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We study the concept of multivariate dispersion order, defined as the existence of
an expansion function that maps a random vector to another one, for multivariate
distributions with the same dependence structure. As a particular case, we can order
the multivariate 7-distribution family in dispersion sense. Finally, we use these results
in the problem of detection and characterization of influential observations in regres-
sion analysis. This problem can often be used to compare two multivariate
t-distributions.

1. INTRODUCTION

Stochastic orderings arise in statistical decision theory in the comparison of exper-
iments and estimation problems (see [17]). In particular, dispersion has been used
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to characterize the variability for distributions and it has been extensively studied
(see [5,10,13,15,16], among others).

For univariate and multivariate distributions, the concept of dispersion is fun-
damental; a statistical research is unthinkable for a phenomenon without variabil-
ity. Unfortunately, there is not a unique definition of dispersion and this problem is
much more complicated for distributions on R”. For univariate distributions, Lewis
and Thompson [ 13] introduced a concept of variability through the definition of the
dispersion order (LT sense). Let F and G be two distribution functions; we say that
F is less dispersive than G, denoted F' <pj, G, if any pair of quantiles of G are at
least as widely separated as the corresponding quantiles of F. Let u be a real value
in (0,1); we use the definition of univariate quantile as follows:

Ox(u) = Fy (u) = inf{x: Fx(x) = u}.

Many useful characterizations of the dispersion order can be found in the literature.
An excellent handbook is that by Shaked and Shanthikumar [17]. One of the most
interesting characterizations of this univariate order is given in [16]. Let F and G
be two strictly increasing and absolutely continuous distribution functions; then
X <pisp Y or F <p;, G, if and only if there exists a function ®: Sr — S; (Where
Sp and Sg are the support of F and G, respectively) such that ¥ =, ®(X) and
®'(x) = 1 for all x in S;. Note that under the last condition, the function @ is an
expansion function; that is, the function ® verifies ®(x) — ®(x’') = x — x’, for all
x > x'. Hence, the dispersion ordering in the LT sense is based on the existence of
an expansion function that depends on the corresponding distribution functions.
Furthermore, in this case, ®(x) = Qy(Fx(x)) for all x in Sj.

An extension of the univariate dispersion order to the multivariate case was
given by Giovagnoli and Wynn [9]. A function ®:R" — R” is called an expan-
sion if

[®(x) — ®(x')|, =[x —x'|, forall xandx’ inR"
Let X and Y be two n-dimensional random vectors. Suppose that
Y =, ®(X) for some expansion function ®.

Then we say that X is less than Y in the strong multivariate dispersion order (denoted
by X <gp Y).

Roughly speaking, the strong multivariate dispersive order is based on the exis-
tence of an expansion function that maps stochastically a random vector to another
one. Obviously, the ordering in the <gp, sense is intuitively reasonable and it sat-
isfies many desirable properties. For instance, the strong dispersion ordering implies
that |X — X'|, <, |Y — Y'|», where | - |, corresponds to the Euclidean norm and
X' and Y’ are two independent values for X and Y, respectively. It also implies that
Tr(2x) = Tr(3y), where 3x and 3y are the covariance matrices for X and Y, respec-
tively, see Giovagnoli and Wynn [9]. As a consequence of these properties, the <gp,
multivariate order has a clear interpretation in dispersion terms.
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In the multivariate case, there exist several transformations that map one multi-
dimensional random variable to another one. For this reason, it seems intuitive to
define a multivariate dispersion order based on a particular transformation. Note
that in the univariate case, the function ® depends on the corresponding distribu-
tion functions, so it has a unique expression. These considerations led Ferndndez—
Ponce and Sudrez-Llorens [7] to define a concept of multivariate dispersion order
based on the existence of a particular expansion function and, in addition, has a
particular interpretation as multivariate quantiles more widely separated.

From this point forward, we assume that X1,..., X,, have an absolutely contin-
uous joint distribution and the corresponding conditioned variables are also abso-
lutely continuous with density functions strictly positive. Let u = (u,...,u,) be a
vector in [0,1]". The multivariate u-quantile for X, denoted as X(u), is defined as
follows:

xi(uy) = QX,(ul)v

X (uy,uy) = QXZ\XIZ)?l(uI)(u2)5

-fn(ul IEREE] I/l,,) = QX,l\ﬂ;';llXj:)?j(uj)(un)'

This last construction is widely used in simulation theory, and it is named the stan-
dard construction. Obviously, the standard construction depends on the choice of
the ordering of the marginal distributions. The notion of the standard construction
can be interpreted as a quantile function on R". Ferndndez-Ponce and Sudrez-
Llorens [7] provide the notion of corrected orthant associated to the standard con-
struction that interprets the accumulated probability in all orthants.

The definition of the multivariate u-quantile for X led us to define the multi-
variate x-rate vector, denoted X(x), as

X(x,) = FXl(xl)a

?*Cz(xl, x,) = Fx2|x|:xl (x2)

in(-xh IEXE) xn) = FX,,lm}';]le=xi(xn)-

Under the notion of the standard construction and the interpretation as multivariate
quantiles, Ferndndez-Ponce and Suérez-Llorens [7] defined the multivariate disper-
sive order as a generalization of the univariate dispersive order in the LT sense.

DEFINITION 1: Let X and Y be two random vectors in R". We say that X is less than
Y in dispersion sense, denoted as X <pg, Y, if

[%(v) = %W, = [§(v) = ()]s,
for all w and v in (0,1)".

https://doi.org/10.1017/50269964805050217 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964805050217

366 J. P. Arias-Nicolas et al.

Note that this new ordering depends on the chosen permutation (see [7]). Def-
inition 1 defines a multivariate dispersion ordering as quantiles that are more widely
separated. Theorem 1 characterizes the multivariate dispersion order by means of a
particular expansion function.

THEOREM 1: Let X and Y be two random vectors in R" with their distribution func-
tions satisfying the regularity conditions. Then it holds that X <py, Y if and only if
there exists a function ® such that

(D(X) st Y Wlth [(I)(X)], = qji(-xh ceey xi)’
1, <, Jo(X)'Jo(x) forallx € R", 1)
where Jo(X) is the Jacobian matrix of ®.

0D (x1,...,X;)

0x;

= 0.

Moreover, in this case,

D (xy,..0,x;) = (yio)?i)(xla-”axi)-

Note that the symbol <; represents the well-known Loewner ordering of matri-
ces, where A <, B if and only if the matrix B — A is nonnegative definite. Condi-
tion (1) implies that the function ® is an expansion function; that is, it holds that

| (y) =2, = lly — x|,

for all x, y in R” (see [9]).
To summarize, the multivariate dispersion order can be simplified just by check-

ing whether the multivariate function ® = (®,,...,®,), defined as
D, (x50, x;) = (J; o X ) (X105 x;)
= QY,.\ﬂ;;{Yj:@j(xl ..... xj)(FX,lﬂ;;IIXj=xj(xi)) 2
fori =1,...,n, is an expansion function.

It is apparent that this ordering is a generalization of the dispersive ordering in
the LT sense. The multivariate dispersive ordering is characterized through a par-
ticular expansion function, so it obviously implies the strong multivariate disper-
sive ordering. Then we will always consider the multivariate concept of dispersion
in the Giovagnoli and Wynn sense. However, when we study the particular case
defined by function (2), we will call the strong multivariate dispersion order as the
multivariate dispersion order, denoted <pjgp.

The organization in this article is as follows. In Section 2, we will show the
multivariate dispersion order between two multivariate random variables, with the
same copula, is characterized by the univariate dispersion order for the correspond-
ing marginal distributions. In Section 3, we will use the results from Section 2 to
order the multivariate -Student family in a dispersion sense, <p;s, or <sp, accord-
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ing to properties of the precision matrix and the degrees of freedom. Finally, in
Section 4, we will apply this ordering in the problem of the detection and charac-
terization of influential observations in regression analysis. This problem can be
often used to compare two multivariate ¢-distributions.

2. MULTIVARIATE DISPERSION ORDER UNDER THE NOTION OF
DISTRIBUTION FUNCTIONS WITH THE SAME COPULA

Now, we characterize the multivariate dispersion order, <p;,, for random variables
with the same dependence structure in the sense that they have the same copula. A
copula C is a cumulative distribution function with uniform margins on [0,1]. Fur-
thermore, it is shown that if H is an n-dimensional distribution function with mar-
gins Fi,..., F,, then there exists an n-copula C such that for all x in R”, it holds that

H(xy,...,x,) = C(F\(x)),...,F,(x,)).

Moreover, if Fi,..., F, are continuous, then C is unique (for more details about cop-
ulas, see Nelsen [14]). It follows that if X = (X,...,X,) and Y = (Y,...,Y,) are
two n-dimensional random variables, then they have the same copula if and only if

(X150 X)) =« (QX1 [FYI(YI)],“-9QX,,[FY”(Yn)])'
Within this setting, we can formulate the following theorem.

THEOREM 2: Let X = (X,,...,X,) and Y = (Y},...,Y,) be two n-dimensional ran-
dom vectors such that they have the same copula, denoted as C. Then X <p;g, Y if
and only if X; <pisp Y; foralli=1,...,n.

ProoF: In light of Theorem 1, it is only necessary to prove that the component ®;
of the function ® has the following expression:

D;(xy,...,X;) = Q)/,(in(xi)), 3

fori=1,...,n. In other words, the component ®; of the function ®, which maps the
random vector X to Y, only depends on the ith marginal variable. Note that if (3)
holds, the Jacobian matrix of @ is a diagonal matrix in which the diagonal elements
are the functions that map the univariate marginal distribution of X to the corre-
sponding one of Y. Hence, the condition (1) in Theorem 1 is apparent.

The proof of (3) is by mathematical induction. For n = 1, it is trivial. Let us
assume that it is true for i = 1,...,j — 1; then we need to show it for i = j. By
induction hypothesis, it holds that

q)./' (‘xl’ AR x/) = QY]\ﬂ P Y; =0y, (Fx,(x;)) (FX,'|ﬂ P Xi:xi('xj))'

Furthermore, in light of the equality 2.9.1 in Nelsen [14], it is easy to show that
8C(u1,...,uj_],v)

oy, .e,0U;

; “)

P[Xj = QXJ-(U) @Xi = QX,-(ui):| =
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where C is the copula of the distribution function F. By assumption, F and G have
the same copula; hence, using (4), it holds that

ij(ijm i x,.:Qx,(u,)(P)) = GY/(Qij ! Yi:QyI(ui)(p))’ ©)

for all 0 = p = 1. Now, if we take u; = Fx (x;) in (5), we obtain that

OviN I v=0yr ) (P) = Qv (Fx (Ox, 10 -1 x,~x,(P)))- (6)
Note that if we now consider
P = Fyinizix=x (%)
in (6), it is easy to verify that
= QY,-(FX,-(QX/IQ {;:X;:xi(FXj\ﬂf;]] X[:x‘-(xj))))
= QYj(FXj(xj))~

D;(xy,...,x;) = Oy, N Y-:Qy,.wx,(x,-))(Fx,m{;,‘X,-:x,-(xj))

Therefore, the proof is concluded. u

COROLLARY 1: Let (X;...,X,) be a multivariate random vector. Let us consider h;
a univariate strictly increasing expansion function for i = 1,...,n. Then it holds
that

(Xl'-"Xn) <Disp (hl(X1)9~-"hn(Xn))'

ProoF: The corollary follows from the facts that any copula is invariant under mono-
tone increasing transformations (see [14]) and the univariate dispersion order is
invariant under strictly increasing expansion functions (see [17]). u

Note that this corollary provides many possible comparisons. In particular, if
we take a real number a > 1, then it is easy to show that X <p;y, aX.

Example 1: Let X ~ N,(u;,%,) and Y ~> N, (u»,3,) be two multivariate normal
distributions. If p}¥ = pJ for all i and j and o* < 0;", then X <p;,, Y. It is well
known that under the last assumption, X and Y have the same copula. Thus, the
proof is apparent using Theorem 2.

3. DISPERSION PROPERTIES OF THE MULTIVARIATE
STUDENT DISTRIBUTION

In this section, we apply some results obtained in the last section to the particular
t-distribution family. For this purpose, we use the corresponding definition of the
t-distribution from Bernardo and Smith [2, pp. 139-140]. A continuous random
vector X has a multivariate 7-distribution or a multivariate Student distribution
of dimension k, with parameters u = (uy,...,uz), 3, and n, where u € R¥, 3, is
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a symmetric positive-definite k X k matrix and n > 0 if its probability density
function, denoted Sty (x|u,3,n), is

—(n+k/2)

1
Sty (x|u, 3, n) = c[l + _(X_,U)IE(X_,U)} ,  XERY
n

where

C((n+k)/2)

_ 1/2
I'(n/2)(nar)*? 1217

Although not exactly equal to the inverse of the covariance matrix, the parameter 3
is often referred to as the precision matrix of the distribution or, equivalently, the
inverse matrix of the dispersion matrix. In the general case, E[X] = u and Var (X) =
37 n/(n —2)].

Before introducing the results in this section, we need the definition of a uni-
variate partial order strongly connected with the univariate dispersive ordering. We
consider the tail ordering defined by Lawrence [12]. Let X and Y be two univariate
random variables symmetric about zero; then we say that X is less in the tail order
sense, denoted X <, Y, if the ratio Qy(u)/Qx(u) is nondecreasing (nonincreasing)
foru € (3,1) (u € (0,%)). In the following theorem, we will use the definition of the
tail ordering to order the univariate #-Student family.

THEOREM 3: Let St(0,1, m) and St,(0,1, m) be two univariate t-distributions. Then
if n < m, it holds that St,(0,1,m) <p;, St;(0,1,n).

Proor: To simplify, denote #, as the univariate r-distribution with n degrees
of freedom. Capéraa [3] showed that if n =< m, then t,, <, 1,. In addition, Doksum
[5] showed that for univariate absolutely continuous distributions with F(0) =
G(0) = 0 such that f(0) = g(0) > 0 and Qy(u)/Qx(u) nondecreasing for all
u € (0,1), it holds that F <p;, G.

Under the last discussion, we consider the random variable |1,| with the den-
sity function given by

fio (t) = 2f, (t) if > 0 and O otherwise.

A straightforward computation shows that the distribution function of |z,| is
F, (x) = 2F, (x) — 1 for x = 0. Hence, Q,, (1) = Q, ((u + 1)/2) for all u in the
interval (0,1). Therefore, it is apparent, using the work of Capéraa [3], that if
n = m, then Q|, (u)/Q,, (u) is nondecreasing for all u € (0,1). Since F}, |(0) =
F|, (0) = 0 and, of course f, (0) > f|, (0), we obtain, using the result in [5] that
|t,,] <pisp |7.]. It is easy to check, using properties of symmetry, that |1,,| <pip [7,]
implies that 1, <pis, . n

Note that although in the literature the degrees of freedom of a t-distribution
are always associated with the dispersion and the lack of knowledge of the exper-
iment, the previous result provides that the #-distribution family is ordered in a really
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strict dispersion order. To study in depth the implications of the univariate disper-
sion order, see Shaked and Shanthikumar [17].

We have ordered two univariate t-distributions pertaining to the degrees of free-
dom. If we consider the more general class when the precision is different, the fol-
lowing corollary holds.

COROLLARY 2: Let St;(0, 0, m) and St,(0, 0, n) be two univariate t-distributions
that satisfy that for n = m and o, = oy, St1(0,0,m) <pjs, St;(0,05,n).

Proor: The proof is apparent. u

Note that the precision matrix is related to the variance through the expression
Var (St (0, oy, m)) = oy "(m/m — 2).

From this point forward, we will consider two multivariate ¢-distributions. We
generalize the results obtained in Theorem 3 and Corollary 2 to the multivariate
case.

THEOREM 4: Let Y, ~ St,(0,3,n) and Y,, ~ St;(0,3,m) be two multivariate

t-distributions with the same precision matrix and different degrees of freedom. Then
if n = m, it holds that St;(0,3, m) <p;s, Stx(0,%,n).

Although, of course, Theorem 4 is more general than Theorem 3, we first need
the results of this one to prove the multivariate case.

Proor: LetY,, = (Y,15..., Y, ) and Y, = (Y, 1,...,Y, ;) be the corresponding multi-
variate 7-distributions. First, we need to prove that two multivariate ¢-distributions
with the same precision matrix have the same copula. For this purpose, we define
the random vector X such as

X = (Xl""9Xk) :[QY

1

(FY,,’] (Yn,l))v LR} QYm’k(FY,,vk(Yn,k))]'

From Exercise 2.15 in Nelsen [14], it holds that the multivariate distributions X and
Y, have the same copula. We only have to prove that X = Y,,,.

First, from the well-known result that the function Qy (Fy )(-) for i =
1,..., k, maps the univariate random variable Y, ; to Y,,, ;, we know that all marginal
distributions of X are generalized r-distributions. Hence, using Theorem 1 from
Arellano-Valle and Bolfarine [1], we know that X is a multivariate ¢-distribution
with parameters X ~ St (0, 3., m). From the fact that X and Y,, have the same degrees
of freedom, it is only necessary to show that Var(X) = Var(Y,,). Of course, it holds
that Var(X;) = Var(Y,, ;) for all i = 1,...,n. Hence, both matrices have the same
diagonal elements.

Since X and Y, have the same copula, it is easy to show, using Theorem 5.1.3
in Nelsen [14], that

Tx,x; — Ty,

j nyi>

Y,

where 7y y is the population version of Kendall’s tau for X and Y. Therefore, using
Theorem 3.3 from Frahm, Junker, and Szimayer [8], it holds that they also have the
same Pearson’s coefficient, p, so
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cov(X;,X;) cov(¥, Y, ;)

Ox,0x; Ty, .0y,

n,i n,j

Using the fact that Y, and Y,, have the same precision matrix, if we denote Var(Y,,) =
(0y,,) and Var(Y,,) = (0y; ), it holds that

Tijom [m(n—Z)}‘/z
B n(m—2) ’

o-ij, n
for all i,j = 1,..., k. Hence, it is apparent that cov(X;,X;) = cov(Y,, ;,Y,, ;) and,
of course, 3, = 3, which implies that Y,, =4 X.

We have already shown that Y,, and Y, have the same copula. Hence, using
first Corollary 2 and then Theorem 2, we have that Y,, <p;s, Y,,. n

At this point, we focus our attention on ordering two multivariate 7-distributions
with different precision matrices.

THEOREM 5: Let Y, ~ St;(0,3,,n) and Y, ~ St;(0,2,,n) be two multivariate
t-distributions with different precision matrices and the same degrees of freedom.
Then the following conditions are equivalent:

1. Y, =, k(Y,), where k is one-to-one, linear, and expansion.

2. There is an orthogonal matrix T such that 3, = I'S{'T".

3. A(Z5Y) = A(Z1Y) (where A(+) is the vector of ordered eigenvalues and =
refers to the usual entrywise ordering).

PrOOF: It is analogous to Theorem 4 in Giovagnoli and Wynn [9]. u

Note that if both distributions have the same degrees of freedom, it is easy to
find several linear transformations that map one 7-distribution to the other one. Obvi-
ously, this not the case when they have different degrees of freedom; the possible
transformations are clearly not linear.

It is necessary to take in account that Theorem 5 does not provide a character-
ization of the multivariate dispersion order. As we mentioned earlier, the <p;, order-
ing is associated to a particular transformation given by the function in (2). Just
looking at Example 4.1 in [7] for the multivariate Normal distributions, it is easy to
show the linear expression of ® when we are interested in comparing two multi-
variate ¢-distributions. This expression depends on the Cholesky decomposition of
the matrices 35 ' and 37,

However, in the conditions of Theorem 5, it holds that St,(0,3,n) <gp
St,(0,3,, n). We emphasize that <, is a weaker multivariate dispersion order than
the <p;, ordering. Hence, at least there exists an expansion function that maps one
t-distribution to the other one. As we will show in Section 4, we only need to know
about the <gp, order in order to define a new measure of Bayesian influence.

Corollary 3 is needed to compare #-distributions when both degrees of freedom
and precision matrices are different.
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COROLLARY 3: Let Y, ~ St (0,3, m) and Y, ~ St;(0,3,,n) be two multivariate
t-distributions with different precision matrices and degrees of freedom. Then if it
holds that A(25') = A(Z7") and n < m, then St;(0,31, m) <sp Stx(0,3,,n).

Proor: The result follows straightforward from the fact that

Stk(o’zl’m) <Disp Stk(oyzl,n)
—
using Theorem 4
<sp St (0,35, n).
—
Using Theorem 5

From the well-known result that a composition of two expansion functions is also
an expansion function, it easily holds that St; (0,3, m) <gp St;(0,35,n). u

Note that Corollary 3 provides a sufficient condition for the <gp order. It is
easy to show that under this condition, it also holds that

A(Var(St,(0,3,,71))) = A(Var(St,(0,3,,m))).

However, this last implication cannot be considered a sufficient condition. The rea-
son is that the variance matrix is defined through both the precision matrix and
degrees of freedom.

4. APPLICATION TO THE INFLUENTIAL OBSERVATIONS
IN REGRESSION ANALYSIS

4.1. The Model

Johnson and Geisser [ 11] proposed a method of assessing the influence of specified
subsets of the data when the goal is to predict future observations using predictive
densities. For this purpose, they considered the following model: Y = X3 + ¢,
where € is an N X 1 random vector distributed as MN,,(0, 6I) (N-dimensional multi-
variate normal (MN)) with mean vector 0 and covariance matrix 61, 0 scalar, 3 is
the p X 1 vector of regression coefficients, X is an N X p matrix of fixed “indepen-
dent” variables, and Y is the N X 1 vector of responses on the “dependent” variable.
Although they noted that a more general model is possible, they assumed the prior
density for 8 and 6 to be g(8,60) oc !, which presumes that little prior information
is available relative to that information inherent in the data. Assume the case when
a particular subset of size k has been deleted; we denote this by (i), and the subset
itself is indicated by i. Then the general linear model can then be expressed as

y' =Ly =B (XL X)) + (&), 0))-

Thus, the predictive densities based on full and subset deleted datasets, when 6
is unknown, are two multivariate ¢-distributions with parameters

Sty (¥,(s>(T+H)",N—p) and Sty(y*,(s5X+HD)",N—k—p),
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where
S=X'X, H=XS'X, HY=XS;X, y=X5,
r=y-9 §7=XB,, a’=rr, s’=aYN-p,

and let S;), af;), and s}, be similarly defined.

4.2. The Problem

In this case, the problem of detecting influential observations is based on compar-
ing two multivariate 7-distributions. If we only study the comparison in terms of
variability, it seems logical that if we delete a subset of data, then the obtained
predictive density will be expected to be more dispersive than the one based on full
data. In other words, it would be expected that f(-) <gp f(;)(-). This may be inter-
preted as the added variability, due to deletion of data subset i. However, it is not
true that every subset of data with a fixed size k has the same influence. First, using
Corollary 3, we checked that f(-) <gp f{;)(-) for all (}) subsets, k = 1,2,3. We do
not consider it necessary to present these comparisons in this article. After these
comparisons, and clearly inspired in Corollary 3, we can define a dispersion Bayes-
ian influence in terms of variability (DBIV) measure to the i subset as

02 = [A(s2) (T + HO)) — A(s2(1 + H))|3

and we will order the subsets from least to most influential according to the mag-
nitude of Q7. Note that under the assumptions in Corollary 3, if we have the
inequality A(s3,(I + H'Y)) = A(s2(I + H)), then it holds that £(-) <gp fii)(+).

4.3. The Dataset and Conclusions

We consider data from the 1975 Florida Area Cumulus Experiment (FACE) previ-
ously discussed in great detail by Cook and Weisberg [4]. This experiment was
conducted to determine the merits of using silver iodide to produce rainfall increases
and to isolate factors contributing to treatment until additivity. There were 24 obser-
vations on 11 variables, including the response rainfall, an indicator variable deter-
mining whether clouds were seeded or not seeded, and 8 other variables, including
interaction terms that were determined to be related to rainfall.

Initially, we will analyze the full dataset and then delete case 2 (observation 2)
and reanalyze in its absence. For an initial analysis, a computer program was writ-
ten to compute relevant statistics for all (’Z ) subsets, k =1,2,3 and N = 23,24 using
the Maple 6 package.

A summary of these results for the full dataset, as well as for the full dataset
with case 2 deleted, is given in Table 1. It is clear from Table 1 that observations 2,
18, 1, 15, 6, and 3 are most influential in the dispersion sense when k = 1. More-
over, case 2 is clearly an outlier and it significantly affects predictive inferences
based in this dataset from the dispersion point of view. Also, it is interesting to note
that when case 2 is deleted, the most influential observations in dispersion sense are

https://doi.org/10.1017/50269964805050217 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964805050217

374 J. P. Arias-Nicolas et al.

TABLE 1. Top Six Most Influential Subsets k = 1,2,3

Observation 2

Full Dataset Deleted
Observation 0? Observation 0?
k=1 2 52,226.08 18 156.47
18 289.36 1 71.50
1 137.74 15 62.43
15 70.92 5 54.14
6 67.93 6 37.22
3 56.50 23 37.17
k=2 (2,9) 139,060.84 (1,18) 964.98
(2,23) 106,460.70 (1,15) 755.63
(2,5) 92,471.40 (9,18) 630.90
(2,19) 88,912.05 (13,18) 480.58
(2,16) 78,617 (7,18) 421.42
(2,17) 77,522 (8,18) 368.62
k=3 (2,9,23) 300,931.65 (3,5,11) 3,899.0
(2,9,16) 284,113.70 (9,13,18) 3,573.22
(2,9,18) 253,606.55 (1,15,18) 2,565.88
(2,5,9) 245,137.72 (7,9,18) 2,330.72
(2,9,19) 242,907.97 (1,16,18) 2,090.76
(2,3,9) 228,659.05 (1,9,15) 2,016.76

18, 1, 15, 5, 6, and 23. Although the order has been changed, we can observe that
the differences among the influence measures are not significative. When k = 2 or
3, it is clear from Table 1 that case 2 will be included in most influential subsets.
However, we choose to delete case 2 and perform a more careful analysis. Inspec-
tion of Table 1 reveals that observations 18 and 1 are not only the most individual
influence observations but also the most influential pair. Also, we can observe that
case 18 appears jointly with case 1 in the third most influential triple. Also, we note
that the pair (1,18) appears in two influential triples. Consequently, the influence
for case (1,18) must be taken into account in a dispersion sense.

Surprisingly, the most influential triple is not composed of the three most influ-
ential cases, but the third most influential triple coincides with cases that are most
influential individually and in pairs.

With this analysis, we present a way to study the influence of specified subsets
of the data in a dispersion sense complementary to the analysis of Johnson and
Geisser [10]. This is not obviously an alternative method for studying the diver-
gence between f(-) and f{;)(-). The reason is why the study of the dispersion is, of
course, location independent and the location component given by the means of the
t-distributions is specially important to study the lack of fit of the model, as John-
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son and Geisser [11] showed. However, this study provides an interesting point of
view and we would like to emphasize that it was not necessary for the approxima-
tion of substituting the multivariate z-distribution for a scaled multivariate Normal
density.
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