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A group-theoretic generalization of the
p-adic local monodromy theorem

Shuyang Ye

Abstract. Let G be a connected reductive group over a p-adic number field F. We propose and study
the notions of G-¢-modules and G-(¢, V)-modules over the Robba ring, which are exact faithful F-
linear tensor functors from the category of G-representations on finite-dimensional F-vector spaces
to the categories of ¢-modules and (¢, V)-modules over the Robba ring, respectively, commuting
with the respective fiber functors. We study Kedlaya’s slope filtration theorem in this context, and
show that G- (¢, V)-modules over the Robba ring are “G-quasi-unipotent,” which is a generalization
of the p-adic local monodromy theorem proved independently by Y. André, K. S. Kedlaya, and Z.
Mebkhout.

1 Introduction

Let p be a prime number and q a power of p. Let K be a complete nonarchimedean
discretely valued field of characteristic 0 equipped with an automorphism ¢, the
Frobenius, inducing the g-power map on the residue field x 2 IF;. We also require K
to be unramified over the fixed subfield F under ¢. See Hypothesis 2.1 for a concrete
example.

The Robba ring R = R(K, t) is the ring of bidirectional power series 3 ¢;t' in one

i€Z

variable ¢ with coefficients in K which converge in an annulus [«, 1) for some series-
dependent 0 < « < 1. The Robba ring R is endowed with an absolute Frobenius lift ¢
which extends the Frobenius on K and lifts the g-power map on k((t)), and with the
derivation 0 = d/dt.

A (¢, V) -module over R is a triple (M, @, V), where M is a finite free R-module,
® is a Frobenius, i.e., a p-linear endomorphism of M whose image spans M over R,
and V: M — M @« Rdt is a connection. Moreover, ® and V should satisfy the gauge
compatibility condition, which says that, after choosing an R-basis for M, the actions
® and V are given by matrices A and N, respectively, and these matrices should satisfy
N=u-A(p(N))A™ - 9(A)A™", where p := (p(1)).

Received by the editors July 26, 2020; revised May 16, 2021; accepted June 21, 2021.

Published online on Cambridge Core June 29, 2021.

This paper is partially supported by a research grant from Shanghai Key Laboratory of PMMP
18dz2271000.

AMS subject classification: 11885, 20G25, 17B45.

Keywords: Robba ring, p-adic local monodromy theorem, reductive groups.

CrossMark

@

https://doi.org/10.4153/50008414X21000328 Published online by Cambridge University Press


http://dx.doi.org/10.4153/S0008414X21000328
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S0008414X21000328&domain=pdf
https://doi.org/10.4153/S0008414X21000328

A group-theoretic generalization of the p-adic local monodromy theorem 1451

The (¢, V)-modules, also known as the overconvergent F -isocrystals in the lit-
erature, are closely related to p-adic local systems on Speck((¢)) (for a summary,
we refer to [13]), for which the correct monodromy theorem is the p-adic local
monodromy theorem (pLMT), conjectured by Crew [5], and proved independently by
André [1], Kedlaya [9], and Mebkhout [17]. It states that every (¢, V)-module over
R is quasi-unipotent. Concretely, a (¢, V)-module M over R, after an étale extension
to Ry (the Robba ring canonically associated to some finite separable extension L of
£((t))), admits a filtration by (¢, V)-submodules such that the connections induced
on the gradiation are trivial. A matricial description of the theorem is given as
follows. Let d be the rank of M over R, and let A € GL;(R) (resp. N € Maty 4(R))
be the matrix of @ (resp. V) in some basis. Then, there exists B € GL;(Ry) such
that BNB™ — 9(B)B™! is an upper-triangular block matrix with zero blocks in the
diagonal.

We mention two applications of the pLMT in p-adic Hodge theory.

« In[3], Berger associated to every p-adic de Rham representation V a (¢, V)-module
Ngr (V') over a Robba ring. He showed that V is potentially semistable if and only if
Ngr (V) is quasi-unipotent. Using the pLMT, he could prove the p-adic monodromy
theorem (previously a conjecture of Fontaine): every p-adic de Rham representation
is potentially semistable.

« In[16], Marmora used the pLMT to construct a functor from the category of (¢, V)-
modules over R to that of K*'-valued Weil-Deligne representations of the Weil
group W, ), where K™ is the maximal unramified extension of K in a fixed
algebraic closure of K.

Rather than the general linear group, a Galois representation may take value in
some connected reductive group G, such as a special linear group or a symplectic
group. In order to have appropriate formulations of the above results in this context,
it is helpful to establish a G-version of the pLMT, which is the main motivation of our
present paper.

In this paper, we introduce the notion of G-¢ -modules over R (resp. G-(¢, V) -
modules over R), which are exact faithful F-linear tensor functors from the category
Rep;(G) of G-representations on finite-dimensional F-vector spaces to the category
Mod?, of p-modules over R (resp. to the category Modg’z’v of (¢, V)-modules over
R), commuting with the respective fiber functors. These constructions are inspired by
that of G-isocrystals introduced in [6, Section IX.1].

Before coming to the main theorem, we first explain the group-theoretic gauge
compatibility condition (Definition 4.6). Let G be an affine algebraic F-group, and let g
be its Lie algebra. For any y € G(R) and Y € g®p R, we define I, (Y) := Ad(y)(Y) -
dlog(y), where Ad: G - GLg is the adjoint representation, and dlog: G(R) - g ®¢ R
is defined in Construction 4.4. We say g € G(R) and X € g ®p R satisfy the gauge
compatibility condition if X = Ty(p¢(X)). When G = GL4, we have Ad(y)(Y) =
yYy™! and dlog(y) = d(y)y". In this context, the group-theoretic gauge compati-
bility condition coincides with the aforementioned matrical one.

Our main theorem is the following G-version of the pLMT.
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Theorem 1.1 (Theorem 4.21) Let G be a connected reductive F-group, and let g be its
Lie algebra. If g € G(R) and X € g ®p R satisfy X = To( p (X)), then there exists a
finite separable extension L over k((t)) and an element b € G(R) such that T;,(X) €
Lie (UG:R (—/lg)) ®gg fRL.

Here, Ag: G, 2 — Gz is a cocharacter associated to g whose reciprocal is denoted
by —Ag, and Ug, (-A¢) denotes the unipotent radical of the parabolic subgroup of
Gx associated to —Ag. When G = GL, g (resp. X) should be thought as the matrix
of the Frobenius (resp. the matrix of the connection), and T,(—) as the matrix of
a connection under the change-of-basis via b™!. Moreover, Lie (UGR (—Ag)) QxR
consists of upper-triangular matrices over Ry with zero blocks (of certain sizes)
in the diagonal. As such, Theorem 1.1 recovers the matricial pLMT described
above.

In Proposition 4.9, we show that G-(¢, V)-modules over R are indeed pairs (g, X)
subject to the gauge compatibility condition in the theorem. In this sense, the theorem
can be interpreted as saying that G-(¢, V)-modules over R are “G-quasi-unipotent.”
In Examples 4.10 and 4.11, we give examples of the existence of such pairs for G a special
linear group and a symplectic group, respectively.

More examples of G-(¢,V)-modules are expected from Berger’s functor Ngg
mentioned previously. Explicitly, we hope to show in a future work that if a p-adic de
Rham representation V takes value in a connected reductive group G, then Ngg (V) is
a G-(¢, V)-module. As another future work, we intend to use Theorem 1.1 to formulate
a G-version of Marmora’s functor, namely, to construct a functor from the category of
G-(¢, V)-modules over R to that of Weil-Deligne representations of the Weil group
Wi ((+y taking value in G(K™).

Our approach to the theorem closely follows that of the pLMT in [9] for absolute
Frobenius lifts, wherein the author used his slope filtration theorem (along with apply-
ing the pushforward functor and twisting to each quotient of the filtration) to reduce
the problem to the unit-root case, and then apply the unit-root pLMT attributed to
Tsuzuki [23] to finish. More precisely, we use Kedlaya’s slope filtration theorem to
construct a Q-filtered fiber functor HN, from Rep(G) to Q-Filg, the category of
Q-filtered modules over R (see Theorem 3.4). We then reduce HN, to a Z-filtered
fiber functor HNSZf from Rep(G) to Z-Fily, the category of Z-filtered modules over
R (see Lemma 3.10). Then, a result of Ziegler (Theorem 2.12) immediately implies that
HN? is splittable, i.e., factors through a Z-graded fiber functor (see Proposition 3.11).

In particular, for any splitting of HN?, we construct a morphism Ay: G,y 2 — G of
R-groups in Section 3.4, which is called the Z -slope morphism of g. With this, we can
reduce the G-(¢, V)-module (g, X) over R, involving the (generalized) pushforward
functor and twisting, to a unit-root one (see Corollary 4.20). Theorem 1.1 then follows
from the unit-root pLMT and a Tannakian argument.

The paper is organized as follows. In Section 2, we set up basic notation
and conventions, and then recall some necessary background on the theory of
slopes and Tannakian formalism. In Section 3, we study G-¢-modules over the
Robba ring, and construct slope morphisms. In Section 4, we consider G-(¢, V)-
modules over the Robba ring, and prove our main result, Theorem 1.1, in the last
subsection.
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2 Preliminaries
2.1 Notation and conventions

When k is a field, we denote by Vec the category of finite-dimensional k-vector
spaces. When R is a k-algebra,' we denote by Modp the category of R-modules, and
by Alg, the category of R-algebras. When V, W € Vecy, we write Vi for V @, R
and write ag := « ® R, the R-linear extension of «, for all k-linear maps a: V. — W.
When G is an affine algebraic k-group, we denote by k[G] the Hopf algebra of G, by
Gr := G Xspec k Spec R the base extension, by H' (k, G) := H'( Gal(k**P /k), G(k*P))
the first Galois cohomology set, and by Rep, (G) the category of representations of G
on finite-dimensional k-vector spaces.

By a reductive k-group, we mean a (not necessarily connected) affine algebraic k-
group G such that every smooth connected unipotent normal subgroup of G, is trivial,
where k is an algebraic closure of k.

For the rest of this paper, we work under the following hypothesis.

Hypothesis 2.1 Let p be a prime number and g = p/ an integral power of p. Let F
be a finite extension of Q, with the ring of integers Op, a fixed uniformizer @r and
the residue field IF; of g elements. Let « be a perfect field containing Iy. Let Ok =
Or ®w(r,) W(k), where W(IFy) (resp. W(r)) denotes the ring of Witt vectors with
coefficients in IF; (resp. in ). Then, K := Frac(Ox) = F ®w(r,) W (k) is a complete
discretely valued field with ring of integers Ok, a uniformizer @ := @r ® 1and residue
field k. Let Frob be the ring endomorphism of W (k) induced by the p-power map on
K, and let

¢ = 1dr ® Frob”: K — K
be the Frobenius automorphism on K relative to F. Then, ¢ reduces to the g-power map
on x, and the fixed field of ¢ on K is F Qy(r,) W(IFy) = F.
2.2 The Robba ring and its variants
For « € (0,1), we put

{%ct | ci €K, hm lcilp’ =0, Vp e [a, 1)}

For any p €[a,1), we define the p-Gauss norm on R, by setting |Zciti|P =
sup,{|ci|p'}. The Robba ring is defined to be the union R := R(K,t) := U Rq.For

ae(0,1)
any Z cit' € R, we define | Z ¢ t’| = sup,{|ci|} € Ryo U {c0}, the 1-Gauss norm.
The bounded Robba ring ET = &7(K, t) is the subring of R consisting of bounded

elements (i.e., elements with finite 1-Gauss norm), which is actually a Henselian
discretely valued field w.r.t. the 1-Gauss norm with residue field <((¢)).

1By an algebra, we always mean a commutative algebra with 1.
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Let R € {R, &T}. An absolute q-power Frobenius lift on R is a ring endomorphism
@:R —» Rgivenby ¥ c;t' — ¥ ¢(c;)u’ for u = ¢(t) € R such that |u — #1|; < 1.
ieZ ieZ

For any « € (0,1), we define R4 to be the ring of formal sums ). ¢; ! with ¢; € K,
ieQ
subject to the following properties.
o Foranyc >0, theset {i € Q||c;| > c} is well-ordered.
o Forany p € [a,1), we have lim |c;|p’ = 0.
1—>+o00

For any p € [a, 1), we define the p-Gauss norm on R, by setting
| Z Ci ti

We define R := jQ(K, H= U an, the extended Robba ring. The absolute Frobenius
ae(0,1)

lift on R is the ring automorphism on R given by 3. ¢;t' = ¥ ¢(c;)t'9. We denote
ieQ ieQ

= sup{|cip'}.
P ieQ

by &' the subring of R consisting of bounded elements. By [11, Proposition 2.2.6], we
have a ¢-equivariant embedding y : R — R such that [y(x)|, = |x|, for p sufficiently
close to 1.

2.3 The slope filtration theorem

We recall Kedlaya’s theory of slopes. Let R € {E€, R, g , R} equipped with a Frobenius
lift ¢. For the notions of ¢-modules and (¢, V)-modules over R, we refer to [9, Section
2.5]. We denote by Mod} (resp. Modﬁ’v) the category of g-modules (resp. (¢, V)-
modules) over R.

Let (M, ¢) € Mody, and let n be a positive integer. Then, (M, ") is a ¢”-module
over (R, ¢"). The n-pushforward functor is given by

[n].:Modf — Mod% , (M, ) — (M, 9").

For any s € Z, we define the twist M(s) of (M, ¢) by s to be the p-module (M, @° D).
Now, let M be a ¢-module over R of rank d.

(i) We say that M is a unit-root ¢-module if there exists a basis vy, ..., v of M over R
in which ¢ acts via an invertible matrix in GL4(O¢1 ) if R € {€7, R}, or GLg (O +)
ifRe {ST, R}.

(i) Let y=s/re Q with r >0 and (s,r) = 1. We say that M is pure of slope u if
([r]«M)(=s) is unit-root.

Let M € Modf{. We have a canonical filtration 0 = Mo € M; € --- € M; = M of ¢-
submodules over R such that each quotient M;/M;_, is pure of some slope y; with
ph < -+ < yy, by [11, Theorem 1.71] if R = R or [11, Proposition 1.4.15 and Theorem
2.1.8]) if R = R. This is called the slope filtration of M. We call i, ..., u; the jumps
of the slope filtration. The (uniquely determined, not necessarily strictly) increasing
sequence ({1, ..., U1, ---> @i --» 41 ), with each p; appearing rkg (M;/M;_;) times, is
said to be the slope sequence for M. We call rkg (M;/M;_) the multiplicity of p; for all
1<i<l.
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Moreover, if M is a (¢, V)-module over R, then the slope filtration can be refined
to a filtration of (¢, V)-submodules. This is [9, Theorem 6.12], and is referred to as the
slope filtration theorem for (¢, V) -modules over R.

To continue, we need to recall some notions introduced in [12, Section 14]. A
difference ring (resp. difference field) is a ring (resp. field) R equipped with an endo-
morphism ¢. A difference module over R is an R-module M equipped with a ¢-linear
endomorphism ®. A finite free difference module M over R is said to be dualizable
(resp. trivial) if M admits a basis over R such that ® acts via an invertible matrix
(resp. the identity matrix). For example, a ¢-module over R is a dualizable difference
module over R where R is any of the rings constructed in Section 2.2. A dualizable
difference module M over R is said to be standard if it admits a basis ey, ..., ez such
that e; = ®(e;_1) for 2<i < d and ®(ey) = Ae; for some A € R*. A difference field
(k, ¢ ) is called strongly difference-closed if ¢y, is an automorphism and any dualizable
difference module over k is trivial.

Let k be a complete nonarchimedean valued field and (k, ¢y ) is a difference field
in which ¢y is bijective. An admissible extension of (k, ¢y) is a difference field (¢, ¢¢),
where / is a field extension of k complete for the valuation extending the one on k
with the same value group, and ¢, is an automorphism of ¢ extending ¢. (See [11,
Definition 3.2.1].)

Lemma 2.2 [15, Lemma 1.5.3] The field K admits an admissible extension E such that
the residue field g of E is strongly difference-closed.

The following lemma is a recollection of some results which will be used in the
sequel.

Lemma 2.3 Let E be an admissible extension of K such that kg is strongly difference-
closed.

(i) Let M € Mod$%,. Then, tensoring the slope filtration of M with R(E, t) gives the slope
filtration of M @5 R(E, t).

(ii) Let 0— M;— M — M, — 0 be a short exact sequence of ¢-modules over
R(E, t) such that the slopes of My are all less than the smallest slope of M. Then,
the sequence splits.

(iii) Every g-module over R(E, t) admits a Dieudonné—Manin decomposition, i.e., it is
a direct sum of standard ¢-submodules.

(iv) Let M and N be ¢-modules over R(E, t). If the slopes of M are all less than the
smallest slope of N, then no nonzero morphism from M to N exists.

Assertion (i) is [15, Proposition 1.5.6]. Assertion (ii) is [15, Proposition 1.5.11], and
assertion (iii) is Proposition 1.5.12 in loc. cit. Assertion (iv) is [11, Proposition 1.4.18].

2.4 The Tannakian duality

In this subsection, k denotes a field unless otherwise specified. We follow the defini-
tions and notations in [7]. We denote by w® the forgetful functor Rep, (G) — Vecy,
which is called the fiber functor.

The following Tannakian duality will be repeatedly used in this paper, whose proof
can be found, e.g., in [18, Theorem 9.2].

https://doi.org/10.4153/50008414X21000328 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X21000328

1456 S. Ye

Theorem 2.4  Let G be an affine algebraic k-group, and let R € Alg, . Suppose that for
any (V,pv) € Rep,(G), we are given an R-linear map Av: Vg — Vg. If the family {1y |
(V,pv) € Rep, (G)} satisfies

(1) AV® w=Ay® AwaT all vV, W e Repk(G);

(ii) Ay is the identity map where 1 is the trivial representation on k;
(iii) for all G-equivariant maps a: V — W, we have Ay o ag = ag © Ay.

Then, there exists a unique g € G(R) such that Ay = py(g) forall (V,pv) € Rep,(G).

Corollary 2.5 Let G be an affine algebraic k-group. We have an isomorphism G =
Aut®(w®) of affine algebraic k-groups.

Corollary 2.6  Let G be a smooth affine algebraic k-group. Let £k be a field extension,
and let : Rep,(G) — Vec, be a fiber functor over (. Then, Hom®(w®, ) is a G-torsor
over L. In particular, if H'(¢,G) = {1} and G({) # @, then w® is isomorphic to n
over L.

Proof Notice that we have an action
Hom® (%, 1) x Aut® () — Hom® (°, 1)

by precomposition. By [7, Theorem 3.2(i)], Hom® (w, 7) is an Aut® (w®)-torsor. In
particular, it is a G-torsor over £ by Corollary 2.5.

Because G is a £-group variety, G-torsors over ¢ are ¢-varieties by [18, Proposition
2.69], whose isomorphism classes are classified by H'(¢,G). It follows from the
triviality of H' (¢, G) that Hom® (w®, 1) (¢) = G(¢); hence, Hom® (€, #)(¢) # @. 7,
Proposition 1.13] then implies the second assertion. ]

To end this subsection, we give a Lie algebra version of Theorem 2.4. We start with
recalling the notion of the Lie algebra of a k-group functor. (See [8, Chapitre II, Section
4] for more details. Notice that k denotes a ring in loc. cit.)

For any R € Alg, , we define the R-algebra of dual numbers R[] := R[X]/(X?). Put
€ := X + (X?); we then have the canonical projection 7g: R[e] - R, ¢+ 0. Let Gbe a
k-group functor. We define

Lie(G)(R) := Ker G(7r).

Let f: G - H be a morphism of k-group functors. The commutative diagram

Lie(G)(R) = Ker(G(nR)) Lie(H)(R) = Ker(H(mR))
(1) G(R[¢]) JRED » H(R[e])
[0 Jrme)
G(R) S s H(R)

implies that f(R[¢]) o 1g(X) € Lie(H)(R) forall X € Lie(G)(R). We define Lie(f) :=
f(R[e]) o 1g:Lie(G)(R) — Lie(H)(R). Hence, Lie(_)(R) is a functor from the cat-
egory of k-group functors to that of abelian groups.
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For an affine algebraic k-group G, we write I for the kernel of the counit eg: k[G] —
k. Because k[G] is Noetherian, I/I* is a finite-dimensional vector space over
k = k[G]/I. We then have Homy (I/I?,R) = Hom (I/I?, k) ®x R. By [8, Corollaire
11.3.3], we have canonical group isomorphisms Lie(G)(R) = Homy (I/I>,R) and g =
Lie(G)(k) = Homy(I/I%, k), whence Lie(G)(R) = gg. The Lie structure on g then
canonically gives a Lie structure on gy and hence on Lie(G)(R). We call Lie(G)(R)
the Lie algebra of G over R, and will identify it with gz. Moreover, Lie(_)(R) is a
functor from the category of affine algebraic k-groups to that of Lie algebras over R.

Remark 2.7 More generally, let k be a commutative ring with 1 and let G be a
smooth k-group scheme. For any k-algebra R, we can similarly define Lie(G)(R)
as above. Because the g-module QlG/k is finite locally free, we have Lie(G)(R) 2

Lie(G)(k) ®x R by [8, Proposition I11.4.8].

Remark 2.8 For any d-dimensional G-representation (V,py), we write gl :=
Lie(GLy)(k). We then have gly, = {I; + ¢éB | B € Mat, 4(R)}, after choosing a k-
basis for V. Then, I; + ¢B ~ B gives a group isomorphism from gly,  to Endg(Vz).
Henceforth, we will identify Lie(pv )(X) as an endomorphism of Vi, for all X € gp.

Replacing H with GLy and f with py in diagram (1), we obtain a morphism
Lie(pv) = pv(R[e]) o tg: gr — gly g of Lie algebras over R. Let (W, pw ) € Rep,(G),
and let « € Homg (V, W). We then have ag o Lie(py ) (X) = Lie(pw ) (X) o ag forall
X €gp.

Applying the functor Lie(_)(R) on both sides of the isomorphism in Corollary
2.5 gives us an isomorphism gy = Lie(Aut®(w®))(R) of Lie algebras over R. The
following corollary indicates that elements in Lie(Aut®(w®))(R) are exactly the
derivatives (in the sense of taking derivations of conditions (i-iii) in Theorem 2.4)
of elements in Aut®(w®)(R).

Corollary 2.9  Let G be an affine algebraic k-group, and let R be a k-algebra. Suppose
that for any (V,pv) € Rep,(G), we are given an R-linear endomorphism 0y of Vr
subject to the conditions:

(i) 6V® w=0y® IdWR +IdVR ®9wf07’ all vV, W e Repk(G);
(if) 01 =0, where 1 = k is the trivial G-representation;
(iii) Ow o ag = ag o Oy forall @ € Homg(V, W).
Then, there exists a unique element X € gp such that Oy = Lie(py )(X) forall (V,py) €
Rep, (G).
Proof Forany (V,pv) € Rep,(G) and Oy: Vg — Vg, we define an R[¢]-linear map
e0v: Vrre) = Vrrep, v (x+ye) — Oy(vex)®e.
We define an R[¢]-linear endomorphism

Oy =1y, +£0v: Vo) — VR[e-

Then, Oy € Lie(GLy)(R) € GLy (R[¢]), because 7z (0y) = Idy,.
We claim that the family

@) {0v: Vo) = Vo | (V. pv) € Rep(G) }
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of R[e]-linear endomorphisms satisfies conditions (i-iii) in Theorem 2.4. Grant-
ing this claim for a moment, we conclude that 8 € Aut®(w?)(R[e]). In particular,
there exists a unique element X € G(R[e]) such that 8y = py(X) for all (V,py) €
Rep, (G). Because 7z (0) = Id € Aut®(w®)(R), we have 8 € Lie(Aut®(w®))(R). The
isomorphism gy = Lie(Aut®(w®))(R) then implies that X € gi. Furthermore, it
follows from the construction that 8y = Lie(py)(X) for all (V, py) € Rep,(G), and
the corollary follows.

It remains to prove the claim. Condition (ii) is clear from the construction. Given
(W, pw) € Rep,(G), we compute

év@w = Id(V® W)r +66V®W

= Id(V@W)R +£(9V ® IdWR +IdVR ®9w)

= (IdVR -H:‘ev) ® (IdWR +Sew)

= éV ® éw
Hence, (2) satisfies condition (i). It remains to show that Theorem 2.4 satisfies
condition (iii). Let « € Homg (V, W). For any v ® (x + ye) € Vg[,], we compute

ar[e] 0 €0y (v ® (x + ye)) = ag(Ov(v@x)®e) = (agoOy)(veOx)®e

(Owoar)(vox)®e=0w(a(v)®x)®¢
eOw(a(v) ® (x + ye)) = eOw o ag (v ® (x + ye)).

It follows that
ar[e] © Oy = atg[e] © (Idvy,, +€0v) = arpe) + ar[e] © €0y
= QR[e] + By o OR[e] = (IdWR[s] +ely) o OR[e]
= éW ° (XR[S])

as desired. ]

2.5 Filtered and graded fiber functors

We recall the notions of filtered and graded fiber functors on Tannakian categories

following [25]. Let T be a totally ordered abelian group (written additively), and

let R € Alg,. A T -graded R-module is an R-module M together with a direct sum

decomposition M = EBr M,. A morphism between two I'-graded R modules M and
Y€

N is an R-linear map f: M — N such that f(M,) ¢ N, for all y € T. We denote by I'-
Gradpy the category of I'-graded modules over R. For M, N € I'-Gradg, we define the
tensor product (M ®z N), = @ (My Qg Ny»).
y+y=y
Let M be an R-module. A T -filtration on M is an increasing map

F:T —>{R-submodules of M}, y+— F'M,

suchthat I M = 0 for y << 0and FYM = M for y > 0, which is increasing in the sense
that F*M ¢ F¥" M whenever y < y'. AT -filtered R-module is an R-module M witha -
filtration. To abbreviate notations, we sometimes denote ¥ M by M” if no confusion
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shall arise. A morphism between two T'-filtered R-modules M and N is an R-linear
map f: M — N such that f(M?) ¢ N? for all y € T. We denote by I'-Filg the category
of T-filtered modules over R.

Let M be a I'-filtered module over R. Forany y e I', we put FV"M := }° FY' M. We

y'<y
define
gre M := F'M/F'" M.
Then, gry M := yEPr gr M isaT-graded R module, and is called the I -graded R-module
associated to F. We thus have a functor
gr: - Filg — I'- Gradg .

Elements y € T such that gr’. M # 0 are said to be the I'-jumps (or simply jumps) of F.
The tensor product structure in I'-Filg is defined by

FFMRIN) = Y FMRF'N,
R y +y"=y R
for all I'-filtered modules M and N over R.
A morphism f: M — N in I'-Filg is said to be admissible (or strict) if

f(M")= f(M)nNY, VyeTl.

Following [25, Section 4.], we say that a short sequence 0 —— M’
fl f”

y M > M" > 0 in T'-Filg is exact if both of f" and f” are admissible,
and the underlying short sequence in Mody, is exact.
Let T be a Tannakian category over k, and let R be a k-algebra.

(i) AT -graded fiber functor on T over R is an exact faithful k-linear tensor functor

7: T - I'-Gradgp.
(ii) AT -filtered fiber functor on T over R is an exact faithful k-linear tensor functor
n:T — I'-Filg.
(iii) Given an object M = @rMy in T-Gradg, we put 37 (M) := @ M,,. This gives
ye 'y

rise to a functor fil: T-Gradp — I'-Fily.
(iv) A T-filtered fiber functor # is called splittable if there exists a I'-graded fiber
functor 7 such that # = fil o7, and 7 is called a splitting of #.

Remark 2.10  More concretely, a I'-filtered fiber functor is a k-linear functor #: T —
I'-Filg satisfying the following properties (cf. [6, Definition 4.2.6 and Remark 4.2.7]).

(i) It is admissibly (or strictly) functorial, i.e., for any morphism a: X - Y in T, we
have n7(a)(F77(X)) = n(a)(n(X)) nF'y(Y) forall y e T.
(ii) Itis compatible with tensor products, i.e., we have

FHXRY))= > F'(1(X)QF (n(Y)),

Y'Y=y

forall X,Y e Ob(T) and y € T.
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(iii)

R fory>0,
0 fory<Do,

(1) - |

where 1 is the identity object in T. Note that (7(1),y ~ F75(1)) is the identity
object in I'-Filg.

Construction 2.11 Let (M, F) € Z-Filg be a Z-filtered module with Z-jumps j; <
-+ < Ju. For any y € Qs¢, we define a Q-filtered module (M, [y].F) by

0 for x < j19,
(yl+I)* M= M) forpiy<x<jimy, 1<i<n-1,
M for x > 7,y.

We then have a fully faithful embedding [y].:Z-Filg - Q-Filg. Similarly, we
have a fully faithful embedding [y].:Z-Gradg — Q-Gradg by defining [y]. := gro
[y] o fil

To end this subsection, we exhibit the following theorem for latter use. (Be
aware that in [25], the author only considers I'-gradings and I'-filtrations for
r=2)

Theorem 2.12  [25, Theorem 4.15] Let T be a Tannakian category over a field k, and
let R be a k-algebra. Let n: T — Z-Filg be a Z-filtered fiber functor. If Aut® (forgon)
is prosmooth (i.e., a limit of smooth algebraic group schemes) over R, where forg:
Z.-Filg — Mody is the forgetful functor, then 1 is splittable.

3 G-¢p-modules over the Robba ring
We fix an affine algebraic F-group G in this section.
3.1 Definition

Let Re {8*,32,?,(52} equipped with an absolute Frobenius lift ¢. The following
definition is motivated by that of G-isocrystals introduced in [6, Section IX.1].

Definition 3.1 A G-¢ -module over R is an exact faithful F-linear tensor functor
I: Rep,(G) — Mod},

which satisfies forgoI = w% ® R, where forg: Mod}; - Modg, is the forgetful functor.
The category of G-¢-modules over R is denoted by G-Mod%, whose morphisms are
morphisms of tensor functors.

Let (V,p) € Repr(G), and let g € G(R). We define I(g) (V) := (Vr, g9), where

gp:Ve—Vr, v® fr—p(g)(vel)o(f).

Let V, W € Rep(G). We have a canonical isomorphism (V ® W)z = Vg @3 Wg,
and we will henceforth identify them. Given any o € Homg(V, W), we define
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I(g)(«) := agr. We thus have the following G-¢-module over R (associated to g).
1(8):Reps(G) — Mody,  V— (Vi, g9).

We call 1(g) (V) = (Vr, g¢) the G-¢ -module over R associated to g.
Forany g € G(R), we sometimes write @, = @, y for the ¢-linear action g¢ on Vx.
Both notations have their own advantages in practice.

Remark 3.2 For any g€ G(R), we define ®(g):=G(¢)(g). For any (V,p) €
Rep;(G), we have a commutative diagram

G(R) 2% GLy(R)

G(qz)l lGLv«m

G(R) > GLy(R)

Hence, p(¢(g)) = ¢(p(g)). For any h € G(R) and n, m > 0, we have the following
formula in G(R) x (¢ ):

(h") o (g9™) = (ho"(g))p" ™.
3.2 The Q-filtered fiber functor HN,

We fix an element g € G(R).

Construction 3.3 For any V € Repr(G), we have a ¢-module (Vx, gp) over R.
Kedlaya’s slope filtration theorem [9, Theorem 6.10] then provides a filtration

0c Vh c-c VA = Vg,

satisfying
« V&' is pure of some slope y; € Q and each V' / V'™ is pure of some slope y; € Q
for2<i<l;

o U < - < Uur.
We thus have an increasing map
HNg: Q —{R-modules of Vg }
x > HNG (Vx),
where

0 for x < wy,
FHNG (V) = Ve forpi <x<pip1<i<l-l,
Vg for x > y;.

Then, (Vg, HN,) is a Q-filtered module over R with Q-jumps p; < -~ < y;. We will
denote H{N, (V) by Vi when 3Ny is clear in the context.

Theorem 3.4  The assignments

Vi— (Vg,HN,) and «v— ag,
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forall « e Homg(V, W), define a Q-filtered fiber functor
HN:Rep(G) — Q-Filx .
Proof This is Propositions 3.5 and 3.6 below. ]

For any admissible extension E of K, we first remark that the ¢-equivariant
embedding y: R — R(E, t) is faithfully flat (see [11, Remark 3.5.3]). We also remark
that, if M; and M, are pure @-modules over R of slopes y; and y,, respectively,
then M; ®x M, is pure of slope py + py (cf. [11, Corollary 1.6.4]). These facts will be
repeatedly used in the sequel.

Proposition 3.5 The assignments in Theorem 3.4 yield a faithful F-linear tensor functor
HN:Rep(G) - Q-Filx.

Proof Let 1 = F be the trivial G-representation. Then, 1 ® R = R is of rank 1 with
slope 0, proving that HN,, preserves identity objects.

We claim that HN, is functorial. Let a € Homg(V, W) be a morphism of
finite-dimensional G-modules. We need to show that ax (V) € Wi for all x € Q.
Choose by Lemma 2.2 an admissible extension E of K such that kg is strongly

difference-closed. For any fixed x € Q, we set V%(E,t) = VE®x R(E, t), and

W%(E’t) = WE ®x R(E, t). By Lemma 2.3(iii), we have a decomposition Wa(g,p) =
4
sz(E’t)) has

wZ D W, of p-modules over R(E, t), where W3 (E.0) (resp.
slopes less or equal to x (resp. greater than x). By Lemma 2.3(iv), the induced

R(E,t) R(E,t)

morphism V%(E,t) - ngz(E,t) of g-modules is zero. We thus have “j%(E,t)(VjJé(E,t)) c
W%(E’t). Given any ve Vy, we may write agp,)(v®l) =ar(v)®1l=Yw;®

iel

s; for some finite set I, with w; € W& and s; € R(E, t) for all iel. Let M be
the R-submodule of Wy generated by ax(v) and the w;, and let N be the
R-submodule of Wi generated by the w;. We then have (M/N)®x R(E,t) =
(M®x R(E,1))/(N®x R (E, t)) = 0. It follows that M/N =0 as R - R(E, t) is
faithfully flat. We thus have ax (v) € N ¢ W, as desired.

It remains to show that HN, preserves tensor products (in the sense of Remark
2.10(ii)). Let V and W be two finite-dimensional G-modules, and suppose that
the slope filtration of (Vg,g¢) (resp. (Wx,g¢)) has jumps p; < -+ < py, (resp.
v << wp,,). By [12, Lemma 16.4.3], ((V ® W)=, g¢) has jumps {p; +v; | 1< i <
ly,1<j< Iy} . Fixanyl< 1< Iy and1<s < ly; we need to show

(3) (VQW)E™ = > Vi Q Wy,
F X,)/GQ R
X+y=[41 + Vs

and we will do so in the remainder of the proof.
We claim that

> Vi @ Wy, = > Vi @ Wy
x,y€Q R i+ v < pp+ v R
X+y=p+vs 1<i<ly,1<j<ly
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It is clear that the RHS is contained in the LHS; we now show the reverse inclusion.
Letx, y € Q such that x + y = p; + v,. If x < py or y < vy, then Vi ®x Wy, = 0 which
is contained in the RHS. Otherwise, there exists the largest integer 1< i < Iy (resp.
1< j < lw) with the property that u; < x (resp. v; < y). We then have V; ®<x Wg}é =
V& @z Wy’ and p; +vj < p; + v. The claim is thus proved.

From Lemma 2.3(iii), we see that

(VR W)iar = ( > VA @ Wy ) QR(E, ).
F Pi+ Vi <+ x ®

1<i<ly,1<j<ly

Therefore, we have
HitVs i Vi
(VW) = > V' @ Wy
Ui + Vj < Ui + Vs R
1<i<ly,1<j<ly

by Lemma 2.3(i) and the fact that R — R(E, t) is faithfully flat. The desired equality
(1) then follows from the preceding claim. [ ]

Let (M, ¢) be a p-module over R of rank d. Then, @ is invertible, because the
Frobenius lift on R is bijective, and (M, ¢™') is a ¢ *-module over R. More explicitly,
let A € GLy(R) be the matrix of action of ¢ in some basis for M over R. Then, in
the same basis, the matrix of action of ¢~' is ¢7'(A™"). For example, if M = Vg
for some V € Rep(G), and ® = y(g)¢ where y denotes (by abuse of notation) the
group morphism G(R) - G(R) induced by the embedding y: R - R recalled above
Proposition 3.5, then

(v(8)9)- (97" (w(g™))e™) =1

in G(R) » (@) (cf. Remark 3.2), which implies that ¢~ = ¢~ (y(g™"))p™".
Let M be a standard ¢-module over R of slope y = s/r with r >0 and (s,7) = 1.
Namely, we have a standard basis ey, . .., e, in which ¢ acts via

(0 ‘Ds)
A=[17 . .
"1 0

which implies that (M, ¢™') is a standard ¢ *'-module pure of slope — .

Then,

Proposition 3.6  The functor HN,: Rep .(G) — Q- Filx, is exact.

Proof Let a € Homg(V, W) be a morphism of finite-dimensional G-modules. We
need to show that ax(Vy) = ax(Vx) n W for all x € Q. For any fixed x € Q, the
functoriality in Proposition 3.5 already implies that ax (V) € ax(Vx) n Wx. Thus,
it suffices to show that for any nonzero element v € Vi such that ax (v) € W, there
exists v/ € V¥ with ag (v) = ax (V).
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By Lemma 2.3(iii), we have decompositions
X ! _ X !
(4) Ve = Vae SY Ve and W gy = Wae,0) SY Wi

of g-modules over R(E, t), in which V%(E’t) and W%(E)t) have slopes less or equal to
x, while V3 (E0) and W, (50 have slopes greater than x. Notice that the composition

. x “jz(g,;g X X

& V:%Q(E,t) Vi%(E,t) ® V:}fz(E,t) WD'Q(E,t) ® W:J%(E,t) sz(E,t)
is a morphism of -modules. We claim that & = 0. We write ¢ = y(g)¢, then ¢~ =
¢ (v(g7"))¢". Because a is G-equivariant and ¢ (y(g!)) € G(R(E, t)), we have
that ag: (Vieg,y 97') = (Wi(g,r)» @) is amorphism of 9~ -modules. On the other
hand, we also have decompositions of ¢ ~!-modules as in (2), together with the induced
morphism &: ngQ(E,t) - W%(E)t) of ¢~'-modules. But in this case, ijz(E,t) has slopes
less than x, while W (E.1) has slopes greater or equal to x. It then follows from Lemma
2.3(iv) that &€ = 0, as claimed. i

Therefore, we find vy,...,v, € Vi and sy, ..., s, € R(E, t) such that

Ag(p,n(Vel) =ar(v)®1= Y ax(vi) ®s;.
i=1

Let M be the submodule of Wy, generated by ax (v) and the ax(v;), and let N be the
submodule generated by the ax (v;). We then have

(M/N) (%)i(E, t) = (M(%)j%(E, t))/(N(% R(E,t)) = 0.

It follows that M/N =0 as R — R(E,t) is faithfully flat, and hence, ax(v) =

riag(v;) € WX for some r; ¢ R. Put v/ := ¥ r;v; € VX, we then have ag (V') =
R R

i=1 i=1

ax(v), as desired. |

3.3 Splittings of HN,

Asbefore, we fix an element g € G(R). In Section 3.2, we have constructed a Q-filtered
fiber functor HNy:Rep,(G) — Q-Filz. In this subsection, we show that HN, is
splittable whenever G is smooth. Our strategy goes as follows. We first use Lemma 3.10
reducing HN, to a Z-filtered fiber functor HN? to which Theorem 2.12 is applicable.
This HN? then admits a Z-splitting. Finally, in Theorem 3.12, we lift such a Z-splitting
to a Q-splitting of HN,.

Definition 3.7 We define the support of HN, by
Supp(HNy) := {x € Q | gr’;INg(V) # 0 for some V € Repp(G)}.

Notice that Supp(HN,) is the set of jumps of the slope filtrations of (Vx, g¢) for
all V e Rep(G).

The general idea of the following construction was addressed in [2], after Definition
2.5 in loc. cit.; we will make it more explicit in our case.
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Construction 3.8 Let W € Rep;(G) be a faithful representation. Because G is alge-
braic, W is a tensor generator for Rep.(G), ie., any representation V of G is a
subquotient of a direct sum of representations @ (W @ W") for various m € IN.
(See [18, Theorem 4.14].) Therefore, Supp(HN, ) is the additive subgroup of Q finitely
generated by the Q-jumps vy, ..., v, of (Wx, g9). We write v; = s;/d; with d; > 0 and
(si»d;) =1for1<i<n. Letd, € N be the least common multiple of the d;. We then
have dyv; € Z for1 < i < n. In particular, we have
dg =min{m € IN | mx € Z,Vx € Supp(HNy)}.

Therefore, d is uniquely determined by g. We call d, the least common denominator
of g.

Remark 3.9 We conclude from Construction 3.8 that Supp(HN,) is isomorphic to
Z or 0. In fact, if (Wx, g¢) has only one jump 0, then Supp(HN, ) = 0. Otherwise, the
choice of dg implies that ged(dgvy,. .., dgv,) = 1. We then have d, Supp(HN,) = Z,
because the d,v; generate Z as a Z-module. Therefore, x ~ dgx gives an isomorphism
Supp(HNy) = Z.

Lemma3.10 HNg factors through a Z-filtered fiber functor HN?: Rep(G) — Z-Fily
which makes the diagram
Repy(G) ——% s Q-Fily
7
Z- Fily
commute.

We remark that the functor [dg_l] , (see Construction 2.11) is nothing but relabeling
the jumps by multiplying all jumps with d;l. In particular, this lemma implies that
grﬁNg(V) = gr;;N;(V) forall x € Q and V € Rep,(G).

&
Proof of Lemma 3.10 Let V € Repr(G), and let yy,...,y; be the Q-jumps of
(Vr, g9). We then have d,yu; € Z for all i. We have an increasing map
F¢:Z —{R-submodules of Vx },

x i T (Va),
where
0 for x < dg 1,
?;‘(VR):: J—CN?(VR) fordgp; <x <dguin,1<i<l-1,
Vg for x > dg ;.

Then, (Vx, Fy) is a Z-filtered module over R with Z-jumps dgp; < -+ < dgpu;. We thus
have a Z-filtered fiber functor

HNZ:Rep,(G) — Z-Filg,
Vi— (Vg,Fy),
satisfying HN, = [d,']. o HN? ]
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By the definition of Aut® and Corollary 2.5, we have Aut® (w®)(R) = Aut®(w$) =
G(R) for all R € Alg, . For any R-algebra S, we then have

Aut®(w§)(S) = Aut® (0§ ® §) = Aut®(w§) = Gr(S).
Proposition 3.11 Let G be a smooth F-group. Then, HN? is splittable.
Proof Because forgo HN? = w% ® R, we have
Aut? (forgo HN?) = Aut? (0$) = Gx.
Notice that G is smooth over R; the proposition then follows from Theorem 2.12. m

Theorem 3.12  Let G be a smooth F-group. Then, the Q-filtered fiber functor HNy is
splittable.

Proof Choose a splitting 74: Rep(G) — Z-Gradg, of HN? by Proposition 3.11, we
then have a Q-graded fiber functor [dg’,l]* o 7g:Rep,(G) — Q-Gradx. On the other
hand, we have the diagram

Rep,(G)
i HNZJ( \
(5) Z.- Grady 4> Z.- Fily > Q- Fily
[d;l]* fil
Q- Grady,

with the upper-left, the upper-right, and the bottom triangles commutative. Here,
the commutativity of the upper-left (resp. the upper-right) triangle follows from
Proposition 3.1 (resp. Lemma 3.10); for the bottom one, we note that [d,'] ofil=
fil O[d;] .- Hence, the outer diagram also commutes, which implies that HN, factors
through the Q-graded fiber functor [d;l]* o T,, as desired. |

3.4 The slope morphism

Let R be a commutative ring with 1, and let I' be an abelian group (not necessarily
finitely generated). We first continue the discussions in Section 2.5 to see how I'-
gradings over R are related to Dg(I')-modules, for some affine group scheme Dg(T)
which will be defined as follows.
The group algebra R[I] := @r Re, carries a Hopf algebra structure, where the
Y€

comultiplication is given by A(e,) = e, ® e,, the counit is given by ¢(e,) = 1, and
the antipode is given by S(e,) = e_,, for all y € T. We denote by Dr(T) the affine
R-group scheme represented by R[I']. For any y € I, the Hopf algebra morphism
R[Z] — R[T'], e; ~ e, gives rise to a character y,: Dg(T') = G, g of Dg(T). For the
remainder of this paper, we denote by Dy the R-group scheme D (Q).

Let M = @,cr M, be a I'-graded module over R. Then, M becomes a Dr(T)-
module where Dg(T') acts on each M, via x,. The following lemma shows that this
assignment gives an equivalence of categories.
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Lemma 3.13  [8, Proposition I1.2.5] T-Grady is equivalent to the category of Dg(T)-
modules.

Corollary 3.14  For any y € Qs, the functor [y].: Z- Gradr — Q- Grady corresponds
to the character y,:Dg — Gy g

Proof Let M € Z-Gradg. By Lemma 3.13, we may write M = @ M, as a direct
nez

sum of eigenmodules. By construction, we have [y].(M) = @ ([y]+(M)),n with

nez

([yl«(M))yn = M, for all n, which is also a decomposition into eigenmodules.
Therefore, giving [y]. is equivalent to giving the commutative diagram

M, == ([y]«(M))yn

| !

M, @ R[Z] — ([y]+(M))y» ®r R[Q]

of R-modules for all n € Z such that M, # 0. Here, the left (resp. the right) vertical
arrow is given by m — m ® e, (resp. m > m ® e,,). The diagram then corresponds
to R[Z] - R[Q], e; — ey, as desired. ]

We now apply the preceding discussions to the functors constructed in Section 3.3,
following [14, Section 4].

Construction 3.15 Let g € G(R); we fix a splitting 7, of HN? given by Proposition
3.11. For any (V,p) € Rep.(G), 7, gives a decomposition of Vg, which induces a
morphism A, ¢ G,z - GLy,% by Lemma 3.13. Let S be an R-algebra, and let a ¢
G, % (S). We then have a family

{)Lp,g(a): Vs> Vs [ (V.p) e RepF(G)}

of S-linear maps. Because 7, is a tensor functor, this family satisfies conditions (i-iii)
in Theorem 2.4. We thus find a unique element b € Gk (S) such that A, ¢(a) = p(b)
for all (V,p) € Repp(G). The assignment a ~ b is functorial in S, because both A, ¢
and p are functorial. We then have a morphism of R-groups

Ag: Gm,R — GfRs

which is said to be the Z -slope morphism of g.
By Corollary 3.14, [d;]* gives a unique morphism y;1: D — G %. We define

Vgi=Ag0 ng—I:]DfR —> Gg,
which is said to be the Q -slope morphism of g.

The following example demonstrates explicitly how A, and v, are related to the
splittings constructed in Section 3.3 (see Diagram 3).

Example 3.16 Let (V,p) € Repr(G) and suppose that the slope filtration of
(Vx, gg) is

0cVH ccVE =V
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with jumps g <-- < ;. By Theorem 3.12, the functor [d,']. o 7g:Repp(G) —
Q- Gradg gives a splitting

(6) Vg = VR, @ @ Vi,

j .
of HN4(V), i.e., we have @ Vx ,, = Vﬁ’ foralll1<j< .
i=1

First, we fix 1<i<I. Let SeAlg, and aeDx(S), then povy(a) acts on
V,u; @ S via multiplication by y,,(a). By Lemma 3.10, p o A,(b) acts on Vz
via multiplication by b%#i, for all b € G, % (S). Notice that for any ™ € Q, we have
en =(e1)™ € R[Q], and hence, y» = (y1)™. In particular, we have y,, = yag, =

n n dg

(ngl)dgf"‘. Then, on Vg ,, ®x S, we have
p o vg(@) = i (a) = (raps (@)% = p o Ay (1ar2(@)) = p o Ag g ().

!

We next apply this result to all 1< i< [. Because Vg = @ Vg ,,, we conclude that
i=1

povg=polgoys. It follows that vg = Ag o ys1 once we choose a faithful repre-

sentation, as is expected from the definition of v.

If G = GLy for some V € Vecg, we consider the standard representation (V, p) of
G where p is the identity. The discussion in the above example then indicates that
the image of A, is contained in a split maximal torus in Gx; we conjecture that this
property holds true for an arbitrary split reductive F-group G, and we shall give one
more evidence as follows.

Example 3.17  Fix a d-dimensional F-vector space V. For any R € Alg, we define
SLy(R) := {g € GLy(R) | det(g) =1}.

The affine algebraic F-group SLy is called the special linear group (associated to V).
Fix an arbitrary g € SLy (R). With the notation as in Construction 4.14, we suppose

!
the jumps of the slope filtration of (Vx,®,) are py,...,u; and §g(V) = @ Vg 4,
i=1

For each i, we write r; = kg (V,,, ), then the r;-th exterior product A" (Vg ,,) is
of rank 1. We choose a generator m;, then A" (@, ,.)(m;) = fim; for some f; € R* =
(E7). Let v be the valuation of the 1-Gauss norm on '. We then have y; = @ by
[11, Definition 1.4.4].

Let ey, ..., e; be a basis for V over F, and let A € SL;(R) be the matrix of action
of ®gine; ®1,...,e4 ®1. Let B e GLy(R) represent a change-of-basis over R. Then,

in the new basis, the matrix of action of @ is B! A¢(B). Notice that det(B) € (£7)*
and ¢ preserves v, we then have

v( det(B_lAq)(B))) = v( det(B™) det(A)(p(det(B))) =v(det(A)),

which implies that the valuation of the determinant of the matrix of action of @, is
invariant under change-of-basis. We denote by v(det(®,)) this invariant. In partic-

!
ular, we have v(det(®,)) = 0, because det(A) = 1 by assumption. Put @ := 163 D uis
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where each @, ,, is the projection of @, to the y;-th graded piece of &, (V') (cf.
Construction 4.14 below). We thus have

0 = v(det(®y)) = v(det(®})) = v(fi) + -+ v(fi) = rupa + -+ + 1.
Let S € Alg,, and t € G,,,=(S). Because A4(t) acts on each Vx ,, @ S via multi-
plication by t9¢# where d, is the least common denominator of g, we then have

det(Ag(t)) = tdslnme—imim)

Therefore, the image of A, is contained in a split maximal torus in SLy .

4 G-(¢,V)-modules over the Robba ring
In this section, we fix an affine algebraic group F-group G.
4.1 Definition and an identification

Let R € {€T, R} equipped with an absolute Frobenius lift ¢ and the usual derivation
0=0;=d/dtonR

Definition4.1 A G-(¢, V) -module over R is an exact faithful F-linear tensor functor

I:Rep(G) — Mod%"Y,

which satisfies forgoI = w® ® R, where forg: Mod} — Modyg is the forgetful functor.

The category of G-(¢, V)-modules over R is denoted by G—Modﬁ’v, whose morphisms
are morphisms of tensor functors. A G-(¢, V)-module I over R is called unit-root if
I(V, p) is a unit-root (¢, V)-module over R for all (V, p) € Rep,(G).

Remark 4.2 We remark that G-Modﬁ’v is a groupoid, because both Rep(G) and

Mod;‘;’v are rigid tensor categories over F, and any morphism of tensor functors
between rigid tensor categories is an isomorphism by [7, Proposition 1.13]. Note that
tensor products and duals in Modﬁ’v are defined as in [22, Section 3.1], and the

identity object is (R, ¢, 9).

We put

pi=p(g,t) = 0(p(1)).
Let Qf = Q} /x be the free R-module generated by the symbol dt, with the K-linear
derivation d: R - Qk, f + 9(f)dt. We also define a ¢-linear endomorphism
dg:Qp — Qp,  fdt — po(f)dt.

Given a finite-dimensional representation p:G — GLy, we have a morphism
Lie(p): g — gly of Lie algebras, and hence a morphism gz — gly, ® R 2 Endg(Vg) of
Lie algebras over R (which is injective if p is a closed embedding). For any X € gg, we

denote by X the action of Lie(p) (X) on Vi (see Remark 2.8). We define the connection
Vx of Vg associated to X by

Vx = Vx,vi Ve — VR @ Q.
R

ve fr— (vel)@d(f)+X(ve f) ®dt.
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Because fdt— f gives an isomorphism Q} =R, we have an isomorphism
1: VR ®g Q) — V. Let O := Ox v be the differential operator associated to V x given
by the following composition:

Vi — 5 Va®r Qk —— Vi

We have that Ox(v® f) =v®d(f) + X(v® f) forall v ® f € Vx.

When G = GLy for some V € Vecg, we may canonically associate to any G-(¢, V)-
module I over R a (¢, V)-module (Vg,®,V) over R, where (V¢,®,V) :=1(V,p)
and p:G — G is the identity. Choose a basis e;,...,e; of V, we define elements
g€G(R)and X € gg by setting g(e; ®1) := @(e; ®1) and X(e; ® 1) :=10V(e; ®1),
respectively. We then have ® = g and V = V.

Lemma 4.3 Let V,W € Rep(G), and let « ¢ Homg(V, W). We then have
R © ®X,V = ®X,W owag, and ®X,V®W = ®X,V ® Ideg +IdVR ®®X,W-

Proof The first equality holds, because agx commutes with X (see Remark 2.8), and
the second one follows from a direct computation. [ ]

Construction 4.4 We consider the R-algebra morphism
0:R—>R[e], r—>r+0(r)s,

which induces a morphism G(9):G(R) - G(R[e]). Notice that 7z o 0 = Idg; we then

have G(7g) © G(0) = Idg(g), in particular, G(7z)(G(9)(g)) = g. Identifying g with

its image in G(R[¢]) induced by the inclusion R — R[], r — r, we then have
G(9)(g)g™" € Ker G(mg) = gp.

For g € G(R), we define 3(g) := G(9)(g) € G(R[¢]), and put

dlog(g) = 9(g)g ™" € gg.

Example4.5 LetG = GL, for somed € IN, and let B € G(R). We have that dlog(B) =
I; +¢d(B)B™!, where I, is the d x d identity matrix and 0 acts on B entrywise. Using
the isomorphism Lie(G)(R) = {I; + eéB | B € Maty 4(R)} = {B| B € Mat, 4(R)}, we
may identify dlog(B) with d(B)B™".
Definition 4.6

(i) We define the gauge transformation

Tyigr— 0, X+ Ad(g)(X) —dlog(g),

where Ad: G — GLg is the adjoint representation.

(ii) We define BV (G, R) to be the groupoid whose objects are (g, X) € G(R) x g
satisfying X = Tg(p ¢(X)), and whose morphisms (g, X) — (g’,X") are ele-
ments x € G(R) such that ¢’ = xgo(x™!) and X’ = T, (X).

Lemma 4.7 Let(g,X) € BV (G,R). Then, (Vz, g9, Vx) is a (¢, V)-module over R
forall V € Rep,(G).
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Proof Choose a basis e, ..., ey for V over F where d = dimp V. Let A = (a;j);,j €
GL4(R) (resp. N = (n;j)i,j € Mat, ,(R)) be the representing matrix of p(g) (resp. X).

d
Foranyv= } e; ® f; € Vg, we compute

i=1

g29(Ox(v)) = g¢(ze ®8(fz)+Zej®Znﬂfz)

j=1 i=1

d d
=2 e;® ) ajip(d(fi)) + Zek@)ZZak,go(nﬂfz
j=1 i=1

i=1 j=1

and

d d
Ox(gp(v)) = Ox( X e;® X ajin(fi))
j=1 i=1

d d d d
=Ye® Z;a(aji)fp(fi) + Zej ® Z;ajia(‘/’(fi))

i1

.

d d d
+2 ek ® Y, )0 nijasig
k=1 i=1 71

d d d d
Because p-Y e;j® ¥ ajig(d(fi))= X ej® Y a;io(¢(fi)), we have that pu-g¢po
=1 i=1 =1 i=1
@x =0@xoge if and only if uAp(N)=0(A)+ NA, ie, N=pAp(N)A™ -
d(A)A™". The last equality holds because of the assumption X = I( g ¢(X)), which
completes the proof. ]
As a consequence, we may define a functor

) B”V(G,R) — G-Mod?", (g X)+— I(g X),

whereI(g, X)(V) := (Vr, g9, Vx). We next show that this functor is an isomorphism.
To do this, we need the following elementary descent result.

Lemma 4.8 Fixafield k, and let A and B be finitely generated k-algebras. Let p: X - Y
be a closed embedding of affine algebraic k-schemes for X = Spec Aand Y = Spec B. Let
1S = S be an embedding in Alg, . Suppose that we are given an element 7 € X (S) such
that p(2) € Y(u(S)), then there exists a unique element z € X(S) suchthatz = X(1)(z).

A
/ 30\
B b . &

B > S S

Proof We have a diagram

with the outer triangle commutative in which p* is surjective. We prove the lemma by
constructing a unique k-algebra morphism a: A — S such that zZ = 1 o a, as follows.
For any a € A, the surjectivity of p* gives us some b € B such that p*(b) = a. We
define a(a) := B(b). Because 1 is injective, we have Ker p* € Ker 8, which implies that
o is well-defined. We thenhave zo p* =10 f =10 a0 p*, which implies thatZ = 1 o «,
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because p* is surjective. Moreover, « is a k-algebra morphism, because ¢ is injective
and both ¢ and Z = 1 o « are k-algebra morphisms. Finally, we see that « is unique,
again because 1 is injective. [

Proposition 4.9 The functor B”V (G, R) - G-Mod%"" defined in (7) is an isomor-
phism of categories.

Proof The proofis similar to that of [6, Lemma 9.1.4]. We first show that the functor
is fully faithful. Let (g, X), (¢’, X") € BV (G, R). Then, any morphism #:1(g, x) —
I(¢’, X") is an isomorphism according to [7, Proposition 1.13] (see also Remark 4.2).
By composing # with the forgetful functor, we then have an automorphism of the fiber
functor w® ® R. By Corollary 2.5, this automorphism is given by a unique element
x € G(R), which then gives an isomorphism between (g, X) and (g’, X"), as desired.

It remains to show that, for any I ¢ G—Mod;’;’v, there exists a unique (g, X) €
B?V(G,R) such that I=1(g, X). For any (V,p) € Repz(G), we write I(V,py) =
(VR, @y, Vy) for a g-linear map @y and a connection Vy on Vx. The proof consists
of two steps.

Step I: There exists a unique X € g such that Vy = Vx. We write ®y for the
composition of

Ve —5 Va®QLY —— Vi,

where ¢ is induced by fdt ~ f, and put Oy := @y - Idy ®0. It is clear that 64 =0,
where 1 denotes the trivial representation. Lemma 4.3 then implies that the family

{6v:Vr > V& [ (V,pv) € Rep,(G)}

of R-linear endomorphisms satisfies conditions (i-iii) in Corollary 2.9. We thus find a
unique X € g, such that 8y = Lie(py )(X) for all (V, py) € Rep(G), which implies
that VV = VX

Step 2: There exists a unique g € G(R) such that @y = gg. We put Dy = Dy @ ¢,
where ¢ is the Frobenius lift on R (in particular, R is viewed as an R-module via the
@-equivariant embedding y described in Section 2.3). The family

{Ay =@y o (Idy ®9p™"): Vg > Vi | V € Rep(G)}
of R-linear endomorphlsms satisfies conditions (i-) in Theorem 2.4, which provides a

unique element § € G(R) such that Ay = py(§) for all (V, py) € Repp(G). We next
reduce ¢ to an element in G(R). We compute

dyo(ldvep)(ve f) =dv(ve e ' (f)) =pv(D(vef),

which implies that @y (v ® f) = pv(g)(v ® ¢(f)), and hence, v = §¢. We now
fix a d-dimensional faithful representation (V, py ), and an F-basis ey, ..., e; for V.

d
Suppose that @y (e;) = 3 ajiej, where a;; € R for all 1< i, j<d. Put A= (a;j);;j€
j=1
GL4(R). Then, y(A) = (y(ai;))i,; € GL4(R) describes the ¢-linear action of ®y as
well as the R-linear action p( g) inthebasise; ®1,...,e;s ® 1. By replacing X with G,

Y with GLy, S with R, S with R, and ¢ with y in Lemma 4.8, we find a unique element
g € G(R) such that y(g) = §. It follows that @y = g¢, as desired. |
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Example 4.10 Let d € IN. The affine algebraic F-group SL,; is defined by
SLi(S) = {A e GL4(S) | det(A) =1}

forall S € Alg,, whose Lie algebra s(; consists of d x d matrices with entries in F and
with trace zero.

(i) We claim that any pair (A,N)eSLy(R)x Maty4(ET) satisfying
N=puAp(N)A-9(A)A™! is already an object in B?V(SLy,R). It is
equivalent to showing that the trace Tr(N) of N is zero. Recall that the
Frobenius lift ¢ on €' is given by ¢( ¥ c;t') = ¥ ¢(ci)u’, where u = ¢(t)

ieZ ieZ
satisfies |u — 1], < 1. If we write u = ¥ u;t', u; € K, we then have |uj| < 1for all
ieZ
j# qand |u,| = 1 It follows that | g |y = [9(u)|1 =| ¥ iu;t"""; < 1. On the other
i€Z

hand, we have Tr (a(A)A_l) =0, because d(A)A™! e sl; » (see Construction
4.4). Assume, to the contrary, that Tr(N) # 0, we have

[ Tr(N) = | Tr(o(N))l = [ (Tr(N)) |1 < [@(Tr(N))|r = [ Te(N) s

a contradiction (we have the last equality, because ¢ preserves the 1-Gauss norm
on &N.

(ii) We use the Bessel isocrystal as described in [12, Example 20.2.1] (see also [9,
Section 1.5] and [24, Example 6.2.6]) to construct an object in BV (SLy, R).
We first briefly recall the Bessel isocrystal. In Hypothesis 2.1, we let g = p be
an odd prime, x =), and F = Q, (), where 7 is a (p —1)st root of —p in
Qp. Then, the (p-power) Frobenius on K =F is the identity. Let ¢ be the
Frobenius lift on R given by ¢(t) = ¢. Then, [12, Example 20.2.1] gives rise to
a pair (Ag, Np) € GL,(R) x Mat, ,(E") with det(Ag) = p satisfying the gauge
compatibility condition, in which Ny = ( nzg,z t;l ) € sl ¢+ .\We now assume that
p=1(mod4), and i is a square root of -1 in Q,. Because p -1 is even,
we may set & := —ly € F*. We then have a? = p™' = det(Ao)™". Put Dy =

91 € GLy(F). Then, DgA¢Dy € SLy(R). Moreover, we see that DyNoDjy' =
Dy'NoDy € sl gr. Put A:= DyA¢gDy and N := DoNyD;'. Then, a straightfor-
ward verification shows N = g Ap(N)A™' - 9(A)A™" (noting that ¢(Dy) = Dy
and 9(Dg) = 0). We thus have (A, N) € B”V(SL,, R), as desired.

(iii) Let (A, N) € B?V(SLy, R). We show that (A, N) is“SLy-quasi-unipotent” (as
described in the introduction) by modifying the classical monodromy as follows.
By the classical pLMT, we find a finite separable extension L of x((¢)) and B ¢
GL;(Ry) such that BNB™' — 9(B)B ™" has trace zero being an upper-triangular
block matrix with zero blocks in the diagonal. We wish to replace B with an ele-
ment in SL;(Rp ). To this end, we deduce first that Tr(d(B)B™") = Tr(BNB™') =
Tr(N) = 0. It then follows from Jacobis formula that d(det(B)) = det(B) -
Tr(B™'9(B)) = 0. Put D := Diag(det(B)™,1,...,1). Then, DB € SL;(R.) and
d(D) = 0. We then have

(DB)N(DB)™" - 9(DB)(DB)™ = D(BNB™ - 9(B)B™")D",
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which is an upper-triangular block matrix with zero blocks, and the sizes of
the blocks are the same as those in BNB™ — 9(B)B™! (the said properties are
preserved under conjugation by a diagonal matrix). Hence, DB is a desired
replacement of B and we are done.

Example 4.11 For any matrix X, we denote by X7 its transpose, and by X~ T the
inverse of transpose if X is invertible.

1
We fix the skew-symmetric matrix J = ( - ) The affine algebraic F-group Sp,
-1
is defined by

Sp,(S) = {AeGL4(S) | A = JIATT},

for all S € Alg,.. We denote by sp, the Lie algebra of Sp,. For any S € Alg, we then
have sp, ¢ = {X € Maty 4(S) | X = JX"J}. We remark that the specific choice of ]
preserves Borel subgroups under conjugation, which will be useful in the monodromy
considered below.

Given any (¢,V)-module over R of rank 2, eg., the Bessel isocrystal
described above, we obtain a pair (Ag, No) € GL,(R) x Mat, »(R) satisfying Ny =
pAop(No)Ay' — 9(Ag)Ay'. Put

_ (Ao 0 _[No 0
4 ( 0 <_11>1A5T<_11>) nd N ( 0 <11>N§<11>)'
A straightforward verification shows that A € Sp,(R), N € sp, », and, moreover,
N=uAp(N)A™ -9(A)A™ (noting that (% 1) =—( % })), which implies that
(A,N) e B*V(Sp,, R).
We next show that (A, N) is “Sp,-quasi-unipotent.” By the classical pLMT, we find
a finite separable extension L of x((t)) and By € GL,(Ry) such that

BoNoB;' - 9(Bo)By' = (J4),

for some n € Ry (n could be 0). Put
B:= (BO 1 0_ ) .
0 (L") B (4"
We then have B € Sp, (R, ), and
).

BNB™'-9(B)B™' = (

ocooo
ocoox

oSooo
(=)

again by straightforward computations.
4.2 The pushforward functor
Let R € {&T,R}. For any g € G(R) and n € IN, we define

[n].(g) = gp(8)~9" " (g) € G(R),
the n-pushforward of g. Notice that [n].(g)¢" = (g¢)" € G(R) x (¢ ) forall n ¢ IN.

https://doi.org/10.4153/50008414X21000328 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X21000328

A group-theoretic generalization of the p-adic local monodromy theorem 1475
We define the n-pushforward functor by
[n].:B*Y(G,R) —B*"V(G,R), (&X)— ([n].(g), X),

and [n], (x) = x for all morphisms x € BV (G, R). The following lemma shows that
this functor is well-defined (in particular, faithful).

Lemma4.12 Let (g, X) € B”V(G, R). We then have ([n]*(g),X) ¢ BY"V(G,R) for
all n e IN.

Proof We show by induction on # that

X +dlog ([n].(g)) = u(e". 1) Ad([n].()) (" (X)).

There is nothing to show when n = 1. We now assume by the induction hypothesis that

X +dlog([n-1].(g)) = u(9" ™, 1) Ad ([n - 1].(g)) (¢" (X)),

We notice that g(¢" ', t) = po(u)---¢" %(u), and hence,
9" () =me(w)-9" > (w)e" " (3(f)) = w(9" . )9"((f)),  VfeR,

which implies that

dlog(¢"(g)) = u(9" ™, £)9" " (dlog(g)).
On the other hand, because X + dlog(g) = p Ad(g)(¢(X)), we have

9" (X) + 9" (dlog(g)) = ¢" (1) Ad (¢"'(g)) (" (X)).

We now compute

X +dlog ([n].(g)) = X +dlog ([n - 1].(g)) + Ad ([# - 1].(g) ) ( dlog(9""'(g)))
=u(o" 1) Ad([n-11.(8)) (9" (X))
+u(e" 1) Ad ([n -1].(2)) (9" (dlog(g)))
=u(e" ™ 1) Ad([n - 1].(g)) (9" (X) + 9" (dlog(g)))
=p(p" ) Ad([n-1].(8)) (9" ' (w) Ad (9"7'(2)) (9" (X))
= (9", 1) Ad([n].(2)) (9" (X)),
which proves the lemma. [ ]

In connection with the pushforward functor on ¢-modules as recalled in Section
2.3, we state the following lemma resulting from [11, Lemma 1.6.3 and Remark 1.7.2],
which will not be explicitly used in the sequel.

Lemma 4.13 Let ge G(R). Then, (Vg,g¢) is pure of slope u if and only if
(Vr, [n].(g)@") is pure of slope ny for all n € IN. Moreover, if (Vr, g¢) has jumps
Uis- - pp, then (Vg, [n].(g) ") has jumps nyy, ..., ny;.

4.3 G-¢p-modules attached to splittings

Let g € G(R). We fix a splitting &, of HN, by Theorem 3.12.
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Construction 4.14 Let (Vg,g¢,Vx) be a (¢, V)-module over R with the slope
filtration

0C VL ¢ VE = Vg,

with jumps g < --- < ;. Then, £g (V) is the decomposition
!
Vx =D Va,u,
i=1

j .
of R-modules such that @ Vi, = Vi for j=1,..., 1.
i=1

(1) Foranyl< j<landve Vg, wehave ®4(v) ¢ melj, whence a unique expression

j
Dy(v) = Zl v; with v; € Vi ,,. We thus have a ¢-linear map
i=
(Dg)#i: VR:H;‘ - VR»#;" VVj.
I
We then define q);, = @ Dy ;. We define
i=1

I(g)(V) = (Vi ®)).

For a morphism a:V — W of finite-dimensional G-modules, we define

I'(g)(a) = ax. 4
(ii) Similarly, forany 1< j<landve Vg ,,, we have ®x(v) € V', whence a unique

expression @x(v) = Z{zl v; with v; € Vg ,,. We thus have a K-linear differential
operator

®X,[4j:VR,yj_)VR)Mj’ V>V
!

We then define @ = @ Oy,
i=1

Notice that (V:R,M, dDg,m) = (Vmﬁ”, Qg\vgzl ), and (ng,m , CDg,,,i) is isomorphic
to V' /VE™ as g-modules for 2<i<[. Similarly, we have (Vg,,®x,)=
(Vi Ox| Ve ),and (Va,y;» @x,,, ) is isomorphic to V' / V™ as a differential module
for2<i<l.

The remainder of this subsection is devoted to the consequences of Construction
4.14 (i). We will continue to discuss (ii) in Section 4.4; we will show, in particular, that
both constructions assemble to give a G-(¢, V)-module over R.

Lemma 4.15 1'(g):Repp(G) — ¢-Modz, is a G-p-module over R.

Proof By Definition 3.1, it amounts to show that I'(g) is an exact faithful F-linear
tensor functor. In this proof, we fix V, W € Rep(G), and suppose the slope filtration
of (Vx, gp) (resp. of (Wx, g¢)) has jumps py < -+ < yy,, (resp. vy < -+ < vy,).
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We first check the functoriality of I'(g) (the exactness, faithfulness, and F-linearity
will follow immediately). Given a € Homg(V, W), we need to show that

I _
(XgROCDg—CDgO(X:R.

For any fixed1 < [ < Iy, we have that ax (V,,,) € Wx,,,, by Theorem 3.12. Notice that
Wx u, = Wy, if y; = vs for some 1 < s < Iy, and Wg,,,; = 0 otherwise. In the latter
case, itis clear that ay o CD;, = @} o ax = 0on Vg,,,, and we are done. Suppose now we

are in the former case. Let v be a nonzero element in Vg ,,. We then have @4 (v) € V'
and ax(v) € Wg,,.. We have unique expressions

I
Qp(v) = vi, Vi€ Vary,
izl
and
S
ag o D,y(v) = Zwi, wi € Wgy;s
i-1
therefore ax (v;) = w,. We also write
s
Qgoan(v)=> Wi, W;eWpy;
izl

we then have w; =wj for i=1,...,s, as ag o @, = Py o0 ax. We thus have ag o
Dgu, (V) =ax(vi) =ws and @, , o ax(v) =w;=w,, which implies that as o
Dy = Dgy, 0 ax, as desired.

It remains to show that I'(g) preserves tensor products. Because 7, is a tensor
functor, the (y; + v )th graded piece of 7,(V ® W) is then

(V@ W)R,yl+vs = @ (VR,M,‘ % WfR,vj)>
PitVvj= U+ vs
1<i<ly,1<j<ly

forall1 <! <Iyand1<s < ly. It then follows from Construction 4.14(i) that

! ! A
Qv = SY (q)g»m ® (Dgﬂ'j)’
Ui+ Vj = U+ vs
1<i<ly,1<j<ly

which implies that I'(g)(V® W) coincides with I'(g)(V)®1'(g)(W) on all
(V® W), u+v,» whence on (V ® W)x. This completes the proof. ]

With Lemma 4.15, we imitate Step 2 in the proof of Proposition 4.9 and have the
following proposition.

Proposition 4.16  There exists a unique element z € G(R) such that I'(g) = 1(2).
4.4 G-(¢,V)-modules attached to splittings

We fix (g, X) € BV (G, R). We also fix a splitting &, of HN, given by Theorem 3.12.
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We now look back at Construction 4.14(ii). We claim that @, — Idy ®9: Vg - V¢
is R-linear for all (V, pv) € Repp(G).Let1< j<landletv ® f € Vg, . Suppose that

Ox(v® f) = Z{Zlvi with v; € Vi . Then, @ (v ® f) = v; by construction. Let f’ €
R. We compute

Ox(ve ff)=ved(f)f +ve fo(f)+X(ve ff’)

=(ved(f)+X(ve f))f +ve fo(f)
=0x(ve f)f +ve fo(f)

j
=f' 2 vi+ve fo(f),
i=1
which implies that ®% (v ® ff') = f'vi+v® fo(f’). We thus have

(O ~ldv®d)(ve ff') = flvj+ve fo(f) -ved(ff’)
=fvi+ve fo(f)-ved(f)f -ve fo(f')
=f'(vi-vea(f))
= f'(@% ~1dy ®9)(v ® f),

as desired.
The following proposition (and its proof) is analogous to Lemma 4.15.

Proposition 4.17  There exists a unique element Xg € g such that ©', = O,.

Proof Forany (V,pyv) € Repr(G), we define Oy := @ — Idy ®9. We claim that the
family

{6v: Vg > V& [ (V,pv) € Rep,(G)}

of R-linear endomorphisms satisfies conditions (i-iii) in Corollary 2.9. The lemma
will follow immediately.

It is clear that 8y = 0 if V = F is the trivial G-representation. For the remainder
of the proof, we fix (V,py), (W, pw) € Repr(G), and suppose the slope filtration
of (Vx, go) (resp. of (Wx, g9)) has jumps p; < - < py, (resp. vy < -+ <y, ). Leta €
Homg(V, W). To show that Oy o ag = ax o Oy, it suffices to show that @ o ap =
ax o ®%. Notice that ax respects gradings. Replacing @, with @y (possibly with
proper decorations) in the second paragraph of the proof of Lemma 4.15, we have
the desired result.

It remains to show that

Ovew =0y ® Idw92 +IdV;R ®0y.

Because 7, is a tensor functor, the (y; + v;)th graded piece of 7,(V ® W) is then

<V® W):R,m+v5 = @ (VR,[J,- ® WR,vj);
Pi+Vvj=Hp+Vvs ®
1<i<ly,1<j<ly
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foralll1 <[ <lyand1< s < ly. It follows from Lemma 4.3 and Construction 4.14 that

63(’.‘4!‘“’5 = @ (63(,,14,' ® Idwﬂt,v]- +IdV92,,4,- ®®,X,vj)'
Pi+Vj=lp+ Vs
1<i<ly,1<j<ly

Letv® fow® f e Vg, Qx Wax,y,;. We compute

(v ® Idw, +1dy, @0y )(ve feowe f')

(O u(vef)-vedf)ewe f +ve fe (O, (wef)-wea(f))
(A 1wy, +1dvy, 80y, )(vefeowef)-velewed(ff)
=(®% 41, ~Idvew @) (vewe ff')

=Ovew(vewe® ff),

which completes the proof. [ ]

We now summarize what we have shown thus far. The splitting £, of HN, gives a
unique element z € G(R) such that I'(g) = 1(z) by Proposition 4.16, and a unique
element X, € g4 such that @} = @, by Proposition 4.17. These two elements are
related as in Proposition 4.19 below.

We next recall some notions from [4, Section 2.1]. Let k be a commutative ring
with 1, and let & be a reductive k-group. Hereupon, we denote by x(s) the residue
field of s and & (s) an algebraic closure of x(s), for all s € Spec k. A subgroup P of & is
a parabolic (resp. Borel) subgroup if 3 is smooth and *B; ;) is a parabolic (resp. Borel)
subgroup of &), for all s € Speck.

Suppose we have a cocharacter A: G,, — & over k. For any k-algebra R, we let G, r
act on By via the conjugation

Gmr(S) x BR(S) — Br(S), (t,x) —> t.x:= A(t)xA(t)™"
for all R-algebra S. For any x € B(R), we have an orbit map oy: G, g — ®g given by
oGy r(S) — Br(S), t—t.x
for all R-algebras S. Let A! be the affine k-line. We say that the limit ltlllg t.x exists if ot

extends (necessarily uniquely) to a morphism &,: A} - & of affine R-schemes, and
put lting t.x = @, (0) € ®r(R). We define

Ps(A)(R) := {x e B(R) | ltli% t.x exists},

Us(A)(R) = {x € &(R) | lim £.x = 1},
and

Zg (M) (R) := Pe (M) (R) N Ps (=1)(R),

where -2 is the reciprocal of A. Then, Pg (1) is a closed k-subgroup of & [4, Lemma
2.14], Ug (1) is an affine algebraic k-normal subgroup of Pg (1), and Zg (1) is the
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centralizer of the G,,-action in & [4, Lemma 2.1.5]. By [4, Proposition 2.1.8(3)], these
subgroups are smooth, because & is smooth.

It follows from the definitions that the formations of Pg (1), Ug (1), and Zg (1)
commute with any base extension on k. In particular, for every s € Spec k, we have
P (M) (s) = Po,(,, (Az(s)), which is a parabolic subgroup of &) by [20, Proposition
8.4.5]. Hence, Pg (1) is a parabolic k-group.

By [4, Proposition 2.1.8(2)], the multiplication map gives an isomorphism

Ug (L) x Zs (L) — Ps (1)

of affine algebraic k-groups.
Now, let G,, act on g = Lie(®)(k) through the adjoint representation. We then
have g= @ g,, where g, ={Xeg|t.X=t"X,Vte G} for all neZ. We have
nez

Lie (Z@ (/\)) = g, (which is the centralizer of the G,,-action on g), Lie (U@(A)) =
® g,,and Lie (PQ:, ()L)) = @ g, In particular, we have the following decomposition:
n>0 n>0

(8) Lie (Ps (1)) = Lie (Zg (1)) @ Lie (Us (1)).
Lemma 4.18 With the notion above, we have

Z - Ad(u)(2) € Lie (Us (1)),
forallu e Ugs(A)(k) and Z € Lie (Ze (1)).

Proof Recall that Z € Zg (1) (k[e]) by definition; we may also view u as an element
in Ug (A)(k[e]) via the inclusion i: k — k[e]. By the definition of the adjoint repre-
sentation, we have

Z-Ad(u)(Z2) = Z(uZu™) " = ZuZ'u™" € Ps (1) (k[¢]).

Because Ug () is normal in Pg (1), we have that ZuZ ™' € Ug(A)(k[e]), and so is
ZuZ 'u~!. Consider the following commutative diagram:

Ue (M) (k[e]) ——— Ps(1)(k[¢])

| |

Us (1) (k) ————— Ps(A)(k)

Because both Z and uZ'u" lie in the kernel of the right vertical map, so does their
product ZuZ 'u™'. Hence, ZuZ'u™ € Uy (1) (k[e]) lies in the kernel of the left
vertical map. The lemma then follows. ]

Proposition 4.19 Let z € G(R) and Xy € gy be the unique elements given by Proposi-
tions 4.16 and 4.17, respectively. We have Xo = T;( p ¢(Xo)). In particular, 1(z, X,) is
a G-(¢, V)-module over R.

Proof The second assertion follows from the first assertion and Lemma 4.7. For the
first assertion, we need to show

(9) Xo = u-Ad(2)(¢(Xo)) - dlog(z).
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It suffices to show (3) with both sides understood as elements in End (V) for some
faithful representation (V, p) € Rep,(G). Suppose that dimr V = d, and suppose that

!
vg(V) is the decomposition Vi = @ Vi, ,,. We choose for each graded-piece Vz 4, a
i=1

basis. They altogether give abasis vy, ..., v4 of Vg, in which @, acts via a block-upper-
triangular matrix

Ay
A:( A )eGLd(R),
Ay

where each A; isan m; by m; invertible matrix with m; the multiplicity of y;. Then, @,
acts in this basis via Z := Diag(A;, ..., A;). Likewise, @ acts in the basis vy,...,v4
via a block-upper-triangular matrix

Ny
N = ( N2 .,.* ) € Matd,d(iR),
N,

where each N; is an m; by m; matrix, and @, acts via N := Diag(Ny,..., Nj).
Write A= ZU for U € GLy(R), and N = N + N, for N, € Maty 4(R). Because X =
T( (X)), wehave N = p-Ap(N)A™ - 9(A)A™!, and then
N+ N, =u(UZ)(o(N + N))(UZ) " - 9(UZ)(UZ)
=u-UZ2)p(N)Z'U + u-(UZ)p(N,)Zz U -oU)U - Ua(2)z7 U™
Applying Ad(U™") on both sides, we then have
pZe(N)Z'-3(2)Z +u-Zo(N.)Z - U'9(U)
=U'NU+U'N,U=N-(N-U'NU-U"'N,U).
We claim that p-Z¢(N)Z™' - 9(Z)Z™" =N. Put A4 :=pody:Gux —> GLy 2,
where 14: G,z = Gg is the slope morphism defined in Construction 3.15. Identi-

tying GLy, ¢ with GLy « via the basis vi,...,v; given in the preceding paragraph,
and letting & = GL4 x, we then have an isomorphism

Us (=Ap,g) ¥ Zo(=Apq) 2 Pe(=Apq)
of affine algebraic R-groups. Because y < -+ < y;, we have
A€Pg(—Ap ) (R), UeUg(=Ap0)(R), Z€Zp(=Apg)(R);
N eLie (Ps(~2p,g)), Ny €Lie(Us(-Ay)), N € Lie(Zs (1))
It follows from Lemma 4.18 that N - U'NU € Lie (Ug(-A,,¢)). In particular,
we have N - UT'NU - U™'N, U € Lie (Ug (-A,,¢)). On the other hand, it is clear
that p-Zo(N)Z™' - 9(Z)Z " e Lie(Zs(-Ap,)) and p-Zo(N,)Z'-U9(U) e

Lie (Ug (~Ap,¢) ). By decomposition (2), we have p-Zo(N)Z™ - 9(Z)Z™" = N, and
the desired equality (3) follows. [

Recall that the least common denominator d of g is constructed in Construction
3.8, and A4 Gp,® — G is the slope morphism (see Construction 3.15). We next
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reduce the G-(¢,V)-module (z,X,) over R to a unit-root one by applying the
pushforward functor [d,]. and twisting by Ag(@").

Corollary 4.20 1 (Ag(@‘l) [dg]«(2), XO) is a unit-root G-(¢%, V)-module over R.

Proof ForanyV € Rep;(G), it suffices to show that (Vx, [dg].(2) 9%, Vi, ) is unit-
root. By Proposition 4.19 and Lemma 4.12, (Vx, [dg].(2) 9%, Vx,) is a (9%, V)-
module over R. Equivalently, we have ®x, o (ng =u ~Cng 0 ®x,. Suppose that
(V. g¢) has jumps yy, . .., i, then (Vi [dg]. (2) %) has jumps dgus, . .., dgp; by
Lemma 4.13. Forany1< i < I, p(Ag(@7")) acts via multiplication by @ “s#i € K on the
graded-piece Vz,,,, which implies that (V,,,, Ao(@™)[dg].(2)9%) is unit-root. It
follows from [10, Proposition 4.6.3(a)] that (Vgg, Ag(@_l)[dg]*(z)(pdg) is unit-root.
Moreover, because @, is K-linear, we have

Ox, 0 p(A5(@7)) 0 ®F = p(hg(@7)) 0 B, 0 DL = p-p(Ag(@7)) 0 DL 0 O,

which completes the proof. ]
4.5 A G-version of the p-adic local monodromy theorem

Let L be a finite separable extension of x(()), and let €] be the unique unramified
extension of &' with residue field L. We put Rp := R Qe+ 82.
We put

grnr .= h_I)nEZ, and By := li_r)nfRL = .'R(? ghnr,
L L

where L runs through all finite separable extensions of x((t)). In fact, €™ is the
maximal unramified extension of &' with residue field #((¢))®, the separable closure

of k((1).

The main result of this paper is the following theorem.

Theorem 4.21 Let G be a connected reductive F-group, and let (g, X) € B”V (G, R).
Then, there exist a finite separable extension L of k((t)) and an element b € G(Ry) such
that Ty (X) € Lie (UG:R(—Ag))_,RL.

We will make use of the following lemma, which is often mentioned as Steinberg’s
theorem. The theory of fields of cohomological dimension <1 can be found in, e.g.,
[19, Chapter II, Section 3]; for us, the most important example will be a Henselian
discretely valued field of characteristic 0 with algebraically closed residue field (see
[19, Chapter II, Section 3.3]).

Lemma 4.22 ([21, Theorem 1.9])  Suppose that k is a field of cohomological dimension
< land & is a connected reductive k-group, then H'(k, &) = 1.

Proof of Theorem 4.21 Let z € G(R) and X, € g be the unique elements given by
Propositions 4.16 and 4.17, respectively.

Let (V,p) be a d-dimensional G-representation (not necessarily faithful). Sup-
pose the slope filtration of (Vx, g¢) has jumps py, ..., y;. Suppose that &, (V') =

!
@ Vi, ;> we put d; := ke (Vg ;) for all i. In the proof of Corollary 4.20, we see
i=1
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that (Vi Ag(@7)[dg]. (2) 9%, Vi, ) is a unit-root (¢, V)-module over R for all

1<i<[.Let®, = zp,and let Ox,: Vx - Vg be the differential operator associated to

Vx,- Then, @, (resp. ®x,) may be extended to V @ By, which is still denoted by ©,

(resp. ®x,). By the unit-root pLMT [9, Theorem 6.11], we find:

(i) afinite separable extension L(V') of x((¢));

(ii) foreach1<i <, abasis wfi), ... ’W.(ji) for Vi u; ®x Ry vy over Ry (v such that
®X0(w§i)) =0,foralll1<j<d;.

Then, for each 1 < i < I, we have that

W, = (VIR,;J,' ®BO)®XO:0 — {x € VR,IM ®Bo | @Xo(x) = 0}
R R

is a d;-dimensional K™ -vector space spanned by wfi), oo WE;). In particular, we have

1
(Vi,)®%0™ = {x € Vg, | Ox,(x) =0} =P W,

i=1
which is a d;-dimensional K™ -vector space.
We now have two K™ -valued fiber functors

w; = 0% ® K™:Rep(G) —> Vecgnr, V+— V@K™,
and
wy:Rep,(G) —> Vecgnr, V —s (Vg, )%=,
Moreover, we have an action
m®(w1, wy) x M@)(wl) —>M®(w1, w3)

of Aut®(w;) on Isom®(w;, w,), given by precomposition. We note that Aut®(w;) =
Aut® (0 ® K) = Ggar,? 50 Isom® (wy, @, ) may be viewed as a Ggnr-torsor over K.
By Lemma 4.22, we have H' (K™, Ggar) = 1. Thus, Isom® (w;, w, ) is isomorphic to the
trivial Gga:-torsor over K™, i.e., we have Isom® (wy, w3 ) gar = Gyor.

On the other hand, we have an isomorphism y: w, ® By - w; ® By of tensor
functors, induced by the By-linear extension of the inclusion

(V)@= —— Vg,

for all (V,p) € Repp(G). We now fix B € Isom®(wy, w,)(K™); we then have an
element f3:=y o B, € Aut® (w; ® By)(Bo) = G(By). Let b € G(By) be the inverse
of the image of § under the following isomorphism:

M@)(w] ® 'B())(fBo) —>G(Bo)

Because F[G] is finitely presented over F, the functor Homayg, (F[G], ) commutes
with colimits. We have

G(Bo) = G(lim Ry ) =1im G(Ry),
L L

ZFor this isomorphism, we refer to the discussion above Proposition 3.11.
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where L runs over all finite separable extensions of x((¢)); we thus find a finite
separable extension L of k((¢)) such that b € G(Rp).

For any (V, p) € Rep(G), it follows from the construction of b that the automor-
phism p(b7!): Vi3, — Vg, factors through ( Vs, )®*%=% ® B,. Notice that @ x, and X,
agree on w; (V') = Viar. Therefore, we have

(10) p(B)Xop(67) ~ 3(p(6))p (b)) = 0.
We now fix a faithful representation (V, p). The equality (4) then implies
I} (Xo) = 0.
Put X; := X — Xj € gy; we then have

[y (X) = Ad(b) (X + X2) — dlog(b)
_ Ad(B)(Xo) — dlog(b) + Ad(b)(X2)
=Tp(Xo) + Ad(b)(X1)

- Ad(D) ().

Conserving the notation as in the second paragraph, ®x = p(b)X;p(b™") acts in the

basis wl(l), . ,wfill), . ,wfl), . ,w‘(ii) via a matrix of the form

0
( 0 ._'* )EMatd,d(sz).
0

Here, the ith 0 in the diagonal denotes the zero matrix of size d; x d;. Hence, [, (X) €
Lie Uy, (~Agx,)) = Lie (Ugy (~Ag)w, ) = Lie (Ugy (~Ag) ) » as desired. n
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