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Learning from the Shape of Data
Sarita Rosenstock*

Tomake sense of large data sets, we often look for patterns in how data points are “shaped”
in the space of possible measurement outcomes. The emerging field of topological data
analysis (TDA) offers a toolkit for formalizing the process of identifying such shapes. This
article aims to discover why and how the resulting analysis should be understood as reflect-
ing significant features of the systems that generated the data. I argue that a particular fea-
ture of TDA—its functoriality—is what enables TDA to translate visual intuitions about
structure in data into precise, computationally tractable descriptions of real-world systems.
1. Introduction. “Learning from the shape of data” describes an expan-
sive portion of scientific activity. One common example is curve fitting, in
which a data set is visualized on a two-dimensional grid, and we infer that
the underlying mechanism generating the data can be characterized by a
function with a similarly shaped plot.

As new techniques are developed to gather, store, and analyze large quan-
tities of high-dimensional information, its increasingly difficult to visually
identify and interpret relevant shapes. While we can scale up familiar curve-
fitting tools, such as linear regression, we know there is more structure to be
harnessed from large data sets than these methods can reveal.

One relatively newmethod of identifying “shapes” in data sets is topolog-
ical data analysis (TDA). Topology is the study of the properties of shapes
that are invariant under continuous deformations, such as stretching, twist-
ing, bending, or rescaling. TDA aims to identify the essential “structure” of a
data set as it “appears” in an abstract space of measurement outcomes.

The simplest application of TDA is a type of cluster analysis—a method
of identify “clusters” of data points that are “more similar” to one another
than the wider body of data. While this is relatively conducive to interpreta-
tion (as revealed “groupings” in the system being analyzed), TDA can also
identify more complex shapes including “holes,” “voids,” and “tendrils”
with no intuitive interpretation.
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This article is an investigation into why and how the resulting analysis
should be understood as reflecting significant features of the systems that
generated the data. In particular, I will argue that the relevance and utility
of TDA stems from a particular feature: the functoriality of the relationship
between the shapes it picks out and their symbolic representations.

In section 2 I describe TDA in detail. Section 3 explains what func-
toriality means and how it justifies the use of TDA despite interpretational
challenges. In section 4, I relate this discussion to philosophical work on
the contents of and relationships among physical theories. Section 5 exam-
ines the role of spatial reasoning in TDA and how its functoriality enables
integrating this informal activity into a formal data analytic framework.

2. Topological Data Analysis. Thephrase “topological data analysis” is used
to refer to a variety of data science practices that use tools from algebraic topol-
ogy to make inferences about the “shape” of data clouds as they appear in the
“space” of possible observations. Here, the term data refers to a set of real vec-
tors corresponding to a series of observations. This is an adequate definition for
capturing natural language use of the term, but one might object that it does not
necessarily capture what data are. One of the goals of TDA is to circumvent
some of the arbitrariness involved in presenting data as real vectors. A data
cloud can thus be thought of as a visual representation of this set of vectors as
“points” in a (high-dimensional generalization of ) space. The abstract “space”
where data live is generally some formofmetric space, or setX of points (includ-
ing at least the data points) together with a notion of “distance” d( , ) between the
points. For example, I may have data about the weights of a collection of pota-
toes. The distance between these data points would just be the pairwise differ-
ence in weight between two potatoes according to a fixed unit (e.g., pounds).

A characteristic problem of analyzing large data sets is deciding how to
combine many different types of measurements into a shared metric space.
I can also add information about the length, color, number of eyes, and so
on, for each potato, creating an n-dimensional space, where n is the number
of potato attributes. The “distance” between two data points is now some
combination of the distances given by weights, lengths, color, and so on.
But how should the notions of distance given by each variable combine into
“distance” in the total space of possible variable values? The standard way
of aggregating one-dimensional metrics into a shared metric space is to
imagine each metric as an axis in an n-dimensional Cartesian grid, with
distance given by the Cartesian distance as follows. Let x 5 (x1, ::: , xn)
and y5 ( y1, ::: , yn) be two sets of potato measurements. Then d(x, y) 5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(x1 2 y1)
2 1 ::: 1 (xn 2 yn)

2
p

. Setting aside the fact that there are other
viable options for constructing distances from these values, notice that this
expression does not include units. Should weight be presented in pounds or
tons? Of course we know how to translate between these two units, and we
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consider the choice more of notational convenience than being theoretically
meaningful. But if we are looking to the “shape” of data for information
about the system being measured, the data cloud will look much more “flat”
if we use tons rather than pounds. It is thus desirable to consider properties of
the data cloud that do not depend on the particular choice of metric space or
unit but that are shared by a variety of plausible modeling choices.

Such considerations motivate the use of topological, as opposed to geo-
metric, methods. Topology is the mathematical field that studies properties
of shapes that remain constant when stretching, twisting, or otherwise de-
forming. Topologists attend to more general features of metric spaces that
would be present under different modeling assumptions, called topological
invariants. Since data sets are finite, although they may suggest some under-
lying shape, they likely will not do so uniquely. This is the standard curve-
fitting problem in higher dimensions: for any discrete set of points, there are
an infinite number of continuous curves (or shapes) that contain (or approx-
imate) the locations of those points. As with the curve-fitting problem, ex-
ternal considerations guide the choice of a continuous object, rather than just
the bare, uninterpreted set of data points. One may have a priori reasons to
expect that the “right” curve is quadratic, for example.

2.1. Clusters. The simplest example of TDA, and the one most broadly
used by data scientists generally, is a type of cluster analysis. The idea be-
hind cluster analysis is to ask: Do my data points naturally divide into sub-
categories of data points more similar to one another than the overall space?
Such a situation indicates that there is some nontrivial structure underlying
the data associated with such groupings, which one may interpret as “natural
kinds” in the space. Cluster analysis is in this way closely related to regres-
sion analysis—clusters point toward a correlation among variables, one of
the main “signals” data scientists hope to read off of large data sets. For ex-
ample, biological species are sometimes individuated as “homeostatic prop-
erty clusters” of organisms that are stably more similar to one another than to
other organisms (Boyd 1999).

In scientific contexts, external considerations about the type of data under
consideration tend to influence how one chooses to carve a data set into clus-
ters. For example, only features considered relevant to fitness will likely fac-
tor into the similarity notion that underlies species clustering. Moreover, tra-
ditional clustering algorithms such as k-means will require a prespecification
of the number of clusters to be identified, which will likely come from pre-
conceived notions of the expected number of groupings. For example, a
clustering of voter data might presuppose that voters will split into two clus-
ters along partisan lines.

Even in the absence of such guidance, natural clustersmay be easily “seen”
when the data are graphed. With larger and higher dimensional data sets to
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analyze, these heuristics are less useful, and data scientists would pre-
fer a principled algorithmic approach to clustering. This would amount to
a function that takes metric spaces (X, d )—here understood as data sets
X 5fx1, ::: , xngwith a notion of “distance” d(xi, xj)—as inputs and outputs
partitions of those data into clusters of data points that are “close together.”

2.2. Constructing Shapes. The most common method to construct a
shape from a data cloud is roughly as follows. Enclose each data point in
a “ball” of radius ε centered on that point. As ε gets larger, the cloud will
cease to look like isolated points and start to gain shape. Once it gets too
large, though, we are left with a single shapeless blob. We use this idea to
construct a simplicial complex, beginning with the data points as vertices.1

Where two balls intersect, we add an edge between them. When three balls
intersect, we add a face enclosed by the three edges. This process continues,
creating higher dimensional n-faceswhere n1 1 balls intersect. The result is
called a Čech complex (see fig. 1).2

This is an intuitively plausible way to construct a discrete shape from a
data cloud. A clustering can be “read off ” of a Čech complex by grouping
data points according to whether they are connected in a single component
of the complex. This may be complicated by the presence of noise—a single
anomalous data point might connect otherwise robustly distinct clusters. This
can either be sidestepped by looking at only regions that are highly connected
or avoided altogether by filtering and “cleaning” the data before analysis.

2.3. Holes and Voids. Identifying the clusters of a simplicial complex
is a special case of a more general phenomenon of homology. Homology is
a method of classifying shapes by looking at how many “holes” the shape
has. No matter howmuch you stretch and twist it, a circle will always have a
“hole” in it, a sphere will always have a void or cavity, an inner tube will
always have the “donut hole” as well as a void in the interior that inflates.

When we look at the connected components of a Čech complex, we are
considering the H0-homology of the complex (considered as a topological
space). We can similarly attend to theH1-homology of the complex by look-
ing for “holes” or theH2-homology by looking at “cells,” and so on, to higher
dimensions with less intuitive interpretations.
1. Se

2. In
called

8 Publ
Example 1 (Cosmology). Van de Weygaert et al. (2011) study the homol-
ogy of density level sets of an ensemble of randomly generated cosmic
mass distributions. They analyze the evolution ofH1,H2, andH3-homology
e Hatcher (2002, sec. 2.1), for a precise definition of a simplicial complex.

practice, TDA employs a more computationally tractable approximation thereof,
a witness complex. See Carlsson (2009, sec. 2) for details.
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over time in n-body simulations, revealing characteristic patterns of differ-
ent dark energymodels. They show how homology can track cosmological
structures of independent interest to physicists, such as matter power spec-
tra and non-Gaussianity in the primordial density field.
2.4. Persistence. The motivating idea behind the construction of a
Čech complex is that we can imagine data as being uniformly sampled (with
noise) from some underlying “shape” in the metric state space, and we can
use these data points to infer the global structure of the “object”we are sam-
pling from. The more samples we look at, the more accurate our picture of
the shape will be. For sufficiently small ε-balls, the complex will not have
any more structure than the bare data set. Similarly, when the balls get too
large, there is nothing more to look at than a giant blob. The “right” choice
of ε is at some intermediate size, but how should it be chosen? If we chose an
ε that is too small, we will get a shape with a lot more holes, disconnected
components, and so on, than we think are meaningful. In other words, we
retain some of the noisy features of the data cloud that we were trying to
eliminate. But we risk going to far and making ε large enough to obscure
both noise and meaningful information from the data.

A natural way to solve this problem is to look at many different choices of
ε and use external considerations to decide which gives the best resolution of
the data shape. Two more problems arise when we do this, though. For one,
the whole point of data analysis is to simplify and compress information
about a system, and having a variety of different models we can choose from
does not simplify matters. Second, there may be different features that arise
at different resolutions that are equally significant, and this multilevel picture
can get lost if we have to choose a single model among the many possibil-
ities. For example, data may be dense in some regions but sparse in others,
where relevant shapes require larger ε-balls to be “seen.”

The key insight that unlocked the power of TDAwas the idea of “topo-
logical persistence,” introduced to data analysis in Edelsbrunner, Letscher,
and Zomorodian (2002). Briefly: instead of picking a particular resolution
to look at, we look at them all but take advantage of a trick from algebraic
Figure 1. Constructing a Čech complex as ε increases, from Bubenik (2015).
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topology to connect complexes at different scales in a sophisticated and ef-
ficient way The result is the association of a data cloud with a persistence
module that encodes how the cloud changes structurally as ε increases. Ho-
mology is then computed for these modules, and the result is typically ex-
pressed as a homological barcode, as in figure 2. The “bars” begin when a
feature is “born” and endwhen it “dies.” Short intervals in barcodes are often
attributed to either measurement noise or inadequate sampling, whereas
long, “persistent” bars are thought to reveal real geometric features of the
space being sampled.

Not only is this decomposition more computationally tractable to analyze
than (sets of ) complexes, but the barcode itself provides a visual summary of
behavior as ε increases. When the number of features is large, data analysts
will also sometime use persistence diagrams instead of barcodes.

2.5. Stability. One way to interpret ε is as a modeling parameter, corre-
sponding to the resolution or scale we use to construct a shape from the data
cloud. The persistent features of a Čech complex are those that are stable, or
robust under perturbations of the parameter value. Longer bars in barcodes
represent features that appear for a wider range of ε values, indicating that
these features are robust and unlikely to constitute mere noise. Cohen-Steiner,
Edelsbrunner, and Harer (2007) made this precise by proving that for a large
Figure 2. Example of a homological barcode, from Ghrist (2008).
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class of constructions (including Čech complexes), persistence diagrams are
stable, meaning that small perturbations of the initial data set result in corre-
spondingly small changes in the resulting persistence diagram.

We can use this same method to consider stability across other indexing
parameters as well at fixed resolution, as in the following example.
86/7150
Example 2 (Arteries). Bendich et al. (2016) employ TDA to study the
structure of arteries in the human brain. They uniformly sample a large
number of points from a blood vessel diagram (weighted by thickness of
vessel) and construct a Čech complex from this data cloud, analyzing the
H0 andH1 persistence diagrams over the growing size of ε-balls in theČech
complex. They look at persistent H0 over a stack of “horizontal slices” of
the artery diagram (see fig. 3).
The authors found significant correlation between certain features of these ho-
mological barcodes and the age and sex of the subjects, with the age correlation
a significant improvement over previous attempts at analyzing similar data.
For example, older brains tended to have the longest bars in the latter barcodes.

In this example, persistence is indexed over the parameter of height. One
can also analyze persistence of homological features over time.
Example 3 (Time-Series Data). Perea and Harer (2015) demonstrate that
persistent H1-homology over time can be used to detect periodicity in
time-series data by embedding them into a higher dimensional space. Note
that in the absence of such an embedding, time series data display no
“loops” (since prior points in time are never revisited), so as they stand,
they are not conducive to analysis of homology. It is fairly common for
data analysts to modify their data to match their methods in this way, rather
than the other way around.
We can thus understand persistence modules as assembling a sequence of
(n2 1)-dimensional models indexed by an nth parameter, such as resolution
or time. Dimensionality reduction is a common feature of data analysis tech-
niques. Data often come in the form of large vectors, and the goal is often to
Figure 3. Horizontal slices of the artery diagram, from Bendich et al. (2016).
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compress them—express as much of the original information as possible
within as few dimensions as possible. This amounts to selecting features
or parameters of interest and suppressing the rest in order to highlight gen-
eral patterns. Reducing data models to two to three dimensions also makes
them more visualizable, making them more useful to researchers to observe
patterns, as well as easier to communicate to the public. Persistence modules
provide the benefits of low-dimensional visualizability without throwing
away the information in the extra dimensions.

3. Functoriality. Most practitioners will admit that the interpretation of
homology in data is unclear.While increasing in popularity of late, TDA (be-
yond mere cluster analysis) is still relatively niche. It is often reserved for
situations in which traditional data analysis tools have failed to bear fruit,
and TDA is one of many attempts to gain insight into the data.

Data scientists rarely feel the need to justify their use of TDA beyond the
fact that it seemed to pick up on a relevant pattern in a particular situation.
But when pressed, or in more comprehensive theoretical contexts, the use
of TDA is usually explained by the fact that homology has a particularly nice
property that makes it a reliable data analysis tool: functoriality.

To understand this, we need to look a bit deeper into how TDA functions.
TDA summarizes the shape of a Čech complex built from a data cloud in
terms of a homology group Hn(X ). For each group,Hn(X ) essentially charac-
terizes howmany “holes” are present in each dimension. This makes it easy to
describe the shape computationally, as groups are more easily described sym-
bolically than as shapes. But in order for this symbolic representation to be
useful, we need to be able to identify which “holes” in our complex corre-
spond to which symbolic representation, and we need to be able to track
the holes as we evolve the complexes. We can do this because homology is
functorial in the sense that, more than just translating complexes to groups,
it tells us how to translatemaps between complexes intomaps between groups
while preserving all relevant topological information.

The functoriality of homology enables us to do three important things,
which are essential to its utility in analyzing data: identify local structures,
connect complexes as parameters vary, and compare complexes constructed
from different samples. We can identify local structures via inclusion maps
that pick out particular clusters, holes, and voids. We can then evolve these
complexes by varying parameters of interest and see which features persist.
Finally, we can perform an additional robustness check on our results by
comparing clusters generated with different subsamples of our data, in a
way analogous to bootstrapping in statistics (Chazal et al. 2015).

Thus, data scientists study persistent homology, not because they think of
“counting holes” as the right way to characterize data but rather because
TDA has a particular feature—functoriality—that makes it a reliable tool
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to use. Since persistent homology has this nice property, data scientists will
often shoehorn questions about data into the shape of a homology problem in
order to make it tractable. For example, they might add extra edges to aČech
complex to turn open chains into closed loops. Or they might chose a partic-
ular dimensional reduction in which loops arise, as in Perea and Harer (2015).

One can also modify TDA to examine how clusters are shaped. For ex-
ample, “tendrils” emanating from the core of a cluster can be tracked via the
persistent H0-homology of the resulting data cloud once that core is re-
moved. Nicolau, Levine, and Carlsson (2011) use this technique to classify
breast cancer types (see fig. 4). While the recent proliferation of these meth-
ods might be dismissed as mere hammer nailing, it should rather be said that
since we have very few tools to work with, we had better hope this problem
can become nail shaped.

If I am correct about the significance of TDA’s functoriality, then we
should expect that other fruitful data analytic methods can be understood
functorially. Indeed, Bubenik and Scott (2014) express persistent homology
as a special case of a more general kind of functor, and Carlsson andMémoli
(2013) demonstrate how a functorial account of clustering algorithms (in-
cluding H0 persistent homology) provides conceptual clarity.

4. Category Theory. The role of functoriality in justifying the use of TDA
is suggestive of recent literature in the philosophy of physics advocating for
a functorial account of intertheoretic relations. This literature is inspired by
Halvorson (2013), who argues that one should understand the content of a
scientific theory as a category of models of that theory, that is, as a collection
Figure 4. Visualization of data featuring tendrils.
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of theoretical models plus relationships (structure-preserving functions) be-
tween the models. On this view, the appropriate way to understand relation-
ships between theories is using a functor—a map that takes models to models
and relations to relations in a consistent way. Once framed in this way, phi-
losophers can use tools from category theory to enrich their understanding
of these theories and how they relate to one another (Weatherall 2017; Rosen-
stock 2019).

We can conceive of TDA as a special case of this general category theo-
retic framework for characterizing scientific theories or, as I prefer to think of
them, representational frameworks. We begin with a “metric space” represen-
tational framework for our empirical data. This consists of (finite)metric spaces,
along with relationships between metric spaces (isometries, embeddings,
etc.), forming category FinMet. We also have a “topological” representational
framework of “shapes” that our data might have and structure-preserving
maps between them forming a category Comp of simplicial complexes. And
we have an algebraic category, HomAlg, of homological algebras.

In this language, we articulate a “reading” of shapes from a data set as a
functor F: FinMet→ Comp, such as the functor Fd that takes a metric space
itsČech complex of radius d. We can transform this topological framing into
an algebraic framing via a functor from Comp to HomAlg (the “homology”
functor). And we can construct a category PDiag of persistence diagrams,
associated with our underlying data model again by a functor from FinMet
to PDiag.

There are lessons to be learned from this relationship between TDA and
the philosophy of physics literature in both directions. Philosophers benefit
from a fruitful example outside of physics, one that incorporates many “lev-
els” of abstraction from initial data to more abstract representations. Con-
versely, formal philosophical work can help elaborate the sense in which
theoretical content is “preserved” in these functorial transformations. In
particular, Rosenstock (2021) illustrates how reflection on the structure of
a data set influences and constrains the ways in which it can be clustered.

5. Spatial Inference. The goal of data analysis is to identify patterns in
data that provide concise, comprehensible summaries of the system that
point toward features of significance in broad classes of systems. Such rec-
ognition of patterns of sufficient generality without overfitting is the holy
grail of artificial intelligence and machine learning research. In the mean-
time, scientists rely heavily on visual intuition to guide inquiry, experiment-
ing with parameters and data filtering until it “looks right.”

TDA removes some of the arbitrariness of this process by enforcing a
consistent methodology to the identification of patterns once these discre-
tionary setup choices are made. But intuitions are not abandoned entirely
at this stage, since the resulting analysis still has to fit with preconceived
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notions of natural categories and interesting patterns in order to be of interest
to practitioners. Patterns found through random applications of TDA might
lead scientists to look for corresponding features of interest in a system, but
if these cannot be found, the shapes identified in the data remain merely cu-
riosities. In example 2, if barcodes did not track gender and age but some
other feature that we do not independently classify as a natural kind, they
would likely be omitted from the published analysis.

The difficulty of interpreting higher dimensional homology thus requires
extensive human discretion to be empirically useful. TDA is a second-line
resource for data that are particularly intractable to analyze, which puts cre-
ativity at the center of its application. We might wonder whether such an in-
formal process of intuitive speculation about the shape of data can be incor-
porated into a formal epistemic story about the structure of topological data
models. Here, we can learn much from the vast literature on diagrammatic
reasoning in Euclidean geometry. Critics of the rigor of reasoning from dia-
grams in geometric ‘proofs’ point to the fact that such proofs use a particular
illustration to make an inference about all possible illustrations. However,
philosophers of mathematical practice have recently come to appreciate
the role of diagrams in generating and communicating geometric knowledge.
Manders (2008) argues that ancient geometers were careful to rely on dia-
grams only for demonstrations about what he calls co-exact features—those
that are relatively insensitive to the range of variation in possible visual rep-
resentations, such as part-whole and boundary-interior relationships (and of
course, homology). Mumma (2010) takes this a step further and develops a
formal account of Euclidean proofs that includes both sentential and dia-
grammatic components.

Similarly, data analysts are concerned with ensuring that inferences about
data rely only on real structural features of observations, rather than inciden-
tal features of how data visualized. At issue is the level of generality one can
adopt when making inferences from a single visual representation of data,
picked somewhat arbitrarily from an ensemble of possible alternative, equally
valid representations. TDA resolves this issue by requiring that the analyzed
features of data models be functorial with respect to maps that preserve what
they take to be the relevant structural features of models and persistent across
parameters when the “right” value is not known.

6. Conclusion. This article argues that the functoriality of homology is crit-
ical to TDA’s utility in revealing and interpreting structural features of data
sets. In brief, topological features of data sets are visually salient to humans
and aid in our reasoning in understanding. The functoriality of persistent ho-
mology ensures that reasons we had for thinking topological features were
meaningful are preserved in the translation from data cloud to homological
barcode, while enabling various robustness tests on the resulting analyses.
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There are promising future directions for exploring the relationship between
TDA and recent philosophical work on the content of and relationships
among physical theories.
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