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The search for slow transients, and the effect
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Rayleigh–Bénard convection
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We report experimental results for the influence of a tilt angle β relative to gravity
on turbulent Rayleigh–Bénard convection of cylindrical samples. The measurements
were made at Rayleigh numbers R up to 1011 with two samples of height L equal to
the diameter D (aspect ratio Γ ≡ D/L � 1), one with L � 0.5 m (the ‘large’ sample)
and the other with L � 0.25 m (the ‘medium’ sample). The fluid was water with a
Prandtl number σ =4.38.

In contrast to the experiences reported by Chillà et al. (Eur. Phys. J. B, vol. 40, 2004,
p. 223) for a similar sample but with Γ � 0.5 (D = 0.5 and L =1.0 m), we found no long
relaxation times. For R =9.4 × 1010 we measured the Nusselt number N as a function
of β and obtained a small β dependence given by N(β) = N0[1−(3.1 ± 0.1) × 10−2|β|]
when β is in radians. This reduction of N is about a factor of 50 smaller than the
result found by Chillà et al. (2004) for their Γ � 0.5 sample.

We measured sidewall temperatures at eight equally spaced azimuthal locations on
the horizontal mid-plane of the sample and used them to obtain cross-correlation
functions between opposite azimuthal locations. The correlation functions had
Gaussian peaks centred about t cc

1 > 0 that corresponded to half a turnover time of the
large-scale circulation (LSC) and yielded Reynolds numbers Recc of the LSC. For the
large sample and R = 9.4 × 1010 we found Recc(β) = Recc(0) × [1 + (1.85 ± 0.21)|β| −
(5.9 ± 1.7)β2]. Similar results were obtained from the auto-correlation functions of
individual thermometers. These results are consistent with measurements of the
amplitude δ of the azimuthal sidewall temperature variation at the mid-plane that
gave δ(β) = δ(0) × [1 + (1.84 ± 0.45)|β| − (3.1 ± 3.9)β2] for the same R. An important
conclusion is that the increase of the speed (i.e. of Re) of the LSC with β does not
significantly influence the heat transport. Thus the heat transport must be determined
primarily by the instability mechanism operative in the boundary layers, rather than
by the rate at which ‘plumes’ are carried away by the LSC. This mechanism is
apparently independent of β .

Over the range 109 � R � 1011 the enhancement of Recc at constant β due to the
tilt could be described by a power law of R with an exponent of −1/6, consistent
with a simple model that balances the additional buoyancy due to the tilt angle
by the shear stress across the boundary layers. Even a small tilt angle dramatically
suppressed the azimuthal meandering and the sudden reorientations characteristic of
the LSC in a sample with β = 0. For large R the azimuthal mean of the temperature
at the horizontal mid-plane differed significantly from the average of the top- and
bottom-plate temperatures due to non-Boussinesq effects, but within our resolution
was independent of β .
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1. Introduction
Turbulent convection in a fluid heated from below, known as Rayleigh–Bénard

convection (RBC), has been under intense study for some time (for reviews, see e.g.
Siggia 1994; Kadanoff 2001; Ahlers, Grossmann & Lohse 2002). A central prediction
of models for this system (Kraichnan 1962; Castaing et al. 1989; Shraiman & Siggia
1990; Grossmann & Lohse 2001) is the heat transported by the fluid. It is usually
described in terms of the Nusselt number

N =
QL

Aλ�T
(1.1)

where Q is the heat current, L the cell height, A the cross-sectional area, λ the thermal
conductivity, and �T the applied temperature difference. The Nusselt number depends
on the Rayleigh number

R = αg�T L3/κν (1.2)

and on the Prandtl number

σ = ν/κ. (1.3)

Here α is the isobaric thermal expansion coefficient, g the acceleration due to gravity,
κ the thermal diffusivity, and ν the kinematic viscosity.

An important feature of turbulent RBC is the existence of a large-scale circulation
(LSC) of the fluid (Krishnamurty & Howard 1981). For cylindrical samples of aspect
ratio Γ ≡ L/D � 1 the LSC is known to consist of a single cell, with fluid rising
along the wall at some azimuthal location θ and descending along the wall at
a location θ + π (see, for instance, Qiu & Tong 2001a; Sun et al. 2005b). As Γ

decreases, the nature of the LSC is believed to change. For Γ � 0.5 it is expected
(Verzicco & Camussi 2003; Stringano & Verzicco 2006; Sun et al. 2005a) that the
LSC consists of two or more convection cells, situated vertically one above the other.
Regardless of the LSC structure, the heat transport in turbulent RBC is mediated
by the emission of hot (cold) volumes of fluid known as ‘plumes’ from a more or
less quiescent boundary layer above (below) the bottom (top) plate. These plumes
are swept away laterally by the LSC and rise (fall) primarily near the sidewall. Their
buoyancy helps to sustain the LSC.

In a recent paper Chillà et al. (2004) reported measurements using a cylindrical
sample of water with σ � 2.33 and with L = 1 m and D = 0.5 m for R � 1012. Their
sample thus had an aspect ratio Γ � 0.5 near the boundary between a single-cell and
a multi-cell LSC. They found exceptionally long relaxation times of N that they
attributed to a switching of the LSC structure between two states. Multi-stability was
also observed in Nusselt-number measurements by Roche et al. (2004) for a Γ = 0.5
sample (see also Nikolaenko et al. (2005) for a discussion of these data). Chillá et al.
also found that N was reduced by tilting the sample through an angle β relative
to gravity by an amount given approximately by N(β)/N(0) � 1 − 2β when β is
measured in radians. A reduction by 2 % to 5 % of N (depending on R) due to a
tilt by β � 0.035 of a Γ = 0.5 sample was also reported recently by Sun et al. (2005a),
although in that paper the β-dependence of this effect was not reported. Chillá et al.
developed a simple model that yielded a reduction of N for the two-cell structure
that was consistent in size with their measurements. Their model also assumes that
no reduction of N should be found for a sample of aspect ratio near unity where
the LSC is believed to consist of a single convection cell; they found some evidence
to support this in the work of Belmonte, Tilgner & Libchaber (1995). Indeed, recent
measurements by Nikolaenko et al. (2005) for Γ =1 gave the same N within 0.1 %
for a level sample and a sample tilted by 0.035 rad.
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In this paper we report on a long-term study of RBC in a cylindrical sample with
Γ � 1. As expected, we found no long relaxation times because the LSC is uniquely
defined. The establishment of a statistically stationary state after a large change of R

occurred remarkably quickly, within a couple of hours, and thereafter there were no
further long-term drifts over periods of many days.

We also studied the orientation θ0 of the circulation plane of the LSC by
measuring the sidewall temperature at eight azimuthal locations (Brown, Nikolaenko
& Ahlers 2005a). With the sample carefully levelled (i.e. β = 0) we found θ0 to
change erratically, with large fluctuations. There were occasional relatively rapid
reorientations, as observed before by Cioni, Ciliberto & Sommeria (1997) and by
Sreenivasan, Bershadskii & Niemela (2002). The reorientations usually consisted of
relatively rapid rotations, and rarely were reversals involving the cessation of the LSC
followed by its re-establishment with a new orientation. This LSC dynamics yielded
a broad probability distribution function P (θ0), although a preferred orientation
prevailed. When the sample was tilted relative to gravity through an angle β , a well-
defined new orientation of the LSC circulation plane was established, P (θ0) became
much more narrow, and virtually all meandering and reorientation of the LSC was
suppressed.

We found that N was reduced very slightly by tilting the sample. We obtained
N(β) = N0[1 − (3.1 ± 0.1) × 10−2|β|]. This effect is about a factor of 50 smaller than
the one observed by Chillá et al. for their Γ =0.5 sample.

From sidewall-temperature measurements at two opposite locations we determined
time cross-correlation functions Ci,j . The Ci,j had a peak that could be fitted well
by a Gaussian function, centred about a characteristic time t cc

1 that we interpreted as
corresponding to the transit time needed by long-lived thermal disturbances to travel
with the LSC from one side of the sample to the other, i.e. to half a turnover time
of the LSC. We found that the β-dependence of the corresponding Reynolds number
Recc is given by Recc(β) = Recc(0) × [1 + (1.85 ± 0.21)|β| − (5.9 ± 1.7)β2]. A similar
result was obtained from the auto-correlation functions of individual thermometers.
Thus there is an O(1) effect of β on Re, and yet the effect of β on N was seen
to be nearly two orders of magnitude smaller. We also determined the temperature
amplitude δ of the azimuthal temperature variation at the mid-plane. We expect
δ to be a monotonically increasing function of the speed of the LSC passing the
mid-plane, i.e. of the Reynolds number. We found δ(β) = δ(0) × [1+(1.84 ± 0.45)|β| −
(3.1 ± 3.9)β2]. Thus, for small β its β-dependence is very similar to that of the
Reynolds number.

From the large effect of β on Re and the very small effect on N we come to
the important conclusion that the heat transport in this system is not influenced
significantly by the strength of the LSC. This heat transport thus must be determined
primarily by the efficiency of instability mechanisms in the boundary layers. It seems
reasonable that these mechanisms should be nearly independent of β when β is small.
This result is consistent with prior measurements by Ciliberto, Cioni & Laroche
(1996), who studied the LSC and the Nusselt number in a sample with a rectangular
cross-section. They inserted vertical grids above (below) the bottom (top) plate that
suppressed the LSC, and found that within their resolution of 1 % or so the heat
transport was unaltered. Their shadowgraph visualizations beautifully illustrate that
the plumes are swept along laterally by the LSC when there are no grids and rise
or fall vertically due to their buoyancy in the presence of the grids. Ciliberto et al.
(1996) also studied the effect of tilting their rectangular sample by an angle of 0.17
rad. Consistent with the very small effect of tilting on N found by us, they found
that within their resolution the heat transport remained unaltered.
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Figure 1. A schematic diagram of the sample, showing the location
of the eight sidewall thermometers.

We observed that the sudden reorientations of the LSC that are characteristic of
the level sample are strongly suppressed by even a small tilt angle.

2. Apparatus and data analysis
For the present work we used the ‘large’ and the ‘medium’ sample and apparatus

described in detail by Brown et al. (2005b). Copper top and bottom plates each
contained five thermistors close to the copper–fluid interface. The bottom plate
had imbedded in it a resistive heater capable of delivering up to 1.5 kW uniformly
distributed over the plate. The top plate was cooled via temperature-controlled
water circulating in a double-spiral channel. For the Nusselt-number measurements a
temperature set point for a digital feedback regulator was specified. The regulator read
one of the bottom-plate thermometers at time intervals of a few seconds and provided
appropriate power to the heater. The top-plate temperature was determined by the
temperature-controlled cooling water from two Neslab RTE740 refrigerated
circulators.

Each apparatus was mounted on a base plate that in turn was supported by three
legs consisting of long threaded rods passing vertically through the plate. The entire
apparatus thus could be tilted by an angle β relative to the gravitational acceleration
by turning one of the rods. The maximum tilt angle attainable was 0.12 (0.21) rad for
the large (medium) sample. For positive β the tilt was oriented so that the easterly
part of the cell became elevated. At the beginning of each run at a given tilt angle we
waited for several hours before taking data. A given run would then last from about
one to several days.

The Nusselt number was calculated using the temperatures recorded in each plate
and the power dissipated in the bottom-plate heater. The sidewall was Plexiglas of
thickness 0.64 cm (0.32 cm) for the large (medium) sample. It determined the length
L of the sample. Around a circumference the height was uniformly 50.62 ± 0.01 cm
(24.76 ± 0.01 cm) for the large (medium) sample. The inside diameter was D = 49.70 ±
0.01 cm (D =24.84 ± 0.01 cm) for the large (medium) sample. The end plates had
anvils that protruded into the sidewall, thus guaranteeing a circular cross-section near
the ends. For the large sample we made measurements of the outside diameter near
the half-height after many months of measurements and found that this diameter
varied around the circumference by less than 0.1 %.

Imbedded in the sidewall and within 0.06 cm of the fluid–Plexiglas interface were
eight thermistors, equally spaced azimuthally and positioned vertically at half the
height of the sample. Their location is illustrated in figure 1. Figure 2 shows a typical
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Figure 2. A example of the sidewall temperature at the horizontal mid-plane for the medium
sample as a function of the azimuthal angle θ at R =1.1 × 1010. The solid line is a fit of (2.1)
to the data.

example of their temperatures as a function of azimuthal position. We interpret the
relatively high (low) temperature readings as the angular positions where there was
up-flow (down-flow) of the LSC. A fit of

Ti = Tc + δ cos(iπ/4 − θ0), i = 0, . . . , 7, (2.1)

is shown as the solid line in the figure and yielded the mean centre temperature Tc,
the angular orientation θ0 of the LSC (relative to the location of thermistor 0), and a
measure δ of the LSC strength. The seemingly random scatter of the data about the
fitted function reflects the turbulent nature of the flow; the thermometer resolution
was of order 10−3 ◦C.

We do not have a quantitative model for the dependence of δ on R and Re, but
expect the size of δ to be influenced by the heat transport across a viscous boundary
layer separating the LSC from the sidewall. Thus δ should increase with Rayleigh
number because the azimuthal temperature variation carried by the LSC near the
boundary layer increases with R. At constant R we expect δ to increase with the LSC
Reynolds number Re because the boundary-layer thickness is expected to decrease
with Re as 1/Re1/2. Experimentally we find, over the range 5 × 109 <R < 1011 and for
the large sample, that δ is related to R by an effective power law δ ∝ R0.81, whereas
Re ∝ R0.50 in this range.

From time series of the Ti(t) taken at intervals of a few seconds and covering at
least one day we determined the cross-correlation functions Ci,j (τ ) corresponding to
signals at azimuthal positions displaced around the circle by π (i.e. j = i + 4). These
functions are given by

Ci,j (τ ) = 〈[Ti(t) − 〈Ti(t)〉t ] × [Tj (t + τ ) − 〈Tj (t)〉t ]〉t . (2.2)

We also calculated the auto-correlation functions corresponding to i = j in (2.2), for
all eight thermometers.

Initially each sample was carefully levelled so that the tilt angle relative to gravity
was less than 10−3 rad. Later it was tilted deliberately to study the influence of a
non-zero β on the heat transport.

The fluid was water at 40 ◦C where α = 3.88 × 10−4 K−1, κ = 1.53 × 10−3 cm2 s−1,
and ν = 6.69 × 10−3 cm2 s−1, yielding σ = 4.38.
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Figure 3. Time evolution of the top- and bottom-plate temperatures and of the heat current
for the large sample. Initially the temperature difference was �T � 0. At t = 0.6 h the
top- and bottom-plate regulators were given new set points corresponding to �T = 20 ◦C
(R =9.43 × 1010). (a) Top- (lower data set, Tt ) and bottom- (upper data set, Tb) plate
temperatures. (b) Heat current Q delivered by the temperature regulator designed to hold
Tb at a specified value. (c) Heat current Q on an expanded scale. The solid line represents a
fit of an exponential function to the data for t > 1.2 h that gave a relaxation time τQ = 0.48 h.

3. The Nusselt number of a vertical sample
3.1. Initial transients

In figure 3(a) we show the initial evolution of the top and bottom temperatures of
the large sample in a typical experiment. Initially the heat current was near zero
and Tb and Tt were close to 40 ◦C. The sample had been equilibrated under these
conditions for over one day. Near t = 0.6 h a new temperature set point of 50 ◦C
was specified for the bottom plate, and the circulator for the top plate was set to
provide Tt � 30 ◦C. Figure 3(a) shows that there were transients that lasted until about
0.9 h (1.2 h) for Tb (Tt ). These transients are determined by the response time and
power capability of the bottom-plate heater and the top-plate cooling water and are
unrelated to hydrodynamic phenomena in the liquid. Figures 3(b) and 3(c) show the
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Figure 4. The reduced Nusselt number N/R1/3 for R = 9.43 × 1010 for the large sample as
a function of time during a single experimental run that lasted 9 days. Each data point is
based on temperature and heat-current averages over a time interval of 2 h. The dotted line
corresponds to the value estimated by using all the data. Note that the entire vertical axis
covers only a change of 0.8 %. The mean value is 0.06035, and the standard deviation from
the mean is 5.1 × 10−5 or 0.084 %.

evolution of the heat current. After the initial rapid rise until t � 0.8 h the current
slowly evolved further to a statistically stationary value until t � 3 h. A fit of the
exponential function Q(t) = Q∞ − �Q exp(−t/τQ) to the data for t > 1.2 h is shown
by the solid line in figure 3(c) and yielded a relaxation time τQ = 0.48 ± 0.04 h. We
attribute this transient to the evolution of the fluid flow. Indeed, τQ is similar in size
to the length of transients found by Xi, Lam & Xia (2004) from shadowgraph images
of plumes. It is interesting to compare τQ with intrinsic time scales of the system. The
vertical thermal diffusion time τv ≡ L2/κ is 467 h. Obviously it does not control the
establishment of the stationary state. If we assume that it may be reduced by a factor
of 1/N with N =263, we still obtain a time sale of 1.78 h that is longer than τQ.
We believe that the relatively rapid equilibration is associated with the establishment
of the top and bottom boundary layers that involve much shorter lengths lt and lb .
It also is necessary for the LSC to establish itself; but, as we shall see, its precise
Reynolds number is unimportant for the heat transport. In addition, the LSC can be
created relatively fast since this is not a diffusive process.

3.2. Results under statistically stationary conditions

Figure 3 shows the behaviour of the system only during the first six hours and does
not exclude the slow transients reported by Chillà et al. that occurred over time
periods of O(102) h. Thus we show in figure 4 results for N/R1/3 from a run using
the large sample that was continued under constant externally imposed conditions
for 9 days. Each point corresponds to a value of N based on a time average over
2 h of the plate temperatures and the heat current. Note that the vertical range of
the entire graph is only 0.8 %. Thus, within a small fraction of 1 %, the results are
time independent. Indeed, during nearly a year of data acquisition for a Γ = 1 sample
at various Rayleigh numbers, involving individual runs lasting from one to many
days, we have never found long-term drifts or changes of N after the first few hours.
This differs dramatically from the observations of Chillà et al. who found changes by
about 2 % over about 4 days for their Γ = 0.5 sample.

One might ask whether our runs of up to nine days were long enough to detect
the slow transients reported by Chillà et al., if they are present in our Γ = 1 system.
Chillà et al. suggested that the time scale required to find the transients is comparable
to the ‘diffusion time of the whole cell’. We note that our sample, with L � 0.5 m, has
only half the height of the Γ = 0.5 sample of Chillà et al. (L = 1 m) and thus only
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Figure 5. The reduced Nusselt number N/R1/3 as a function of the Rayleigh number R. Stars:
data from Chillà et al. (2004) for σ = 2.3 and Γ = 0.5. Solid circles: data from Nikolaenko
et al. (2005) for σ = 4.38 and Γ = 0.43. Open symbols: from Nikolaenko et al. (2005) for
Γ = 0.67, with open squares: σ =5.42; open circles: σ = 4.38; open diamonds: σ =3.62.

one quarter the diffusion time. Thus our run duration of nine days, when scaled by
this time, is comparable to the run time of over a month used by Chillà et al.

To document further the stationary nature of the system, we have compared results
from the large sample for N obtained from many runs, each of one to ten days’
duration, over a period of about five months (Nikolaenko et al. 2005; Funfschilling
et al. 2005). The scatter of the data at a given R is only about 0.1 %. This excellent
reproducibility would not be expected if there were slow transients due to transitions
between different states of the LSC.

Although work in our laboratory with other aspect ratios has been less extensive,
we also have not seen any evidence of drifts or transients for the larger Γ = 1.5, 2, 3,

and 6 (Funfschilling et al. 2005; Brown et al. 2005b) nor for the smaller Γ =0.67, 0.43,

and 0.28 (Nikolaenko et al. 2005; Brown et al. 2005b). It may be that Γ = 0.5, being
near the boundary between a single-cell LSC and more complicated LSC structures
(Verzicco & Camussi 2003; Stringano & Verzicco 2006; Sun et al. 2005a), is unique
in this respect.

In figure 5 we compare results for N/R1/3 from our large sample (Nikolaenko
et al. 2005) with those reported by Chillà et al. (stars). Our results are larger by about
15 %. To find a reason for this difference, we first look at the Γ and σ dependence.
The open (solid) circles represent our data for σ =4.38 and Γ = 0.67 (0.43) and show
that the dependence of N on Γ is not very strong. The open squares (diamonds) are
our results for Γ = 0.67 and σ =5.42 (3.62) and indicate that N actually increases
slightly with σ . Thus the lower values of N (compared to ours) obtained by Chillá
et al. for σ =2.3 and Γ = 0.5 cannot be explained in terms of the Γ and σ dependence
of N. Some of the difference can be attributed to non-Boussinesq effects that tend
to reduce N (Funfschilling et al. 2005). However, for the largest �T used by Chillá
et al. (31 ◦C) we expect this effect to be somewhat less than 1 % (Funfschilling et al.
2005; Ahlers et al. 2006). Finally, the effect of the finite conductivity of the top and
bottom plates should be considered. This can reduce N by several percent when �T
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Figure 6. The reduced Nusselt number N(β)/N(0) as a function of time for the large sample
and R = 9.43 × 1010. Open circles: tilt angle β =0. Solid circles: β = 0.087 rad. Open squares:
β = 0.122 rad. All data are normalized by the average N(0) of the data for β = 0. Each data
point is based on temperature and heat-current measurements over a 2 h period. The vertical
dotted lines indicate the times when β was changed.

is large (Chaumat, Castaing & Chillà 2002; Verzicco 2004; Brown et al. 2005b), but it
is difficult to say precisely by how much. It seems unlikely that this effect can explain
the entire difference, particularly at the smaller R (and thus �T ) where it is relatively
small.

4. Tilt-angle dependence of the Nusselt number
In figure 6 we show results for N from the large sample at R = 9.43 × 1010.

Each data point was obtained from a 2 h average of measurements of the various
temperatures and of Q. Three data sets, taken in temporal succession, for tilt angles
β = 0, 0.087, and 0.122 rad are shown. All data were normalized by the mean of the
results for β =0. Typically, the standard deviation from the mean of the data at a
given β was 0.13 %. The vertical dotted lines and the change in the data symbols
show where β was changed. Tilting the cell caused a small but measurable reduction
on N. In figure 7 we show the mean value for each tilt angle, obtained from runs of
at least a day’s duration at each β , as a function of |β|. N decreases linearly with β .
A fit of a straight line to the data yielded

N(β) = N0[1 − (3.1 ± 0.1) × 10−2|β|], (4.1)

with N0 = 273.5. Simlar results for the medium cell are compared with the large-cell
results in figure 8. At the smaller Rayleigh number of the medium sample the effect
of β on N is somewhat less. Because the effect of β on N is so small, we did not
make a more detailed investigation of its Rayleigh-number dependence.

Chillà et al. proposed a model that predicts a significant tilt-angle effect on N for
Γ = 0.5 where they assume the existence of two LSC cells, one above the other. They
also assumed that there would be no effect for Γ = 1 where there is only one LSC
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Figure 7. The Nusselt number N(β) as a function of the tilt angle β for the large sample
with R = 9.43 × 1010. Each point is the average over an entire run of duration one day or
longer. Solid circles: β > 0. Open circles: β < 0. The solid line is a least-squares fit of a straight
line (4.1) to the data for β > 0.
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Figure 8. The reduced Nusselt number N(β)/N0 as a function of the tilt angle β for the
large sample with R = 9.43 × 1010 (solid circles) and the medium sample with R = 1.13 × 1010

(open circles).

cell. Although we found an effect for our Γ = 1 sample, we note that it is a factor of
about 50 smaller than the effect observed by Chillà et al. for Γ =0.5.

5. Tilt-angle dependence of the large-scale circulation
5.1. The orientation

In figure 9 we show the angular orientation θ0 (a) and the temperature amplitude δ

(b) of the LSC. For the first 8000 s shown in the figure, the sample was level
(β =0.000 ± 0.001). θ0 varied irregularly with time. The probability distribution
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Figure 9. (a) The orientation θ0 of the plane of circulation and (b) the temperature amplitude
δ of the large-scale circulation as a function of time for the large sample and R = 9.43 × 1010.
At t = 8000 s the sample was tilted by an angle β =0.087 rad relative to gravity.

0.5 1.0
0

0
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12

θ0/2π

P(θ0)

Figure 10. The probability distribution P (θ0) of the orientation θ0 of the plane of circulation
of the large-scale flow for the large sample and R = 9.43 × 1010 as a function of θ0. Solid
circles: tilt angle β = 0 ± 0.001. Open circles: β = 0.087 rad.

function P (θ0) is shown in figure 10 as solid dots. Essentially all angles are sampled
by the flow, but there is a preferred direction close to θ0/2π = 0.6. At t = 8000 s,
the sample was tilted through an angle β = 0.087 rad. The direction of the tilt was
chosen deliberately so as to oppose the previously prevailing preferred orientation.
As a consequence there is a sharp transition with a change of θ0 by approximately π.
The temperature amplitude δ on average increased slightly, and certainly remained
non-zero. From this we conclude that the transition took place via rotation of the
LSC, and not by cessation that would have involved a reduction of δ to zero (see
Brown et al. 2005a). We note that θ0(t) fluctuated much less after the tilt. The results
for P (θ0) after the tilt are shown in figure 10 as open circles. They confirm that
the maximum was shifted close to θ0 = 0, and that the distribution was much more
narrow.
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Figure 11. The probability distribution P (θ0) of the orientation θ0 of the plane of circulation
of the large-scale flow for the large sample and R = 9.43 × 1010 at three tilt angles β . Solid
circles: β = 0.122 rad. Open circles: β = 0.044 rad. Solid squares: β = 0.026 rad.
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Figure 12. The square root of the variance σθ of the probability distribution P (θ0) of the
orientation θ0 of the plane of circulation of the large-scale flow for the large sample and
R = 9.43 × 1010 as a function of the tilt angle β .

In figure 11 we show P (θ0) for β = 0.122 (solid circles), 0.044 (open circles), and
0.026 (solid squares). A reduction of β leads to a broadening of P (θ0). The square root
of the variance of data like those in figure 11 is shown in figure 12 on a logarithmic
scale as a function of β on a linear scale. Even a rather small tilt angle caused severe
narrowing of P (θ0).

5.2. The temperature amplitude

In figure 13 we show the temperature amplitude δ(β) of the LSC as a function of
β . As was the case for N, the data are averages over the duration of a run at a
given β (typically a day or two). The solid (open) circles are for positive (negative)
β . The data can be represented well by either a linear or a quadratic equation. A
least-squares fit yielded

δ(β) = δ(0) × [1 + (1.84 ± 0.45)|β| − (3.1 ± 3.9)β2] (5.1)

with δ(0) = 0.164 K.
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Figure 13. The time-averaged temperature amplitude δ(β) of the LSC for the large sample
as a function of |β|. Solid circles: β � 0. Open circles: β < 0. For this example R = 9.43 × 1010.

5.3. The Reynolds numbers

Using (2.2), we calculated the auto-correlation functions (AC) Ci,i, i = 0, . . . , 7, as well
as the cross-correlation functions (CC) Ci,j , j =[(i + 4) mod 8], i = 0, . . . , 7, of the
temperatures measured on opposite sides of the sample. Typical examples are shown
in figure 14. The CC has a characteristic peak that we associate with the passage of
relatively hot or cold volumes of fluid at the thermometer locations. Such temperature
cross-correlations have been shown, e.g. by Qiu & Tong (2001b, 2002), to yield delay
times equal to those of velocity-correlation measurements, indicating that warm or
cold fluid volumes travel with the LSC. The function

Ci,j (τ ) = −b0 exp

(
− τ

τ
i,j

0

)
− b1 exp

[
−

(
τ − t

i,j

1

τ
i,j

1

)2]
, (5.2)

consisting of an exponentially decaying background (that we associate with the
random time evolution of θ0) and a Gaussian peak, was fitted to the data for the CC.
The fitted function is shown in figure 14 as a solid line over the range of τ used in
the fit. It is an excellent representation of the data and yields the half turnover time
T/2 = t

i,j

1 of the LSC. Similarly, we fitted the function

Ci,i(τ ) = b0 exp

(
− τ

τ i,i
0

)
+ b1 exp

[
−

(
τ

τ i,i
1

)2]
+ b2 exp

[
−

(
τ − t i,i

2

τ i,i
2

)2]
(5.3)

to the AC data. It consists of two Gaussian peaks, one centred at τ = 0 and the
other at τ = t i,i

2 , and the exponential background. We interpret the location t i,i
2 of the

second Gaussian peak as corresponding to a complete turnover time T of the LSC.
In terms of the averages 〈t i,j

1 〉 and 〈t i,i
2 〉 over all 8 thermometers or thermometer-pair

combinations we define (Qiu & Tong 2002; Grossmann & Lohse 2002) the Reynolds
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Figure 14. The cross-correlation function C04(τ ) between thermometers 0 and 4 (solid circles)
and the auto-correlation function C00(τ ) of thermometer 0 (open circles) for the large sample.
The solid lines are fits of (5.2) and (5.3) to the data. They also indicate the range of τ used for
the fits. For this example the tilt angle was β = −0.009 and R = 9.43 × 1010.
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Figure 15. (a) The Reynolds number Recc(|β|) obtained from the temperature cross-
correlation functions, and (b) the Reynolds number Reac(|β|) obtained from the temperature
auto-correlation functions, of the LSC for the large sample and R = 9.43 × 1010 as a function
of the absolute value |β| of the tilt angle. Solid circles: β � 0. Open circles: β < 0. The Rayleigh
number was 9.43 × 1010.

numbers

Recc =
(
L/

〈
t
i,j

1

〉)
(L/ν) (5.4)

and

Reac =
(
2L/

〈
t i,i
2

〉)
(L/ν). (5.5)

Here the length scale 2L was used to convert the turnover time T into an LSC
speed 2L/T. For Γ = 1, the length 4L might have been used instead, as was done for
instance by Lam, Shang & Xia (2002). This would have led to a Reynolds number
larger by a factor of two. In figure 15(a) and 15(b) we show Recc(|β|) and Reac(|β|)
respectively. The solid circles are for positive and the open ones for negative β .
Initially Recc(|β|) and Reac(|β|) grow linearly with β , but the data also reveal some
curvature as |β| becomes larger. Thus we fitted quadratic equations to the data and
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Figure 16. The Reynolds number Reτ (|β|) obtained from the half-widths τ1 of the temperature
cross-correlation functions (solid circles) and from the half-widths τ1 (open squares) and τ2

(open circles) of the temperature auto-correlation functions as a function of the tilt angle. The
Rayleigh number was 9.43 × 1010.

obtained

Recc(β) = Recc(0) × [1 + (1.85 ± 0.21)|β| − (5.9 ± 1.7)β2] (5.6)

and

Reac(β) = Reac(0) × [1 + (1.72 ± 0.38)|β| − (4.1 ± 3.2)β2] (5.7)

with Recc(0) = 10467 ± 43 and Reac(0) = 10565 ± 82 (all parameter errors are 67 %
confidence limits). The results for Recc(0) and Reac(0) are about 10 % higher than the
prediction by Grossmann & Lohse (2002) for our σ and R. The excellent agreement
between Recc and Reac is consistent with the idea that the CC yields T/2 and that the
AC gives T. As expected (see § 2), the β-dependences of both Reynolds numbers are
the same within their uncertainties. It is interesting to see that the coefficients of the
linear term also agree with the corresponding coefficient for δ (equation (5.1)). This
suggests that there may be a closer relationship between δ and Re than we would
have expected a priori. However, the coefficient of the linear term in (5.6) or (5.7)
is larger by a factor of about 50 than the corresponding coefficient for the Nusselt
number in (4.1).

Although the precise meaning of the half-widths τ1 and τ2 in (5.2) and (5.3) is
less clear than that of t1 and t2, it is of some interest to compute the corresponding
Reynolds numbers Reτ from (5.4). These are shown in figure 16. They are about 40 %
larger than Reac or Recc, and all three are of about the same size. The results obtained
from the AC show considerable scatter, and the β-dependence is not resolved very well.
On the other hand, the result from the half-width of the Gaussian peak of the CC is
more precise, and a fit of a straight line to the data yields Reτ =Reτ (0) × (1 + 2.27|β|)
with Reτ (0) = 15130.

In figure 17 we show measurements of Recc and of δ, each normalized by its value
at β =0, as a function of β for the medium sample and R =1.13 × 1010. For this
sample we were able to attain larger values of β than for the large one. It is seen that
δ and Recc have about the same β dependence for small β , but that δ then increases
more rapidly than Recc as β becomes large. Although we do not know the reason
for this behaviour, it suggests that the larger speed of the LSC enhances the thermal
contact between the sidewall and the fluid interior.
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Figure 17. The Reynolds-number ratio Recc(β)/Recc(0) (solid circles) obtained from the
temperature cross-correlation functions, and the amplitude ratio δ(β)/δ(0) (open circles), of
the LSC of the medium sample for R = 1.13 × 1010 as a function of β .
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Figure 18. The Reynolds-number ratio Recc(β = 0.122)/Recc(0) of the LSC as a function of
R. Open circles: medium sample. Solid circles: large sample. Solid line: power law with an
exponent of 1/6.

The Rayleigh-number dependence of Recc at constant β is shown in figure 18. Here
the open (solid) circles are from the medium (small) sample. There is consistency
between the two samples, and the data can be described by a power law with a small
negative exponent. The solid line is drawn to correspond to an exponent of −1/6.

5.4. A model for the enhancement of the Reynolds number

As seen in figure 10, the LSC assumes an orientation for which gravity enhances the
velocity above (below) the bottom (top plate), i.e. the LSC flows ‘uphill’ at the bottom
where it is relatively warm and ‘downhill’ at the top where it is relatively cold. This
leads to an enhancement of the Reynolds number of the LSC. As suggested by Chillà
et al. (2004), one can model this effect by considering the buoyancy force per unit
area parallel to the plates. This force can be estimated to be ρlgβα�T/2 where l is
the boundary-layer thickness. It is opposed by the increase of the viscous shear stress
across the boundary layer that may be represented by ρνu′/l where u′ is the extra
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speed gained by the LSC due to the tilt. Equating the two, substituting

l = L/(2N), (5.8)

solving for u′, using (1.2) for R, and defining Re′ ≡ (L/ν)u′ one obtains

Re′ =
Rβ

8σN2
(5.9)

for the enhancement of the Reynolds number of the LSC. From our measurements at
large R we found that Re and N (Nikolaenko et al. 2005) can be represented within
experimental uncertainty by

Re = 0.0345R1/2, (5.10)

N = 0.0602R1/3, (5.11)

giving

Re ′

Re
= 1.00 × 103R−1/6σ −1β. (5.12)

For our σ =4.38 and R = 9.43 × 1010 one finds Re′/Re = 3.4β , compared to the
experimental value (1.9 ± 0.2)β from Recc (equation (5.6)) and (1.7 ± 0.4)β from Reac

(equation (5.7)). We note that the coefficient 1.00 × 103 in (5.12) depends on the
definition of Re given in (5.4) and (5.5) that was used in deriving the result (5.10).
If the length scale 4L had been used instead of 2L to define the speed of the LSC,
as was done for instance by Lam et al. (2002), this coefficient would have been
smaller by a factor of two, yielding near-perfect agreement with the measurements.
In figure 18 the predicted dependence on R−1/6 also is in excellent agreement with the
experimental results. However, such good agreement may be somewhat fortuitous,
considering the approximations that were made in the model. Particularly the use of
(5.8) for the boundary-layer thickness is called into question at a quantitative level by
measurements of Lui & Xia (1998) that revealed a significant variation of l with lateral
position. In addition, it is not obvious that the thermal boundary-layer thickness l
should be used, as suggested by Chillà et al. (2004), to estimate the shear stress;
perhaps the thickness of the viscous boundary layer would be more appropriate.

In discussing their Γ = 0.5 sample, Chillà et al. (2004) took the additional step of
assuming that the relative change of N due to a finite β is equal to the relative
change of Re. For our sample with Γ =1 this assumption does not hold. As we saw
above, the relative change of N is a factor of about 50 less than the relative change
of Re. The origin of the (small) reduction of the Nusselt number is not obvious.
Naively one might replace g in the definition of the Rayleigh number by g cos(β);
but this would lead to a correction of order β2 whereas the experiment shows that
the correction is of order β , albeit with a coefficient that is smaller than of order one.
The linear dependence suggests that the effect of β on N may be provoked by the
change of Re with β , but not in a direct causal relationship.

6. Tilt-angle dependence of reorientations of the large-scale circulation
It is known from direct numerical simulation (Hansen, Yuen & Kroening 1991) and

from several experiments (Cioni, Ciliberto & Sommeria 1997; Niemela et al. 2001;
Sreenivasan et al. 2002; Brown et al. 2005a) that the LSC can undergo relatively
sudden reorientations. Not unexpectedly, we find that the tilt angle strongly influences
the frequency of such events. For a level sample (β =0) we demonstrated elsewhere
(Brown et al. 2005a) that reorientations can involve changes of the orientation of the
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Figure 19. The number of reorientation events per hour of the angular orientation of the plane
of circulation of the LSC in the large sample for R = 9.43 × 1010. The solid line shows (6.1).

plane of circulation of the LSC through any angular increment �θ , with the probab-
ility P (�θ) increasing with decreasing �θ . Thus, in order to define a ‘reorientation’,
we established certain criteria. We required that the magnitude of the net angular
change |�θ | had to be greater than �θmin = (2π)/8. In addition we specified that the
magnitude of the net average azimuthal rotation rate |θ̇ | ≡ |�θ/�t | had to be greater
than θ̇min =0.1/T where T is the LSC turnover time and �t is the duration of the
reorientation (we refer to Brown et al. (2005a) for further details). Using these criteria,
we found that the number of reorientation events n(β) at constant R = 9.43 × 1010

decreased rapidly with increasing |β|. These results are shown in figure 19. It is worth
noting that nearly all of these events are rotations of the LSC and very few involved
a cessation of the circulation. A least-squares fit of the Gaussian function

n(β) = N0 exp[−(β − β0)
2/w2] (6.1)

to the data yielded N0 = 1.23 ± 0.06 events per hour, β0 = 0.0093 ± 0.0010 rad, and
w = 0.0251 ± 0.0015 rad. It is shown by the solid line in the figure.

We note that the distribution function is not centred on β = 0. The displacement of
the centre by about 9 mrad is much more than the probable error of β . We believe
that it is caused by the effect of the Coriolis force on the LSC that will be discussed
in more detail elsewhere (Brown & Ahlers 2006).

7. Tilt-angle dependence of the centre temperature
We saw from figure 13 that the increase of Re with β led to an increase of the

amplitude δ of the azimuthal temperature variation at the horizontal mid-plane. An
additional question is whether the tilt-angle effect on this system has an asymmetry
between the top and bottom that would lead to a change of the mean centre
temperature Tc (see (2.1)). Chillà et al. (2004) report such an effect for their Γ = 0.5
sample. For a Boussinesq sample with β = 0 we expect that Tc = Tm with Tm = (Tt +
Tb)/2 (Tt and Tb are the top and bottom temperatures respectively), or equivalently
that �t = Tc − Tt is equal to �b = Tb − Tc. A difference between �b and �t will
occur when the fluid properties have a significant temperature dependence (Wu &
Libchaber 1991; Zhang, Childress & Libchaber 1997; Ahlers et al. 2006), i.e. when
there are significant deviations from the Boussinesq approximation. For the sequence
of measurements with the large apparatus and R = 9.43 × 1010, as a function of β the
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Figure 20. (a) The temperature difference in Kelvin between the bottom and the centre
(�b = Tb −Tc , solid circles) and the centre and the top (�t = Tc −Tt , open circles) as a function
of the tilt angle β . (b) The temperature difference Tc − Tm = (�t − �b)/2 between the centre
temperature Tc and the mean temperature Tm = (Tt + Tb)/2. The centre temperature is the
average of the values given by the eight sidewall thermometers.

mean value of �T = Tb −Tt was 19.808 ± 0.018◦C and Tc −Tm was 0.485◦C, indicating
a significant non-Boussinesq effect. In figure 20(a) we show �t and �b as a function
of β . Increasing β does not have a significant effect for our Γ = 1 sample. This is
shown with greater resolution in figure 20(b) where Tc −Tm = (�t −�b)/2 is shown. We
believe that the small variation, over a range of about 5 × 10−3◦C, is within possible
systematic experimental errors and consistent with the absence of a tilt-angle effect.

8. Summary
In this paper we report on an experimental investigation of the influence on

turbulent convection of a small tilt angle β relative to gravity of the axes of two
cylindrical Rayleigh–Bénard samples. The aspect ratios were Γ � 1.

Where there was overlap, there were significant differences between our results
and those obtained by Chillà et al. (2004) for a Γ = 0.5 sample. Presumably these
differences are attributable to the different LSC structures for Γ = 1 and Γ = 0.5. We
found our system to establish a statistically stationary state quickly, within a couple
of hours, after a Rayleigh-number change whereas Chillà et al. (2004) found long
transients that they attributed to changes of the LSC structure. We found a very small
reduction of the Nusselt number N with increasing β , by about 4% per radian at
small β . Chillà et al. (2004) found a decrease by 200 % per radian for their sample.

In contrast to the very small effect of β on N, we found an increase of the Reynolds
number Re by about 180 % per radian for small β . The small effect on N in the
presence of this large change of Re indicates that the heat transport does not depend
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strongly on the speed of the LSC sweeping over the boundary layers. Instead, N must
be determined by instability mechanisms of the boundary layers, and the associated
efficiency of the ejection of hot (cold) volumes (so-called ‘plumes’) of fluid from the
bottom (top) boundary layer.

It is interesting to note that the strong dependence of Re on β in the presence of
only a very weak dependence of N on β can be accommodated quite well within
the model of Grossmann & Lohse (2002). The Reynolds number can be changed by
introducing a β-dependence of the parameter a(β) in their equations (4) and (6). As
pointed out by them, a change of a has no influence on the predicted value for N.

We also measured the frequency of rapid LSC reorientations that are known to
occur for β =0. We found that such events are strongly suppressed by a finite β . Even
a mild breaking of the rotational invariance, corresponding to β � 0.04, suppresses
re-orientations almost completely.

We are grateful to Siegfried Grossmann and Detlef Lohse for fruitful exchanges.
This work was supported by the United States Department of Energy through Grant
DE-FG02-03ER46080.
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