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Abstract
An impedance matching control framework between a human and a haptic joystick for long-term teleoperation is
proposed in this research. An impedance model of the human arm is established analyzing the characteristics of
human perception, decision, and action. The coefficients of the human arm’s impedance have been identified using
a least squares method. The human arm’s impedance matching algorithm generates a corresponding motion vector
for the human arm, which is determined by the interaction force measured by a force/torque sensor considering the
impedance modeling of the human arm. The impedance control has been adopted for the haptic joystick to match
the desired impedance to that of the human arm, which is aimed to minimize the energy consumption of the human
arm for long-term teleoperation. By minimizing the fatigue of the operator, the remote control accuracy of the
teleoperation can be improved. A PD control with gravity compensation algorithm has been adopted to maintain
desired trajectory for the joystick by the operator more conveniently. The effectiveness of matching control has been
demonstrated by trajectory following experiments for a mobile robot.

1. Introduction
The word “haptic” comes from the Greek word “haptesthai,” which means “to touch,” and indicates the
ability to touch or manipulate objects. The haptic joystick is useful for an efficient remote control because
it can generate operator commands and feedback the forces of the remote environment to the operator
[1, 2]. In addition, it is necessary to design different types of haptic devices to meet the requirements of
different control systems. Krishnan and Ganesh proposed a RRR three degree-of-freedom (DOF) paral-
lel joystick that uses the motion constraint equation and the dynamic modeling of the motion platform to
obtain the overall system dynamics equation of a parallel manipulator [3]. A haptic interface algorithm
for a joystick to control a remote, unmanned vehicle was proposed [4]. The algorithm achieves effective
remote control of unmanned vehicles. However, the accuracy of the output position of the joystick is
insufficient since the feedback data are not accurate and fast enough for unmanned vehicles.

A 6-DOF haptic joystick structure was proposed to solve the problem of the accuracy of the joystick
position output in 3D space [5]. However, the complicated structure causes the mechanical quality to
be heavy, resulting in operator fatigue during long periods of operation and reducing work efficiency.
To be an efficient human–computer interaction control, it is necessary to accurately identify the human
body’s motion intentions [6].

A bioelectrical signal can directly reflect human’s motion intentions [7, 8]. For example, a sur-
face electromyogram (SEMG) directly reflects the patient’s muscle state, and an electroencephalogram
(EEG) visually reflects the condition of the cerebral cortex-related area [9–12]. However, the analysis
of bioelectrical signals requires a heavy computational burden and finally takes a long time to extract
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Figure 1. Schematic diagram of force feedback system.

the human’s motion intentions, which limits the approach to a slow and static working environment of
a mobile robot.

To quantify human’s motion intention, this paper proposes a strategy that uses dynamic modeling of
the human arm, as well as F/T (force/torque) sensor measurements, to calculate the motion vector for
the joystick. Notice that it is difficult to obtain an accurate arm dynamic owing to the nonlinearity of the
human arm itself. Various nonlinear controllers, compensation controllers, and neural network adaptive
robust controllers can be used to compensate for nonlinear and uncertain factors of the dynamics.

Impedance control algorithms are widely used in human-in-loop human robot interaction systems
(HIL-HRIS) [13–15]. The concept of this control algorithm was first proposed by Hogan [16], which
is a generalization of damping control and rigid control. It was first implemented on the lower limb
rehabilitation robot named “Lokomat” [17]. This algorithm can adaptively adjust the robot’s assisting
force according to the residual muscle control ability of a patient’s central nervous system, so that the
interaction between the robot and the patient is more coordinated and flexible. Ficuciello [18] proposed
a variable impedance control algorithm based on a redundant manipulator, which improved the HRI
performance and system stability through the fusion of a Cartesian impedance control regulator (CICR)
and the redundant analysis method (RAM). This approach requires an expensive sensor and a com-
plex redundant manipulator, which is limited to a very safe system with a compromise between better
precision and execution efficiency [19].

Wang [20] proposed a new force position impedance controller for suppressing the position uncer-
tainty during robot machining. This is applicable for cases in which the operator controls the manipulator
through the joystick by impedance control, but the impedance of the human arm causes a loss in con-
trol accuracy. Artemiadis [21] proposed a 3D modeling method to estimate the impedance of a human
arm. However, this method needs a strictly maintained experimental environment which requires expen-
sive machinery. Li and Song [22] roughly estimated the human arm’s impedance using a least squares
method, and the present study has optimized this method.

This paper proposes an impedance control strategy that matches the impedance of the operator’s arm
to that of the joystick for more efficient and effortless long-term task execution. The composition of this
paper is as follows: Section 2 introduces the basic structure of the impedance control system, Section 3
introduces the rationality of the human arm’s impedance modeling proposed in this paper from a physi-
ological perspective. Section 4 presents the algorithm for estimation of the human arm’s impedance and
impedance control strategy of the joystick to help the operator work efficiently and effortlessly. Section 5
presents the experimental results, and Section 6 concludes the paper.

2. Force feedback system based on impedance control
The overall schematic diagram of the force feedback system based on impedance control is shown in
Fig. 1. Fh is the human arm’s force, Fm is the force exerted by the master on the human arm, Fs and Fe

are the interaction forces between slave and external environment, Kh, Bh, and Mh are the human arm’s
mass, damping, and stiffness coefficients, respectively. Km, Bm, and Mm are the master’s mass, damping,

https://doi.org/10.1017/S0263574721001430 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001430


1882 Jiwook Choi et al.

Figure 2. Block diagram of the impedance matching control system.

and stiffness coefficients, respectively. Ks and Bs are the slave’s damping and stiffness. Ke, Be, and Me

are the external environment’s mass, damping, and stiffness coefficients, respectively.
The operator manipulates the joystick (master) to control the manipulator or to generate the com-

mands for a mobile robot (slave), and the interaction force generated when the manipulator touches the
external environment is fed back to the operator through the joystick. This paper focuses on the efficiency
of the operator’s manipulation of the joystick and thus only discusses the control strategy of the joystick.
The goal is efficient and effortless joystick manipulation by the operator during long-term operation. To
achieve this goal, it is necessary for the joystick to generate a compensation force to help the operator. By
the impedance matching control between the impedance of the human arm and the joystick, the human
operator becomes very comfortable operating the joystick.

In Fig. 2, �F is the interaction force between the human arm and the joystick. The F/T sensor has been
used to measure the human operator’s force, Fh, which can be used to represent the human intention. �X
is the position increment calculated from the human arm’s impedance modeling defined as �F/ �X. Fc

and G are the force generated by PD controller and the gravity compensation force, respectively. With
this gravity compensation, the fatigue of human operators for long-term teleoperation can be reduced.

3. Dynamic modeling of human arm
The operator receives a variety of sensory stimuli during manipulation of the joystick, and the feedback
information can be classified into two information types: force feedback and position feedback. This
is a complex process by which the operator perceives the environment to make decisions based on the
force and position feedback information provided by the multisensory stimulus. However, according
to the results of the operator’s decision, this decision process can be classified into two modes: force
command mode and position command mode. The force command mode can be used when the operator
wants to keep a constant force. The position command mode includes majority of human commands to
move to the desired position.

To establish dynamic modeling of the human arm, it is necessary to deeply understand the character-
istics of the human arm from the brain’s decision to the arm muscle’s motion. For the convenience of
research, this study established the operator’s layered dynamics modeling from a physiological point of
view. This modeling consists of the decision, fusion, and conduction layers, as well as the arm [23].

Figure 3 shows the whole process from a human’s decision to act, and the action has been divided
into 2 modes: force command mode and position command mode. kp and kf are the zero-frequency gains
of position and force, respectively. Tp and Tpl represent the prediction and lag factors, respectively, in
the operator’s position command process. Tf and Tfl represent the operator’s prediction and lag factors,
respectively, in the force command process. rp(n), rf (n), and r(n) are the white noises and Zh represents
the impedance modeling of the human arm.

3.1. Decision layer
There are two command modes generated by the decision layer for the control of the mobile robot:
force and position commands modes. Force command mode: This mode corresponds to a completely
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Figure 3. Diagram of operator’s layered dynamics modeling.

restricted mode, that is, the human brain converts the task into a certain desired force output according
to the situation of the object in the environment. The desired position is set to be equal to the actual
position of the human hand, that is,

Xd = Xh (1)

where Xd and Xh are the desired and current human hand’s positions, respectively.
Position command mode: This mode corresponds to the free motion mode, that is, the human brain

converts the task into a certain desired position output according to the situation of the object in the
environment, and the expected force is equal to the actual force of the human hand, that is,

Fd = Fh (2)

where Fd and Fh are the desired and actual human hand’s forces, respectively.

3.2. Fusion layer
In the fusion layer, the operator’s positioning process and force determination process are fused. The
output force at the fusion layer, Fsc, can be obtained in s domain as follows:

Fs(s) = Tps + 1

Tpls + 1
kpep(s) + Tf s + 1

Tfls + 1
kf ef (s) (3)

where ep(s) = Xd(s) − Xh(s) + rp(n), ef (s) = Fd(s) − Fh(s) + rf (n), rp(n) and rf (n) are the white noises
generated from the contacted object’s position and force errors, respectively, which are very small to be
eliminated without any problem [24].

3.3. Conductive layer
In the conductive layer, a value obtained by applying the delay time of nerve transmission is transmitted
to the movement of the human arm. The output force at the conductive layer, Fc, can be described as

F(s) = Fs(s)e−σ s (4)

where σ [second] represents the time delay of the transmission nerves.
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3.4. Human arm’s motion
The human arm’s motion after the gravity compensation in Fig. 2 can be described using the impedance
modeling as follows:

F(s) + r(n) = (Mhs2 + Bhs + Kh) · Xh(s)

= Zh · Xh(s), (5)

where r(n) is the white noise caused by muscle fatigue, which can be negligible; Mh, Bh, and Kh care the
mass, damping, and stiffness coefficients of the human arm, respectively.

From Fig. 3, F(s) can be obtained after the blocks of Gp(s) and Gf (s). As a result Equation (5) can be
represented as follows:

Gp(s)(Xd(s) − Xh(s)) + Gf (s)(Fd(s) − Fh(s)) = Zh · Xh(s) (6)

where Gp(s) and Gf (s) are obtained from Fig. 3 as follows:

Gp(s) = Tps + 1

Tpls + 1
kpe−σ s (7)

Gf (s) = Tf s + 1

Tfls + 1
kf e

−σ s (8)

GP(s) is a position factor and Gf (s) is a force factor. When the operator works in position command
mode, the position prediction factor becomes the dominant factor in determining human motion and
other factors can be eliminated. That is, GP(s) and Gf (s) can be simplified ignoring the delay time and
the lag factors, Tpl and Tfl, which can be approximated to be zero. Also the force prediction factor, Tf ,
can be eliminated. Equations (7) and (8) can be simplified as follows:

Gp(s) = (Tps + 1)kp (9)

Gf (s) = kf (10)

As the result, the Eq. (6) can be presented as follows:(
Tps + 1

)
kp(Xd(s) − Xh(s)) + (Fd(s) − Fh(s)) = ZhXh. (11)

According to the neurophysiology research results [25], the response time distribution of the operator
in the processes of perception, decision, and control is as follows: the process by which the receptor
transforms the stimulus into a nerve impulse needs 1 to 38 ms, and the nerve-conduction process needs
2 to 100 ms. The neural decision-making process requires 70 to 300 ms, and the process by which the
efferent nerve transmits the command to the neuro muscle requires 10 to 20 ms.

As the operating frequency of the human robot interaction system is affected by the operating band-
width of the actuator, it generally works in the low frequency region. Some factors can be ignored to
simplify the operator arm’s dynamic modeling and the modeling can be represented as follows:

Fh(s) = (
Mhs2 + Bhs + Kh

) · �X(s)

= Zh · �X(s). (12)

This modeling can also be called an impedance modeling. The joystick occupies a 3D space, and thus
Fh and �X ∈�3×1, Zh, Mh, Bh, and Kh ∈�3×3.

4. Joystick impedance control
4.1. Human arm impedance estimation
To determine the impedance coefficients of the human arm, the operator works in the position command
mode. At this time, Xd is a preset reference path and only the operator arm’s impedance coefficients in this
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reference path can be estimated because the arm’s impedance changes with muscle contractions [26].
F/T sensor is used to measure the interaction force between the human hand and the joystick. Based
on the interaction force between the hand and joystick measured by the F/T sensor and the position
increment calculated by the angles measured by the encoders, the impedance coefficients of the human
arm can be obtained as follows:

Zh = Fh

�X
(13)

If Fh(x, y, z) can be expressed as a differentiable nonlinear function of the position of the end point of
the human arm as follows:

dFi =
(

∂Fi

∂x

)
dx +

(
∂Fi

∂y

)
dy +

(
∂Fi

∂z

)
dz (14)

where i = x, y, and z which are the coordinates of the end point of the human arm in a 3D space.
Notice that the human arm’s impedance can be expressed as a differential operator and is associated
with infinitesimal force changes and infinitesimal displacements.

Equation (14) is correct only in the case of infinitesimal displacements. Therefore, a reliable method
is measuring the force of many discontinuous points and then estimating the coefficients of the human
arm’s impedance modeling by processing the obtained data.

The impedance modeling proposed in the previous section is represented as follows:

Fh = Mh

(
Ẍc − Ẍd

) + Bh

(
Ẋc − Ẋd

) + Kh (Xc − Xd) (15)

where Xd and Xc represent the desired and actual positions, respectively; Ẋc and Ẍc are the actual velocity
and acceleration of the arm, respectively; Ẋd and Ẍc are the desired velocity and acceleration of the arm,
respectively.

Assuming that the operator’s hand applies a force dFh to the joystick over a very short time, which
causes the joystick to move a very short distance dXh, the impedance modeling can be defined as follows:

Fh + dFh = Mh(Ẍc + dẌh − Ẍd) + Bh(Ẋc + dẊh − Ẍd) + Kh(Xc + dXh − Xd), (16)

where dXh, dẊh, and dẌh are the distance, velocity, and acceleration of the arm’s motion over a short
time, respectively. By subtracting Eq. (15) from Eq. (16), dFh can be expressed as follows:

dFh = MhdẌh + BhdẊh + KhdXh. (17)

Assuming that F̂h is the estimated force output of the human hand, M̂h, B̂h, and K̂h are the estimated
values of the arm’s mass, damping, and stiffness coefficients, respectively. The human arm’s force, F̂h,
can be represented as follows:

F̂h = M̂hẌ + B̂hẊ + K̂hX. (18)

By using the least squares method, square error S can be expressed as follows:

S =
n∑

p=1

[
Fh(p) − F̂h(p)

]2

(19)

Notice that ∂S
∂M̂h

, ∂S
∂B̂h

, and ∂S
∂K̂h

can be approximated as zeros [22]. Using the Eq. (18) and (19), impedance
coefficients of human arm can be estimated as follows:⎡

⎢⎢⎣
M̂h

B̂h

K̂h

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

∑n
p=1 Ẍ2(p)

∑n
p=1 Ẍ(p)Ẋ(p)

∑n
p=1 Ẍ(p)X(p)∑n

p=1 Ẋ(p)Ẍ(p)
∑n

p=1 Ẋ2(p)
∑n

p=1 Ẋ(p)X(p)∑n
p=1 X(p)Ẍ(p)

∑n
p=1 X(p)Ẍ(p)

∑n
p=1 X2(p)

⎤
⎥⎥⎦

−1

·
⎡
⎢⎣

∑n
p=1 Ẍ(p)Fh(p)∑n
p=1 Ẋ(p)Fh(p)∑n
p=1 X(p)Fh(p)

⎤
⎥⎦ (20)

where n is the number of sampling points and t is the sampling time.
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To estimate the time-varying impedance coefficients of the human arm in a short time, the impedance
can be represented as follows:

Ẑh(t) = V(t)−1W(t) (21)

where (t) =

⎡
⎢⎢⎣

∑n
p=t−n+1 Ẍ2 (p)

∑n
p=t−n+1 Ẍ (p) Ẋ (p)

∑n
p=t−n+1 Ẍ (p) X (p)∑n

p=t−n+1 Ẋ (p) Ẍ (p)
∑n

p=t−n+1 Ẋ2 (p)
∑n

p=t−n+1 Ẋ (p) X (p)∑n
p=t−n+1 X (p) Ẍ (p)

∑n
p=t−n+1 X (p) Ẍ (p)

∑n
p=t−n+1 X2 (p)

⎤
⎥⎥⎦ and W (t) =

⎡
⎢⎢⎣

∑n
p=t−n+1 Ẍ (p) Fh (p)∑n
p=t−n+1 Ẋ (p) Fh (p)∑n
p=t−n+1 X (p) Fh (p)

⎤
⎥⎥⎦.

Notice that n is the number of samples and is set to 150 experimentally considering the control
cycle. The elements of V(t) and W(t) can be estimated by the simulated annealing (SA) method as
follows [27]:

vp,q(t + 1) =
n∑

i=t−n+2

X(3−p)(i)X(3−q)(i)

= vp,q(t) + X(3−p)(t + 1)X(3−q)(t + 1) − X(3−p)(t − n + 1)X(3−q)(t − n + 1), (22)

where p = 1, 2, 3 and q = 1, 2, 3.

wp(t + 1) =
n∑

i=t−n+2

X(3−p)(i)Fh(i) = wp(t) + X(3−p)(t + 1)Fh(t + 1) − X(3−p)(t − n + 1)Fh(t − n + 1).

(23)

where p = 1, 2, 3.
The resulting matrix can be approximated to a diagonal matrix to observe the changes in the human

arm’s impedance.

4.2. Impedance control of joystick
The estimated human arm’s impedance has been matched to that of the joystick during the control of the
joystick. This joystick used in this research is a parallel structure consisting of three serial manipulators,
as shown in Fig. 4.

Each serial manipulator consists of two active joints and one passive joint; the gray joints are the
active joints and the white joint is the passive joint. Three serial manipulators with 3-DOF are connected
to the upper plate by passive spherical joints, and the motions of the serial manipulators generate the
motion of the upper plate relative to the lower plate.

Figure 5 shows related angles in kinematic analysis of one of the serial manipulators. Because the
joystick consists of three serial manipulators in parallel, the position of each joint point on the upper
plate is identical to the position of the end effector of each serial manipulator. Therefore, if the posi-
tions of the end effectors of the three series manipulators are obtained, the coordinates of the central
position can be obtained by finding the average of the coordinates of the three points. Thereafter, the
position and direction of movement of the upper plate can be derived.

Table I shows the link parameter table for the serial manipulator in Fig. 5. The a value of the DH
parameter is length of the common normal, d is offset along previous z to the common normal, α is
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Table I. Denavit–Hartenberg parameter of each serial manip-
ulator.

Link a d α θ

1 0 0 π/2 θ1i

2 l1 0 0 θ2i

3 l2 0c 0 θ3i

Structure of these serial manipulatesPhotograph of the joystick

(a) (b)

Figure 4. Joystick in this research.

Figure 5. Link parameters of a serial manipulator.

angle about common normal, from zi−1c to zi and θ is angle about previous z, from xi−1 to xi. The position
kinematic equations for the manipulator can be obtained as follows:⎡

⎢⎢⎣
X̂i

Ŷi

Ẑi

⎤
⎥⎥⎦ =

⎡
⎢⎣

l1 cos (θ2i) + l2 cos (θ2i + θ3i)

sin (θ1i)(l1 sin (θ2i) + l2 sin (θ2i + θ3i))

l1 cos (θ1i) sin (θ2i) + l2 cos (θ1i) sin (θ2i + θ3i)

⎤
⎥⎦ (24)

The position of the haptic joystick’s end effector is considered to be the center of the upper plate and
is marked as X. The prediction of the target position is based on the force in the x-y-z directions sensed
by the F/T sensor and the previously estimated human arm’s impedance coefficients. The differential
equation is solved and the required position increments in the x-y-z directions are obtained. This joystick
can be controlled by dynamic modeling as follows:
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Mh

(
Ẍc − Ẍd

) + Bh

(
Ẋc − Ẋd

) + Kh (Xc − Xd) = F. (25)

With the definition of �X = Xc − Xd, which represents the position increment caused by human’s
motion intention, Eq. (25) can be represented as

�Ẍ + M−1
h Bh�Ẍ + M−1

h Kh�X = M−1
h F. (26)

The analytical solution of differential Eq. (26) can be obtained ignoring the initial conditions as
follows:

�X = e−λ1 t + e−λ2 t + K−1
h F (27)

where λ1 and λ2 are the general solutions of the following characteristic equation:

λ2 + M−1
h Bhλ + M−1

h Kh = 0 (28)

To manipulate this joystick to follow the human hand compliantly, a PD control with the gravity
compensation algorithm has been adopted to drive all the motor parameters in the joystick. The designed
controller can be represented as

Fc = Kp�X + KD�Ẋ + G(θ ) (29)

where KP and KD are the controller gains, �X is the position increment, and G(θ ) is the gravity
compensation force.

To obtain the gravity term, it is crucial to determine the mapping relationship between the gravity
force and joint configuration. Considering that all joints of the joystick are revolute joints, if link p’s
center of mass is located at a point in link p, gravity G(θ ) can be expressed as

G(θ ) = g(θ )A (30)

where g(θ ) is the gravity acceleration on each link, which can be expressed as follows:

g(θ ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g11(θ ) g12(θ ) . . . g1(n−1)(θ ) g1n(θ )

0 g22(θ ) . . . g2(n−1)(θ ) g2n(θ )

. . . . . . . . . . . . . . .

0 0 . . . g(n−1)(n−1)(θ ) g(n−1)n(θ )

0 0 . . . 0 gnn(θ )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(31)

Each element in matrix g(θ ) can be calculated by

gpq(θ ) = g(∂Rp
0/∂θp)up (32)

where g = [0, 0, 9.8]Tm/s2, Rp
0 is the rotation matrix of coordinate system p with respect to coordinate

system 0, up is the coordinate system p’s directional unit vector that points to link p’s mass center.
In Eq. (30), A, a constant matrix, which is represented as follows:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1lc
1 + l1

n∑
i=2

mi

m2lc
2 + l2

n∑
i=3

mi

m3lc
3 + l3

n∑
i=4

mi

. . .

mn−1lc
n−1 + ln−1mi

mnlc
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(33)

where lc
p is the distance between coordinate system p’s origin and link p’s mass center, mi is the mass of

link i, and lp is the distance between coordinate system p’s origin and coordinate system p + 1’s origin.
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Table II. Interaction force in the x, y and z directions before and after using the impedance matching
algorithm.

X Direction Y Direction Z Direction

Before After Before After Before After Before
Average force (N) 1.178 0.189 1.102 0.168 0.592 0.079
Maximum force (+) (N) 2.873 0.791 3.831 0.746 1.259 0.203
Maximum force (−) (N) 3.225 0.661 2.561 0.553 1.135 0.274

5. Impedance matching and tracking experiments
5.1. Human arm’s impedance estimation experiment
The following experiment is conducted to obtain the coefficients of the human arm’s impedance model-
ing. A subject is a 25-year-old man with no disabilities. The subject sits on the chair and holds the handle
and moves the joystick along the target trajectory with only gravity compensation. The target trajectory
is a square with a side length of 0.3 m, centered on the initial position of the handle. The four vertices
of the square are A, B, C, and D, respectively. The data collected are used to estimate the impedance of
the human arm.

The data are sampled and stored for offline analysis. The data include the joystick joint angles and the
forces in the x–y–z directions. The position of the joystick’s end effector is calculated by considering
the joint angles in the kinematic equation of the joystick. Details regarding the kinematics of the joystick
are described in Section 5. The impedance coefficients obtained by the least squares method are shown
in Fig. 6.

These figures show that the impedance of the human arm changes with the movement of the arm.
Therefore, it is necessary to perform a real time impedance control to accurately match the desired
impedance to the human arm’s impedance during the joystick control.

5.2. Human motion prediction and reaction experiment
The estimated human arm’s impedance coefficient is applied to the joystick impedance control to con-
firm the efficiency. The operator holds the handle and moves the joystick along the target trajectory.
During this process, the force applied by the operator to the joystick is included in the impedance mod-
eling to determine the target position, which is the target position at which the human brain sends a
motion command to the arm through the nerve. The target position is a motion vector indicating the
position increments in the x, y, and z directions. The designed PD controller with gravity compensation
drives the motor settings in the joystick to allow the end effector to follow the guidance or traction of the
operator’s hand. The F/T sensor disposed at the end effector of the joystick senses the interaction force
between the operator’s hand and the joystick. The position of the joystick’s end effector is transmitted to
the mobile robot through the communication module to control the movement of the mobile robot. The
position of the joystick’s end effector has been calculated using the encoder recording angle and the link
length, which has been used to calculate the trajectory tracking error against the reference trajectory.

Figure 7 shows the interaction forces between the operator’s hand and the joystick before and after
applying the impedance matching algorithm. It can be observed that the average values of the interaction
force in the x, y, z directions become very small after applying the impedance matching algorithm. The
specific values are shown as follows:

Table II shows the average interaction forces in x, y, z directions after applying the impedance
matching algorithm, respectively. Notice that the interaction force becomes almost 7 times smaller by
applying the impedance matching algorithm. The maximum forces in x, y, z directions after applying
the impedance matching algorithm become 4 to 5 times smaller than before.
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Estimated stiffness coefficients

 Estimated damping coefficients

Estimated mass coefficients 

(a)

(b)

(c)

Figure 6. Estimated human arm’s impedance coefficients.
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Table III. Trajectory tracking accuracy.

X Direction Y Direction Z Direction
Actual trajectory error (m) 0.021 0.019 0.015

Interaction forces without impedance matching 

Interaction forces with impedance matching

(a)

(b)

Figure 7. Interaction forces before and after applying impedance matching algorithm.

Figure 8 shows the desired trajectory calculated from the estimated human arm’s impedance model-
ing and the actual trajectory in the impedance matching algorithm. It can be quantified that the average
values of the trajectory tracking error are shown in Table III. In the experiment, there are three paths:
square reference path (represented by A, B, C and D points), desired trajectory calculated by impedance
model and force and real trajectory actuated by motors in the joystick. Through Figure 8 and Table III,
the error values between the desired trajectory and the reference path occurred as much as 0.015 m,
0.012 m, and 0.011 m.

By the impedance matching control, the interaction force between the human and the joystick
becomes 5 times smaller with the tracking error of 0.02 m compared to the PD control without
impedance matching. This proves the effectiveness of the human arm’s impedance matching algorithm
proposed in this research.
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Figure 8. Trajectory tracking performance.

6. Conclusion
An impedance matching control strategy has been proposed and implemented to help operators in manip-
ulating joysticks efficiently and effortlessly for long-term teleoperation. An impedance modeling of the
human arm was obtained by estimating its impedance coefficients. The human arm’s impedance mod-
eling has been utilized under the control of the joystick to generate a force that conforms to the human’s
motion intention which completes the task. By this process, the impedances of the joystick and human
arm are matched to each other. The effectiveness of the proposed algorithm has been demonstrated
by the teleoperated trajectory following the operation of a mobile robot. By the impedance matching
control, the interaction force between the human and the joystick becomes 5 times smaller with the
tracking error of 0.02 m compared to the PD control without impedance matching. As future research,
a machine learning algorithm can be adopted for identifying the human arm impedance coefficients,
which improves the efficiency of the proposed control further.
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