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A group-theoretic generalization of the
p-adic local monodromy theorem
Shuyang Ye
Abstract. Let G be a connected reductive group over a p-adic number field F. We propose and study
the notions of G-φ-modules and G-(φ,∇)-modules over the Robba ring, which are exact faithful F-
linear tensor functors from the category of G-representations on finite-dimensional F-vector spaces
to the categories of φ-modules and (φ,∇)-modules over the Robba ring, respectively, commuting
with the respective fiber functors. We study Kedlaya’s slope filtration theorem in this context, and
show that G-(φ,∇)-modules over the Robba ring are “G-quasi-unipotent,” which is a generalization
of the p-adic local monodromy theorem proved independently by Y. André, K. S. Kedlaya, and Z.
Mebkhout.

1 Introduction

Let p be a prime number and q a power of p. Let K be a complete nonarchimedean
discretely valued field of characteristic 0 equipped with an automorphism φ, the
Frobenius, inducing the q-power map on the residue field κ ⊇ Fq . We also require K
to be unramified over the fixed subfield F under φ. See Hypothesis 2.1 for a concrete
example.

The Robba ring R = R(K , t) is the ring of bidirectional power series ∑
i∈Z

c i t i in one

variable t with coefficients in K which converge in an annulus [α, 1) for some series-
dependent 0 < α < 1. The Robba ring R is endowed with an absolute Frobenius lift φ
which extends the Frobenius on K and lifts the q-power map on κ((t)), and with the
derivation ∂ = d/dt.

A (φ,∇) -module over R is a triple (M , Φ,∇), where M is a finite free R-module,
Φ is a Frobenius, i.e., a φ-linear endomorphism of M whose image spans M over R,
and ∇∶ M → M ⊗RRdt is a connection. Moreover, Φ and ∇ should satisfy the gauge
compatibility condition, which says that, after choosing an R-basis for M, the actions
Φ and ∇ are given by matrices A and N, respectively, and these matrices should satisfy
N = μ ⋅A(φ(N))A−1 − ∂(A)A−1, where μ ∶= ∂(φ(t)).
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A group-theoretic generalization of the p-adic local monodromy theorem 1451

The (φ,∇)-modules, also known as the overconvergent F -isocrystals in the lit-
erature, are closely related to p-adic local systems on Specκ((t)) (for a summary,
we refer to [13]), for which the correct monodromy theorem is the p-adic local
monodromy theorem (pLMT), conjectured by Crew [5], and proved independently by
André [1], Kedlaya [9], and Mebkhout [17]. It states that every (φ,∇)-module over
R is quasi-unipotent. Concretely, a (φ,∇)-module M over R, after an étale extension
to RL (the Robba ring canonically associated to some finite separable extension L of
κ((t))), admits a filtration by (φ,∇)-submodules such that the connections induced
on the gradiation are trivial. A matricial description of the theorem is given as
follows. Let d be the rank of M over R, and let A ∈ GLd(R) (resp. N ∈ Matd ,d(R))
be the matrix of Φ (resp. ∇) in some basis. Then, there exists B ∈ GLd(RL) such
that BNB−1 − ∂(B)B−1 is an upper-triangular block matrix with zero blocks in the
diagonal.

We mention two applications of the pLMT in p-adic Hodge theory.

• In [3], Berger associated to every p-adic de Rham representation V a (φ,∇)-module
NdR(V) over a Robba ring. He showed that V is potentially semistable if and only if
NdR(V) is quasi-unipotent. Using the pLMT, he could prove the p-adic monodromy
theorem (previously a conjecture of Fontaine): every p-adic de Rham representation
is potentially semistable.

• In [16], Marmora used the pLMT to construct a functor from the category of (φ,∇)-
modules over R to that of Knr-valued Weil–Deligne representations of the Weil
group Wκ((t)), where Knr is the maximal unramified extension of K in a fixed
algebraic closure of K.

Rather than the general linear group, a Galois representation may take value in
some connected reductive group G, such as a special linear group or a symplectic
group. In order to have appropriate formulations of the above results in this context,
it is helpful to establish a G-version of the pLMT, which is the main motivation of our
present paper.

In this paper, we introduce the notion of G-φ -modules over R (resp. G-(φ,∇) -
modules over R), which are exact faithful F-linear tensor functors from the category
RepF(G) of G-representations on finite-dimensional F-vector spaces to the category
Modφ

R
of φ-modules over R (resp. to the category Modφ ,∇

R
of (φ,∇)-modules over

R), commuting with the respective fiber functors. These constructions are inspired by
that of G-isocrystals introduced in [6, Section IX.1].

Before coming to the main theorem, we first explain the group-theoretic gauge
compatibility condition (Definition 4.6). Let G be an affine algebraic F-group, and let g
be its Lie algebra. For any y ∈ G(R) and Y ∈ g⊗F R, we define Γy(Y) ∶= Ad(y)(Y) −
dlog(y), where Ad∶G → GLg is the adjoint representation, and dlog∶G(R) → g⊗F R
is defined in Construction 4.4. We say g ∈ G(R) and X ∈ g⊗F R satisfy the gauge
compatibility condition if X = Γg( μ φ(X)). When G = GLd , we have Ad(y)(Y) =
yYy−1 and dlog(y) = ∂(y)y−1. In this context, the group-theoretic gauge compati-
bility condition coincides with the aforementioned matrical one.

Our main theorem is the following G-version of the pLMT.
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Theorem 1.1 (Theorem 4.21) Let G be a connected reductive F-group, and let g be its
Lie algebra. If g ∈ G(R) and X ∈ g⊗F R satisfy X = Γg( μ φ(X)), then there exists a
finite separable extension L over κ((t)) and an element b ∈ G(RL) such that Γb(X) ∈
Lie (UGR

(−λg))⊗RRL .

Here, λg ∶Gm ,R → GR is a cocharacter associated to g whose reciprocal is denoted
by −λg , and UGR

(−λg) denotes the unipotent radical of the parabolic subgroup of
GR associated to −λg . When G = GLd , g (resp. X) should be thought as the matrix
of the Frobenius (resp. the matrix of the connection), and Γb( ) as the matrix of
a connection under the change-of-basis via b−1. Moreover, Lie (UGR

(−λg))⊗RRL
consists of upper-triangular matrices over RL with zero blocks (of certain sizes)
in the diagonal. As such, Theorem 1.1 recovers the matricial pLMT described
above.

In Proposition 4.9, we show that G-(φ,∇)-modules over R are indeed pairs (g , X)
subject to the gauge compatibility condition in the theorem. In this sense, the theorem
can be interpreted as saying that G-(φ,∇)-modules over R are “G-quasi-unipotent.”
In Examples 4.10 and 4.11, we give examples of the existence of such pairs for G a special
linear group and a symplectic group, respectively.

More examples of G-(φ,∇)-modules are expected from Berger’s functor NdR
mentioned previously. Explicitly, we hope to show in a future work that if a p-adic de
Rham representation V takes value in a connected reductive group G, then NdR(V) is
a G-(φ,∇)-module. As another future work, we intend to use Theorem 1.1 to formulate
a G-version of Marmora’s functor, namely, to construct a functor from the category of
G-(φ,∇)-modules over R to that of Weil–Deligne representations of the Weil group
Wκ((t)) taking value in G(Knr).

Our approach to the theorem closely follows that of the pLMT in [9] for absolute
Frobenius lifts, wherein the author used his slope filtration theorem (along with apply-
ing the pushforward functor and twisting to each quotient of the filtration) to reduce
the problem to the unit-root case, and then apply the unit-root pLMT attributed to
Tsuzuki [23] to finish. More precisely, we use Kedlaya’s slope filtration theorem to
construct a Q-filtered fiber functor HNg from RepF(G) to Q-FilR, the category of
Q-filtered modules over R (see Theorem 3.4). We then reduce HNg to a Z-filtered
fiber functor HNZ

g from RepF(G) to Z-FilR, the category of Z-filtered modules over
R (see Lemma 3.10). Then, a result of Ziegler (Theorem 2.12) immediately implies that
HNZ

g is splittable, i.e., factors through a Z-graded fiber functor (see Proposition 3.11).
In particular, for any splitting of HNZ

g , we construct a morphism λg ∶Gm ,R → GR of
R-groups in Section 3.4, which is called the Z -slope morphism of g. With this, we can
reduce the G-(φ,∇)-module (g , X) over R, involving the (generalized) pushforward
functor and twisting, to a unit-root one (see Corollary 4.20). Theorem 1.1 then follows
from the unit-root pLMT and a Tannakian argument.

The paper is organized as follows. In Section 2, we set up basic notation
and conventions, and then recall some necessary background on the theory of
slopes and Tannakian formalism. In Section 3, we study G-φ-modules over the
Robba ring, and construct slope morphisms. In Section 4, we consider G-(φ,∇)-
modules over the Robba ring, and prove our main result, Theorem 1.1, in the last
subsection.
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2 Preliminaries

2.1 Notation and conventions

When k is a field, we denote by Veck the category of finite-dimensional k-vector
spaces. When R is a k-algebra,1 we denote by ModR the category of R-modules, and
by AlgR the category of R-algebras. When V , W ∈ Veck , we write VR for V ⊗k R,
and write αR ∶= α ⊗ R, the R-linear extension of α, for all k-linear maps α∶V → W .
When G is an affine algebraic k-group, we denote by k[G] the Hopf algebra of G, by
GR ∶= G ×Spec k Spec R the base extension, by H1(k, G) ∶= H1(Gal(ksep/k), G(ksep))
the first Galois cohomology set, and by Repk(G) the category of representations of G
on finite-dimensional k-vector spaces.

By a reductive k-group, we mean a (not necessarily connected) affine algebraic k-
group G such that every smooth connected unipotent normal subgroup of G k̄ is trivial,
where k̄ is an algebraic closure of k.

For the rest of this paper, we work under the following hypothesis.

Hypothesis 2.1 Let p be a prime number and q = p f an integral power of p. Let F
be a finite extension of Qp with the ring of integers OF , a fixed uniformizer ϖF and
the residue field Fq of q elements. Let κ be a perfect field containing Fq . Let OK =
OF ⊗W(Fq)W(κ), where W(Fq) (resp. W(κ)) denotes the ring of Witt vectors with
coefficients in Fq (resp. in κ). Then, K ∶= Frac(OK) ≅ F ⊗W(Fq)W(κ) is a complete
discretely valued field with ring of integers OK , a uniformizer ϖ ∶= ϖF ⊗ 1 and residue
field κ. Let Frob be the ring endomorphism of W(κ) induced by the p-power map on
κ, and let

φ ∶= IdF ⊗Frob f ∶K �→K

be the Frobenius automorphism on K relative to F. Then, φ reduces to the q-power map
on κ, and the fixed field of φ on K is F ⊗W(Fq)W(Fq) ≅ F.

2.2 The Robba ring and its variants

For α ∈ (0, 1), we put

Rα ∶= {∑
i∈Z

c i t i ∣ c i ∈ K , lim
i→±∞

∣c i ∣ρ i = 0, ∀ρ ∈ [α, 1)}.

For any ρ ∈ [α, 1), we define the ρ-Gauss norm on Rα by setting ∣∑
i

c i t i ∣ρ ∶=

supi{∣c i ∣ρ i}. The Robba ring is defined to be the union R ∶= R(K , t) ∶= ⋃
α∈(0,1)

Rα . For

any ∑
i

c i t i ∈ R, we define ∣∑
i

c i t i ∣1 ∶= supi{∣c i ∣} ∈ R≥0 ∪ {∞}, the 1-Gauss norm.

The bounded Robba ring E† = E†(K , t) is the subring of R consisting of bounded
elements (i.e., elements with finite 1-Gauss norm), which is actually a Henselian
discretely valued field w.r.t. the 1-Gauss norm with residue field κ((t)).

1By an algebra, we always mean a commutative algebra with 1.
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Let R ∈ {R,E†}. An absolute q-power Frobenius lift on R is a ring endomorphism
φ∶R → R given by ∑

i∈Z
c i t i �→ ∑

i∈Z
φ(c i)u i for u = φ(t) ∈ R such that ∣u − tq ∣1 < 1.

For any α ∈ (0, 1), we define R̃α to be the ring of formal sums ∑
i∈Q

c i t i with c i ∈ K,

subject to the following properties.
• For any c > 0, the set {i ∈ Q ∣ ∣c i ∣ ≥ c} is well-ordered.
• For any ρ ∈ [α, 1), we have lim

i→±∞
∣c i ∣ρ i = 0.

For any ρ ∈ [α, 1), we define the ρ-Gauss norm on R̃α by setting

∣∑
i

c i t i ∣
ρ
= sup

i∈Q
{∣c i ∣ρ i}.

We define R̃ ∶= R̃(K , t) ∶= ⋃
α∈(0,1)

R̃α , the extended Robba ring. The absolute Frobenius

lift on R̃ is the ring automorphism on R̃ given by ∑
i∈Q

c i t i ↦ ∑
i∈Q

φ(c i)t iq . We denote

by Ẽ
† the subring of R̃ consisting of bounded elements. By [11, Proposition 2.2.6], we

have a φ-equivariant embedding ψ ∶ R → R̃ such that ∣ψ(x)∣ρ = ∣x∣ρ for ρ sufficiently
close to 1.

2.3 The slope filtration theorem

We recall Kedlaya’s theory of slopes. Let R ∈ {E† ,R, Ẽ† , R̃} equipped with a Frobenius
lift φ. For the notions of φ-modules and (φ,∇)-modules over R, we refer to [9, Section
2.5]. We denote by Modφ

R (resp. Modφ ,∇
R ) the category of φ-modules (resp. (φ,∇)-

modules) over R.
Let (M , φ) ∈ Modφ

R, and let n be a positive integer. Then, (M , φn) is a φn-module
over (R, φn). The n-pushforward functor is given by

[n]∗∶Modφ
R �→Modφn

R , (M , φ) �→ (M , φn).

For any s ∈ Z, we define the twist M(s) of (M , φ) by s to be the φ-module (M , ϖsΦ).
Now, let M be a φ-module over R of rank d.

(i) We say that M is a unit-root φ-module if there exists a basis v1 , . . . , vd of M over R
in which φ acts via an invertible matrix in GLd(OE†) if R ∈ {E† ,R}, or GLd(OẼ

†)
if R ∈ {Ẽ† , R̃}.

(ii) Let μ = s/r ∈ Q with r > 0 and (s, r) = 1. We say that M is pure of slope μ if
([r]∗M)(−s) is unit-root.

Let M ∈ Modφ
R. We have a canonical filtration 0 = M0 ⊆ M1 ⊆ ⋯ ⊆ M l = M of φ-

submodules over R such that each quotient M i/M i−1 is pure of some slope μ i with
μ1 < ⋯ < μ l , by [11, Theorem 1.7.1] if R = R or [11, Proposition 1.4.15 and Theorem
2.1.8]) if R = R̃. This is called the slope filtration of M. We call μ1 , . . . , μ l the jumps
of the slope filtration. The (uniquely determined, not necessarily strictly) increasing
sequence (μ1 , . . . , μ1 , . . . , μ l , . . . , μ l), with each μ i appearing rkR(M i/M i−1) times, is
said to be the slope sequence for M. We call rkR(M i/M i−1) the multiplicity of μ i for all
1 ≤ i ≤ l .
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Moreover, if M is a (φ,∇)-module over R, then the slope filtration can be refined
to a filtration of (φ,∇)-submodules. This is [9, Theorem 6.12], and is referred to as the
slope filtration theorem for (φ,∇) -modules over R.

To continue, we need to recall some notions introduced in [12, Section 14]. A
difference ring (resp. difference field) is a ring (resp. field) R equipped with an endo-
morphism ϕ. A difference module over R is an R-module M equipped with a ϕ-linear
endomorphism Φ. A finite free difference module M over R is said to be dualizable
(resp. trivial) if M admits a basis over R such that Φ acts via an invertible matrix
(resp. the identity matrix). For example, a φ-module over R is a dualizable difference
module over R where R is any of the rings constructed in Section 2.2. A dualizable
difference module M over R is said to be standard if it admits a basis e1 , . . . , ed such
that e i = Φ(e i−1) for 2 ≤ i ≤ d and Φ(ed) = λe1 for some λ ∈ R×. A difference field
(k, ϕk) is called strongly difference-closed if ϕk is an automorphism and any dualizable
difference module over k is trivial.

Let k be a complete nonarchimedean valued field and (k, ϕk) is a difference field
in which ϕk is bijective. An admissible extension of (k, ϕk) is a difference field (�, ϕ�),
where � is a field extension of k complete for the valuation extending the one on k
with the same value group, and ϕ� is an automorphism of � extending ϕk . (See [11,
Definition 3.2.1].)

Lemma 2.2 [15, Lemma 1.5.3] The field K admits an admissible extension E such that
the residue field κE of E is strongly difference-closed.

The following lemma is a recollection of some results which will be used in the
sequel.

Lemma 2.3 Let E be an admissible extension of K such that κE is strongly difference-
closed.
(i) Let M ∈ Modφ

R
. Then, tensoring the slope filtration of M with R̃(E , t) gives the slope

filtration of M ⊗R R̃(E , t).
(ii) Let 0�→ M1 �→ M �→ M2 �→0 be a short exact sequence of φ-modules over

R̃(E , t) such that the slopes of M1 are all less than the smallest slope of M2. Then,
the sequence splits.

(iii) Every φ-module over R̃(E , t) admits a Dieudonné–Manin decomposition, i.e., it is
a direct sum of standard φ-submodules.

(iv) Let M and N be φ-modules over R̃(E , t). If the slopes of M are all less than the
smallest slope of N, then no nonzero morphism from M to N exists.

Assertion (i) is [15, Proposition 1.5.6]. Assertion (ii) is [15, Proposition 1.5.11], and
assertion (iii) is Proposition 1.5.12 in loc. cit. Assertion (iv) is [11, Proposition 1.4.18].

2.4 The Tannakian duality

In this subsection, k denotes a field unless otherwise specified. We follow the defini-
tions and notations in [7]. We denote by ωG the forgetful functor Repk(G) → Veck ,
which is called the fiber functor.

The following Tannakian duality will be repeatedly used in this paper, whose proof
can be found, e.g., in [18, Theorem 9.2].
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Theorem 2.4 Let G be an affine algebraic k-group, and let R ∈ Algk . Suppose that for
any (V , ρV) ∈ Repk(G), we are given an R-linear map λV ∶VR → VR . If the family {λV ∣
(V , ρV) ∈ Repk(G)} satisfies

(i) λV⊗W = λV ⊗ λW for all V , W ∈ Repk(G);
(ii) λ1 is the identity map where 1 is the trivial representation on k;

(iii) for all G-equivariant maps α∶V → W, we have λW ○ αR = αR ○ λV .
Then, there exists a unique g ∈ G(R) such that λV = ρV(g) for all (V , ρV) ∈ Repk(G).

Corollary 2.5 Let G be an affine algebraic k-group. We have an isomorphism G ≅
Aut⊗(ωG) of affine algebraic k-groups.

Corollary 2.6 Let G be a smooth affine algebraic k-group. Let �/k be a field extension,
and let η∶Rep�(G) → Vec� be a fiber functor over �. Then, Hom⊗(ωG , η) is a G-torsor
over �. In particular, if H1(�, G) = {1} and G(�) ≠ ∅, then ωG is isomorphic to η
over �.

Proof Notice that we have an action

Hom⊗(ωG , η) × Aut⊗(ωG)�→Hom⊗(ωG , η)

by precomposition. By [7, Theorem 3.2(i)], Hom⊗(ωG , η) is an Aut⊗(ωG)-torsor. In
particular, it is a G-torsor over � by Corollary 2.5.

Because G is a �-group variety, G-torsors over � are �-varieties by [18, Proposition
2.69], whose isomorphism classes are classified by H1(�, G). It follows from the
triviality of H1(�, G) that Hom⊗(ωG , η)(�) ≅ G(�); hence, Hom⊗(ωG , η)(�) ≠ ∅. [7,
Proposition 1.13] then implies the second assertion. ∎

To end this subsection, we give a Lie algebra version of Theorem 2.4. We start with
recalling the notion of the Lie algebra of a k-group functor. (See [8, Chapitre II, Section
4] for more details. Notice that k denotes a ring in loc. cit.)

For any R ∈ Algk , we define the R-algebra of dual numbers R[ε] ∶= R[X]/(X2). Put
ε ∶= X + (X2); we then have the canonical projection πR ∶R[ε] → R, ε ↦ 0. Let G be a
k-group functor. We define

Lie(G)(R) ∶= Ker G(πR).

Let f ∶G → H be a morphism of k-group functors. The commutative diagram

(1)

Lie(G)(R) = Ker(G(πR)) Lie(H)(R) = Ker(H(πR))

G(R[ε]) H(R[ε])

G(R) H(R)

ιG ιH

f (R[ε])

G(πR) H(πR)

f (R)

implies that f (R[ε]) ○ ιG(X) ∈ Lie(H)(R) for all X ∈ Lie(G)(R). We define Lie( f ) ∶=
f (R[ε]) ○ ιG ∶Lie(G)(R) → Lie(H)(R). Hence, Lie( )(R) is a functor from the cat-
egory of k-group functors to that of abelian groups.
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For an affine algebraic k-group G, we write I for the kernel of the counit εG ∶ k[G] →
k. Because k[G] is Noetherian, I/I2 is a finite-dimensional vector space over
k ≅ k[G]/I. We then have Homk(I/I2 , R) ≅ Homk(I/I2 , k)⊗k R. By [8, Corollaire
II.3.3], we have canonical group isomorphisms Lie(G)(R) ≅ Homk(I/I2 , R) and g =
Lie(G)(k) ≅ Homk(I/I2 , k), whence Lie(G)(R) ≅ gR . The Lie structure on g then
canonically gives a Lie structure on gR and hence on Lie(G)(R). We call Lie(G)(R)
the Lie algebra of G over R, and will identify it with gR . Moreover, Lie( )(R) is a
functor from the category of affine algebraic k-groups to that of Lie algebras over R.

Remark 2.7 More generally, let k be a commutative ring with 1 and let G be a
smooth k-group scheme. For any k-algebra R, we can similarly define Lie(G)(R)
as above. Because the OG-module Ω1

G/k is finite locally free, we have Lie(G)(R) ≅
Lie(G)(k)⊗k R by [8, Proposition II.4.8].

Remark 2.8 For any d-dimensional G-representation (V , ρV), we write glV ∶=
Lie(GLV)(k). We then have glV ,R = {Id + εB ∣ B ∈ Matd ,d(R)}, after choosing a k-
basis for V. Then, Id + εB ↦ B gives a group isomorphism from glV ,R to EndR(VR).
Henceforth, we will identify Lie(ρV)(X) as an endomorphism of VR , for all X ∈ gR .

Replacing H with GLV and f with ρV in diagram (1), we obtain a morphism
Lie(ρV) = ρV(R[ε]) ○ ιG ∶gR → glV ,R of Lie algebras over R. Let (W , ρW) ∈ Repk(G),
and let α ∈ HomG(V , W). We then have αR ○ Lie(ρV)(X) = Lie(ρW)(X) ○ αR for all
X ∈ gR .

Applying the functor Lie( )(R) on both sides of the isomorphism in Corollary
2.5 gives us an isomorphism gR ≅ Lie(Aut⊗(ωG))(R) of Lie algebras over R. The
following corollary indicates that elements in Lie(Aut⊗(ωG))(R) are exactly the
derivatives (in the sense of taking derivations of conditions (i–iii) in Theorem 2.4)
of elements in Aut⊗(ωG)(R).

Corollary 2.9 Let G be an affine algebraic k-group, and let R be a k-algebra. Suppose
that for any (V , ρV) ∈ Repk(G), we are given an R-linear endomorphism θV of VR
subject to the conditions:

(i) θV⊗W = θV ⊗ IdWR + IdVR ⊗θW for all V , W ∈ Repk(G);
(ii) θ1 = 0, where 1 = k is the trivial G-representation;

(iii) θW ○ αR = αR ○ θV for all α ∈ HomG(V , W).
Then, there exists a unique element X ∈ gR such that θV = Lie(ρV)(X) for all (V , ρV) ∈
Repk(G).

Proof For any (V , ρV) ∈ Repk(G) and θV ∶VR → VR , we define an R[ε]-linear map

εθV ∶VR[ε]�→VR[ε], v ⊗ (x + yε) �→ θV(v ⊗ x) ⊗ ε.

We define an R[ε]-linear endomorphism

θ̃V ∶= IdVR[ε] +εθV ∶VR[ε]�→VR[ε] .

Then, θ̃V ∈ Lie(GLV)(R) ⊆ GLV(R[ε]), because πR(θ̃V) = IdVR .
We claim that the family

{θ̃V ∶VR[ε] → VR[ε] ∣ (V , ρV) ∈ Repk(G)}(2)
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of R[ε]-linear endomorphisms satisfies conditions (i–iii) in Theorem 2.4. Grant-
ing this claim for a moment, we conclude that θ̃ ∈ Aut⊗(ωG)(R[ε]). In particular,
there exists a unique element X ∈ G(R[ε]) such that θ̃V = ρV(X) for all (V , ρV) ∈
Repk(G). Because πR(θ̃) = Id ∈ Aut⊗(ωG)(R), we have θ̃ ∈ Lie(Aut⊗(ωG))(R). The
isomorphism gR ≅ Lie(Aut⊗(ωG))(R) then implies that X ∈ gR . Furthermore, it
follows from the construction that θV = Lie(ρV)(X) for all (V , ρV) ∈ Repk(G), and
the corollary follows.

It remains to prove the claim. Condition (ii) is clear from the construction. Given
(W , ρW) ∈ Repk(G), we compute

θ̃V⊗W = Id(V⊗W)R +εθV⊗W

= Id(V⊗W)R +ε(θV ⊗ IdWR + IdVR ⊗θW)
= (IdVR +εθV) ⊗ (IdWR +εθW)
= θ̃V ⊗ θ̃W .

Hence, (2) satisfies condition (i). It remains to show that Theorem 2.4 satisfies
condition (iii). Let α ∈ HomG(V , W). For any v ⊗ (x + yε) ∈ VR[ε], we compute

αR[ε] ○ εθV(v ⊗ (x + yε)) = αR[ε](θV(v ⊗ x) ⊗ ε) = (αR ○ θV)(v ⊗ x) ⊗ ε
= (θW ○ αR)(v ⊗ x) ⊗ ε = θW(α(v) ⊗ x) ⊗ ε
= εθW(α(v) ⊗ (x + yε)) = εθW ○ αR[ε](v ⊗ (x + yε)).

It follows that

αR[ε] ○ θ̃V = αR[ε] ○ (IdVR[ε] +εθV) = αR[ε] + αR[ε] ○ εθV

= αR[ε] + εθW ○ αR[ε] = (IdWR[ε] +εθW) ○ αR[ε]

= θ̃W ○ αR[ε],

as desired. ∎

2.5 Filtered and graded fiber functors

We recall the notions of filtered and graded fiber functors on Tannakian categories
following [25]. Let Γ be a totally ordered abelian group (written additively), and
let R ∈ Algk . A Γ -graded R-module is an R-module M together with a direct sum
decomposition M = ⊕

γ∈Γ
Mγ . A morphism between two Γ-graded R modules M and

N is an R-linear map f ∶ M → N such that f (Mγ) ⊆ Nγ for all γ ∈ Γ. We denote by Γ-
GradR the category of Γ-graded modules over R. For M , N ∈ Γ-GradR , we define the
tensor product (M ⊗R N)γ = ⊕

γ′+γ′′=γ
(Mγ′ ⊗R Nγ′′).

Let M be an R-module. A Γ -filtration on M is an increasing map

F∶ Γ�→{R-submodules of M}, γ �→ Fγ M ,

such thatFγ M = 0 for γ ≪ 0 andFγ M = M for γ ≫ 0, which is increasing in the sense
thatFγ M ⊆ Fγ′M whenever γ ≤ γ′. A Γ -filtered R-module is an R-module M with a Γ-
filtration. To abbreviate notations, we sometimes denote Fγ M by Mγ if no confusion
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shall arise. A morphism between two Γ-filtered R-modules M and N is an R-linear
map f ∶ M → N such that f (Mγ) ⊆ Nγ for all γ ∈ Γ. We denote by Γ-FilR the category
of Γ-filtered modules over R.

Let M be a Γ-filtered module over R. For any γ ∈ Γ, we put Fγ−M ∶= ∑
γ′<γ

Fγ′M. We

define

grγ
F

M ∶= Fγ M/Fγ−M .

Then, grF M ∶= ⊕
γ∈Γ

grγ
F

M is a Γ-graded R module, and is called the Γ -graded R-module

associated to F. We thus have a functor

gr∶ Γ- FilR �→ Γ- GradR .

Elements γ ∈ Γ such that grγ
F

M ≠ 0 are said to be the Γ-jumps (or simply jumps) of F.
The tensor product structure in Γ-FilR is defined by

Fγ(M ⊗
R

N) = ∑
γ′+γ′′=γ

Fγ′M ⊗
R
Fγ′′N ,

for all Γ-filtered modules M and N over R.
A morphism f ∶ M → N in Γ-FilR is said to be admissible (or strict) if

f (Mγ) = f (M) ∩ Nγ , ∀γ ∈ Γ.

Following [25, Section 4.1], we say that a short sequence 0 M′

M M′′ 0f ′ f ′′ in Γ-FilR is exact if both of f ′ and f ′′ are admissible,
and the underlying short sequence in ModR is exact.

Let T be a Tannakian category over k, and let R be a k-algebra.
(i) A Γ -graded fiber functor on T over R is an exact faithful k-linear tensor functor

τ∶T → Γ-GradR .
(ii) A Γ -filtered fiber functor on T over R is an exact faithful k-linear tensor functor

η∶T → Γ-FilR .
(iii) Given an object M = ⊕

γ∈Γ
Mγ in Γ-GradR , we put Fγ(M) ∶= ⊕

γ′≤γ
Mγ′ . This gives

rise to a functor fil∶ Γ-GradR → Γ-FilR .
(iv) A Γ-filtered fiber functor η is called splittable if there exists a Γ-graded fiber

functor τ such that η = fil ○τ, and τ is called a splitting of η.

Remark 2.10 More concretely, a Γ-filtered fiber functor is a k-linear functor η∶T →
Γ-FilR satisfying the following properties (cf. [6, Definition 4.2.6 and Remark 4.2.7]).

(i) It is admissibly (or strictly) functorial, i.e., for any morphism α∶ X → Y in T, we
have η(α)(Fγ η(X)) = η(α)(η(X)) ∩ Fγ η(Y) for all γ ∈ Γ.

(ii) It is compatible with tensor products, i.e., we have

Fγ(η(X ⊗Y)) = ∑
γ′+γ′′=γ

Fγ′(η(X))⊗Fγ′′(η(Y)),

for all X , Y ∈ Ob(T) and γ ∈ Γ.
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(iii)

Fγ η(1) = { R for γ ≥ 0,
0 for γ < 0,

where 1 is the identity object in T. Note that (η(1), γ ↦ Fγ η(1)) is the identity
object in Γ-FilR .

Construction 2.11 Let (M ,F) ∈ Z-FilR be a Z-filtered module with Z-jumps ȷ1 <
⋯ < ȷn . For any γ ∈ Q>0, we define a Q-filtered module (M , [γ]∗F) by

([γ]∗F)x M ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 for x < ȷ1γ,
Mȷi for ȷiγ ≤ x < ȷi+1γ, 1 ≤ i ≤ n − 1,
M for x ≥ ȷnγ.

We then have a fully faithful embedding [γ]∗∶Z-FilR → Q-FilR . Similarly, we
have a fully faithful embedding [γ]∗∶Z-GradR → Q-GradR by defining [γ]∗ ∶= gr ○
[γ]∗ ○ fil.

To end this subsection, we exhibit the following theorem for latter use. (Be
aware that in [25], the author only considers Γ-gradings and Γ-filtrations for
Γ = Z.)

Theorem 2.12 [25, Theorem 4.15] Let T be a Tannakian category over a field k, and
let R be a k-algebra. Let η∶T → Z-FilR be a Z-filtered fiber functor. If Aut⊗R (forg ○η)
is prosmooth (i.e., a limit of smooth algebraic group schemes) over R, where forg∶
Z-FilR → ModR is the forgetful functor, then η is splittable.

3 G-φ-modules over the Robba ring

We fix an affine algebraic F-group G in this section.

3.1 Definition

Let R ∈ {E† ,R, Ẽ† , R̃} equipped with an absolute Frobenius lift φ. The following
definition is motivated by that of G-isocrystals introduced in [6, Section IX.1].

Definition 3.1 A G-φ -module over R is an exact faithful F-linear tensor functor

I∶RepF(G)�→Modφ
R ,

which satisfies forg ○ I = ωG ⊗ R, where forg∶Modφ
R → ModR is the forgetful functor.

The category of G-φ-modules over R is denoted by G-Modφ
R, whose morphisms are

morphisms of tensor functors.

Let (V , ρ) ∈ RepF(G), and let g ∈ G(R). We define I(g)(V) ∶= (VR , gφ), where

gφ∶VR �→VR , v ⊗ f �→ ρ(g)(v ⊗ 1)φ( f ).

Let V , W ∈ RepF(G). We have a canonical isomorphism (V ⊗ W)R ≅ VR ⊗R WR,
and we will henceforth identify them. Given any α ∈ HomG(V , W), we define

https://doi.org/10.4153/S0008414X21000328 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000328


A group-theoretic generalization of the p-adic local monodromy theorem 1461

I(g)(α) ∶= αR . We thus have the following G-φ-module over R (associated to g).

I(g)∶RepF(G)�→Modφ
R , V �→ (VR , gφ).

We call I(g)(V) = (VR , gφ) the G-φ -module over R associated to g.
For any g ∈ G(R), we sometimes write Φg = Φg ,V for the φ-linear action gφ on VR .

Both notations have their own advantages in practice.

Remark 3.2 For any g ∈ G(R), we define Φ(g) ∶= G(φ)(g). For any (V , ρ) ∈
RepF(G), we have a commutative diagram

G(R) GLV(R)

G(R) GLV(R)

ρ(R)

G(φ) GLV(φ)

ρ(R)

Hence, ρ(φ(g)) = φ(ρ(g)). For any h ∈ G(R) and n, m ≥ 0, we have the following
formula in G(R) ⋊ ⟨φ ⟩:

(hφn) ○ (gφm) = (hφn(g))φn+m .

3.2 The Q-filtered fiber functor HNg

We fix an element g ∈ G(R).

Construction 3.3 For any V ∈ RepF(G), we have a φ-module (VR , gφ) over R.
Kedlaya’s slope filtration theorem [9, Theorem 6.10] then provides a filtration

0 ⊆ V μ1
R

⊆ ⋯ ⊆ V μ l
R

= VR ,

satisfying
• V μ1

R
is pure of some slope μ1 ∈ Q and each V μ i

R
/V μ i−1

R
is pure of some slope μ i ∈ Q

for 2 ≤ i ≤ l ;
• μ1 < ⋯ < μ l .
We thus have an increasing map

HNg ∶Q�→{R-modules of VR}
x �→HN

x
g(VR),

where

HN
x
g(VR) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 for x < μ1 ,
V μ i
R

for μ i ≤ x < μ i+1 , 1 ≤ i ≤ l − 1,
VR for x ≥ μ l .

Then, (VR ,HNg) is a Q-filtered module over R with Q-jumps μ1 < ⋯ < μ l . We will
denote HN

x
g(VR) by V x

R when HNg is clear in the context.

Theorem 3.4 The assignments

V �→ (VR ,HNg) and α �→ αR ,
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for all α ∈ HomG(V , W), define a Q-filtered fiber functor

HNg ∶RepF(G)�→Q- FilR .

Proof This is Propositions 3.5 and 3.6 below. ∎

For any admissible extension E of K, we first remark that the φ-equivariant
embedding ψ∶R → R̃(E , t) is faithfully flat (see [11, Remark 3.5.3]). We also remark
that, if M1 and M2 are pure φ-modules over R of slopes μ1 and μ2, respectively,
then M1 ⊗R M2 is pure of slope μ1 + μ2 (cf. [11, Corollary 1.6.4]). These facts will be
repeatedly used in the sequel.

Proposition 3.5 The assignments in Theorem 3.4 yield a faithful F-linear tensor functor
HNg ∶RepF(G) → Q-FilR.

Proof Let 1 = F be the trivial G-representation. Then, 1⊗F R = R is of rank 1 with
slope 0, proving that HNg preserves identity objects.

We claim that HNg is functorial. Let α ∈ HomG(V , W) be a morphism of
finite-dimensional G-modules. We need to show that αR(V x

R) ⊆ W x
R for all x ∈ Q.

Choose by Lemma 2.2 an admissible extension E of K such that κE is strongly
difference-closed. For any fixed x ∈ Q, we set V x

R̃(E ,t) ∶= V x
R⊗R R̃(E , t), and

W x
R̃(E ,t) ∶= W x

R⊗R R̃(E , t). By Lemma 2.3(iii), we have a decomposition WR̃(E ,t) =
W x

R̃(E ,t)⊕W ′
R̃(E ,t) of φ-modules over R̃(E , t), where W x

R̃(E ,t) (resp. W ′
R̃(E ,t)) has

slopes less or equal to x (resp. greater than x). By Lemma 2.3(iv), the induced
morphism V x

R̃(E ,t) → W ′
R̃(E ,t) of φ-modules is zero. We thus have αR̃(E ,t)(V x

R̃(E ,t)) ⊆
W x

R̃(E ,t). Given any v ∈ V x
R, we may write αR̃(E ,t)(v ⊗ 1) = αR(v) ⊗ 1 = ∑

i∈I
wi ⊗

s i for some finite set I, with wi ∈ W x
R and s i ∈ R̃(E , t) for all i ∈ I. Let M be

the R-submodule of WR generated by αR(v) and the wi , and let N be the
R-submodule of W x

R generated by the wi . We then have (M/N)⊗R R̃(E , t) ≅
(M ⊗R R̃(E , t))/(N ⊗R R̃ (E , t)) = 0. It follows that M/N = 0 as R → R̃(E , t) is
faithfully flat. We thus have αR(v) ∈ N ⊆ W x

R, as desired.
It remains to show that HNg preserves tensor products (in the sense of Remark

2.10(ii)). Let V and W be two finite-dimensional G-modules, and suppose that
the slope filtration of (VR , gφ) (resp. (WR , gφ)) has jumps μ1 < ⋯ < μ lV (resp.
ν1 < ⋯ < ν lW ). By [12, Lemma 16.4.3], ((V ⊗F W)R , gφ) has jumps {μ i + ν j ∣ 1 ≤ i ≤
lV , 1 ≤ j ≤ lW}. Fix any 1 ≤ l ≤ lV and 1 ≤ s ≤ lW ; we need to show

(V ⊗
F

W)μ l+νs
R

= ∑
x , y ∈ Q

x + y = μ l + νs

V x
R⊗

R

W y
R

,(3)

and we will do so in the remainder of the proof.
We claim that

∑
x , y ∈ Q

x + y = μ l + νs

V x
R⊗

R

W y
R
= ∑

μ i + ν j ≤ μ l + νs
1 ≤ i ≤ lV , 1 ≤ j ≤ lW

V μ i
R ⊗

R

W ν j
R

.
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It is clear that the RHS is contained in the LHS; we now show the reverse inclusion.
Let x , y ∈ Q such that x + y = μ l + νs . If x < μ1 or y < ν1, then V x

R⊗R W y
R
= 0 which

is contained in the RHS. Otherwise, there exists the largest integer 1 ≤ i ≤ lV (resp.
1 ≤ j ≤ lW ) with the property that μ i ≤ x (resp. ν j ≤ y). We then have V x

R⊗R W y
R
=

V μ i
R ⊗R W ν j

R
and μ i + ν j ≤ μ l + νs . The claim is thus proved.

From Lemma 2.3(iii), we see that

(V ⊗
F

W)μ l+νs

R̃(E ,t) = ( ∑
μ i + ν j ≤ μ l + νs

1 ≤ i ≤ lV , 1 ≤ j ≤ lW

V μ i
R ⊗

R

W ν j
R
)⊗

R

R̃(E , t).

Therefore, we have

(V ⊗W)μ l+νs

R
= ∑

μ i + ν j ≤ μ l + νs
1 ≤ i ≤ lV , 1 ≤ j ≤ lW

V μ i
R ⊗

R

W ν j
R

by Lemma 2.3(i) and the fact that R → R̃(E , t) is faithfully flat. The desired equality
(1) then follows from the preceding claim. ∎

Let (M , φ) be a φ-module over R̃ of rank d. Then, Φ is invertible, because the
Frobenius lift on R̃ is bijective, and (M , φ−1) is a φ−1-module over R̃. More explicitly,
let A ∈ GLd(R̃) be the matrix of action of φ in some basis for M over R̃. Then, in
the same basis, the matrix of action of φ−1 is φ−1(A−1). For example, if M = VR̃

for some V ∈ RepF(G), and Φ = ψ(g)φ where ψ denotes (by abuse of notation) the
group morphism G(R) → G(R̃) induced by the embedding ψ∶R → R̃ recalled above
Proposition 3.5, then

(ψ(g)φ) ⋅ (φ−1(ψ(g−1))φ−1) = 1

in G(R̃) ⋊ ⟨φ ⟩ (cf. Remark 3.2), which implies that φ−1 = φ−1(ψ(g−1))φ−1.
Let M be a standard φ-module over R̃ of slope μ = s/r with r > 0 and (s, r) = 1.

Namely, we have a standard basis e1 , . . . , er in which φ acts via

A = (
0 ϖ s

1 ⋱
⋱ ⋱

1 0
) .

Then,

φ−1(A−1) = (
0 1
⋱ ⋱
⋱ 1

ϖ−s 0
) ,

which implies that (M , φ−1) is a standard φ−1-module pure of slope −μ.

Proposition 3.6 The functor HNg ∶RepF(G) → Q- FilR is exact.

Proof Let α ∈ HomG(V , W) be a morphism of finite-dimensional G-modules. We
need to show that αR(V x

R) = αR(VR) ∩ W x
R for all x ∈ Q. For any fixed x ∈ Q, the

functoriality in Proposition 3.5 already implies that αR(V x
R) ⊆ αR(VR) ∩ W x

R. Thus,
it suffices to show that for any nonzero element v ∈ VR such that αR(v) ∈ W x

R, there
exists v′ ∈ V x

R with αR(v) = αR(v′).
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By Lemma 2.3(iii), we have decompositions

VR̃(E ,t) = V x
R̃(E ,t)⊕V ′

R̃(E ,t) and WR̃(E ,t) = W x
R̃(E ,t)⊕W ′

R̃(E ,t)(4)

of φ-modules over R̃(E , t), in which V x
R̃(E ,t) and W x

R̃(E ,t) have slopes less or equal to
x, while V ′

R̃(E ,t) and W ′
R̃(E ,t) have slopes greater than x. Notice that the composition

ξ∶V ′
R̃(E ,t) V x

R̃(E ,t)⊕V ′
R̃(E ,t) W x

R̃(E ,t)⊕W ′
R̃(E ,t) W x

R̃(E ,t)

αR̃(E ,t)

is a morphism of φ-modules. We claim that ξ = 0. We write φ = ψ(g)φ, then φ−1 =
φ−1(ψ(g−1))φ−1. Because α is G-equivariant and φ−1(ψ(g−1)) ∈ G(R̃(E , t)), we have
that αR̃∶ (VR̃(E ,t) , φ−1) → (WR̃(E ,t) , φ−1) is a morphism of φ−1-modules. On the other
hand, we also have decompositions of φ−1-modules as in (2), together with the induced
morphism ξ∶V ′

R̃(E ,t) → W x
R̃(E ,t) of φ−1-modules. But in this case, V ′

R̃(E ,t) has slopes
less than x, while W x

R̃(E ,t) has slopes greater or equal to x. It then follows from Lemma
2.3(iv) that ξ = 0, as claimed.

Therefore, we find v1 , . . . , vn ∈ V x
R and s1 , . . . , sn ∈ R̃(E , t) such that

αR̃(E ,t)(v ⊗ 1) = αR(v) ⊗ 1 =
n
∑
i=1

αR(vi) ⊗ s i .

Let M be the submodule of WR generated by αR(v) and the αR(vi), and let N be the
submodule generated by the αR(vi). We then have

(M/N)⊗
R

R̃(E , t) ≅ (M ⊗
R

R̃(E , t))/(N ⊗
R

R̃(E , t)) = 0.

It follows that M/N = 0 as R → R̃(E , t) is faithfully flat, and hence, αR(v) =
n
∑
i=1

r i αR(vi) ∈ W x
R for some r i ∈ R. Put v′ ∶=

n
∑
i=1

r i vi ∈ V x
R, we then have αR(v′) =

αR(v), as desired. ∎

3.3 Splittings of HNg

As before, we fix an element g ∈ G(R). In Section 3.2, we have constructed aQ-filtered
fiber functor HNg ∶RepF(G) → Q-FilR. In this subsection, we show that HNg is
splittable whenever G is smooth. Our strategy goes as follows. We first use Lemma 3.10
reducing HNg to a Z-filtered fiber functor HNZ

g to which Theorem 2.12 is applicable.
This HNZ

g then admits aZ-splitting. Finally, in Theorem 3.12, we lift such aZ-splitting
to a Q-splitting of HNg .

Definition 3.7 We define the support of HNg by

Supp(HNg) ∶= {x ∈ Q ∣ grx
HNg

(V) ≠ 0 for some V ∈ RepF(G)}.

Notice that Supp(HNg) is the set of jumps of the slope filtrations of (VR , gφ) for
all V ∈ RepF(G).

The general idea of the following construction was addressed in [2], after Definition
2.5 in loc. cit.; we will make it more explicit in our case.
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Construction 3.8 Let W ∈ RepF(G) be a faithful representation. Because G is alge-
braic, W is a tensor generator for RepF(G), i.e., any representation V of G is a
subquotient of a direct sum of representations ⊗m(W ⊕W∨) for various m ∈ N.
(See [18, Theorem 4.14].) Therefore, Supp(HNg) is the additive subgroup of Q finitely
generated by the Q-jumps ν1 , . . . , νn of (WR , gφ). We write ν i = s i/d i with d i > 0 and
(s i , d i) = 1 for 1 ≤ i ≤ n. Let dg ∈ N be the least common multiple of the d i . We then
have dg ν i ∈ Z for 1 ≤ i ≤ n. In particular, we have

dg = min{m ∈N ∣ mx ∈ Z,∀x ∈ Supp(HNg)}.

Therefore, dg is uniquely determined by g. We call dg the least common denominator
of g.
Remark 3.9 We conclude from Construction 3.8 that Supp(HNg) is isomorphic to
Z or 0. In fact, if (WR , gφ) has only one jump 0, then Supp(HNg) = 0. Otherwise, the
choice of dg implies that gcd(dg ν1 , . . . , dg νn) = 1. We then have dg Supp(HNg) = Z,
because the dg ν i generateZ as aZ-module. Therefore, x ↦ dg x gives an isomorphism
Supp(HNg) ≅ Z.

Lemma 3.10 HNg factors through aZ-filtered fiber functor HNZ
g ∶RepF(G) → Z-FilR

which makes the diagram

RepF(G) Q- FilR

Z- FilR

HNg

HNZ
g

[d−1
g ]∗

commute.
We remark that the functor [d−1

g ]
∗

(see Construction 2.11) is nothing but relabeling
the jumps by multiplying all jumps with d−1

g . In particular, this lemma implies that

grx
HNg

(V) = grd−1
g x

HNZ
g
(V) for all x ∈ Q and V ∈ RepF(G).

Proof of Lemma 3.10 Let V ∈ RepF(G), and let μ1 , . . . , μ l be the Q-jumps of
(VR , gφ). We then have dg μ i ∈ Z for all i. We have an increasing map

Fg ∶Z�→{R-submodules of VR},
x �→ Fx

g (VR),

where

Fx
g (VR) ∶=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 for x < dg μ1 ,
HN

μ i
g (VR) for dg μ i ≤ x < dg μ i+1 , 1 ≤ i ≤ l − 1,

VR for x ≥ dg μ l .

Then, (VR ,Fg) is aZ-filtered module overRwithZ-jumps dg μ1 < ⋯ < dg μ l . We thus
have a Z-filtered fiber functor

HNZ
g ∶RepF(G)�→Z- FilR ,

V �→ (VR ,Fg),

satisfying HNg = [d−1
g ]∗ ○ HNZ

g . ∎
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By the definition of Aut⊗ and Corollary 2.5, we have Aut⊗(ωG)(R) = Aut⊗(ωG
R ) ≅

G(R) for all R ∈ Algk . For any R-algebra S, we then have

Aut⊗(ωG
R )(S) = Aut⊗(ωG

R ⊗ S) = Aut⊗(ωG
S ) ≅ GR(S).

Proposition 3.11 Let G be a smooth F-group. Then, HNZ
g is splittable.

Proof Because forg ○HNZ
g = ωG ⊗R, we have

Aut⊗R(forg ○HNZ
g ) = Aut⊗R(ωG

R) ≅ GR .

Notice that GR is smooth over R; the proposition then follows from Theorem 2.12. ∎
Theorem 3.12 Let G be a smooth F-group. Then, the Q-filtered fiber functor HNg is
splittable.

Proof Choose a splitting τg ∶RepF(G) → Z-GradR of HNZ
g by Proposition 3.11, we

then have a Q-graded fiber functor [d−1
g ]
∗
○ τg ∶RepF(G) → Q-GradR. On the other

hand, we have the diagram

(5)

RepF(G)

Z- GradR Z- FilR Q- FilR

Q- GradR

HNgτg
HNZ

g

fil

[d−1
g ]∗

[d−1
g ]∗

fil

with the upper-left, the upper-right, and the bottom triangles commutative. Here,
the commutativity of the upper-left (resp. the upper-right) triangle follows from
Proposition 3.11 (resp. Lemma 3.10); for the bottom one, we note that [d−1

g ]
∗
○ fil =

fil ○[d−1
g ]
∗

. Hence, the outer diagram also commutes, which implies that HNg factors
through the Q-graded fiber functor [d−1

g ]
∗
○ τg , as desired. ∎

3.4 The slope morphism

Let R be a commutative ring with 1, and let Γ be an abelian group (not necessarily
finitely generated). We first continue the discussions in Section 2.5 to see how Γ-
gradings over R are related to DR(Γ)-modules, for some affine group scheme DR(Γ)
which will be defined as follows.

The group algebra R[Γ] ∶= ⊕
γ∈Γ

Reγ carries a Hopf algebra structure, where the

comultiplication is given by Δ(eγ) = eγ ⊗ eγ , the counit is given by ε(eγ) = 1, and
the antipode is given by S(eγ) = e−γ , for all γ ∈ Γ. We denote by DR(Γ) the affine
R-group scheme represented by R[Γ]. For any γ ∈ Γ, the Hopf algebra morphism
R[Z] → R[Γ], e1 ↦ eγ gives rise to a character χγ ∶ DR(Γ) → Gm ,R of DR(Γ). For the
remainder of this paper, we denote by DR the R-group scheme DR(Q).

Let M = ⊕γ∈Γ Mγ be a Γ-graded module over R. Then, M becomes a DR(Γ)-
module where DR(Γ) acts on each Mγ via χγ . The following lemma shows that this
assignment gives an equivalence of categories.
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Lemma 3.13 [8, Proposition II.2.5] Γ-GradR is equivalent to the category of DR(Γ)-
modules.

Corollary 3.14 For any γ ∈ Q>0, the functor [γ]∗∶Z- GradR → Q- GradR corresponds
to the character χγ ∶DR → Gm ,R .

Proof Let M ∈ Z- GradR . By Lemma 3.13, we may write M = ⊕
n∈Z

Mn as a direct

sum of eigenmodules. By construction, we have [γ]∗(M) = ⊕
n∈Z

([γ]∗(M))γn with

([γ]∗(M))γn = Mn for all n, which is also a decomposition into eigenmodules.
Therefore, giving [γ]∗ is equivalent to giving the commutative diagram

Mn ([γ]∗(M))γn

Mn ⊗R R[Z] ([γ]∗(M))γn ⊗R R[Q]

of R-modules for all n ∈ Z such that Mn ≠ 0. Here, the left (resp. the right) vertical
arrow is given by m ↦ m ⊗ en (resp. m ↦ m ⊗ eγn). The diagram then corresponds
to R[Z] → R[Q], e1 ↦ eγ , as desired. ∎

We now apply the preceding discussions to the functors constructed in Section 3.3,
following [14, Section 4].

Construction 3.15 Let g ∈ G(R); we fix a splitting τg of HNZ
g given by Proposition

3.11. For any (V , ρ) ∈ RepF(G), τg gives a decomposition of VR, which induces a
morphism λρ ,g ∶Gm ,R → GLV ,R by Lemma 3.13. Let S be an R-algebra, and let a ∈
Gm ,R(S). We then have a family

{λρ ,g(a)∶VS → VS ∣ (V , ρ) ∈ RepF(G)}

of S-linear maps. Because τg is a tensor functor, this family satisfies conditions (i–iii)
in Theorem 2.4. We thus find a unique element b ∈ GR(S) such that λρ ,g(a) = ρ(b)
for all (V , ρ) ∈ RepF(G). The assignment a ↦ b is functorial in S, because both λρ ,g
and ρ are functorial. We then have a morphism of R-groups

λg ∶Gm ,R�→GR ,

which is said to be the Z -slope morphism of g.
By Corollary 3.14, [d−1

g ]
∗

gives a unique morphism χd−1
g
∶DR → Gm ,R. We define

νg ∶= λg ○ χd−1
g
∶DR�→GR ,

which is said to be the Q -slope morphism of g.

The following example demonstrates explicitly how λg and νg are related to the
splittings constructed in Section 3.3 (see Diagram 3).

Example 3.16 Let (V , ρ) ∈ RepF(G) and suppose that the slope filtration of
(VR , gφ) is

0 ⊆ V μ1
R

⊆ ⋯ ⊆ V μ l
R

= VR
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with jumps μ1 < ⋯ < μ l . By Theorem 3.12, the functor [d−1
g ]∗ ○ τg ∶RepF(G) →

Q- GradR gives a splitting

VR = VR,μ1 ⊕⋯⊕VR,μ l(6)

of HNg(V), i.e., we have
j
⊕
i=1

VR,μ i = V μ j
R

for all 1 ≤ j ≤ l .

First, we fix 1 ≤ i ≤ l . Let S ∈ AlgR and a ∈ DR(S), then ρ ○ νg(a) acts on
VR,μ i ⊗R S via multiplication by χμ i (a). By Lemma 3.10, ρ ○ λg(b) acts on VR,μ i

via multiplication by bdg μ i , for all b ∈ Gm ,R(S). Notice that for any m
n ∈ Q, we have

e m
n
= (e 1

n
)m ∈ R[Q], and hence, χ m

n
= (χ 1

n
)m . In particular, we have χμ i = χ dg μi

dg

=

(χd−1
g
)dg μ i . Then, on VR,μ i ⊗R S, we have

ρ ○ νg(a) = χμ i (a) = (χd−1
g
(a))dg μ i = ρ ○ λg(χd−1

g
(a)) = ρ ○ λg ○ χd−1

g
(a).

We next apply this result to all 1 ≤ i ≤ l . Because VR =
l
⊕
i=1

VR,μ i , we conclude that

ρ ○ νg = ρ ○ λg ○ χd−1
g

. It follows that νg = λg ○ χd−1
g

once we choose a faithful repre-
sentation, as is expected from the definition of νg .

If G = GLV for some V ∈ VecF , we consider the standard representation (V , ρ) of
G where ρ is the identity. The discussion in the above example then indicates that
the image of λg is contained in a split maximal torus in GR; we conjecture that this
property holds true for an arbitrary split reductive F-group G, and we shall give one
more evidence as follows.

Example 3.17 Fix a d-dimensional F-vector space V. For any R ∈ AlgF , we define

SLV(R) ∶= {g ∈ GLV(R) ∣ det(g) = 1}.

The affine algebraic F-group SLV is called the special linear group (associated to V).
Fix an arbitrary g ∈ SLV(R). With the notation as in Construction 4.14, we suppose

the jumps of the slope filtration of (VR , Φg) are μ1 , . . . , μ l and ξg(V) =
l
⊕
i=1

VR,μ i .

For each i, we write r i = rkR(VR,μ i ), then the r i -th exterior product Λr i (VR,μ i ) is
of rank 1. We choose a generator m i , then Λr i (Φg ,μ i )(m i) = f i m i for some f i ∈ R× =
(E†)×. Let ν be the valuation of the 1-Gauss norm on E†. We then have μ i = ν( f i)

r i
by

[11, Definition 1.4.4].
Let e1 , . . . , ed be a basis for V over F, and let A ∈ SLd(R) be the matrix of action

of Φg in e1 ⊗ 1, . . . , ed ⊗ 1. Let B ∈ GLd(R) represent a change-of-basis over R. Then,
in the new basis, the matrix of action of Φg is B−1Aφ(B). Notice that det(B) ∈ (E†)×
and φ preserves ν, we then have

ν(det(B−1Aφ(B))) = ν(det(B−1)det(A)φ(det(B))) = ν(det(A)),

which implies that the valuation of the determinant of the matrix of action of Φg is
invariant under change-of-basis. We denote by ν(det(Φg)) this invariant. In partic-

ular, we have ν(det(Φg)) = 0, because det(A) = 1 by assumption. Put Φ′g ∶=
l
⊕
i=1

Φg ,μ i ,
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where each Φg ,μ i is the projection of Φg to the μ i -th graded piece of ξg(V) (cf.
Construction 4.14 below). We thus have

0 = ν(det(Φg)) = ν(det(Φ′g)) = ν( f1) +⋯ + ν( f l) = r1 μ1 +⋯+ r l μ l .

Let S ∈ AlgR and t ∈ Gm ,R(S). Because λg(t) acts on each VR,μ i ⊗R S via multi-
plication by tdg μ i where dg is the least common denominator of g, we then have

det(λg(t)) = tdg(r1 μ1+⋯+r l μ l ) = 1.

Therefore, the image of λg is contained in a split maximal torus in SLV ,R.

4 G-(φ,∇)-modules over the Robba ring

In this section, we fix an affine algebraic group F-group G.

4.1 Definition and an identification

Let R ∈ {E† ,R} equipped with an absolute Frobenius lift φ and the usual derivation
∂ = ∂t = d/dt on R.

Definition 4.1 A G-(φ,∇) -module over R is an exact faithful F-linear tensor functor
I∶RepF(G)�→Modφ ,∇

R ,

which satisfies forg ○ I = ωG ⊗ R, where forg∶Modφ
R → ModR is the forgetful functor.

The category of G-(φ,∇)-modules over R is denoted by G-Modφ ,∇
R , whose morphisms

are morphisms of tensor functors. A G-(φ,∇)-module I over R is called unit-root if
I(V , ρ) is a unit-root (φ,∇)-module over R for all (V , ρ) ∈ RepF(G).

Remark 4.2 We remark that G-Modφ ,∇
R is a groupoid, because both RepF(G) and

Modφ ,∇
R are rigid tensor categories over F, and any morphism of tensor functors

between rigid tensor categories is an isomorphism by [7, Proposition 1.13]. Note that
tensor products and duals in Modφ ,∇

R are defined as in [22, Section 3.1], and the
identity object is (R, φ, ∂).

We put
μ ∶= μ(φ, t) ∶= ∂(φ(t)).

Let Ω1
R ∶= Ω1

R/K be the free R-module generated by the symbol dt, with the K-linear
derivation d∶R → Ω1

R , f ↦ ∂( f )dt. We also define a φ-linear endomorphism
dφ∶Ω1

R �→Ω1
R , f dt �→ μ φ( f )dt.

Given a finite-dimensional representation ρ∶G → GLV , we have a morphism
Lie(ρ)∶g → glV of Lie algebras, and hence a morphism gR → glV ⊗R ≅ EndR(VR) of
Lie algebras over R (which is injective if ρ is a closed embedding). For any X ∈ gR , we
denote by X the action of Lie(ρ)(X) on VR (see Remark 2.8). We define the connection
∇X of VR associated to X by

∇X ∶= ∇X ,V ∶VR �→VR ⊗
R

Ω1
R ,

v ⊗ f �→ (v ⊗ 1) ⊗ d( f ) + X(v ⊗ f ) ⊗ dt.
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Because f dt ↦ f gives an isomorphism Ω1
R ≅ R, we have an isomorphism

ι∶VR ⊗R Ω1
R → VR . Let ΘX ∶= ΘX ,V be the differential operator associated to ∇X given

by the following composition:

VR VR ⊗R Ω1
R VR .∇X ι

We have that ΘX(v ⊗ f ) = v ⊗ ∂( f ) + X(v ⊗ f ) for all v ⊗ f ∈ VR .
When G = GLV for some V ∈ VecF , we may canonically associate to any G-(φ,∇)-

module I over R a (φ,∇)-module (VR , Φ,∇) over R, where (VR , Φ,∇) ∶= I(V , ρ)
and ρ∶G → G is the identity. Choose a basis e1 , . . . , ed of V, we define elements
g ∈ G(R) and X ∈ gR by setting g(e i ⊗ 1) ∶= Φ(e i ⊗ 1) and X(e i ⊗ 1) ∶= ι ○ ∇(e i ⊗ 1),
respectively. We then have Φ = gφ and ∇ = ∇X .

Lemma 4.3 Let V , W ∈ RepF(G), and let α ∈ HomG(V , W). We then have

αR ○ ΘX ,V = ΘX ,W ○ αR , and ΘX ,V⊗W = ΘX ,V ⊗ IdWR
+ IdVR

⊗ΘX ,W .

Proof The first equality holds, because αR commutes with X (see Remark 2.8), and
the second one follows from a direct computation. ∎

Construction 4.4 We consider the R-algebra morphism

∂̂∶R �→R[ε], r �→ r + ∂(r)ε,

which induces a morphism G(∂̂)∶G(R) → G(R[ε]). Notice that πR ○ ∂̂ = IdR ; we then
have G(πR) ○ G(∂̂) = IdG(R), in particular, G(πR)(G(∂̂)(g)) = g. Identifying g with
its image in G(R[ε]) induced by the inclusion R → R[ε], r ↦ r, we then have

G(∂̂)(g)g−1 ∈ Ker G(πR) = gR .

For g ∈ G(R), we define ∂(g) ∶= G(∂̂)(g) ∈ G(R[ε]), and put

dlog(g) ∶= ∂(g)g−1 ∈ gR .

Example 4.5 Let G = GLd for some d ∈ N, and let B ∈ G(R). We have that dlog(B) =
Id + ε∂(B)B−1, where Id is the d × d identity matrix and ∂ acts on B entrywise. Using
the isomorphism Lie(G)(R) = {Id + εB ∣ B ∈ Matd ,d(R)} ≅ {B ∣ B ∈ Matd ,d(R)}, we
may identify dlog(B) with ∂(B)B−1.

Definition 4.6
(i) We define the gauge transformation

Γg ∶gR �→gR , X �→ Ad(g)(X) − dlog(g),

where Ad∶G → GLg is the adjoint representation.
(ii) We define Bφ ,∇(G , R) to be the groupoid whose objects are (g , X) ∈ G(R) × gR

satisfying X = Γg(μ φ(X)), and whose morphisms (g , X) → (g′ , X′) are ele-
ments x ∈ G(R) such that g′ = x gφ(x−1) and X′ = Γx(X).

Lemma 4.7 Let (g , X) ∈ Bφ ,∇(G , R). Then, (VR , gφ,∇X) is a (φ,∇)-module over R
for all V ∈ RepF(G).
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Proof Choose a basis e1 , . . . , ed for V over F where d = dimF V . Let A = (a i j)i , j ∈
GLd(R) (resp. N = (n i j)i , j ∈ Matn ,n(R)) be the representing matrix of ρ(g) (resp. X).

For any v =
d
∑
i=1

e i ⊗ f i ∈ VR, we compute

gφ(ΘX(v)) = gφ(
d
∑
i=1

e i ⊗ ∂( f i) +
d
∑
j=1

e j ⊗
d
∑
i=1

n ji f i)

=
d
∑
j=1

e j ⊗
d
∑
i=1

a ji φ(∂( f i)) +
d
∑
k=1

ek ⊗
d
∑
i=1

d
∑
j=1

ak jφ(n ji f i),

and

ΘX(gφ(v)) = ΘX(
d
∑
j=1

e j ⊗
d
∑
i=1

a ji φ( f i))

=
d
∑
j=1

e j ⊗
d
∑
i=1

∂(a ji)φ( f i) +
d
∑
j=1

e j ⊗
d
∑
i=1

a ji ∂(φ( f i))

+
d
∑
k=1

ek ⊗
d
∑
i=1

d
∑
j=1

nk j a ji φ( f i).

Because μ ⋅
d
∑
j=1

e j ⊗
d
∑
i=1

a ji φ(∂( f i)) =
d
∑
j=1

e j ⊗
d
∑
i=1

a ji ∂(φ( f i)), we have that μ ⋅gφ ○

ΘX = ΘX ○ gφ if and only if μAφ(N) = ∂(A) + NA, i.e., N = μ Aφ(N)A−1 −
∂(A)A−1. The last equality holds because of the assumption X = Γg( μ φ(X)), which
completes the proof. ∎

As a consequence, we may define a functor

Bφ ,∇(G , R)�→G-Modφ ,∇
R , (g , X) �→ I(g , X),(7)

where I(g , X)(V) ∶= (VR , gφ,∇X). We next show that this functor is an isomorphism.
To do this, we need the following elementary descent result.

Lemma 4.8 Fix a field k, and let A and B be finitely generated k-algebras. Let ρ∶ X → Y
be a closed embedding of affine algebraic k-schemes for X = Spec A and Y = Spec B. Let
ι∶ S ↪ S̃ be an embedding in Algk . Suppose that we are given an element z̃ ∈ X(S̃) such
that ρ(z̃) ∈ Y(ι(S)), then there exists a unique element z ∈ X(S) such that z̃ = X(ι)(z).

Proof We have a diagram
A

B S S̃

∃α z̃ρ∗

β ι

with the outer triangle commutative in which ρ∗ is surjective. We prove the lemma by
constructing a unique k-algebra morphism α∶A → S such that z̃ = ι ○ α, as follows.
For any a ∈ A, the surjectivity of ρ∗ gives us some b ∈ B such that ρ∗(b) = a. We
define α(a) ∶= β(b). Because ι is injective, we have Ker ρ∗ ⊆ Ker β, which implies that
α is well-defined. We then have z̃ ○ ρ∗ = ι ○ β = ι ○ α ○ ρ∗, which implies that z̃ = ι ○ α,
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because ρ∗ is surjective. Moreover, α is a k-algebra morphism, because ι is injective
and both ι and z̃ = ι ○ α are k-algebra morphisms. Finally, we see that α is unique,
again because ι is injective. ∎
Proposition 4.9 The functor Bφ ,∇(G , R) → G-Modφ ,∇

R defined in (7) is an isomor-
phism of categories.
Proof The proof is similar to that of [6, Lemma 9.1.4]. We first show that the functor
is fully faithful. Let (g , X), (g′ , X′) ∈ Bφ ,∇(G , R). Then, any morphism η∶ I(g , x) →
I(g′ , X′) is an isomorphism according to [7, Proposition 1.13] (see also Remark 4.2).
By composing η with the forgetful functor, we then have an automorphism of the fiber
functor ωG ⊗ R. By Corollary 2.5, this automorphism is given by a unique element
x ∈ G(R), which then gives an isomorphism between (g , X) and (g′ , X′), as desired.

It remains to show that, for any I ∈ G-Modφ ,∇
R , there exists a unique (g , X) ∈

Bφ ,∇(G , R) such that I = I(g , X). For any (V , ρ) ∈ RepF(G), we write I(V , ρV) =
(VR , ΦV ,∇V) for a φ-linear map ΦV and a connection ∇V on VR . The proof consists
of two steps.

Step 1: There exists a unique X ∈ gR such that ∇V = ∇X . We write ΘV for the
composition of

VR VR ⊗Ω1
R VR ,∇V ι

where ι is induced by f dt ↦ f , and put θV ∶= ΘV − IdV ⊗∂. It is clear that θ1 = 0,
where 1 denotes the trivial representation. Lemma 4.3 then implies that the family

{θV ∶VR → VR ∣ (V , ρV) ∈ RepF(G)}
of R-linear endomorphisms satisfies conditions (i–iii) in Corollary 2.9. We thus find a
unique X ∈ gR such that θV = Lie(ρV)(X) for all (V , ρV) ∈ RepF(G), which implies
that ∇V = ∇X .

Step 2: There exists a unique g ∈ G(R) such that ΦV = gφ. We put Φ̃V ∶= ΦV ⊗ φ,
where φ is the Frobenius lift on R̃ (in particular, R̃ is viewed as an R-module via the
φ-equivariant embedding ψ described in Section 2.3). The family

{λV ∶= Φ̃V ○ (IdV ⊗φ−1)∶VR̃ → VR̃ ∣ V ∈ RepF(G)}

of R̃-linear endomorphisms satisfies conditions (i–) in Theorem 2.4, which provides a
unique element g̃ ∈ G(R̃) such that λV = ρV(g̃) for all (V , ρV) ∈ RepF(G). We next
reduce g̃ to an element in G(R). We compute

Φ̃V ○ (IdV ⊗φ−1)(v ⊗ f ) = Φ̃V(v ⊗ φ−1( f )) = ρV(g̃)(v ⊗ f ),

which implies that Φ̃V(v ⊗ f ) = ρV(g̃)(v ⊗ φ( f )), and hence, Φ̃V = g̃φ. We now
fix a d-dimensional faithful representation (V , ρV), and an F-basis e1 , . . . , ed for V.

Suppose that ΦV(e i) =
d
∑
j=1

a ji e j , where a i j ∈ R for all 1 ≤ i , j ≤ d. Put A = (a i j)i , j ∈

GLd(R). Then, ψ(A) = (ψ(a i j))i , j ∈ GLd(R̃) describes the φ-linear action of Φ̃V as
well as the R̃-linear action ρ(g̃) in the basis e1 ⊗ 1, . . . , ed ⊗ 1. By replacing X with G,
Y with GLd , S with R, S̃ with R̃, and ι with ψ in Lemma 4.8, we find a unique element
g ∈ G(R) such that ψ(g) = g̃. It follows that ΦV = gφ, as desired. ∎
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Example 4.10 Let d ∈ N. The affine algebraic F-group SLd is defined by

SLd(S) = {A ∈ GLd(S) ∣ det(A) = 1}

for all S ∈ AlgF , whose Lie algebra sld consists of d × d matrices with entries in F and
with trace zero.

(i) We claim that any pair (A, N) ∈ SLd(R) × Matd ,d(E†) satisfying
N = μ Aφ(N)A−1 − ∂(A)A−1 is already an object in Bφ ,∇(SLd ,R). It is
equivalent to showing that the trace Tr(N) of N is zero. Recall that the
Frobenius lift φ on E† is given by φ( ∑

i∈Z
c i t i) = ∑

i∈Z
φ(c i)u i , where u = φ(t)

satisfies ∣u − tq ∣1 < 1. If we write u = ∑
i∈Z

u i t i , u i ∈ K, we then have ∣u j ∣ < 1 for all

j ≠ q and ∣uq ∣ = 1. It follows that ∣ μ ∣1 = ∣∂(u)∣1 = ∣ ∑
i∈Z

iu i t i−1∣1 < 1. On the other

hand, we have Tr (∂(A)A−1) = 0, because ∂(A)A−1 ∈ sld ,R (see Construction
4.4). Assume, to the contrary, that Tr(N) ≠ 0, we have

∣Tr(N)∣1 = ∣ μ Tr(φ(N))∣1 = ∣ μ φ(Tr(N))∣1 < ∣φ(Tr(N))∣1 = ∣Tr(N)∣1 ,

a contradiction (we have the last equality, because φ preserves the 1-Gauss norm
on E†).

(ii) We use the Bessel isocrystal as described in [12, Example 20.2.1] (see also [9,
Section 1.5] and [24, Example 6.2.6]) to construct an object in Bφ ,∇(SL2 ,R).
We first briefly recall the Bessel isocrystal. In Hypothesis 2.1, we let q = p be
an odd prime, κ = Fp , and F = Qp(π), where π is a (p − 1)st root of −p in
Q̄p . Then, the (p-power) Frobenius on K = F is the identity. Let φ be the
Frobenius lift on R given by φ(t) = tp . Then, [12, Example 20.2.1] gives rise to
a pair (A0 , N0) ∈ GL2(R) × Mat2,2(E†) with det(A0) = p satisfying the gauge
compatibility condition, in which N0 = ( 0 t−1

π2 t−2 0 ) ∈ sl2,E† .We now assume that
p ≡ 1(mod 4), and i is a square root of −1 in Qp . Because p − 1 is even,
we may set α ∶= i

π(p−1)/2 ∈ F×. We then have α2 = p−1 = det(A0)−1. Put D0 =
( 0 1

α 0 ) ∈ GL2(F). Then, D0A0D0 ∈ SL2(R). Moreover, we see that D0N0D−1
0 =

D−1
0 N0D0 ∈ sl2,E† . Put A ∶= D0A0D0 and N ∶= D0N0D−1

0 . Then, a straightfor-
ward verification shows N = μ Aφ(N)A−1 − ∂(A)A−1 (noting that φ(D0) = D0
and ∂(D0) = 0). We thus have (A, N) ∈ Bφ ,∇(SL2 ,R), as desired.

(iii) Let (A, N) ∈ Bφ ,∇(SLd ,R). We show that (A, N) is“SLd -quasi-unipotent” (as
described in the introduction) by modifying the classical monodromy as follows.
By the classical pLMT, we find a finite separable extension L of κ((t)) and B ∈
GLd(RL) such that BNB−1 − ∂(B)B−1 has trace zero being an upper-triangular
block matrix with zero blocks in the diagonal. We wish to replace B with an ele-
ment in SLd(RL). To this end, we deduce first that Tr(∂(B)B−1) = Tr(BNB−1) =
Tr(N) = 0. It then follows from Jacobi’s formula that ∂(det(B)) = det(B) ⋅
Tr(B−1∂(B)) = 0. Put D ∶= Diag(det(B)−1 , 1, . . . , 1). Then, DB ∈ SLd(RL) and
∂(D) = 0. We then have

(DB)N(DB)−1 − ∂(DB)(DB)−1 = D(BNB−1 − ∂(B)B−1)D−1 ,
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which is an upper-triangular block matrix with zero blocks, and the sizes of
the blocks are the same as those in BNB−1 − ∂(B)B−1 (the said properties are
preserved under conjugation by a diagonal matrix). Hence, DB is a desired
replacement of B and we are done.

Example 4.11 For any matrix X, we denote by XT its transpose, and by X−T the
inverse of transpose if X is invertible.

We fix the skew-symmetric matrix J = (
1

−1
1

−1
). The affine algebraic F-group Sp4

is defined by

Sp4(S) ∶= {A ∈ GL4(S) ∣ A−1 = J−1AT J},

for all S ∈ AlgF . We denote by sp4 the Lie algebra of Sp4. For any S ∈ AlgF , we then
have sp4,S = {X ∈ Mat4,4(S) ∣ X = JXT J}. We remark that the specific choice of J
preserves Borel subgroups under conjugation, which will be useful in the monodromy
considered below.

Given any (φ,∇)-module over R of rank 2, e.g., the Bessel isocrystal
described above, we obtain a pair (A0 , N0) ∈ GL2(R) × Mat2,2(R) satisfying N0 =
μ A0φ(N0)A−1

0 − ∂(A0)A−1
0 . Put

A ∶= (A0 0
0 ( 1

−1 )−1 A−T
0 ( 1

−1 )) and N ∶= (N0 0
0 ( 1

−1 )NT
0 ( 1
−1 )) .

A straightforward verification shows that A ∈ Sp4(R), N ∈ sp4,R, and, moreover,
N = μ Aφ(N)A−1 − ∂(A)A−1 (noting that ( 0 1

−1 0 )
−1 = −( 0 1

−1 0 )), which implies that
(A, N) ∈ Bφ ,∇(Sp4 ,R).

We next show that (A, N) is “Sp4-quasi-unipotent.” By the classical pLMT, we find
a finite separable extension L of κ((t)) and B0 ∈ GL2(RL) such that

B0N0B−1
0 − ∂(B0)B−1

0 = ( 0 n
0 0 ) ,

for some n ∈ RL (n could be 0). Put

B ∶= (B0 0
0 ( 1

−1 )−1 B−T
0 ( 1

−1 )) .

We then have B ∈ Sp4(RL), and

BNB−1 − ∂(B)B−1 = (
0 n 0 0
0 0 0 0
0 0 0 n
0 0 0 0

) ,

again by straightforward computations.

4.2 The pushforward functor

Let R ∈ {E† ,R}. For any g ∈ G(R) and n ∈ N, we define

[n]∗(g) ∶= gφ(g)⋯φn−1(g) ∈ G(R),

the n-pushforward of g. Notice that [n]∗(g)φn = (gφ)n ∈ G(R) ⋊ ⟨φ ⟩ for all n ∈ N.
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We define the n-pushforward functor by

[n]∗∶Bφ ,∇(G , R)�→Bφn ,∇(G , R), (g , X) �→ ([n]∗(g), X),

and [n]∗(x) = x for all morphisms x ∈ Bφ ,∇(G , R). The following lemma shows that
this functor is well-defined (in particular, faithful).

Lemma 4.12 Let (g , X) ∈ Bφ ,∇(G , R). We then have ([n]∗(g), X) ∈ Bφn ,∇(G , R) for
all n ∈ N.

Proof We show by induction on n that

X + dlog ([n]∗(g)) = μ(φn , t)Ad ([n]∗(g))(φn(X)).

There is nothing to show when n = 1. We now assume by the induction hypothesis that

X + dlog ([n − 1]∗(g)) = μ(φn−1 , t)Ad ([n − 1]∗(g))(φn−1(X)),

We notice that μ(φn−1 , t) = μ φ(μ)⋯φn−2(μ), and hence,

∂(φn−1( f )) = μ φ(μ)⋯φn−2(μ)φn−1(∂( f )) = μ(φn−1 , t)φn−1(∂( f )), ∀ f ∈ R,

which implies that

dlog(φn−1(g)) = μ(φn−1 , t)φn−1(dlog(g)).

On the other hand, because X + dlog(g) = μ Ad(g)(φ(X)), we have

φn−1(X) + φn−1(dlog(g)) = φn−1(μ)Ad (φn−1(g))(φn(X)).

We now compute

X + dlog ([n]∗(g)) = X + dlog ([n − 1]∗(g)) + Ad ([n − 1]∗(g))(dlog(φn−1(g)))
= μ(φn−1 , t)Ad ([n − 1]∗(g))(φn−1(X))
+ μ(φn−1 , t)Ad ([n − 1]∗(g))(φn−1(dlog(g)))

= μ(φn−1 , t)Ad ([n − 1]∗(g))(φn−1(X) + φn−1(dlog(g)))
= μ(φn−1 , t)Ad ([n − 1]∗(g))(φn−1(μ)Ad (φn−1(g))(φn(X)))
= μ(φn , t)Ad ([n]∗(g))(φn(X)),

which proves the lemma. ∎

In connection with the pushforward functor on φ-modules as recalled in Section
2.3, we state the following lemma resulting from [11, Lemma 1.6.3 and Remark 1.7.2],
which will not be explicitly used in the sequel.

Lemma 4.13 Let g ∈ G(R). Then, (VR , gφ) is pure of slope μ if and only if
(VR , [n]∗(g)φn) is pure of slope nμ for all n ∈N. Moreover, if (VR , gφ) has jumps
μ1 , . . . , μ l , then (VR , [n]∗(g)φn) has jumps nμ1 , . . . , nμ l .

4.3 G-φ-modules attached to splittings

Let g ∈ G(R). We fix a splitting ξg of HNg by Theorem 3.12.
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Construction 4.14 Let (VR , gφ,∇X) be a (φ,∇)-module over R with the slope
filtration

0 ⊆ V μ1
R

⊆ ⋯ ⊆ V μ l
R

= VR ,

with jumps μ1 < ⋯ < μ l . Then, ξg(V) is the decomposition

VR =
l

⊕
i=1

VR,μ i

of R-modules such that
j
⊕
i=1

VR,μ i = V μ j
R

for j = 1, . . . , l .

(i) For any 1 ≤ j ≤ l and v ∈ VR,μ j , we have Φg(v) ∈ V μ j
R

, whence a unique expression

Φg(v) =
j
∑
i=1

vi with vi ∈ VR,μ i . We thus have a φ-linear map

Φg ,μ j ∶VR,μ j �→VR,μ j , v �→ v j .

We then define Φ′g ∶=
l
⊕
i=1

Φg ,μ i . We define

I′(g)(V) ∶= (VR , Φ′g).

For a morphism α∶V → W of finite-dimensional G-modules, we define
I′(g)(α) ∶= αR.

(ii) Similarly, for any 1 ≤ j ≤ l and v ∈ VR,μ j , we have ΘX(v) ∈ V μ j
R

, whence a unique
expression ΘX(v) = ∑ j

i=1 vi with vi ∈ VR,μ i . We thus have a K-linear differential
operator

ΘX ,μ j ∶VR,μ j �→VR,μ j , v �→ v j .

We then define Θ′X ∶=
l
⊕
i=1

ΘX ,μ i .

Notice that (VR,μ1 , Φg ,μ1) = (V μ1
R

, Φg ∣V μ1
R
), and (VR,μ i , Φg ,μ i) is isomorphic

to V μ i
R
/V μ i−1

R
as φ-modules for 2 ≤ i ≤ l . Similarly, we have (VR,μ1 , ΘX ,μ1) =

(V μ1
R

, ΘX ∣V μ1
R
), and (VR,μ i , ΘX ,μ i) is isomorphic to V μ i

R
/V μ i−1

R
as a differential module

for 2 ≤ i ≤ l .
The remainder of this subsection is devoted to the consequences of Construction

4.14 (i). We will continue to discuss (ii) in Section 4.4; we will show, in particular, that
both constructions assemble to give a G-(φ,∇)-module over R.

Lemma 4.15 I′(g)∶RepF(G) → φ- ModR is a G-φ-module over R.

Proof By Definition 3.1, it amounts to show that I′(g) is an exact faithful F-linear
tensor functor. In this proof, we fix V , W ∈ RepF(G), and suppose the slope filtration
of (VR , gφ) (resp. of (WR , gφ)) has jumps μ1 < ⋯ < μ lV (resp. ν1 < ⋯ < ν lW ).
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We first check the functoriality of I′(g) (the exactness, faithfulness, and F-linearity
will follow immediately). Given α ∈ HomG(V , W), we need to show that

αR ○ Φ′g = Φ′g ○ αR .

For any fixed 1 ≤ l ≤ lV , we have that αR(VR,μ l ) ⊆ WR,μ l by Theorem 3.12. Notice that
WR,μ l = WR,νs if μ l = νs for some 1 ≤ s ≤ lW , and WR,μ l = 0 otherwise. In the latter
case, it is clear that αR ○ Φ′g = Φ′g ○ αR = 0 on VR,μ l , and we are done. Suppose now we
are in the former case. Let v be a nonzero element in VR,μ l . We then have Φg(v) ∈ V μ l

R

and αR(v) ∈ WR,νs . We have unique expressions

Φg(v) =
l
∑
i=1

vi , vi ∈ VR,μ i ,

and

αR ○ Φg(v) =
s
∑
i=1

wi , wi ∈ WR,ν i ;

therefore αR(vl) = ws . We also write

Φg ○ αR(v) =
s
∑
i=1

w′i , w′i ∈ WR,ν i ;

we then have wi = w′i for i = 1, . . . , s, as αR ○ Φg = Φg ○ αR. We thus have αR ○
Φg ,μ l (v) = αR(vl) = ws and Φg ,νs ○ αR(v) = w′s = ws , which implies that αR ○
Φg ,μ l = Φg ,νs ○ αR, as desired.

It remains to show that I′(g) preserves tensor products. Because τg is a tensor
functor, the (μ l + νs)th graded piece of τg(V ⊗ W) is then

(V ⊗
F

W)
R,μ l+νs

= ⊕
μ i + ν j = μ l + νs

1 ≤ i ≤ lV , 1 ≤ j ≤ lW

(VR,μ i ⊗
R

WR,ν j),

for all 1 ≤ l ≤ lV and 1 ≤ s ≤ lW . It then follows from Construction 4.14(i) that

Φ′g ,μ l+νs
= ⊕

μ i + ν j = μ l + νs
1 ≤ i ≤ lV , 1 ≤ j ≤ lW

(Φ′g ,μ i
⊗ Φ′g ,ν j

),

which implies that I′(g)(V ⊗W) coincides with I′(g)(V)⊗ I′(g)(W) on all
(V ⊗W)R,μ l+νs , whence on (V ⊗W)R. This completes the proof. ∎

With Lemma 4.15, we imitate Step 2 in the proof of Proposition 4.9 and have the
following proposition.

Proposition 4.16 There exists a unique element z ∈ G(R) such that I′(g) = I(z).

4.4 G-(φ,∇)-modules attached to splittings

We fix (g , X) ∈ Bφ ,∇(G ,R). We also fix a splitting ξg of HNg given by Theorem 3.12.

https://doi.org/10.4153/S0008414X21000328 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000328


1478 S. Ye

We now look back at Construction 4.14(ii). We claim that Θ′X − IdV ⊗∂∶VR → VR
is R-linear for all (V , ρV) ∈ RepF(G). Let 1 ≤ j ≤ l and let v ⊗ f ∈ VR,μ j . Suppose that
ΘX(v ⊗ f ) = ∑ j

i=1 vi with vi ∈ VR,μ i . Then, Θ′X(v ⊗ f ) = v j by construction. Let f ′ ∈
R. We compute

Θ′X(v ⊗ f f ′) = v ⊗ ∂( f ) f ′ + v ⊗ f ∂( f ′) + X(v ⊗ f f ′)
= (v ⊗ ∂( f ) + X(v ⊗ f )) f ′ + v ⊗ f ∂( f ′)
= Θ′X(v ⊗ f ) f ′ + v ⊗ f ∂( f ′)

= f ′
j

∑
i=1

vi + v ⊗ f ∂( f ′),

which implies that Θ′X(v ⊗ f f ′) = f ′v j + v ⊗ f ∂( f ′). We thus have

(Θ′X − IdV ⊗∂)(v ⊗ f f ′) = f ′v j + v ⊗ f ∂( f ′) − v ⊗ ∂( f f ′)
= f ′v j + v ⊗ f ∂( f ′) − v ⊗ ∂( f ) f ′ − v ⊗ f ∂( f ′)
= f ′(v j − v ⊗ ∂( f ))
= f ′(Θ′X − IdV ⊗∂)(v ⊗ f ),

as desired.
The following proposition (and its proof) is analogous to Lemma 4.15.

Proposition 4.17 There exists a unique element X0 ∈ gR such that Θ′X = ΘX0 .

Proof For any (V , ρV) ∈ RepF(G), we define θV ∶= Θ′X − IdV ⊗∂. We claim that the
family

{θV ∶VR → VR ∣ (V , ρV) ∈ RepF(G)}

of R-linear endomorphisms satisfies conditions (i–iii) in Corollary 2.9. The lemma
will follow immediately.

It is clear that θV = 0 if V = F is the trivial G-representation. For the remainder
of the proof, we fix (V , ρV), (W , ρW) ∈ RepF(G), and suppose the slope filtration
of (VR , gφ) (resp. of (WR , gφ)) has jumps μ1 < ⋯ < μ lV (resp. ν1 < ⋯ < ν lW ). Let α ∈
HomG(V , W). To show that θV ○ αR = αR ○ θW , it suffices to show that Θ′X ○ αR =
αR ○ Θ′X . Notice that αR respects gradings. Replacing Φg with ΘX (possibly with
proper decorations) in the second paragraph of the proof of Lemma 4.15, we have
the desired result.

It remains to show that

θV⊗W = θV ⊗ IdWR
+ IdVR

⊗θW .

Because τg is a tensor functor, the (μ l + νs)th graded piece of τg(V ⊗W) is then

(V ⊗W)
R,μ l+νs

= ⊕
μ i + ν j = μ l + νs

1 ≤ i ≤ lV , 1 ≤ j ≤ lW

(VR,μ i ⊗
R

WR,ν j),
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for all 1 ≤ l ≤ lV and 1 ≤ s ≤ lW . It follows from Lemma 4.3 and Construction 4.14 that

Θ′X ,μ l+νs
= ⊕

μ i + ν j = μ l + νs
1 ≤ i ≤ lV , 1 ≤ j ≤ lW

(Θ′X ,μ i
⊗ IdWR,ν j

+ IdVR,μi
⊗Θ′X ,ν j

).

Let v ⊗ f ⊗ w ⊗ f ′ ∈ VR,μ i ⊗R WR,ν j . We compute

(θV ⊗ IdWR
+ IdVR

⊗θW)(v ⊗ f ⊗ w ⊗ f ′)
=(Θ′X ,μ i

(v ⊗ f ) − v ⊗ ∂( f )) ⊗ w ⊗ f ′ + v ⊗ f ⊗ (Θ′X ,ν j
(w ⊗ f ′) − w ⊗ ∂( f ′))

=(Θ′X ,μ i
⊗ IdWR,ν j

+ IdVR,μi
⊗Θ′X ,ν j

)(v ⊗ f ⊗ w ⊗ f ′) − v ⊗ 1 ⊗ w ⊗ ∂( f f ′)

=(Θ′X ,μ l+νs
− IdV⊗W ⊗∂)(v ⊗ w ⊗ f f ′)

=θV⊗W(v ⊗ w ⊗ f f ′),

which completes the proof. ∎

We now summarize what we have shown thus far. The splitting ξg of HNg gives a
unique element z ∈ G(R) such that I′(g) = I(z) by Proposition 4.16, and a unique
element X0 ∈ gR such that Θ′X = ΘX0 by Proposition 4.17. These two elements are
related as in Proposition 4.19 below.

We next recall some notions from [4, Section 2.1]. Let k be a commutative ring
with 1, and let G be a reductive k-group. Hereupon, we denote by κ(s) the residue
field of s and κ̄(s) an algebraic closure of κ(s), for all s ∈ Spec k. A subgroup P of G is
a parabolic (resp. Borel) subgroup if P is smooth and Pκ̄(s) is a parabolic (resp. Borel)
subgroup of Gκ̄(s), for all s ∈ Spec k.

Suppose we have a cocharacter λ∶Gm → G over k. For any k-algebra R, we let Gm ,R
act on GR via the conjugation

Gm ,R(S) ×GR(S)�→GR(S), (t, x) �→ t.x ∶= λ(t)xλ(t)−1

for all R-algebra S. For any x ∈ G(R), we have an orbit map αx ∶Gm ,R → GR given by

αx ∶Gm ,R(S)�→GR(S), t �→ t.x

for all R-algebras S. Let A1 be the affine k-line. We say that the limit lim
t→0

t.x exists if αx

extends (necessarily uniquely) to a morphism α̃x ∶A1
R → GR of affine R-schemes, and

put lim
t→0

t.x ∶= α̃x(0) ∈ GR(R). We define

PG(λ)(R) ∶= {x ∈ G(R) ∣ lim
t→0

t.x exists},

UG(λ)(R) ∶= {x ∈ G(R) ∣ lim
t→0

t.x = 1},

and

ZG(λ)(R) ∶= PG(λ)(R) ∩ PG(−λ)(R),

where −λ is the reciprocal of λ. Then, PG(λ) is a closed k-subgroup of G [4, Lemma
2.1.4], UG(λ) is an affine algebraic k-normal subgroup of PG(λ), and ZG(λ) is the
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centralizer of the Gm-action in G [4, Lemma 2.1.5]. By [4, Proposition 2.1.8(3)], these
subgroups are smooth, because G is smooth.

It follows from the definitions that the formations of PG(λ), UG(λ), and ZG(λ)
commute with any base extension on k. In particular, for every s ∈ Spec k, we have
PG(λ)κ̄(s) = PGκ̄(s)(λκ̄(s)), which is a parabolic subgroup ofGκ̄(s) by [20, Proposition
8.4.5]. Hence, PG(λ) is a parabolic k-group.

By [4, Proposition 2.1.8(2)], the multiplication map gives an isomorphism

UG(λ) ⋊ ZG(λ)�→PG(λ)

of affine algebraic k-groups.
Now, let Gm act on g = Lie(G)(k) through the adjoint representation. We then

have g = ⊕
n∈Z

gn , where gn = {X ∈ g ∣ t.X = tn X ,∀t ∈ Gm} for all n ∈ Z. We have

Lie (ZG(λ)) = g0 (which is the centralizer of the Gm-action on g), Lie (UG(λ)) =
⊕
n>0

gn , and Lie (PG(λ)) = ⊕
n≥0

gn . In particular, we have the following decomposition:

Lie (PG(λ)) = Lie (ZG(λ))⊕Lie (UG(λ)).(8)

Lemma 4.18 With the notion above, we have

Z − Ad(u)(Z) ∈ Lie (UG(λ)),

for all u ∈ UG(λ)(k) and Z ∈ Lie (ZG(λ)).

Proof Recall that Z ∈ ZG(λ)(k[ε]) by definition; we may also view u as an element
in UG(λ)(k[ε]) via the inclusion ι∶ k ↪ k[ε]. By the definition of the adjoint repre-
sentation, we have

Z − Ad(u)(Z) = Z(uZu−1)−1 = ZuZ−1u−1 ∈ PG(λ)(k[ε]).

Because UG(λ) is normal in PG(λ), we have that ZuZ−1 ∈ UG(λ)(k[ε]), and so is
ZuZ−1u−1. Consider the following commutative diagram:

UG(λ)(k[ε]) PG(λ)(k[ε])

UG(λ)(k) PG(λ)(k)

Because both Z and uZ−1u−1 lie in the kernel of the right vertical map, so does their
product ZuZ−1u−1. Hence, ZuZ−1u−1 ∈ UG(λ)(k[ε]) lies in the kernel of the left
vertical map. The lemma then follows. ∎

Proposition 4.19 Let z ∈ G(R) and X0 ∈ gR be the unique elements given by Proposi-
tions 4.16 and 4.17, respectively. We have X0 = Γz( μ φ(X0)). In particular, I(z, X0) is
a G-(φ,∇)-module over R.

Proof The second assertion follows from the first assertion and Lemma 4.7. For the
first assertion, we need to show

X0 = μ ⋅Ad(z)(φ(X0)) − dlog(z).(9)
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It suffices to show (3) with both sides understood as elements in EndR(VR) for some
faithful representation (V , ρ) ∈ RepF(G). Suppose that dimF V = d, and suppose that

νg(V) is the decomposition VR =
l
⊕
i=1

VR,μ i . We choose for each graded-piece VR,μ i a
basis. They altogether give a basis v1 , . . . , vd of VR, in which Φg acts via a block-upper-
triangular matrix

A = (
A1

A2 ∗
⋱

A l

) ∈ GLd(R),

where each A i is an m i by m i invertible matrix with m i the multiplicity of μ i . Then, Φz
acts in this basis via Z ∶= Diag(A1 , . . . , A l). Likewise, ΘX acts in the basis v1 , . . . , vd
via a block-upper-triangular matrix

N = (
N1

N2 ∗
⋱

N l

) ∈ Matd ,d(R),

where each N i is an m i by m i matrix, and ΘX0 acts via N ∶= Diag(N1 , . . . , N l).
Write A = ZU for U ∈ GLd(R), and N = N + N+ for N+ ∈ Matd ,d(R). Because X =
Γg( μ φ(X)), we have N = μ ⋅Aφ(N)A−1 − ∂(A)A−1, and then

N + N+ = μ ⋅(U Z)(φ(N + N+))(U Z)−1 − ∂(U Z)(U Z)−1

= μ ⋅(U Z)φ(N)Z−1U−1+ μ ⋅(U Z)φ(N+)Z−1U−1− ∂(U)U−1− U∂(Z)Z−1U−1 .

Applying Ad(U−1) on both sides, we then have

μ ⋅Zφ(N)Z−1 − ∂(Z)Z−1 + μ ⋅Zφ(N+)Z−1 − U−1∂(U)
=U−1NU + U−1N+U = N − (N − U−1NU − U−1N+U).

We claim that μ ⋅Zφ(N)Z−1 − ∂(Z)Z−1 = N . Put λρ ,g ∶= ρ ○ λg ∶Gm ,R → GLV ,R,
where λg ∶Gm ,R → GR is the slope morphism defined in Construction 3.15. Identi-
fying GLV ,R with GLd ,R via the basis v1 , . . . , vd given in the preceding paragraph,
and letting G = GLd ,R, we then have an isomorphism

UG(−λρ ,g) ⋊ ZG(−λρ ,g) ≅ PG(−λρ ,g)

of affine algebraic R-groups. Because μ1 < ⋯ < μ l , we have

A ∈ PG(−λρ ,g)(R), U ∈ UG(−λρ ,g)(R), Z ∈ ZG(−λρ ,g)(R);

N ∈ Lie (PG(−λρ ,g)), N+ ∈ Lie (UG(−λρ ,g)), N ∈ Lie (ZG(−λρ ,g)).

It follows from Lemma 4.18 that N − U−1NU ∈ Lie (UG(−λρ ,g)). In particular,
we have N − U−1NU − U−1N+U ∈ Lie (UG(−λρ ,g)). On the other hand, it is clear
that μ ⋅Zφ(N)Z−1 − ∂(Z)Z−1 ∈ Lie (ZG(−λρ ,g)) and μ ⋅Zφ(N+)Z−1 − U−1∂(U) ∈
Lie (UG(−λρ ,g)). By decomposition (2), we have μ ⋅Zφ(N)Z−1 − ∂(Z)Z−1 = N , and
the desired equality (3) follows. ∎

Recall that the least common denominator dg of g is constructed in Construction
3.8, and λg ∶Gm ,R → GR is the slope morphism (see Construction 3.15). We next
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reduce the G-(φ,∇)-module (z, X0) over R to a unit-root one by applying the
pushforward functor [dg]∗ and twisting by λg(ϖ−1).

Corollary 4.20 I (λg(ϖ−1)[dg]∗(z), X0) is a unit-root G-(φdg ,∇)-module over R.

Proof For any V ∈ RepF(G), it suffices to show that (VR , [dg]∗(z)φdg ,∇X0) is unit-
root. By Proposition 4.19 and Lemma 4.12, (VR , [dg]∗(z)φdg ,∇X0) is a (φdg ,∇)-
module over R. Equivalently, we have ΘX0 ○ Φdg

z = μ ⋅Φdg
z ○ ΘX0 . Suppose that

(VR , gφ) has jumps μ1 , . . . , μ l , then (VR , [dg]∗(z)φdg) has jumps dg μ1 , . . . , dg μ l by
Lemma 4.13. For any 1 ≤ i ≤ l , ρ(λg(ϖ−1)) acts via multiplication by ϖ−dg μ i ∈ K on the
graded-piece VR,μ i , which implies that (VR,μ i , λg(ϖ−1)[dg]∗(z)φdg) is unit-root. It
follows from [10, Proposition 4.6.3(a)] that (VR , λg(ϖ−1)[dg]∗(z)φdg) is unit-root.
Moreover, because ΘX0 is K-linear, we have

ΘX0 ○ ρ(λg(ϖ−1)) ○ Φdg
z = ρ(λg(ϖ−1)) ○ ΘX0 ○ Φdg

z = μ ⋅ρ(λg(ϖ−1)) ○ Φdg
z ○ ΘX0 ,

which completes the proof. ∎

4.5 A G-version of the p-adic local monodromy theorem

Let L be a finite separable extension of κ((t)), and let E†
L be the unique unramified

extension of E† with residue field L. We put RL ∶= R⊗E† E†
L .

We put

E†,nr ∶= lim�→
L

E†
L , and B0 ∶= lim�→

L
RL ≅ R⊗

E†
E†,nr ,

where L runs through all finite separable extensions of κ((t)). In fact, E†,nr is the
maximal unramified extension of E† with residue field κ((t))sep, the separable closure
of κ((t)).

The main result of this paper is the following theorem.

Theorem 4.21 Let G be a connected reductive F-group, and let (g , X) ∈ Bφ ,∇(G ,R).
Then, there exist a finite separable extension L of κ((t)) and an element b ∈ G(RL) such
that Γb(X) ∈ Lie (UGR

(−λg))RL
.

We will make use of the following lemma, which is often mentioned as Steinberg’s
theorem. The theory of fields of cohomological dimension ≤ 1 can be found in, e.g.,
[19, Chapter II, Section 3]; for us, the most important example will be a Henselian
discretely valued field of characteristic 0 with algebraically closed residue field (see
[19, Chapter II, Section 3.3]).

Lemma 4.22 ([21, Theorem 1.9]) Suppose that k is a field of cohomological dimension
≤ 1 and G is a connected reductive k-group, then H1(k,G) = 1.

Proof of Theorem 4.21 Let z ∈ G(R) and X0 ∈ gR be the unique elements given by
Propositions 4.16 and 4.17, respectively.

Let (V , ρ) be a d-dimensional G-representation (not necessarily faithful). Sup-
pose the slope filtration of (VR , gφ) has jumps μ1 , . . . , μ l . Suppose that ξg(V) =

l
⊕
i=1

VR,μ i , we put d i ∶= rkR(VR,μ i ) for all i. In the proof of Corollary 4.20, we see
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that (VR,μ i , λg(ϖ−1)[dg]∗(z)φdg ,∇X0) is a unit-root (φ,∇)-module over R for all
1 ≤ i ≤ l . Let Φz = zφ, and let ΘX0 ∶VR → VR be the differential operator associated to
∇X0 . Then, Φz (resp. ΘX0 ) may be extended to V ⊗F B0, which is still denoted by Φz
(resp. ΘX0 ). By the unit-root pLMT [9, Theorem 6.11], we find:
(i) a finite separable extension L(V) of κ((t));

(ii) for each 1 ≤ i ≤ l , a basis w(i)
1 , . . . , w(i)

d i
for VR,μ i ⊗RRL(V) over RL(V) such that

ΘX0(w(i)
j ) = 0, for all 1 ≤ j ≤ d i .

Then, for each 1 ≤ i ≤ l , we have that

Wi ∶= (VR,μ i ⊗
R

B0)ΘX0=0 = {x ∈ VR,μ i ⊗
R

B0 ∣ ΘX0(x) = 0}

is a d i -dimensional Knr-vector space spanned by w(i)1 , . . . , w(i)d i
. In particular, we have

(VB0)ΘX0=0 = {x ∈ VB0 ∣ ΘX0(x) = 0} =
l

⊕
i=1

Wi ,

which is a d i -dimensional Knr-vector space.
We now have two Knr-valued fiber functors

ω1 = ωG ⊗ Knr ∶RepF(G)�→VecKnr , V �→ V ⊗ Knr ,

and

ω2∶RepF(G)�→VecKnr , V �→ (VB0)ΘX0=0 .

Moreover, we have an action

Isom⊗(ω1 , ω2) × Aut⊗(ω1)�→ Isom⊗(ω1 , ω2)

of Aut⊗(ω1) on Isom⊗(ω1 , ω2), given by precomposition. We note that Aut⊗(ω1) =
Aut⊗(ωG ⊗ Knr) ≅ GKnr ,2 so Isom⊗(ω1 , ω2)may be viewed as a GKnr -torsor over Knr.
By Lemma 4.22, we have H1(Knr , GKnr) = 1. Thus, Isom⊗(ω1 , ω2) is isomorphic to the
trivial GKnr -torsor over Knr, i.e., we have Isom⊗(ω1 , ω2)Knr ≅ GKnr .

On the other hand, we have an isomorphism γ∶ω2 ⊗B0 → ω1 ⊗B0 of tensor
functors, induced by the B0-linear extension of the inclusion

(VB0)ΘX0=0 VB0

for all (V , ρ) ∈ RepF(G). We now fix β ∈ Isom⊗(ω1 , ω2)(Knr); we then have an
element β̃ ∶= γ ○ βB0 ∈ Aut⊗(ω1 ⊗B0)(B0) = G(B0). Let b ∈ G(B0) be the inverse
of the image of β̃ under the following isomorphism:

Aut⊗(ω1 ⊗B0)(B0)�→G(B0).

Because F[G] is finitely presented over F, the functor HomAlgF
(F[G], ) commutes

with colimits. We have

G(B0) = G(lim�→
L

RL) = lim�→
L

G(RL),

2For this isomorphism, we refer to the discussion above Proposition 3.11.
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where L runs over all finite separable extensions of κ((t)); we thus find a finite
separable extension L of κ((t)) such that b ∈ G(RL).

For any (V , ρ) ∈ RepF(G), it follows from the construction of b that the automor-
phism ρ(b−1)∶VB0 → VB0 factors through (VB0)ΘX0=0 ⊗B0. Notice that ΘX0 and X0
agree on ω1(V) = VKnr . Therefore, we have

ρ(b)X0ρ(b−1) − ∂(ρ(b))ρ(b−1) = 0.(10)

We now fix a faithful representation (V , ρ). The equality (4) then implies

Γb(X0) = 0.

Put X1 ∶= X − X0 ∈ gR; we then have

Γb(X) = Ad(b)(X0 + X1) − dlog(b)
= Ad(b)(X0) − dlog(b) + Ad(b)(X1)
= Γb(X0) + Ad(b)(X1)
= Ad(b)(X1).

Conserving the notation as in the second paragraph, ΘX = ρ(b)X1ρ(b−1) acts in the
basis w(1)1 , . . . , w(1)d1

, . . . , w(l)1 , . . . , w(l)d l
via a matrix of the form

(
0

0 ∗
⋱

0
) ∈ Matd ,d(RL).

Here, the ith 0 in the diagonal denotes the zero matrix of size d i × d i . Hence, Γb(X) ∈
Lie (UGRL

(−λg ,RL)) = Lie (UGR
(−λg)RL) = Lie (UGR

(−λg))RL
, as desired. ∎

Acknowledgment The content of this paper is part of the author’s Ph.D. thesis
carried out at Humboldt-Universität zu Berlin. He owes a deep gratitude to his
supervisor Elmar Grosse-Klönne for providing him this problem, and for all the
helpful discussions. He would like to thank the external examiners of the thesis for
their valuable feedback. He is also indebted to Claudius Heyer for many constructive
suggestions. Finally, he would like to thank the anonymous referees for very helpful
comments and suggestions which have greatly improved the presentation of this paper.

References

[1] Y. André, Filtrations de type Hasse–Arf et monodromiep-adique. Invent. Math. 148(2002),
285–317.

[2] J. Anschütz, Reductive group schemes over the Fargues–Fontaine curve. Math. Ann. 374(2019),
1219–1260.

[3] L. Berger, Représentations p-adiques et équations différentielles. Invent. Math. 148(2002), 219–284.
[4] B. Conrad, O. Gabber, and G. Prasad, Pseudo-reductive groups. 2nd ed., New Mathematical

Monographs, 26, Cambridge University Press, Cambridge, 2015.
[5] R. Crew, Finiteness theorems for the cohomology of an overconvergent isocrystal on a curve. Ann.

Sci. École Norm. Sup. 31(1998), 717–763.
[6] J.-F. Dat, S. Orlik, and M. Rapoport, Period domains over finite and p-adic fields. Cambridge

Tracts in Mathematics, 183, Cambridge University Press, Cambridge, 2010.
[7] P. Deligne and J. Milne, Tannakian categories. In: Hodge cycles, motives, and Shimura varieties,

Lecture Notes in Mathematics, 900, Springer, 1982, pp. 101–228.

https://doi.org/10.4153/S0008414X21000328 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000328


A group-theoretic generalization of the p-adic local monodromy theorem 1485

[8] M. Demazure and P. Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités,
groupes commutatifs. Masson, Paris-Amsterdam, 1970.

[9] K. S. Kedlaya, A p-adic local monodromy theorem. Ann. Math. 160(2004), 93–184.
[10] K. S. Kedlaya, Slope filtrations revisited. Doc. Math. 10(2005), 447–525.
[11] K. S. Kedlaya, Slope filtrations for relative Frobenius. Astérisque 317(2008), 259–301.
[12] K. S. Kedlaya, p-Adic differential equations. Cambridge Studies in Advanced Mathematics, 125,

Cambridge University Press, Cambridge, 2010.
[13] K. S. Kedlaya, Notes on isocrystals. Preprint, 2018. arXiv:1606.01321
[14] R. Kottwitz, Isocrystals with additional structures. Compos. Math. 56(1985), 201–220.
[15] R. Liu, Slope filtrations in families. J. Inst. Math. Jussieu 12(2013), 249–296.
[16] A. Marmora, Facteurs epsilon p-adiques. Compos. Math. 144(2008), 439–483.
[17] Z. Mebkhout, Analogue p-adique du théorème de turrittin et le théorème de la

monodromie p-adique. Invent. Math. 148(2002), 319–351.
[18] J. Milne, Algebraic groups. Cambridge Studies in Advanced Mathematics, 170, Cambridge

University Press, Cambridge, 2017.
[19] J.-P. Serre, Galois cohomology. Corrected second printing edition, Springer Monographs in

Mathematics, Springer-Verlag, Berlin-Heidelberg, 2002.
[20] T. A. Springer, Linear algebraic groups. 2nd ed., Modern Birkhäuser Classics, Birkhäuser, Boston,

1998.
[21] R. Steinberg, Regular elements of semisimple algebraic groups. Inst. Hautes Études Sci. Publ. Math.

25(1965), 49–80.
[22] N. Tsuzuki, The overconvergence of morphisms of etale φ–∇-spaces on a local field. Compos.

Math. 103(1996), 227–239.
[23] N. Tsuzuki, Finite local monodromy of overconvergent unit-root F-isocrystals on a curve. Amer. J.

Math. 120(1998), 1165–1190.
[24] N. Tsuzuki, Slope filtration of quasi-unipotent overconvergent F-isocrystals. Ann. Inst. Fourier

48(1998), 379–412.
[25] P. Ziegler, Graded and filtered fiber functors on Tannakian categories. J. Inst. Math. Jussieu

14(2015), 87–130.

Department of Mathematics, East China Normal University, Shanghai, China
e-mail: syye@math.ecnu.edu.cn

https://doi.org/10.4153/S0008414X21000328 Published online by Cambridge University Press

arXiv:1606.01321
mailto:syye@math.ecnu.edu.cn
https://doi.org/10.4153/S0008414X21000328

	1 Introduction
	2 Preliminaries
	2.1 Notation and conventions
	2.2 The Robba ring and its variants
	2.3 The slope filtration theorem
	2.4 The Tannakian duality
	2.5 Filtered and graded fiber functors

	3 G-φ-modules over the Robba ring
	3.1 Definition
	3.2 The Q-filtered fiber functor HNg
	3.3 Splittings of HNg
	3.4 The slope morphism

	4 G-(φ,)-modules over the Robba ring
	4.1 Definition and an identification
	4.2 The pushforward functor
	4.3 G-φ-modules attached to splittings
	4.4 G-(φ,)-modules attached to splittings
	4.5 A G-version of the p-adic local monodromy theorem


