖ −mΩs
+

iω
c2es

δς0
s δ

µ0
m [α

−1
ς0µ0

(vως0µ0
) ◦ ϑ(ω)]ρp δ(v‖ − v

ω
sm),

(6.25)

and

Ψ̂
ω,ςµρ

B =

 0
0

Φ̂
ω,ςµρ
B,smp

 , (6.26)

with

Φ̂
ω,ςµρ
B,smp (v‖)=

iω
c2es
{δςs δ

µ
mδ

ρ
p − δ

ς0
s δ

µ0
m [α

−1
ς0µ0

(vως0µ0
) ◦ αςµ(v

ω
ςµ)]

ρ
p } δ(v‖ − v

ω
sm). (6.27)

Here, the open dot denotes the 3 × 3 matrix multiplication [α ◦ β]p′p ≡
∑

p′′ α
p′′
p β

p′

p′′

and the pair (ς0, µ0) is chosen such that α−1
ς0µ0

(vως0µ0
) exists except at the resonance

vως0µ0
= 0. This choice is always possible when k⊥ 6= 0. The k⊥ = 0 case of parallel

propagation direction requires a slightly different treatment that will be discussed
in the next section, so the remainder of this section is restricted to truly oblique
propagation, k‖ 6= 0 and k⊥ 6= 0. The vectors Ψ̂ ω,ςµρ are eigenfunctions of the adjoint
operator of G with eigenvalue ω (i.e. 〈Ψ̂ ω,ςµρ

|GΨ ′〉 = ω〈Ψ̂ ω,ςµρ
|Ψ ′〉 for any Ψ ′) so

the products 〈Ψ̂ ω,ςµρ
|Ψ ω′,ς ′µ′ρ′

〉 are zero when ω 6=ω′. These products are carried out
in appendix C and the result is

〈Ψ̂ ω,ςµρ
|Ψ ω′,ς ′µ′ρ′

〉 = χς
′µ′ρ′

ς µρ (ω) δ(ω−ω
′), (6.28)

where the coefficients χς ′µ′ρ′ς µρ (ω) are as follows:

χς0µ0ρ
′

ς0µ0ρ
(ω) =

|k‖|ω2 mς0

c4 e2
ς0

FMς0(v
ω
ς0µ0

)
[ϑ2(ω) ◦ α−1

ς0µ0
(vως0µ0

)]ρ
′

ρ

+
π2

|k‖|

∑
sm

e2
s

ms
FMs(v

ω
sm)[αsm(v

ω
sm)]

ρ′

ρ , (6.29)
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χς
′µ′ρ′

ς0µ0ρ
(ω) = χρ

′

ς0µ0ρ
(ω)=−

|k‖|ω2 mς0

c4 e2
ς0

FMς0(v
ω
ς0µ0

)
[ϑ(ω) ◦ α−1

ς0µ0
(vως0µ0

)]ρ
′

ρ

for (ς ′, µ′) 6= (ς0, µ0), (6.30)

χς0µ0ρ
′

ς µρ (ω) = −
|k‖|ω2 mς0

c4 e2
ς0

FMς0(v
ω
ς0µ0

)
[ϑ(ω) ◦ αςµ(v

ω
ςµ) ◦ α

−1
ς0µ0

(vως0µ0
)]ρ

′

ρ

for (ς, µ) 6= (ς0, µ0), (6.31)

and

χς
′µ′ρ′

ς µρ (ω) =
|k‖|ω2 mς

c4 e2
ς FMς(vωςµ)

δς
′

ς δ
µ′

µ δ
ρ′

ρ + ε
ρ′

ςµρ(ω)

for (ς ′, µ′) 6= (ς0, µ0) and (ς, µ) 6= (ς0, µ0), (6.32)

with

ερ
′

ςµρ(ω)=
|k‖|ω2 mς0

c4 e2
ς0

FMς0(v
ω
ς0µ0

)
[αςµ(v

ω
ςµ) ◦ α

−1
ς0µ0

(vως0µ0
)]ρ

′

ρ . (6.33)

Then, equations (6.21) and (6.28) yield∑
ς ′µ′ρ′

χς
′µ′ρ′

ς µρ (ω)Cς ′µ′ρ′(ω)= 〈Ψ̂
ω,ςµρ
|Ψ (v‖, 0)〉. (6.34)

The matrix of coefficients χς ′µ′ρ′ς µρ (ω) is not diagonal (which means that, within the
subspaces spanned by eigenfunctions with the same eigenvalue ω, the vectors Ψ̂ ω,ςµρ

and Ψ ω,ς ′µ′ρ′ are not orthogonal) therefore additional algebra is required to invert
(6.34). However, the fact that the vectors Ψ ω,ςµρ form a complete set guarantees that
a solution for Cςµρ(ω) exists. Algebraic manipulation of (6.29)–(6.34) leads to an
explicit procedure to obtain such a solution and that solution is unique. First, by
taking appropriate linear combinations of the equations in the infinite system (6.34),
one can derive the following closed, finite system for the two three-component vectors
Cρ(ω)≡Cς0µ0ρ(ω) and Kρ(ω)≡

∑
(ς,µ)6=(ς0,µ0)

Cςµρ(ω):∑
ρ′

χς0µ0ρ
′

ς0µ0ρ
Cρ′ +

∑
ρ′

χρ
′

ς0µ0ρ
Kρ′ = 〈Ψ̂

ω,ς0µ0ρ|Ψ (v‖, 0)〉, (6.35)

∑
ρ′

[ ∑
(ς,µ)6=(ς0,µ0)

e2
ςm−1

ς FMς(v
ω
ςµ) χ

ς0µ0ρ
′

ς µρ

]
Cρ′

+

∑
ρ′

[
|k‖|ω2c−4 δρ

′

ρ +

∑
(ς,µ)6=(ς0,µ0)

e2
ςm−1

ς FMς(v
ω
ςµ) ε

ρ′

ςµρ

]
Kρ′

=

∑
(ς,µ) 6=(ς0,µ0)

e2
ςm−1

ς FMς(v
ω
ςµ) 〈Ψ̂

ω,ςµρ
|Ψ (v‖, 0)〉. (6.36)

Equation (6.35) is the (ς, µ)= (ς0, µ0) block of the system (6.34) and (6.36) is the
sum of all the others, each one multiplied by e2

ςm−1
ς FMς(v

ω
ςµ). This system of six linear

equations for Cρ(ω) and Kρ(ω) must always have a solution because the completeness
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of the set {Ψ ω,ςµρ
} guarantees that a solution for Cςµρ(ω) exists. Since the system is

finite, its 6× 6 determinant must be different from zero and the solution for Cρ(ω)≡
Cς0µ0ρ(ω) and Kρ(ω) is unique. Then, equations (6.31)–(6.34) yield the unique, explicit
solution for the remaining coefficients Cςµρ(ω) with (ς, µ) 6= (ς0, µ0):

Cςµρ(ω)=
c4 e2

ς FMς(v
ω
ςµ)

|k‖|ω2 mς

[
〈Ψ̂ ω,ςµρ

|Ψ (v‖, 0)〉 −
∑
ρ′

χς0µ0ρ
′

ς µρ Cρ′(ω)−
∑
ρ′

ερ
′

ςµρ Kρ′(ω)

]
.

(6.37)

The results obtained in this section are the most important and novel outcomes of
the present work. They offer the first explicit derivation of a complete normal-mode
basis for electromagnetic perturbations of general polarization, propagating obliquely
to the equilibrium magnetic field in a plasma with multiple dynamical species. This
includes the derivation of the corresponding orthogonality relations and the proof
of uniqueness for the expansions in such a basis. The key development that has
made this progress possible is the 1-D formulation for electromagnetic perturbations
of general polarization introduced in § 5. The explicit procedure to determine the
coefficients Cςµρ(ω) of the expansion of any initial condition in the normal-mode
basis is also established. This procedure would be very laborious in general, but
it can be programmed. In the particular case of parallel propagation (k⊥ = 0), the
corresponding solution for Cςµρ(ω) becomes rather simple and can be completed in
closed form as will be shown in the next section.

7. Applications to parallel propagation direction
The case of wave propagation direction parallel to the equilibrium magnetic field

(k⊥= 0) is particularly simple because the arguments of the Bessel functions involved
in the previous general analysis are then zero. Therefore, the only non-vanishing
components of the 1-D distribution function vectors defined by (5.1) and (2.27) are
those for which m = p = +1, m = p = −1 or m = p = 0. Besides, the matrices κp′

p

(2.22) and [αsm(v‖)]
p′
p (4.15)–(4.20) become diagonal when k⊥ = 0,

κp′
p =

k‖ 0 0
0 −k‖ 0
0 0 0

 (7.1)

and

[αsm(v‖)]
p′
p =

δ+1
m 0 0
0 δ−1

m 0
0 0 δ0

mv
2
‖
/v2

ths

 , (7.2)

hence ϑp′
p (ω) (6.8) is also diagonal. As a consequence, the dynamics within each one

of the three state vector subspaces characterized by m = p = +1, m = p = −1 and
m= p= 0 is decoupled from the other two and can be analysed separately. In each
of these subspaces αsm(v‖) is a scalar, so its inverse can be defined as α−1

sm (v‖) = 1
in the m = p = ±1 subspaces and α−1

sm (v‖) = v
2
ths/v

2
‖

in the m = p = 0 subspace.
With this interpretation, the results of the previous section can also be applied to
k⊥ = 0. The next subsections will investigate these three independent polarizations
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of the parallel-propagating waves. The state vectors in the m = p = 0 subspace are
electrostatic waves with longitudinal electric field polarization, whereas the state
vectors in the m = p = ±1 subspaces are electromagnetic waves with transverse,
circular polarization. The normal-mode solutions for such waves propagating parallel
to the equilibrium magnetic field (or equivalently for waves in an unmagnetized
equilibrium) are well known (Van Kampen 1955; Pradhan 1957; Case 1959; Felderhof
1963a,b), but the approach presented here is new because it is developed as a special
limit of the new solution for oblique propagation derived in the previous section. This
helps validate the rather heavy formalism that was necessary to solve the oblique
propagation problem. In addition, the analysis here includes the generalization to
multiple dynamical species, whereas the earlier literature considered just a simplified
model with immobile ions and with the electrons as the only dynamical species.

7.1. Electrostatic waves with longitudinal polarization
The only non-vanishing components of the state vectors that represent these
perturbations are those for which m = p = 0, so the notation will be simplified
by dropping these indices with the understanding that they take the m= p= 0 value.
Likewise, the normal-mode basis for this subspace of state vectors includes only the
eigenfunctions with µ = ρ = 0 and these indices will also be dropped here. Thus,
the basis of normal modes is {Ψ ω,ς

} with eigenfunctions labelled by their eigenvalue
ω and their species index ς . With the choice (ς0, µ0) = (e, 0) and employing the
scalar forms κ = 0 and αs(v‖)= v

2
‖
/v2

ths, these modes are the correspondingly reduced
versions of (6.12), (6.13), (6.16), (6.17). The electron modes are

Ψ ω,e(v‖)=

 1
0

Φω,e
s (v‖)

 (7.3)

and their distribution function components are

Φω,e
s (v‖)=

ies

Ts0
P

FMs(v‖) v
2
‖

ω− k‖v‖
+

iω
c2es

δe
s ϑ(ω) δ(v‖ −ω/k‖). (7.4)

The ion modes are the ballistic modes

Ψ ω,ι(v‖)=

 0
0

iω
c2es

(διs − δ
e
s ) δ(v‖ −ω/k‖)

 . (7.5)

In (7.4), the function ϑ(ω) is the reduced version of (6.8)

ϑ(ω)= 1−
∑

s

ω2
Ps

ω ns0 v
2
ths

∫
∞

−∞

dv‖ P
FMs(v‖) v

2
‖

ω− k‖v‖
, (7.6)

which, defining the normalized frequency

ω̂s ≡
ω

21/2k‖vths
(7.7)
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and recalling that, for real ω̂s, the real part of the plasma dispersion function is

ZR(ω̂s)=π−1/2
∫
∞

−∞

dv̂P
exp(−v̂2)

v̂ − ω̂s
, (7.8)

can be expressed as

ϑ(ω)= 1+
∑

s

ω2
Ps

k2
‖v

2
ths
[1+ ω̂sZR(ω̂s)]. (7.9)

It is a worthy exercise to evaluate the macroscopic moments of these normal modes.
For the electron modes, their parallel current moments are given by

js‖[Ψ
ω,e
] = es

∫
∞

−∞

dv‖Φω,e
s (v‖), (7.10)

which, using the expression (7.4) for the distribution functions, yields

js‖[Ψ
ω,e
] =−

iω
c2

ω2
Ps

k2
‖v

2
ths
[1+ ω̂sZR(ω̂s)] +

iω
c2
δe

s ϑ(ω). (7.11)

Now, taking into account (7.9), the total parallel current is∑
s

js‖[Ψ
ω,e
] =

iω
c2
, (7.12)

consistent with Maxwell’s equation (2.4), given that these electron modes (7.3) have
unit parallel electric field and zero magnetic field. The charge density moments of
these modes

%s[Ψ
ω,e
] = es

∫
∞

−∞

dv‖
Φω,e

s (v‖)

v‖
(7.13)

are also verified to be %s[Ψ
ω,e
] = k‖ω−1js‖[Ψ

ω,e
], consistent with the continuity

equation (2.7) and Gauss’ law (2.3). The parallel current moments of the ion modes
yield

js‖[Ψ
ω,ι
] =

iω
c2
(διs − δ

e
s ) (7.14)

hence
∑

s js‖[Ψ
ω,ι
] = 0, consistent with these ballistic ion modes having zero

electromagnetic fields (7.5). The charge density moments of the ion modes also
yield their continuity equations.

The set of adjoint eigenfunctions {Ψ̂ ω,ς
} is given by the reduced versions of (6.24)–

(6.27),

Ψ̂ ω,e(v‖)=

 1
0

Φ̂ω,e
s (v‖)

 , (7.15)
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with

Φ̂ω,e
s (v‖)=

ies

ms
P

FMs(v‖)

ω− k‖v‖
+

ik2
‖
v2

the

c2esω
δe

s ϑ(ω) δ(v‖ −ω/k‖), (7.16)

and

Ψ̂ ω,ι(v‖)=


0
0

iω
c2es

(
διs − δ

e
s
v2

the

v2
thι

)
δ(v‖ −ω/k‖)

 . (7.17)

These modes satisfy the orthogonality relations

〈Ψ̂ ω,ς
|Ψ ω′,ς ′

〉 = χς
′

ς (ω) δ(ω−ω
′), (7.18)

where the coefficients χς ′ς (ω) are

χ e
e (ω)=

|k‖|3 Te0 ϑ
2(ω)

c4 e2 FMe(ω/k‖)
+

π2ω2

|k‖|3
∑

s

e2
s

Ts0
FMs(ω/k‖), (7.19)

χ ιe(ω)=−
|k‖|3 Te0 ϑ(ω)

c4 e2 FMe(ω/k‖)
, (7.20)

χ e
ι (ω)=−

|k‖|ω2 Te0 ϑ(ω)

c4 e2 v2
thι FMe(ω/k‖)

, (7.21)

χ ι
′

ι (ω)=
|k‖|ω2 mι

c4 e2
ι FMι(ω/k‖)

δι
′

ι +
|k‖|ω2 Te0

c4 e2 v2
thι FMe(ω/k‖)

. (7.22)

The set of normal modes {Ψ ω,ς
} is a complete basis for the subspace of electrostatic

waves with longitudinal polarization under consideration. Any normalizable initial
condition Ψ (v‖, 0) in this subspace can be expanded as

Ψ (v‖, 0)=
∫
∞

−∞

dω
∑
ς

Cς(ω)Ψ
ω,ς(v‖) (7.23)

and the scalar products with the set of adjoint eigenfunctions yield∑
ς ′

χς
′

ς (ω)Cς ′(ω)= 〈Ψ̂
ω,ς
|Ψ (v‖, 0)〉. (7.24)

It will now be shown explicitly that this system is invertible, leading to the unique
solution in closed form for the coefficients Cς(ω), given the initial condition Ψ (v‖, 0).
Following the procedure used in the general analysis (6.35)–(6.37) of the previous
section and taking appropriate linear combinations in (7.24), this can be rearranged
as the following equivalent system:

(
χ e

e χ ιe
ηe ηI

) Ce(∑
ι

Cι

)=
 〈Ψ̂ ω,e

|Ψ (v‖, 0)〉∑
ι

e2
ιm
−1
ι ω

−2FMι(ω/k‖)〈Ψ̂ ω,ι
|Ψ (v‖, 0)〉

 , (7.25)
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Cι =
c4e2

ιFMι(ω/k‖)
|k‖|mιω2

[〈Ψ̂ ω,ι
|Ψ (v‖, 0)〉 − χ e

ι Ce] −
e2
ι Te0FMι(ω/k‖)

e2Tι0FMe(ω/k‖)

(∑
ι′

Cι′

)
, (7.26)

where

ηe =
∑
ι

e2
ι

mιω2
FMι(ω/k‖) χ e

ι (7.27)

and

ηI =
|k‖|
c4

[
1+

∑
ι

e2
ι Te0FMι(ω/k‖)

e2Tι0FMe(ω/k‖)

]
. (7.28)

The determinant of the 2× 2 subsystem (7.25) is

χ e
eηI − χ

ι
eηe =

k4
‖

Te0

c8e2FMe(ω/k‖)
1(ω), (7.29)

where

1(ω)= ϑ2(ω)+

[∑
s

πωω2
PsFMs(ω/k‖)
k3
‖v

2
thsns0

]2

. (7.30)

Since ϑ(0) = 1 +
∑

s ω
2
Ps/(k

2
‖
v2

ths), this determinant is never zero for real ω and the
system (7.25), (7.26) has a unique solution as expected. With the available expression
for the determinant (7.29), (7.30), this solution can be written in closed form.

The imaginary part of the plasma dispersion function for real ω̂s is

ZI(ω̂s)=π1/2 exp(−ω̂2
s )=

21/2πvths

ns0
FMs(ω/k‖). (7.31)

Therefore, one can write

1(ω)= ϑ2(ω)+

[∑
s

ω2
Ps

k2
‖v

2
ths
ω̂sZI(ω̂s)

]2

(7.32)

and, recalling the expression (7.9) for ϑ(ω),

1(ω)=D2
R(ω)+D2

I (ω), (7.33)

where

D(ω)=DR(ω)+ iDI(ω)= 1+
∑

s

ω2
Ps

k2
‖v

2
ths
[1+ ω̂sZ(ω̂s)], (7.34)

with Z(ω̂s) = ZR(ω̂s) + iZI(ω̂s) being the full, complex plasma dispersion function
of real argument. The condition D(ω + iγ ) = 0 is the ‘effective dispersion relation’
derived following Landau’s Laplace transform approach (with γ < 0 as the Landau
damping rate for t > 0) as shown, for instance, in the textbooks quoted in the
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introduction. In the present approach, however, the argument of D is always real and
this function never vanishes. The connection with the Landau method result will be
made clear shortly, when an appropriately defined class of ‘standard initial conditions’
is considered.

Given the representation (7.23) of the initial condition Ψ (v‖, 0) as a superposition
of normal modes, the dynamical solution of the corresponding initial-value problem
is

Ψ (v‖, t)=
∫
∞

−∞

dω
∑
ς

Cς(ω)Ψ
ω,ς(v‖) e−iωt. (7.35)

The solution for the macroscopic variables is then easily written down, using the
explicit forms of the normal-mode eigenfunctions (7.3)–(7.5) and their moments (7.11),
(7.14). Thus, the electric field is (Van Kampen 1955; Case 1959)

E‖(t)=
∫
∞

−∞

dωCe(ω) e−iωt, (7.36)

the electron current is

je‖(t)=
i

c2

∫
∞

−∞

dωω

{
Ce(ω)

(
1+

∑
ι

ω2
Pι

k2
‖v

2
thι
[1+ ω̂ιZR(ω̂ι)]

)
−

∑
ι

Cι(ω)

}
e−iωt

(7.37)

and the ion currents are

jι‖(t)=
i

c2

∫
∞

−∞

dωω
{

Cι(ω)−Ce(ω)
ω2

Pι

k2
‖v

2
thι
[1+ ω̂ιZR(ω̂ι)]

}
e−iωt. (7.38)

Then, the total current is∑
s

js‖(t)= je‖(t)+
∑
ι

jι‖(t)=
i

c2

∫
∞

−∞

dωωCe(ω) e−iωt
=−

1
c2

∂E‖(t)
∂t

(7.39)

in agreement with Maxwell’s equation. For sufficiently regular Cς(ω) such that the
Riemann–Lebesgue lemma applies, the functions of time (7.36)–(7.39) decay to zero
as t→±∞. This demonstrates the Landau damping of the macroscopic variables as
the consequence of the superposition of a continuum of spectral components with
rapidly varying phases. In addition, equations (7.36)–(7.39) show that the initial
condition coefficients Cς(ω) are directly related to the Fourier transforms of the
time-dependent macroscopic variables and can be deduced explicitly from the time
dependence of those variables,

Ce(ω)=
1

2π

∫
∞

−∞

dt E‖(t) eiωt, (7.40)

Cι(ω)=
ω2

Pι

k2
‖v

2
thι
[1+ ω̂ιZR(ω̂ι)]Ce(ω)+

c2

2πiω

∫
∞

−∞

dt jι‖(t) eiωt. (7.41)

So, there is an invertible correspondence between the initial condition Ψ (v‖, 0) and
the time-dependent macroscopic variables whose Fourier transforms exist and are such
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that the coefficients Cς(ω), defined by (7.40), (7.41) result in a convergent integral
when substituted in (7.23).

The solution of the system (7.25), (7.26) for the coefficients Cς(ω), given an initial
condition Ψ (v‖, 0), involves division by the determinant (7.29). So, barring special
cancellations, Cς(ω) would be inversely proportional to 1(ω). Initial conditions
that yield Cς(ω) coefficients inversely proportional to 1(ω) will be called ‘standard
initial conditions’. On the other hand, initial condition coefficients Cς(ω) that are
not inversely proportional to 1(ω) are also possible and these will be called ‘special
initial conditions’. Indeed, provided they produce a physically valid state vector when
substituted in (7.23), the coefficients Cς(ω) themselves can be considered as the
definition of the initial condition and, as such, they can be specified arbitrarily or
be related to an arbitrary time dependence of the macroscopic variables through
the relations (7.40), (7.41). In what follows, both ‘standard’ and ‘special’ initial
conditions will be examined.

For standard initial conditions such that Cς(ω) ∝ 1
−1(ω) = [D2

R(ω) + D2
I (ω)]

−1, a
generic macroscopic variable q(t) will have the form

q(t)=
∫
∞

−∞

dω
Q(ω)

D2
R(ω)+D2

I (ω)
e−iωt. (7.42)

Then, the Fourier transform of q(t) can have sharp peaks if the above denominator
(which is always positive) becomes close to zero for narrow frequency intervals. Given
the expression (7.34) for DR(ω) and DI(ω), this can happen around particular values
ω=ωr such that DR(ωr)= 0 and DI(ωr)� 1. These weakly damped resonances with
well defined oscillation frequencies ωr would dominate the long-time behaviour of
q(t), whose Fourier transform could be approximated by the sum of the corresponding
resonant functions,

q(t)'
∑

r

∫
∞

−∞

dω
Q(ωr)

D′R
2
(ωr) [(ω−ωr)2 + γ 2

r ]
e−iωt, (7.43)

where

γ 2
r =

[
DI(ωr)

D′R(ωr)

]2

(7.44)

and D′R is the derivative of DR with respect to ω. Carrying out the Fourier transform
integral, this yields

q(t)'π
∑

r

Q(ωr)

D′R
2
(ωr) |γr|

e−iωr t−|γr t|. (7.45)

This time dependence agrees with the effective complex frequency that would be
obtained by solving the Landau method effective dispersion relation D(ω + iγ ) = 0,
which is applicable to t> 0 and would have roots with small imaginary part, ω'ωr,
γ ' −DI(ωr)/D′R(ωr) < 0. However, with the present approach (7.45) is applicable
both to positive and negative times and shows the exponential decay as t → ±∞,
consistent with the time-reversal invariance of the collisionless Vlasov–Maxwell
model. With the D(ω) expression (7.34), derived here for the parallel-propagating
electrostatic perturbations using the normal-mode method, one obtains the familiar

https://doi.org/10.1017/S0022377819000400 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000400


Normal-mode-based theory of collisionless plasma waves 25

formulas for the frequencies and weak damping rates of the electron-Langmuir and
ion-acoustic waves.

As an illustrative example of special initial conditions, a solution of the inverse
problem of finding the distribution function initial conditions for a specified time
variation of the macroscopic variables will be worked out here, with a non-standard
choice of such functions of time. To this effect, consider the choice

E‖(t)
E‖(0)

= exp
(
−

t2

2τ 2

)
and jι‖(t)= 0, (7.46a,b)

where τ is an arbitrary time constant. This non-oscillatory, Gaussian decay of the
electric field is not of the kind predicted by the effective dispersion relation of the
Laplace transform method or by the present (7.45) applicable to standard initial
conditions. Bringing (7.46) to (7.40), (7.41) and carrying out the Fourier transform
of E‖(t), one obtains

Ce(ω)=
E‖(0) τ
(2π)1/2

exp
(
−
ω2τ 2

2

)
(7.47)

and

Cι(ω)=
E‖(0) τ ω2

Pι

(2π)1/2k2
‖v

2
thι

exp
(
−
ω2τ 2

2

)
W(ω̂2

ι ), (7.48)

where the function W, defined as W(x) ≡ 1 + x1/2ZR(x1/2), has been introduced.
These coefficients Ce(ω) and Cι(ω) are regular functions of ω but are not inversely
proportional to 1(ω), as expected from the non-standard nature of E‖(t). The
components of the initial condition representation (7.23) are

E‖(0)=
∫
∞

−∞

dωCe(ω) (7.49)

and

Φs(v‖, 0)=
∫
∞

−∞

dω

[
Ce(ω)Φ

ω,e
s (v‖)+

∑
ι

Cι(ω)Φ
ω,ι
s (v‖)

]
, (7.50)

with the functions Φω,ς
s (v‖) given in (7.4), (7.5). Substituting (7.47), (7.48) and

carrying out the integral over ω, equation (7.49) is satisfied identically and (7.50)
yields the sought after initial condition for the distribution functions of the different
species,

Φe(v‖, 0) =
iE‖(0)k‖v‖
(2π)1/2eec2

{
|k‖|τ exp

(
−

k2
‖
v2
‖
τ 2

2

)[
1+

ω2
Pe

k2
‖v

2
the

W

(
v2
‖

2v2
the

)]

+
ω2

Pe

k2
‖v

3
the

exp

(
−
v2
‖

2v2
the

)[
W

(
k2
‖
v2
‖
τ 2

2

)
− 1

]}
, (7.51)
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Φι(v‖, 0) =
iE‖(0)ω2

Pιv‖

(2π)1/2eιc2k‖v2
thι

{
|k‖|τ exp

(
−

k2
‖
v2
‖
τ 2

2

)
W

(
v2
‖

2v2
thι

)

+
1
vthι

exp

(
−
v2
‖

2v2
thι

)[
W

(
k2
‖
v2
‖
τ 2

2

)
− 1

]}
. (7.52)

These are smooth, well-behaved functions of v‖. However, even though they are
differentiable functions of the real variable v‖, they are not analytic and cannot be
continued analytically into the complex v‖-plane because the function W (defined in
terms of the real part of the plasma dispersion function) is not analytic. Therefore,
the standard derivation of the effective dispersion relation with the Laplace transform
method is not applicable to these initial conditions. For large values of the time
constant τ , they approach the singular limits

lim
τ→∞

Φe(v‖, 0)=
iE‖(0)k‖v‖

eec2

[(
1+

ω2
Pe

k2
‖v

2
the

)
δ(v‖)−

ω2
Pe

(2π)1/2k2
‖v

3
the

exp

(
−
v2
‖

2v2
the

)]
(7.53)

and

lim
τ→∞

Φι(v‖, 0)=
iE‖(0)ω2

Pιv‖

eιc2v2
thιk‖

[
δ(v‖)−

1
(2π)1/2vthι

exp

(
−
v2
‖

2v2
thι

)]
. (7.54)

As a last exercise, one can evaluate the charge density moments of these initial
distribution functions,

%s(0)= es

∫
∞

−∞

dv‖
Φs(v‖, 0)

v‖
, (7.55)

to obtain %e(0)= iE‖(0)k‖/c2 and %ι(0)= 0, consistent with Gauss’ law (2.3).
The property that the detailed information on the velocity-space structure of the

initial distribution functions is encoded in the details of the time evolution of their
macroscopic moments and can be retrieved from the latter, holds only because the
collisionless Vlasov–Maxwell model is strictly time-reversal invariant and does not
create entropy. That property was first demonstrated in the original papers of Van
Kampen (1955) and Case (1959) for electron-Langmuir waves with immobile ions,
that showed how the electric field E‖(t) is proportional to the Fourier transform of the
electron coefficient Ce(ω). The present study has generalized this result to multiple
dynamical ion species, deriving in addition the corresponding formula (7.41) for the
ion coefficients Cι(ω). For consistency with the results of Landau (1946), initial
distribution functions that would yield macroscopic time dependences different from
those given by the standard roots of Landau’s effective dispersion relation must not
be analytic functions of the velocity. The example above (7.51)–(7.52) for a Gaussian
time dependence of the electric field verifies this requirement. Other non-analytic
initial distribution functions that yield non-standard macroscopic time variations have
been shown in the literature. In particular, an exponential dependence with a complex
frequency different from Landau’s root is also predicted in the framework of the
Laplace transform method, if the initial condition is adjusted such that the residues
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at Landau’s poles are zero and instead other poles are placed at will. The work
of Belmont et al. (2008) constructed this type of initial conditions and showed the
non-Landau exponential time dependence in detailed numerical simulations. With yet
another non-analytic choice of initial condition, Weitzner (1963) obtained an electric
field damping proportional to t−3. Weitzner’s paper raised also the issue that the
analyticity condition on the initial distribution function, which is needed to obtain
Landau’s standard frequency and damping rate following the Laplace transform
method, seemed much too restrictive and unphysical. The present normal-mode
analysis provides an answer to this puzzle, showing that the standard Landau time
dependence is obtained (7.45) with the much broader class of initial distribution
functions that conform to the definition of ‘standard initial conditions’ proposed
earlier in this section and do not necessarily have to be analytic.

7.2. Electromagnetic waves with transverse circular polarization
The state vectors that represent these perturbations have non-vanishing components
only for m = p = ±1, hence they are transverse electromagnetic waves with k · B̃ =
k · E = 0. The modes with m = p = +1 have left-handed circular polarization and
the modes with m= p=−1 have right-handed circular polarization. The presentation
here will refer to the left-handed polarization case and straightforward sign changes
give the corresponding results for right-handed polarization. The analysis is identical
to the previous one for longitudinal electrostatic modes, only changing the settings to
m= p=+1, κ = k‖ and αsm(v‖)= 1, so just a listing of the results will be given. As
in the previous subsection, the notation will be simplified by dropping the m, p, µ, ρ
indices with the understanding that they all take the +1 value here.

With the choice (ς0, µ0) = (e, +1) the basis of normal modes {Ψ ω,ς
} consists of

the electron modes

Ψ ω,e(v‖)=

 1
ik‖/ω
Φω,e

s (v‖)

 (7.56)

whose distribution function components are

Φω,e
s (v‖)=

ies

ms
P

FMs(v‖)

ω−Ωs − k‖v‖
+

iω
c2es

δe
s ϑ(ω) δ(v‖ − v

ω
s ), (7.57)

and the ballistic ion modes

Ψ ω,ι(v‖)=

 0
0

iω
c2es

(διs − δ
e
s ) δ(v‖ − v

ω
s )

 , (7.58)

where vωs = (ω−Ωs)/k‖. The function ϑ(ω) in (7.57) is now

ϑ(ω)= 1−
c2k2
‖

ω2
−

∑
s

ω2
Ps

ω ns0

∫
∞

−∞

dv‖ P
FMs(v‖)

ω−Ωs − k‖v‖
, (7.59)

or

ϑ(ω)= 1−
c2k2
‖

ω2
+

∑
s

ω2
Ps

2k2
‖v

2
thsω̂s

ZR(ω̂s − Ω̂s), (7.60)

where ω̂s is as defined in (7.7) and Ω̂s ≡Ωs/(21/2k‖vths).
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The transverse current moments of these normal modes are given by

js+[Ψ
ω,ς
] = es

∫
∞

−∞

dv‖Φω,ς
s (v‖) (7.61)

which, for the electron modes, yields

js+[Ψ
ω,e
] =−

iω2
Ps

21/2c2k‖vths
ZR(ω̂s − Ω̂s)+

iω
c2
δe

s ϑ(ω) (7.62)

hence ∑
s

js+[Ψ
ω,e
] =

iω
c2
−

ik2
‖

ω
, (7.63)

consistent with Maxwell’s equation (2.4) since the electric and magnetic fields in these
electron modes (7.56) are 1 and ik‖/ω, respectively. For the ion modes,

js+[Ψ
ω,ι
] =

iω
c2
(διs − δ

e
s ) (7.64)

and
∑

s js+[Ψ
ω,ι
] = 0, consistent with the electromagnetic fields being zero in the ion

modes. The charge density moments of all the modes are zero, consistent with the
Gauss and continuity equations for these transverse waves with k ·E= k · js = 0.

The adjoint eigenfunctions are here Ψ̂ ω,ς
=Ψ ω,ς because, with αsm= 1, the operator

G is self-adjoint in the m= p=+1 subspace. Then, for the normal-mode expansion
of an initial condition,

Ψ (v‖, 0)=
∫
∞

−∞

dω
∑
ς

Cς(ω)Ψ
ω,ς(v‖), (7.65)

its coefficients Cς(ω) satisfy∑
ς ′

χς
′

ς (ω)Cς ′(ω)= 〈Ψ
ω,ς
|Ψ (v‖, 0)〉, (7.66)

where

χ e
e (ω)=

|k‖|ω2 me ϑ
2(ω)

c4 e2 FMe(vωe )
+

π2

|k‖|

∑
s

e2
s

ms
FMs(v

ω
s ), (7.67)

χ ιe(ω)= χ
e
ι (ω)=−

|k‖|ω2 me ϑ(ω)

c4 e2 FMe(vωe )
, (7.68)

χ ι
′

ι (ω)=
|k‖|ω2 mι

c4 e2
ι FMι(vωι )

δι
′

ι +
|k‖|ω2 me

c4 e2 FMe(vωe )
. (7.69)

The system (7.66) can be rearranged as

(
χ e

e χ ιe
ηe ηI

) Ce(∑
ι

Cι

)=
 〈Ψ ω,e

|Ψ (v‖, 0)〉∑
ι

e2
ιm
−1
ι FMι(v

ω
ι )〈Ψ

ω,ι
|Ψ (v‖, 0)〉

 , (7.70)
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Cι =
c4e2

ιFMι(v
ω
ι )

|k‖|mιω2
[〈Ψ ω,ι

|Ψ (v‖, 0)〉 − χ e
ι Ce] −

e2
ιmeFMι(v

ω
ι )

e2mιFMe(vωe )

(∑
ι′

Cι′

)
, (7.71)

where

ηe =
∑
ι

e2
ι

mι

FMι(v
ω
ι ) χ

e
ι (7.72)

and

ηI =
|k‖|ω2

c4

[
1+

∑
ι

e2
ιmeFMι(v

ω
ι )

e2mιFMe(vωe )

]
. (7.73)

The solution for Cς(ω) exists always and is unique because the determinant of the
2× 2 subsystem (7.70) is greater than zero,

χ e
eηI − χ

ι
eηe =

k2
‖

me

c8e2FMe(vωe )
1(ω), (7.74)

where, as in the electrostatic wave case,

1(ω)=D2
R(ω)+D2

I (ω), (7.75)

with the complex D(ω) function being now

D(ω)=DR(ω)+ iDI(ω)=ω
2
− c2k2

‖
+

∑
s

ω2
Psω̂sZ(ω̂s − Ω̂s). (7.76)

This D(ω), derived here following the normal-mode method, coincides again with that
of the effective dispersion relation derived with Landau’s Laplace transform method
for the transverse electromagnetic waves as shown, for instance, in the textbooks
quoted in the introduction. The arguments given in the electrostatic wave subsection
on the equivalence of normal-mode-based and Laplace-transform-based results for
standard initial conditions can be repeated here. Equally applicable is the discussion
concerning the different results that pertain the special initial conditions.

The solution of the initial-value problem with initial condition represented by the
normal-mode expansion (7.65) is

Ψ (v‖, t)=
∫
∞

−∞

dω
∑
ς

Cς(ω)Ψ
ω,ς(v‖) e−iωt (7.77)

and the solution for the macroscopic variables follows from the explicit forms of the
normal-mode eigenfunctions (7.56)–(7.58) and their moments (7.62), (7.64). Thus, the
electric field is (Felderhof 1963a)

E+(t)=
∫
∞

−∞

dωCe(ω) e−iωt (7.78)

and the magnetic field is

B̃+(t)= ik‖

∫
∞

−∞

dω
Ce(ω)

ω
e−iωt (7.79)
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so that ∂B̃+/∂t = k‖E+, in agreement with Faraday’s law (2.6). The electron current
is

je+(t) =
i

c2

∫
∞

−∞

dωω

{
Ce(ω)

[
1−

c2k2
‖

ω2
+

∑
ι

ω2
Pι

2k2
‖v

2
thιω̂ι

ZR(ω̂ι − Ω̂ι)

]

−

∑
ι

Cι(ω)

}
e−iωt (7.80)

and the ion currents are

jι+(t)=
i

c2

∫
∞

−∞

dωω
[

Cι(ω)−Ce(ω)
ω2

Pι

2k2
‖v

2
thιω̂ι

ZR(ω̂ι − Ω̂ι)

]
e−iωt. (7.81)

Then, the total current is

∑
s

js+(t)= je+(t)+
∑
ι

jι+(t)=
i

c2

∫
∞

−∞

dωωCe(ω)

(
1−

c2k2
‖

ω2

)
e−iωt (7.82)

so that
∑

s js+ = −c−2∂E+/∂t − k‖B̃+, in agreement with Maxwell’s equation (2.4).
Finally, the explicit relations between the initial condition coefficients Cς(ω) and the
Fourier transforms of the time-dependent macroscopic variables are

Ce(ω)=
1

2π

∫
∞

−∞

dt E+(t) eiωt (7.83)

and

Cι(ω)=
ω2

Pι

2k2
‖v

2
thιω̂ι

ZR(ω̂ι − Ω̂ι)Ce(ω)+
c2

2πiω

∫
∞

−∞

dt jι+(t) eiωt. (7.84)

8. Perpendicular propagation direction
Waves propagating in a direction perpendicular to the equilibrium magnetic field

(k‖ = 0) need a different treatment because, in this special case, the spectrum of
normal-mode eigenfrequencies is discrete and the degeneracy of such eigenvalues is
also different from the k‖ 6= 0 case. For k‖ = 0, the finite-EM-field normal modes are
proper normalizable eigenfunctions with eigenvalues that belong to the point spectrum
in the mathematical sense. These frequency eigenvalues are the real roots of a proper
dispersion relation and are not degenerate. Therefore, the analysis of the finite-EM-
field modes is conventional and not different from the accounts found in the standard
literature (see e.g. the textbooks quoted in the introduction). It will be presented here,
using the general formalism developed for this work, for completeness and in order
to prepare the basis made of normal modes that will span the space of state vectors.
The ballistic modes are often ignored, but they are necessary to complete such a
normal-mode basis and be able to expand the solutions of initial-value problems as
superpositions of normal modes. The k‖= 0 ballistic modes are peculiar because, even
though their eigenfrequencies are the discrete multiples of the cyclotron frequencies,
they are severely degenerate with a continuum of singular eigenfunctions for each
eigenvalue. Thus, the ballistic mode eigenfrequencies at the harmonics of the cyclotron
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frequencies belong to the continuous spectrum in the mathematical sense. A novel
analysis of such perpendicular-propagating ballistic modes will be presented here. It
will prove advantageous to carry out this analysis in two-dimensional velocity space
because a complete specification of both the finite-EM-field eigenfunctions and the
singular ballistic eigenfunctions will be possible. Then, one can take advantage directly
of the self-adjointness of the operator H (2.32) in the space of 2-D state vectors.

Considering first the 2-D finite-EM-field normal modes with k‖= 0, their equations
(2.32) are

ω Eωp =−ic2
∑

p′

κp′
p B̃ωp′ − ic2

∑
sm

es

∫
d3v hsmp(v‖, v⊥) φ

ω
sm(v‖, v⊥), (8.1)

ω B̃ωp = i
∑

p′

κp′
p Eωp′, (8.2)

(ω−mΩs) φ
ω
sm(v‖, v⊥)= iesT−1

s0 fMs(v)
∑

p′

hsmp′(v‖, v⊥)Eωp′ . (8.3)

The eigenvalues ω will turn out to be always different from mΩs, so the solution of
(8.3) for φωsm(v‖, v⊥) is

φωsm(v‖, v⊥)=
iesfMs(v)

Ts0(ω−mΩs)

∑
p′

hsmp′(v‖, v⊥)Eωp′ . (8.4)

Then, substituting (8.4) and (8.2) in (8.1), one gets the homogeneous equation for the
electric field eigenvector ∑

p′

ϑp′
p (ω)Eωp′ = 0, (8.5)

where

ϑp′
p (ω)= δ

p′
p −

c2

ω2
(κ2)p

′

p +
ic2

ω
σ p′

p (ω) (8.6)

and σ p′
p (ω) is the conductivity tensor that now is all intrinsic,

σ p′
p (ω)=

i
c2

∑
sm

ω2
Ps

ns0v
2
ths(ω−mΩs)

∫
d3v fMs(v) hsmp(v‖, v⊥) hsmp′(v‖, v⊥). (8.7)

The integral over the velocity yields a block-diagonal conductivity tensor whose
components with p 6=‖ and p′ 6=‖ are

σ p′
p (ω)=

i
c2

∑
sm

ω2
Ps[αsm]

p′
p

ω−mΩs
, (8.8)

with [αsm]
p′
p given in (4.15)–(4.17). The other components are

σ ‖
+
= σ+

‖
= σ ‖

−
= σ−

‖
= 0 (8.9)
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and

σ
‖

‖ (ω)=
i

c2

∑
sm

ω2
Pse
−bsIm(bs)

ω−mΩs
, (8.10)

where bs ≡ (k⊥vths/Ωs)
2. The tensor (κ2)p

′

p is also block diagonal,

(κ2)p
′

p =

 k2
⊥
/2 −k2

⊥
/2 0

−k2
⊥
/2 k2

⊥
/2 0

0 0 k2
⊥

 , (8.11)

so ϑp′
p (ω) is block diagonal. The condition for existence of solutions of (8.5) with

non-zero electric field yields the dispersion relation det[ϑ(ω)] = 0, which factorizes
as the product of two dispersion relations for two independent classes of modes, to
be referred to as ordinary and extraordinary modes.

For the ordinary modes (whose non-degenerate eigenfrequencies are denoted with
a subscript O), the components of the electric field eigenvector are EωO

+ = EωO
− = 0

and EωO
‖ 6= 0. Thus, the electric field is parallel to the equilibrium magnetic field,

EωO = EωO
‖ ez, and the perturbed magnetic field, perpendicular to both E and k, is

B̃
ωO
=−k⊥ω−1

O EωO
‖ ey. Their dispersion relation is

1−
c2k2
⊥

ω2
O
−

∑
sm

ω2
Pse
−bsIm(bs)

ωO(ωO −mΩs)
= 0. (8.12)

This dispersion relation has a countable infinity of roots (one for each of its poles)
which can be labelled with the species index ς and the integer number index µ,
i.e. ωO = ω

ςµ

O . In the limit ωO � ck⊥ and ωPs � ck⊥, such roots are close to the
corresponding poles at the harmonics of the cyclotron frequencies,

ω
ςµ

O 'µΩς

[
1−

ω2
Pς

c2k2
⊥

e−bς Iµ(bς)

]
. (8.13)

The extraordinary modes (whose non-degenerate eigenfrequencies are similarly
denoted with a subscript X) have EωX

‖ = 0. Thus, the electric field eigenvectors are in
the (x, y) plane, EωX = EωX

x ex + EωX
y ey, and the perturbed magnetic field eigenvectors

are parallel to the equilibrium magnetic field, B̃
ωX
= k⊥ω−1

X EωX
y ez. Their dispersion

relation is[
1−

c2k2
⊥

2ω2
X
−

∑
sm

ω2
Ps[αsm]

+

+

ωX(ωX −mΩs)

] [
1−

c2k2
⊥

2ω2
X
−

∑
sm

ω2
Ps[αsm]

−

−

ωX(ωX −mΩs)

]

−

[
c2k2
⊥

2ω2
X
−

∑
sm

ω2
Ps[αsm]

+

−

ωX(ωX −mΩs)

]2

= 0. (8.14)

This dispersion relation has two countably infinite sets of roots, each one labelled with
the ς and µ indices, i.e. ωX=ω

ςµ
X1

and ωX=ω
ςµ
X2

. In the limit ωX� ck⊥ and ωPs� ck⊥,
the first set of roots is close to the cyclotron frequency harmonics,

ω
ςµ
X1
'µΩς

{
1−

ω2
Pς

c2k2
⊥

bςe−bς

[
Iµ(bς)−

Iµ+1(bς)Iµ−1(bς)
Iµ(bς)

]}
, (8.15)

https://doi.org/10.1017/S0022377819000400 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000400


Normal-mode-based theory of collisionless plasma waves 33

and the second set satisfies the approximate dispersion relation

1−
∑

sm

m2ω2
Pse
−bsIm(bs)

ωX2(ωX2 −mΩs)bs
' 0. (8.16)

The latter is the dispersion relation for the so-called Bernstein waves. The correspond-
ing eigenvectors have electric field approximately in the x-direction (so the electric
field is near parallel to the wavevector k) and magnetic field close to zero, so the
Bernstein waves are approximately electrostatic.

Considering now the perpendicular-propagating 2-D ballistic modes in which the
electromagnetic fields are zero, the equations for these modes (denoted with a
subscript B) reduce to∑

sm

es

∫
d3v hsmp(v‖, v⊥) φB,sm(v‖, v⊥)= 0, (8.17)

(ωB −mΩs) φB,sm(v‖, v⊥)= 0. (8.18)

The independent solutions of this system can be characterized with the discrete
indices ς ∈ {species} and µ ∈ Z plus the continuous indices ξ‖ ∈ R and ξ⊥ ∈ R+. The
distribution functions are

φ
ςµ,ξ‖ξ⊥
B,sm (v‖, v⊥)= δ

ς
s δ

µ
m δ(v⊥ − ξ⊥)

[
δ(v‖ − ξ‖)−

FMς(v‖)

nς0

(
1+

ξ‖ v‖

v2
thς

)]
(8.19)

which solve (8.17) because hsmp depends on v‖ as hsmp(v‖, v⊥)∝ v
1−|p|
‖ with p= 0,±1.

These eigenfunctions have degenerate eigenvalues that depend only on their (ς, µ)
and solve (8.18),

ω
ςµ
B =µΩς . (8.20)

In summary, the set of 2-D normal modes for perpendicular-propagating waves
is {ψω, ψ

ςµ,ξ‖ξ⊥
B } and this constitutes a complete basis in the space of 2-D state

vectors. The finite-EM-field modes ψω are labelled by their discrete, non-degenerate
eigenvalues ω ∈ ß= {ωςµO , ω

ςµ
X1
, ω

ςµ
X2
} and are

ψω(v‖, v⊥)=


Eωp

iω−1
∑

p′

κp′
p Eωp′

φωsm(v‖, v⊥)

 , (8.21)

where φωsm(v‖, v⊥) is given by (8.4) and Eωp is the eigenvector that solves (8.5). The
ballistic modes, labelled by ς ∈ {species}, µ ∈ Z, ξ‖ ∈R and ξ⊥ ∈R+, are

ψ
ςµ,ξ‖ξ⊥
B (v‖, v⊥)=

 0
0

φ
ςµ,ξ‖ξ⊥
B,sm (v‖, v⊥)

 , (8.22)

where φ
ςµ,ξ‖ξ⊥
B,sm (v‖, v⊥) is given by (8.19). These ballistic modes have degenerate

eigenvalues ωςµB =µΩς , independent of ξ‖ and ξ⊥.
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A 2-D initial condition ψ(v‖, v⊥, 0) can be expanded in the normal-mode basis as

ψ(v‖, v⊥, 0)=
∑
ω∈ß

cωψω(v‖, v⊥)+
∑
ςµ

∫
∞

−∞

dξ‖

∫
∞

0
dξ⊥ cςµ(ξ‖, ξ⊥) ψ

ςµ,ξ‖ξ⊥
B (v‖, v⊥)

(8.23)

and the solution of the corresponding initial-value problem is

ψ(v‖, v⊥, t) =
∑
ω∈ß

cωψω(v‖, v⊥) e−iωt

+

∑
ςµ

[∫
∞

−∞

dξ‖

∫
∞

0
dξ⊥ cςµ(ξ‖, ξ⊥) ψ

ςµ,ξ‖ξ⊥
B (v‖, v⊥)

]
e−iµΩς t. (8.24)

This is an undamped, discrete superposition of harmonic oscillations. In order
to determine the spectral amplitude at each oscillation frequency, one needs to
determine the coefficients cω and cςµ(ξ‖, ξ⊥) by inverting (8.23). This inversion can
be accomplished in closed form by taking scalar products with the normal-mode
eigenfunctions. Since the 2-D normal modes under consideration are eigenfunctions
of the Hermitian operator H, normal modes with different frequency eigenvalue are
orthogonal with the scalar product (3.1). Indeed, it can be verified explicitly that
(ψω
|ψ

ςµ,ξ‖ξ⊥
B )= 0 and (ψω

|ψω′)= 0 for ω 6= ω′. The scalar products among ballistic
eigenfunctions are also found to be

(ψ
ςµ,ξ‖ξ⊥
B |ψ

ς ′µ′,ξ ′
‖
ξ ′
⊥

B ) =
2π Tς0 ξ⊥

fMς

(√
ξ 2
‖ + ξ

2
⊥

) δς ′ς δµ′µ δ(ξ⊥ − ξ ′⊥)
×

[
δ(ξ‖ − ξ

′

‖
)−

FMς(ξ‖)

nς0

(
1+

ξ‖ξ
′

‖

v2
thς

)]
. (8.25)

Then, the scalar product of (8.23) with ψω yields the explicit solution for cω,

cω =
(ψω
|ψ(0))

(ψω|ψω)
. (8.26)

Taking the scalar product of (8.23) with ψςµ,ξ‖ξ⊥
B and using (8.25), one obtains

nς0 φςµ(ξ‖, ξ⊥, 0)
FMς(ξ‖)

−

∫
∞

−∞

dv‖ φςµ(v‖, ξ⊥, 0)
(

1+
ξ‖v‖

v2
thς

)
=

nς0 cςµ(ξ‖, ξ⊥)
FMς(ξ‖)

−

∫
∞

−∞

dξ ′
‖

cςµ(ξ ′‖, ξ⊥)
(

1+
ξ‖ξ
′

‖

v2
thς

)
(8.27)

which yields also the explicit solution for cςµ(ξ‖, ξ⊥),

cςµ(ξ‖, ξ⊥)= φςµ(ξ‖, ξ⊥, 0). (8.28)

The solution of the initial-value problem is now completely specified by (8.24),
(8.26), (8.28) and any desired macroscopic variable can be evaluated by taking the
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corresponding moment. In particular, the electromagnetic fields, to which the ballistic
modes do not contribute, are

Ep(t)=
∑
ω∈ß

cωEωp e−iωt (8.29)

and

B̃p(t)= i
∑
ω∈ß

∑
p′

cωω−1κp′
p Eωp′e

−iωt (8.30)

so Faraday’s law, ∂B̃p(t)/∂t=
∑

p′ κ
p′
p Ep′(t), is satisfied.

9. Concluding remarks

This work has put forward a unified linear wave theory for a homogeneous,
magnetized and stable Vlasov–Maxwell plasma, exclusively from the normal-mode
point of view. The analysis is fully electromagnetic and has no restrictions with
regard the number of plasma species or the wave propagation direction. So, it offers
an answer to the long-standing problem of formulating a complete Van Kampen-like
treatment of waves that propagate in a direction oblique to the background magnetic
field. It also reproduces all the previously known results for the simpler cases of
parallel and perpendicular propagation, thus confirming the Van Kampen normal-mode
approach as having all the capabilities of the more popular Laplace transform
approach of Landau’s. Besides, the present normal-mode-based results have features
that go beyond the standard Laplace-transform-based results. Specifically, it is shown
that the long-time behaviour for macroscopic variables described by an oscillation
frequency and a weak exponential damping rate corresponding to the complex root
of an effective dispersion relation, applies to a broader class of initial conditions
(precisely defined and referred to as standard initial conditions) that do not have to
fulfil the requirement that the initial distribution functions be analytic functions of the
velocity, as needed in the standard derivation with the Laplace transform and complex
contour integration method. This work contemplates also the other class of initial
conditions (called special initial conditions) that result in a time evolution different
from the standard complex exponential behaviour given by the roots of effective
dispersion relations. In this regard, the previously known expressions (Van Kampen
1955; Case 1959; Felderhof 1963a) for distribution function initial conditions that
produce arbitrarily specified variations of the macroscopic variables as functions of
time (subject to the constraint that sufficiently well behaved Fourier transforms exist)
are generalized to a plasma with multiple dynamical species.

The connection between the time evolution of a standard initial condition, as
calculated with the normal-mode method, and the effective dispersion relation of the
Laplace transform method, takes place through the determinant of the linear system
that returns the coefficients of the normal-mode expansion of the initial condition
given the specific form of such initial condition. This has been actually shown in
the case of wave propagation parallel to the equilibrium magnetic field, where both
the normal-mode-based system and the Laplace-transform-based effective dispersion
relation diagonalize into three decoupled subsystems. By extension of the parallel
propagation result, it is expected that the determinant of the 6× 6 linear system (6.35),
(6.36) for oblique propagation (which is known to be different from zero) should be
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proportional to the sum of the squares of the real and imaginary parts of the 3× 3
complex determinant of the effective dispersion derived in the Laplace transform
approach for oblique propagation. Verifying this conjecture appears algebraically
challenging if mechanical, but might be worth some try, perhaps using symbolic
computing.
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Appendix A. Classification of the 2-D normal modes for k‖ 6= 0

For k‖ 6= 0, the normal modes in two-dimensional velocity space (v‖, v⊥) are
solutions of (4.6), (4.7). These solutions can be classified in two categories: the
finite-EM-field modes for which the electric field is not identically zero and the
ballistic modes for which the electric field is identically zero. The finite-EM-field
modes are denoted with a subscript A and solutions, labelled with the index ρ, exist
for each of the three independent electric field polarizations, Eω,ρA,p = δ

ρ
p . For these,

(4.7) becomes

ϑρp (ω)−
∑

sm

∫
∞

0
dv⊥ v⊥ λ

ω,ρ
A,sm(v⊥) hsmp(v

ω
sm, v⊥)= 0. (A 1)

Again, this admits multiple solutions labelled with the additional indices (ς,µ, ζ ) and
having the form

λ
ω,ςµρ

A,sm (v⊥; ζ )= δ
ς
s δ

µ
mθ

ω,ςµρ

A (v⊥; ζ ), (A 2)

where θω,ςµρA (v⊥; ζ ) satisfies the condition∫
∞

0
dv⊥ v⊥ θ

ω,ςµρ

A (v⊥; ζ ) hςµp(v
ω
ςµ, v⊥)= ϑ

ρ
p (ω). (A 3)

This last condition may still be satisfied by multiple independent θω,ςµρA (v⊥) functions
and the additional generic index ζ is meant to parametrize them. In summary, the
finite-EM-field 2-D normal modes are

ψ
ω,ςµρζ

A =

 δρp

iκρp /ω

φ
ω,ςµρζ

A,sm

 , (A 4)

with

φ
ω,ςµρζ

A,sm (v‖, v⊥)=
ies

Ts0
P

fMs(v) hsmρ(v‖, v⊥)

ω− k‖v‖ −mΩs
+

iω
2πc2es

δςs δ
µ
mθ

ω,ςµρ

A (v⊥; ζ ) δ(v‖ − v
ω
sm)

(A 5)

and θω,ςµρA (v⊥; ζ ) fulfilling (A 3).
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The ballistic modes are denoted with a subscript B and, for these, (4.7) becomes∑
sm

∫
∞

0
dv⊥ v⊥ λωB,sm(v⊥) hsmp(v

ω
sm, v⊥)= 0. (A 6)

The solutions of this equation can in turn be divided in two subclasses. The first
subclass (B1) is constructed with functions θω,ςµB1

(v⊥; ζ1) that satisfy the condition∫
∞

0
dv⊥ v⊥ θ

ω,ςµ
B1

(v⊥; ζ1) hςµp(v
ω
ςµ, v⊥)= 0 for all p. (A 7)

Then,

λ
ω,ςµ
B1,sm(v⊥; ζ1)= δ

ς
s δ

µ
mθ

ω,ςµ
B1

(v⊥; ζ1) (A 8)

is a solution of (A 6). The second subclass (B2) is constructed with functions
θ
ω,ςµρ
B2

(v⊥; ζ2) that satisfy the condition∫
∞

0
dv⊥ v⊥ θ

ω,ςµρ
B2

(v⊥; ζ2) hςµp(v
ω
ςµ, v⊥)= δ

ρ
p . (A 9)

Then,

λ
ω,ςµρ
B2,sm (v⊥; ζ2)= (δ

ς
s δ

µ
m − δ

ς0
s δ

µ0
m )θ

ω,ςµρ
B2

(v⊥; ζ2), (A 10)

where (ς0, µ0) is a pair of particularly chosen (ς, µ) values, is another independent
solution of (A 6). So, the first subclass of ballistic 2-D normal modes is

ψ
ω,ςµζ1
B1

=

 0
0

φ
ω,ςµζ1
B1,sm

 , (A 11)

with

φ
ω,ςµζ1
B1,sm (v‖, v⊥)=

iω
2πc2es

δςs δ
µ
mθ

ω,ς
B1
(v⊥; ζ1) δ(v‖ − v

ω
sm) (A 12)

and θ
ω,ς
B1
(v⊥; ζ1) fulfilling (A 7). The second subclass of ballistic 2-D normal modes

is

ψ
ω,ςµρζ2
B2

=

 0
0

φ
ω,ςµρζ2
B2,sm

 , (A 13)

with

φ
ω,ςµρζ2
B2,sm (v‖, v⊥)=

iω
2πc2es

(δςs δ
µ
m − δ

ς0
s δ

µ0
m )θ

ω,ςµρ
B2

(v⊥; ζ2) δ(v‖ − v
ω
sm) (A 14)

and θω,ςµρB2
(v⊥; ζ2) fulfilling (A 9).

The set {ψω,ςµρζ

A , ψ
ω,ςµζ1
B1

, ψ
ω,ςµρζ2
B2

} contains all the 2-D normal-mode solutions but
is not minimal, because not all its members are linearly independent of one another.
In particular, the differences between two finite-EM-field modes with the same ω and
ρ values, have zero electromagnetic fields, hence they must be in the subspace of
ballistic modes. However, for the purposes of the present work, specifying the minimal
basis of 2-D normal modes is not necessary.
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Appendix B. Completeness of the set of 1-D normal modes for k‖ 6= 0

For k‖ 6=0, the 2-D normal modes characterized in appendix A are the eigenfunctions
of the Hermitian operator H (2.32). Therefore, their linear combinations span the
whole Hilbert space of 2-D state vectors and any vector ψ in that space can be
expanded as

ψ =

∫
∞

−∞

dω

[∑
ςµρ

∑̂
ζ

cA
ςµρζ (ω)ψ

ω,ςµρζ

A +

∑
ςµ

∑̂
ζ1

cB1
ςµζ1

(ω)ψ
ω,ςµζ1
B1

+

∑
ςµρ

∑̂
ζ2

cB2
ςµρζ2

(ω)ψ
ω,ςµρζ2
B2

]
(B 1)

or, for its components,

Ep =

∫
∞

−∞

dω
∑
ςµρ

∑̂
ζ

cA
ςµρζ (ω) δ

ρ
p , (B 2)

B̃p = i
∫
∞

−∞

dω
∑
ςµρ

∑̂
ζ

cA
ςµρζ (ω) κ

ρ
p /ω, (B 3)

φsm =

∫
∞

−∞

dω

[∑
ςµρ

∑̂
ζ

cA
ςµρζ (ω) φ

ω,ςµρζ

A,sm +

∑
ςµ

∑̂
ζ1

cB1
ςµζ1

(ω) φ
ω,ςµζ1
B1,sm

+

∑
ςµρ

∑̂
ζ2

cB2
ςµρζ2

(ω) φ
ω,ςµρζ2
B2,sm

]
. (B 4)

This representation may not be unique because the set {ψω,ςµρζ

A , ψ
ω,ςµζ1
B1

, ψ
ω,ςµρζ2
B2

} is
not minimal. However, all that is needed here is that the considered set of normal
modes is complete and that one such representation exists.

A generic 1-D state vector is

Ψ =

 Ep

B̃p

Φsmp

=


Ep

B̃p

2π

∫
∞

0
dv⊥ v⊥hsmp φsm

 , (B 5)

as these vectors are defined such that the functions Φsmp(v‖) belong to the image of
the projection (5.1). Then, substituting (B 4) for φsm, equations (A 5), (A 12), (A 14)
for φω,ςµρζA,sm , φ

ω,ςµζ1
B1,sm , φ

ω,ςµρζ2
B2,sm and taking into account the conditions (A 3), (A 7), (A 9),

one obtains

Φsmp =

∫
∞

−∞

dω

{∑
ςµρ

∑̂
ζ

cA
ςµρζ (ω)

[
2πies

Ts0

∫
∞

0
dv⊥ v⊥P

fMshsmρhsmp

ω− k‖v‖ −mΩs

+
iω

c2es
δςs δ

µ
mϑ

ρ
p (ω) δ(v‖ − v

ω
sm)

]
+

∑
ςµρ

∑̂
ζ2

cB2
ςµρζ2

(ω)
iω

c2es
(δςs δ

µ
m − δ

ς0
s δ

µ0
m )δ

ρ
p δ(v‖ − v

ω
sm)

}
. (B 6)
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In this expression, as well as in (B 2), (B 3), the factors that multiply cA
ςµρζ (ω) and

cB2
ςµρζ2

(ω) are independent of ζ and ζ2. Therefore, the generalized sum over these
parameters is just absorbed in the new coefficients

CA
ςµρ(ω)=

∑̂
ζ

cA
ςµρζ (ω), CB

ςµρ(ω)=
∑̂
ζ2

cB2
ςµρζ2

(ω) (B 7a,b)

and, recalling also the definitions (4.13), (4.14), equations (B 2), (B 3), (B 6) become

Ep =

∫
∞

−∞

dω
∑
ςµρ

CA
ςµρ(ω) δ

ρ
p , (B 8)

B̃p = i
∫
∞

−∞

dω
∑
ςµρ

CA
ςµρ(ω) κ

ρ
p /ω, (B 9)

Φsmp =

∫
∞

−∞

dω

{∑
ςµρ

CA
ςµρ(ω)

[
ies

ms
P

FMs(v‖) [αsm(v‖)]
ρ
p

ω− k‖v‖ −mΩs
+

iω
c2es

δςs δ
µ
mϑ

ρ
p (ω) δ(v‖ − v

ω
sm)

]

+

∑
ςµρ

CB
ςµρ(ω)

iω
c2es

(δςs δ
µ
m − δ

ς0
s δ

µ0
m )δ

ρ
p δ(v‖ − v

ω
sm)

}
. (B 10)

Finally, recalling the expressions (6.12), (6.13), (6.16), (6.17) for the 1-D normal
modes, one verifies that (B 8)–(B 10) represent the generic 1-D state vector Ψ as a
superposition of 1-D normal modes

Ψ =

∫
∞

−∞

dω
∑
ςµρ

[CA
ςµρ(ω)Ψ

ω,ςµρ

A +CB
ςµρ(ω)Ψ

ω,ςµρ
B ]. (B 11)

Thus, the linear combinations of Ψ ω,ςµρ

A and Ψ ω,ςµρ
B span the whole space of 1-D state

vectors and the set {Ψ ω,ςµρ

A , Ψ
ω,ςµρ

B } is complete, although not necessarily minimal.

Appendix C. Derivation of normal-mode orthogonality relations

This appendix carries out the scalar products among the 1-D eigenvectors Ψ ω,ςµρ

and Ψ̂ ω,ςµρ , defined by (6.12), (6.13), (6.16), (6.17), (6.20), (6.23)–(6.27), which
yield the orthogonality relations (6.28)–(6.33). With the 1-D scalar product definition
(5.7) and after trivial integration over v‖ using the Dirac deltas, the product
〈Ψ̂

ω,ςµρ
B |Ψ

ω′,ς ′µ′ρ′

B 〉 reduces to

〈Ψ̂
ω,ςµρ

B |Ψ
ω′,ς ′µ′ρ′

B 〉 =
|k‖|ω2

c4

∑
smp

ms

e2
s FMs(vωsm)

(
δςs δ

µ
mδ

ρ
p − δ

ς0
s δ

µ0
m [α

−1
ς0µ0

(vως0µ0
) ◦ αςµ(v

ω
ςµ)]

ρ
p

)
× (δς

′

s δ
µ′

m − δ
ς0
s δ

µ0
m )δ

ρ′

p δ(ω−ω
′). (C 1)

For (ς, µ) 6= (ς0, µ0) and (ς ′, µ′) 6= (ς0, µ0), after summing over s,m, p, this becomes
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〈Ψ̂
ω,ςµρ

B |Ψ
ω′,ς ′µ′ρ′

B 〉 =
|k‖|ω2

c4

{
mς

e2
ςFMς(vωςµ)

δς
′

ς δ
µ′

µ δ
ρ′

ρ

+
mς0

e2
ς0

FMς0(v
ω
ς0µ0

)
[αςµ(v

ω
ςµ) ◦ α

−1
ς0µ0

(vως0µ0
)]ρ

′

ρ

}
δ(ω−ω′) (C 2)

which is the result of (6.32), (6.33).
The products 〈Ψ̂ ω,ς0µ0ρ

A |Ψ
ω′,ς ′µ′ρ′

B 〉 and 〈Ψ̂ ω,ςµρ
B |Ψ

ω′,ς0µ0ρ
′

A 〉 are similarly straightforward
and, after trivial integration over v‖ using the Dirac deltas, they reduce to

〈Ψ̂
ω,ς0µ0ρ

A |Ψ
ω′,ς ′µ′ρ′

B 〉 =
1
c2

∑
smp

{
P

ω′

ω−ω′
δρp (δ

ς ′

s δ
µ′

m − δ
ς0
s δ

µ0
m )δ

ρ′

p

+
|k‖|ω2ms

c2e2
s FMs(vωsm)

δς0
s δ

µ0
m [α

−1
ς0µ0

(vως0µ0
) ◦ ϑ(ω)]ρp (δ

ς ′

s δ
µ′

m − δ
ς0
s δ

µ0
m )δ

ρ′

p δ(ω−ω
′)

}
(C 3)

and

〈Ψ̂
ω,ςµρ

B |Ψ
ω′,ς0µ0ρ

′

A 〉

=
1
c2

∑
smp

{
P

ω

ω′ −ω

(
δςs δ

µ
mδ

ρ
p − δ

ς0
s δ

µ0
m [α

−1
ς0µ0

(vως0µ0
) ◦ αςµ(v

ω
ςµ)]

ρ
p

)
[αsm(v

ω
sm)]

ρ′

p

+
|k‖|ω2ms

c2e2
s FMs(vωsm)

(
δςs δ

µ
mδ

ρ
p − δ

ς0
s δ

µ0
m [α

−1
ς0µ0

(vως0µ0
) ◦ αςµ(v

ω
ςµ)]

ρ
p

)
δς0

s δ
µ0
m ϑ

ρ′

p δ(ω−ω
′)

}
.

(C 4)

After summing over s,m, p, the terms proportional to P(ω−ω′)−1 in (C 3) and (C 4)
cancel out. Then, for (ς ′, µ′) 6= (ς0, µ0), (C 3) becomes

〈Ψ̂
ω,ς0µ0ρ

A |Ψ
ω′,ς ′µ′ρ′

B 〉 =−
|k‖|ω2mς0

c4e2
ς0

FMς0(v
ω
ς0µ0

)
[ϑ(ω) ◦ α−1

ς0µ0
(vως0µ0

)]ρ
′

ρ δ(ω−ω
′) (C 5)

and, for (ς, µ) 6= (ς0, µ0), (C 4) becomes

〈Ψ̂
ω,ςµρ

B |Ψ
ω′,ς0µ0ρ

′

A 〉 =−
|k‖|ω2mς0

c4e2
ς0

FMς0(v
ω
ς0µ0

)
[ϑ(ω) ◦ αςµ(v

ω
ςµ) ◦ α

−1
ς0µ0

(vως0µ0
)]ρ

′

ρ δ(ω−ω
′)

(C 6)

which are the results of (6.30) and (6.31) respectively.
The most difficult calculation is the product 〈Ψ̂ ω,ς0µ0ρ

A |Ψ
ω′,ς0µ0ρ

′

A 〉. After substituting
the eigenfunction expressions (6.12), (6.13), (6.24), (6.25) in the scalar product
definition (5.7) and carrying out the integrations over v‖ that involve Dirac deltas,
along with straightforward sums over s,m, p, one obtains
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〈Ψ̂
ω,ς0µ0ρ

A |Ψ
ω′,ς0µ0ρ

′

A 〉 =
1
c2

{
δρ
′

ρ +
c2

ωω′
(κ2)ρ

′

ρ +P
1

ω−ω′
[ω′ϑρ

′

ρ (ω
′)−ωϑρ

′

ρ (ω)]

+
|k‖|ω2mς0

c2e2
ς0

FMς0(v
ω
ς0µ0

)
[ϑ2(ω) ◦ α−1

ς0µ0
(vως0µ0

)]ρ
′

ρ δ(ω−ω
′)

+

∑
sm

c2e2
s

k2
‖ms

∫
∞

−∞

dv‖ FMs(v‖) [αsm(v‖)]
ρ′

ρ P
1

v‖ − vωsm

P
1

v‖ − vω
′

sm

}
.

(C 7)

The integral in the last term of this expression is calculated with the help of the
identity

P
1

v‖ − vωsm

P
1

v‖ − vω
′

sm

= P
1

vωsm − v
ω′

sm

(
P

1
v‖ − vωsm

−P
1

v‖ − vω
′

sm

)
+π2δ(vωsm − v

ω′

sm) δ(v‖ − v
ω
sm), (C 8)

with the result ∑
sm

c2e2
s

k2
‖ms

∫
∞

−∞

dv‖ FMs(v‖) [αsm(v‖)]
ρ′

ρ P
1

v‖ − vωsm

P
1

v‖ − vω
′

sm

=P
1

ω−ω′

∑
sm

c2e2
s

ms

∫
∞

−∞

dv‖ FMs(v‖) [αsm(v‖)]
ρ′

ρ

×

(
P

1
ω′ − k‖v‖ −mΩs

−P
1

ω− k‖v‖ −mΩs

)
+

π2c2

|k‖|
δ(ω−ω′)

∑
sm

e2
s

ms
FMs(v

ω
sm) [αsm(v

ω
sm)]

ρ′

ρ (C 9)

which, recalling the definition (6.8) of ϑρ′ρ (ω), can be expressed as

∑
sm

c2e2
s

k2
‖ms

∫
∞

−∞

dv‖ FMs(v‖) [αsm(v‖)]
ρ′

ρ P
1

v‖ − vωsm

P
1

v‖ − vω
′

sm

=P
1

ω−ω′

{
ω′
[
δρ
′

ρ −
c2

ω′2
(κ2)ρ

′

ρ − ϑ
ρ′

ρ (ω
′)

]
−ω

[
δρ
′

ρ −
c2

ω2
(κ2)ρ

′

ρ − ϑ
ρ′

ρ (ω)

]}
+

π2c2

|k‖|
δ(ω−ω′)

∑
sm

e2
s

ms
FMs(v

ω
sm) [αsm(v

ω
sm)]

ρ′

ρ . (C 10)

Finally, substituting (C 10) in (C 7), the terms not proportional to δ(ω−ω′) cancel out
and one arrives at the result of (6.29),

〈Ψ̂
ω,ς0µ0ρ

A |Ψ
ω′,ς0µ0ρ

′

A 〉 =

{
|k‖|ω2mς0

c4e2
ς0

FMς0(v
ω
ς0µ0

)
[ϑ2(ω) ◦ α−1

ς0µ0
(vως0µ0

)]ρ
′

ρ

+
π2

|k‖|

∑
sm

e2
s

ms
FMs(v

ω
sm) [αsm(v

ω
sm)]

ρ′

ρ

}
δ(ω−ω′). (C 11)
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