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We consider a family of multi-phase Stefan problems for a certain one-dimensional model of

cell-to-cell adhesion and diffusion, which takes the form of a non-linear forward–backward

parabolic equation. In each material phase the cell density stays either high or low, and phases

are connected by jumps across an ‘unstable’ interval. We develop an existence theory for such

problems which allows for the annihilation of phases and the subsequent continuation of

solutions. Stability results for the long-time behaviour of solutions are also obtained, and,

where necessary, the analysis is complemented by numerical simulations.

1 Introduction

In this paper, we give further consideration to the one-dimensional continuum model

for adhesion/diffusion of biological cells developed by Anguige and Schmeiser [3], which

took the form of the non-linear diffusion equation

∂ρ

∂t
=

∂

∂x

(
D(ρ)

∂ρ

∂x

)
, (1.1)

with quadratic diffusivity

D(ρ) = 3α

(
ρ− 2

3

)2

+ 1 − 4

3
α, (1.2)

for the scaled cell density ρ(x, t) ∈ [0, 1] and the adhesion coefficient α ∈ [0, 1], the

boundary condition being just ∂ρ
∂x

= 0 at x = 0, 1.

These equations were obtained as the formal continuum limit of the fundamental

biased-random-walk model

∂ρi
∂t

= T+
i−1ρi−1 + T−

i+1ρi+1 − (T+
i + T−

i )ρi , (1.3)

with transitional probabilities

T±
i = (1 − ρi±1)(1 − αρi∓1)/h

2, (1.4)
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110 K. Anguige

on a lattice of points xi = ih, by taking Taylor expansions about xi and letting h → 0. In

the derivation of this equation, h was interpreted as a (microscopic) measure of cell size.

We recall from [3] that (1.1)–(1.2) is globally well posed if α< 3
4
. If, on the other hand,

α> 3
4

then (1.1)–(1.2) is ill posed iff the initial density profile protrudes into the ‘unstable’

interval

Iα = (ρ�(α), ρ�(α)) :=

(
2α−

√
α(4α− 3)

3α
,
2α+

√
α(4α− 3)

3α

)
⊂ [1/3, 1], (1.5)

since in that case D(ρ) is positive iff ρ � Iα, and positivity is preserved by the Maximum

Principle.

For completeness, note that in the borderline case α= 3
4
, (1.1) is just the porous-medium

equation with quadratic diffusivity and possible change of sign about ρ= 2
3
. For initial

data which stay away from ρ= 2
3

(either above or below), (1.1) is uniformly parabolic,

and global existence of a smooth solution follows as for α< 3
4
, while for degenerate initial

data one is merely guaranteed a (unique) globally existing weak solution [8].

The ill posedness of (1.1) for α> 3
4

is related to the presence of fine (wavelength O(h))

spatial oscillations, as well as plateau formation, in solutions of the discrete system (1.3),

and the absence of a straightforward existence theory for (1.1) leads one to ask just what

model should be taken as a reasonable continuum limit of (1.3) in the high-adhesion

regime.

One approach, and the one we shall adopt in this paper, is to circumvent the problem

of ill posedness by simply declaring that ρ-values in Iα are forbidden, and considering

solutions to (1.1)–(1.2) which may jump across Iα (possibly multiple times), but which are

otherwise smooth. Mathematically, one is then dealing with a kind of (multi-phase) Stefan

problem for the density ρ(x, t) and the jump locations si(t), such that the si are dynamically

determined by local conservation of mass, or, in other words, by the Rankine–Hugoniot

condition.

In [3], the analysis of (1.3) was aided by considering higher order modifications of

the leading-order equation (1.1). One such O(h2) modification takes the form of the

fourth-order partial differential equation (PDE)

∂ρ

∂t
=

∂2

∂x2

(
K(ρ) + h2

(
αρ(ρ− 1)

∂2ρ

∂x2
− αρ

(
∂ρ

∂x

)2

+
1

12

∂ρ

∂t

))
, (1.6)

where the cubic K(ρ) is a primitive for D(ρ). This equation is rather similar to the viscous

Cahn–Hilliard equation [6], and is a regularisation of (1.1) in the sense that it is (at least

locally) well posed on S1, for each fixed value of the microscopic parameter h, and for all

α< 1. Presumably, solutions continue to exist globally, as for Cahn–Hilliard, but a proof

is currently lacking.

The steady-state equation for (1.6) can, after a change of variables, be written as a

Hamiltonian dynamical system, and amongst the solutions there is, for each α, a unique

heteroclinic cycle. These heteroclinic cycles correspond to (two-level) plateau solutions of

(1.6), are close (for small h) to square-wave weak solutions of (1.1), and their critical

points, denoted by ρ1(α) and ρ2(α), such that ρ1<ρ
� <ρ� <ρ2 and K(ρ1) =K(ρ2), match

very well the numerically observed long-time plateau values in solutions of (1.3) (see [3]).
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Figure 1. A typical density profile for the 1-jump Stefan problem, SP1.

For these reasons, we demand in our Stefan-problem framework that any jumps across Iα
should connect ρ1(α) to ρ2(α). Furthermore, in order to avoid the degeneracies at ∂Iα, we

require that the initial data satisfy ρ<ρ� in low-density phases, and ρ>ρ� in high-density

ones.

We emphasise that ρ1 and ρ2 are determined by the particular choice of microscopic

model (1.3)–(1.4); other model choices are possible, and these will result in different

ρ-values.

The paper is organised as follows. In Section 2, we develop a partial existence theory

and perform a steady-state analysis for the simplest Stefan problem, namely, that for

which there is only a single discontinuity in the density; solution behaviour is further

clarified with the aid of several numerical simulations. In Section 3, we extend the analysis

to the general multi-phase case, which, in particular, allows for the annihilation of phases

via coalescence events. Finally, in the appendices, we collect a number of results from

classical parabolic theory which are used throughout the paper.

2 The 1-jump problem

We begin the analysis by considering the simplest possible case, in which there are just two

phases, connected by a single jump from ρ1 to ρ2; this situation is depicted in Figure 1. For

definiteness, we will assume that the low-density phase lies to the left and the high-density

phase to the right, of the discontinuity; the converse arrangement can, of course, also be

treated.
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2.1 Formulation

Let the location of the jump discontinuity be denoted by s(t). The Stefan problem for a

given α> 3
4

then consists of looking for a function ρ(x, t) on [0, 1] × [0, T ] which satisfies

∂ρ

∂t
=

∂

∂x

(
D(ρ)

∂ρ

∂x

)
, 0<x< s(t), (2.1)

subject to

∂ρ

∂x
(0, t) = 0, ρ(s−(t), t) = ρ1(α), (2.2)

and

∂ρ

∂t
=

∂

∂x

(
D(ρ)

∂ρ

∂x

)
, s(t)<x< 1, (2.3)

subject to

∂ρ

∂x
(1, t) = 0, ρ(s+(t), t) = ρ2(α). (2.4)

The evolution of s(t) is determined by the Rankine–Hugoniot jump condition

ds

dt
=

(J+ − J−)

(ρ2 − ρ1)
, (2.5)

where the fluxes are given by J± = −D(ρ(s±(t), t))∂xρ(s
±(t), t), this equation being obtained

by differentiating the statement of conservation of mass

∫ s(t)

0

ρ(x, t) dx+

∫ 1

s(t)

ρ(x, t) dx = M (2.6)

and using (2.1)–(2.4).

The initial datum for ρ, satisfying the boundary and jump conditions, is chosen to

be smooth away from the initial discontinuity, with ρ<ρ� in the low-density phase and

ρ>ρ� in the high-density phase. By construction, D(ρ) is then initially positive on each

phase, and, by virtue of the Maximum Principle, we can reasonably expect the Stefan

problem to be well posed. In the sequel, we will refer to the coupled system (2.1)–(2.5) as

SP1; analogous problems SPn, with n jumps, will be treated in Section 3.

Finally, note that we allow for the possibility that s(t) may hit the domain boundary

at x= 0 or 1 in finite time. In this case, provided the gradient remains bounded as

the boundary is approached, the solution can be continued via the ordinary Neumann

problem for (1.1), which we will call NP . As a convention, a solution continued in this

way will still be referred to globally as a solution of SP1.
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2.2 Steady states and their stability

If the total mass M satisfies ρ1<M<ρ2 then there is precisely one discontinuous steady-

state solution of SP1, given by the step function

ρ∗(x) =

{
ρ1 : x ∈ [0, s∗),

ρ2 : x ∈ (s∗, 1],

s∗ =
(ρ2 −M)

(ρ2 − ρ1)
, (2.7)

while if M � ρ1 or M � ρ2 then no such discontinuous solution exists.

Moreover, SP1 clearly has the uniform steady-state solution

ρ(x) = M, 0 � x � 1 (2.8)

if and only if M � ρ� or M � ρ�.

For the two possible kinds of steady state we have the following stability results:

Theorem 2.1 Suppose we have a global smooth solution pair, (ρ(x, t), s(t)), for SP1, with

initial data (ρ0(x), s0), such that 0<s0< 1. Then

(i) if ρ� <M<ρ�, ρ(x, t) converges exponentially to ρ∗ in L2 norm, and s(t) converges

exponentially to s∗, as t → ∞,

(ii) if ρ1<M � ρ� (resp. ρ� � M<ρ2), and ρ0 � M (ρ0 � M) in the low (high) phase,

the solution is attracted towards (ρ∗, s∗) as in (i),

(iii) if M<ρ1 (resp. M>ρ2), then s(t) hits x= 0 (x= 1) in finite time, and the continued

solution converges to the uniform steady state ρ=M, exponentially in L2.

(iv) if M= ρ1 (resp. M= ρ2), then s → 1 (0) as t ↗ T , some T , with the possibility that

T = ∞, and ρ(x, t) approaches ρ1 (ρ2) exponentially in L2 in the low (high) phase as

t ↗ T . If T is finite, the continued solution of NP converges to the uniform steady

state ρ=M, exponentially in L2.

Proof To prove (i), first note that, by (2.6) and the fact that ρ cannot enter Iα = (ρ�, ρ�),

0 < smin � s(t) � smax < 1, ∀t, (2.9)

where

smin(M) = (ρ� −M)/ρ�, (2.10)

smax(M) = (1 −M)/(1 − ρ�). (2.11)

Next note that, on the subinterval (0, s(t)), we have

∂

∂t
(ρ− ρ1) =

∂

∂x

(
D(ρ)

∂

∂x
(ρ− ρ1)

)
. (2.12)
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Hence, multiplying through by (ρ−ρ1), integrating by parts, and using the mixed boundary

conditions gives

1

2

d

dt

∫ s(t)

0

(ρ− ρ1)
2 dx = −

∫ s(t)

0

D(ρ)(∂x(ρ− ρ1))
2 dx, (2.13)

which implies

1

2

d

dt
‖ρ− ρ1‖2

L2(0,s) � −ε‖∂x(ρ− ρ1)‖2
L2(0,s), (2.14)

where ε= inf0<x<s(0){D(ρ(x, 0))}> 0.

Since ρ= ρ1 at x= s−(t), we also have the Poincaré inequality

‖ρ− ρ1‖L2(0,s) � s‖∂x(ρ− ρ1)‖L2(0,s), (2.15)

and hence (2.14) implies

‖ρ− ρ1‖2
L2(0,s)(t) � ‖ρ− ρ1‖2

L2(0,s)(0)e−εt/s2max . (2.16)

An analogous inequality on the subinterval (s(t), 1) is obtained in exactly the same way.

Next, from (2.6) we have∫ s(t)

0

(ρ(x, t) − ρ1) dx + ρ1s(t) +

∫ 1

s(t)

(ρ(x, t) − ρ2) dx + ρ2(1 − s(t)) = M, (2.17)

and hence, rearranging and using the L2 decay just shown,

|M − ρ2 − s(t)(ρ1 − ρ2)| � c1e
−c2t, (2.18)

for some c1, c2.

Substituting the definition of s∗ from (2.7) into (2.18) gives us

|s− s∗|(t) �
c1e

−c2t

(ρ2 − ρ1)
, (2.19)

as required.

To prove (ii), note, for example, that if ρ1<M � ρ� and ρ0(x) � M for 0 � x � s0
then ρ=M is a supersolution in the low phase. From this, it follows once again that s(t)

remains bounded away from 0 and 1, by conservation of mass. Convergence to (ρ∗, s∗)

is proved as before. The same argument goes through for ρ� � M<ρ2 and ρ0(x) � M,

s0 � x � 1.

For (iii), if M<ρ1 (resp. M>ρ2) then the only candidate for a steady-state solution is

given by ρ=M and s= 1 (s= 0), and, by L2 decay in the low (high) phase and conservation

of mass, s(t) is forced to hit the boundary in finite time; L2 convergence for the subsequent

NP is proved via the usual energy estimate.

Finally, if M= ρ1 (resp. ρ2), then the only possible steady state is ρ= ρ1 (ρ2) for

0 � x � 1. Clearly, s(t) remains bounded away from 0 (1) and therefore ρ(·, t) decays

to ρ1 (ρ2), exponentially in L2 on (0, s) ((s, 1)), as we have already seen. The L2 decay

implies that s → 1 (0) as t increases, but the convergence may take infinitely long in this
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exceptional case; if the convergence takes place in finite time then the subsequent NP is

as in (iii). This proves part (iv). �

We conclude this discussion by noting that, for the cases not covered by Theorem 2.1,

namely

(1) ρ1 < M � ρ�, ρ0(x) > M for some x < s0,

(2) ρ� � M < ρ2, ρ0(x) < M for some x > s0,

we have not been able to find a clean analytical criterion for determining which of the two

possible steady states will be approached at large times, for given initial data. However,

in the next subsection we show that the discontinuous steady state (2.7) is always linearly

stable in a certain sense, whenever it exists, and, moreover, we report on numerical

simulations which suggest that s(t) can hit the domain boundary in finite time, provided

condition 1 or 2 (directly above) is satisfied, and the initial density profile is sufficiently

far from (2.7); in other words, SP1 appears to be bistable for some values of the total

mass.

2.3 Existence and uniqueness for smooth data

2.3.1 Background

We can make a connection between our moving-boundary problem SP1 and the traditional

two-phase Stefan problem for the melting of ice in water by identifying ρ as the specific

latent heat, and σ:=K(ρ) as the temperature. In the traditional formulation, our low-

density phase is thought of as the solid, and our high-density phase as the liquid phase.

Given this, one imposes the physically reasonable condition

ρ0 � ρ1 in the solid (low-density) phase, ρ0 � ρ2 in the liquid (high-density) phase,

(2.20)

and then one can write down a favourable weak formulation of the problem, which can

be shown to have a unique solution for bounded data (see Appendix C). Furthermore, this

weak solution turns out to be a global-in-time smooth solution of the original problem

(see e.g. [5]).

For SP1, however, the restriction on the initial data is just

ρ0 < ρ� in the low-density phase, ρ0>ρ
� in the high-density phase, (2.21)

which is weaker than (2.20). In particular, this entails that K(ρ) can no longer be assumed

monotonically increasing, and, consequently, that there is no nice weak formulation of the

problem. We note that, in the literature, uniqueness of solutions, given (2.20), is usually

proved using the weak formulation [4, 5]. Moreover, in the basic proof of local existence

of smooth solutions as presented in [5], for example, it is not so easy to discern whether

the restriction (2.20) can be relaxed to (2.21). For these reasons, we now present a concise,

reasonably self-contained, classical existence-and-uniqueness theory for SP1, with data
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subject merely to (2.21), which employs the standard Hölder and Sobolev estimates of

linear parabolic theory.

2.3.2 A local-existence theorem

In order to solve the moving-boundary problem SP1, we employ, in each phase, the

standard trick of rescaling the spatial variable (see e.g. [7]), such that (2.1)–(2.4) become a

pair of fixed-boundary problems, coupled by the (rescaled) Rankine–Hugoniot condition.

Specifically, for 0 � x � s(t) we introduce the coordinate transformation

(x, t) → (x̂, t̂) : x̂ =
x

s
, t̂ = t, (2.22)

while for s(t) � x � 1 we take

(x, t) → (x̃, t̃) : x̃ =
x− s

1 − s
, t̃ = t. (2.23)

In terms of these new coordinates, and writing v(x̂, t̂) = ρ(x, t) for 0 � x � s(t),

w(x̃, t̃) = ρ(x, t) for s(t) � x � 1, (2.1) and (2.4) become, upon dropping hats,

∂v

∂t
=

1

s2
∂

∂x

(
D(v)

∂v

∂x

)
+ x

ṡ

s

∂v

∂x
, (2.24)

for x ∈ (0, 1), subject to vx(0, t) = 0, v(1, t) = ρ1, and, respectively,

∂w

∂t
=

1

(1 − s)2
∂

∂x

(
D(w)

∂w

∂x

)
+ ṡ

(1 − x)

(1 − s)

∂w

∂x
, (2.25)

for x ∈ (0, 1), subject to w(0, t) = ρ2, wx(1, t) = 0, while the jump condition (2.5) assumes

the form

ds

dt
= −

(
D(ρ2)wx(0, t)

(1 − s)
− D(ρ1)vx(1, t)

s

)
(ρ2 − ρ1)

−1, (2.26)

and we also have the rescaled conservation-of-mass equation

s(t) =
M −

∫ 1

0 w dx[∫ 1

0 v dx−
∫ 1

0 w dx
] . (2.27)

Finally, for the application of classical parabolic theory, the initial data and the Dirichlet

condition at s0:= s(0) must satisfy a certain first-order compatibility condition, which is

obtained by setting vt and wt equal to zero in (2.24) and (2.25), and substituting the initial

data, evaluated at the phase boundary, into the right-hand sides of (2.24), (2.25) and

(2.26).

The most compact way of writing this compatibility condition is to go back to the

original coordinates and introduce the dependent (temperature) variable σ=K(ρ), in
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terms of which the relevant equations are simply

σ+
x (σ+

x − σ−
x ) = (ρ2 − ρ1)D(ρ2)σ

+
xx, (2.28)

σ−
x (σ+

x − σ−
x ) = (ρ2 − ρ1)D(ρ1)σ

−
xx,

where, for example, σ±
x = σx(s

±(0), 0).

We are able to prove the following:

Theorem 2.2 Given initial data (v0, w0, s0), such that v0, w0 ∈ Cl+2((0, 1)), l > 0, 0<s0< 1,

0 � v0<ρ
�, ρ� <w0 � 1, and such that the first-order compatibility condition is satisfied,

the system of equations (2.24), (2.25), (2.26) (and hence problem SP1) has a unique classical

solution on some small time interval [0, T ].

Proof The proof proceeds via an iterative scheme of successive approximations, and to get

the required strong-convergence properties, we work in the setting of ‘parabolic’ Hölder

spaces.

First of all, we set QT = [0, 1] × [0, T ], and, as in [4, 5], for example, let Hl,l/2(QT ), l > 0

non-integer, denote the Banach space of functions u with continuous derivatives DrtD
s
xu,

for 2r + s � l, equipped with the norm

|u|(l)QT =

[l]∑
2r+s=0

‖DrtDsxu‖L∞(QT ) +
∑

2r+s=[l]

〈DrtDsxu〉(l−[l])
x,QT

+
∑

0<l−2r−s<2

〈DrtDsxu〉(l−2r−s)/2
t,QT

, (2.29)

where, for 0<β < 1,

〈v〉(β)
x,QT

= sup
(x,t),(x′ ,t)∈QT

{
|v(x, t) − v(x′, t)||x− x′|−β

}
, (2.30)

〈v〉(β)
t,QT

= sup
(x,t),(x,t′)∈QT

{
|v(x, t) − v(x, t′)||t− t′|−β

}
. (2.31)

Now we describe our iterative scheme for obtaining new approximate solutions of

(2.24), (2.25), (2.26) from old ones.

Suppose we have smooth ith iterates (vi, wi), with positive diffusivities on QT , which

satisfy the initial and boundary conditions, and suppose that

max
{

|vi|(l+1)
QT

, |wi|(l+1)
QT

}
� C, (2.32)

for some l ∈ (0, 1).

Next, determine the approximant si(t) by solving the non-linear ODE

dsi

dt
= −

(
D(ρ2)w

i
x(0, t)

(1 − si)
− D(ρ1)v

i
x(1, t)

si

)
(ρ2 − ρ1)

−1, (2.33)

which, for the given datum s0, has a unique smooth solution on [0, T ], provided T =T (C)

is chosen small enough (Picard’s Theorem). Clearly, the ordinary Hölder norm of si is

bounded according to

‖ṡi‖Cl/2([0,T ]) � F(C) (2.34)

for some function F .
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The functions vi, wi, si are now inserted into the right-hand sides of the linearised field

equations

∂vi+1

∂t
=

1

(si)2
∂

∂x

(
D(vi)

∂vi+1

∂x

)
+ x

ṡi

si
∂vi+1

∂x
, (2.35)

for x ∈ (0, 1), subject to vi+1(·, 0) = v0, (vi+1)x(0, t) = 0, vi+1(1, t) = ρ1, and

∂wi+1

∂t
=

1

(1 − si)2
∂

∂x

(
D(wi)

∂wi+1

∂x

)
+ ṡi

(1 − x)

(1 − si)

∂wi+1

∂x
, (2.36)

for x ∈ (0, 1), subject to wi+1(·, 0) =w0, w
i+1(0, t) = ρ2, (wi+1)x(1, t) = 0.

These equations are parabolic, by the choice of (vi, wi), and therefore have unique

smooth solutions vi+1, wi+1 on QT , by Lemma A.1 (see Appendix A), which is a convenient

summary of relevant results from classical parabolic theory [4]; the updated approximants

also have corresponding positive diffusivities, by the Maximum Principle.

The coefficients of (2.35), (2.36), when expanded into the standard form (A1), are

such terms as xṡi/si, D(vi)/(si)2, D′(vi)vix/(s
i)2, and analogues for wi, and are therefore

dominated in Hl,l/2(QT ) by |vi|(l+1)
QT

and |wi|(l+1)
QT

. Thus, by Lemma A.1,

|vi+1|(l+2)
QT

� F(C)
(

|v(·, 0)|(l+2)
Ω + ρ1

)
(2.37)

and

|wi+1|(l+2)
QT

� F(C)
(

|w(·, 0)|(l+2)
Ω + ρ2

)
, (2.38)

where F is some positive function, Ω = (0, 1), and | · |(l+2)
Ω is the ordinary Hölder norm.

Next, applying Lemma B.1 to (2.37) and (2.38) results in

|vi+1|(l+1)
QT

−K(Ω)‖v0‖C2 � K(Ω)TδF(C)
(

|v0|(l+2)
Ω + ρ1

)
(2.39)

and

|wi+1|(l+1)
QT

−K(Ω)‖w0‖C2 � K(Ω)TδF(C)
(

|w0|(l+2)
Ω + ρ2

)
, (2.40)

where δ= min
{
l
2
, 1

2
(1 − l)

}
Thus, if we choose C >K(Ω) max(‖v(·, 0)‖C2 , ‖w(·, 0)‖C2 ), and T (C) is taken sufficiently

small, then

max
(

|vi+1|(l+1)
QT

, |wi+1|(l+1)
QT

)
� C. (2.41)

Iteratively, we therefore have that (2.32), (2.34), (2.37) and (2.38) hold uniformly for

all i.

Next, taking the difference of (2.35) and the corresponding equation for vi gives an

equation of the form

∂

∂t
(vi+1 − vi) =Di(x, t)

∂2

∂x2
(vi+1 − vi) + ai(x, t)

∂

∂x
(vi+1 − vi) + bi(x, t)

∂

∂x
(vi − vi−1)

+ ci(x, t)(v
i − vi−1) + di(x, t)(s

i − si−1) + ei(x, t)(̇s
i − ṡi−1), (2.42)

where Di � ε for all i, some ε> 0, and all the coefficients are bounded in H
l,l/2
QT

, uniformly

in i, by the results just obtained.
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For the difference si − si−1, we get from (2.26),

d

dt
(si − si−1) = pi(t)(s

i − si−1) + qi(t)(v
i
x − vi−1

x )(1, t) + ri(t)(w
i
x − wi−1

x )(0, t), (2.43)

where pi, qi, ri are bounded in Cl/2, uniformly in i, and from this it is easy to deduce that

|̇si − ṡi−1|l/2[0,T ] � C1

(
|vi − vi−1|(l+1)

QT
+ |wi − wi−1|(l+1)

QT

)
. (2.44)

Thus, applying (2.44) and Lemma A.1 to (2.42), we get

|vi+1 − vi|(l+2)
QT

� C1

(
|vi − vi−1|(l+1)

QT
+ |wi − wi−1|(l+1)

QT

)
. (2.45)

Of course, there is also an analogous estimate for wi+1 −wi, which, together with (2.45),

implies

|vi+1 − vi|(l+2)
QT

+ |wi+1 − wi|(l+2)
QT

� C1

(
|vi − vi−1|(l+1)

QT
+ |wi − wi−1|(l+1)

QT

)
. (2.46)

Finally, an application of Lemma B.1 to the right-hand side of this inequality gives,

since all iterates have the same initial data,

|vi+1 − vi|(l+2)
QT

+ |wi+1 − wi|(l+2)
QT

� C1T
δ
(

|vi − vi−1|(l+2)
QT

+ |wi − wi−1|(l+2)
QT

)
. (2.47)

(Note that C1 stands for various constants in the above).

If T is chosen so small that C1T
δ < 1, it is easy to see that vi and wi are Cauchy

sequences with respect to | · |(l+2)
QT

norm. Moreover, it follows from (2.44) that si is Cauchy

in C1+ l
2 norm. By the strong convergence of these sequences, their limits v, w, s satisfy

(2.24), (2.25), (2.26) pointwise, and thus constitute a classical solution of SP1.

Turning to the question of uniqueness, suppose we have two smooth solution triples

(v, w, s), (v̄, w̄, s̄), satisfying (2.24), (2.25), (2.26), and having the same initial data. Subtracting

the equation satisfied by v̄ from that satisfied by v then gives an equation of the form

∂t(v− v̄) = D(x, t)∂2
x(v− v̄)+a(x, t)∂x(v− v̄)+b(x, t)(v− v̄)+c(x, t)(s− s̄)+d(x, t)(̇s−˙̄s), (2.48)

where the coefficients are smooth, and D(x, t) � ε, some ε> 0. An analogous equation is

obtained for w − w̄ in the same way.

Thus, by Lemma A.1, v − v̄ can be bounded by the inhomogeneity in (2.48), according

to

|v − v̄|(l+2)
QT

�C
(

|c(x, t)(s− s̄)|(l)QT + |d(x, t)(̇s− ˙̄s)|(l)QT
)

�C
(

|s− s̄|(l)QT + |̇s− ˙̄s|(l)QT
)

�C
(

|vx − v̄x|(l)QT + |wx − w̄x|(l)QT
)

�C
(

|v − v̄|(l+1)
QT

+ |w − w̄|(l+1)
QT

)
, (2.49)
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for various constants C , where we used the Rankine–Hugoniot condition (2.26) to get the

third line.

Adding the analogous inequality for w − w̄ therefore results in

|v − v̄|(l+2)
QT

+ |w − w̄|(l+2)
QT

� C
(

|v − v̄|(l+1)
QT

+ |w − w̄|(l+1)
QT

)
, (2.50)

which, with the help of Lemma B.1, implies

|v − v̄|(l+2)
QT

+ |w − w̄|(l+2)
QT

� CTδ
(

|v − v̄|(l+2)
QT

+ |w − w̄|(l+2)
QT

)
. (2.51)

Choosing T small enough gives, finally, v(x, t) = v̄(x, t), w(x, t) = w̄(x, t), as required. �

2.3.3 Global existence subject to a sign condition on the solution gradient at the

discontinuity

We will prove a global-existence theorem for SP1 by showing that, for a local classical

solution (ρ(x, t), s(t)), the gradient, ρx(x, t), and hence also ṡ(t), are a priori bounded,

provided that the one-sided limits ρx(s
±(t), t) satisfy a sign condition. The proof is rather

different from, and somewhat shorter than, that presented in [5].

First, with the change of dependent variable σ=K(ρ), which is smooth and invertible

in each phase, the governing PDE becomes

σt = D̃(σ)σxx, (2.52)

where D̃(σ) = D(K−1(σ))> 0, the boundary conditions become

σx(0) = σx(1) = 0, σ(s−) = K(ρ1) := σ1, σ(s+) = K(ρ2) := σ2,

and the Rankine–Hugoniot condition takes the form

ds

dt
= − (σx(s

+) − σx(s
−))

(ρ2 − ρ1)
. (2.53)

Next, note that integration by parts gives, for any smooth σ, and m= 1, 2, . . . ,∫ s(t)

0

∂t(σx)
2m dx = −

∫ s(t)

0

2m(m− 1)σ2m−2
x σxxσt dx+

[
2mσ2m−1

x σt
]s(t)
0
. (2.54)

Assuming now that (σ, s) solves SP1, we have σ(s−(t), t) = σ1, and hence, by differenti-

ation, σxṡ+ σt = 0 at x= s−, which, with the aid of (2.54), leads to

d

dt
‖(σx)

m‖2
L2(0,s) = −

∫ s

0

2m(2m− 1)(σx)
2m−2σxxσt dx+ (1 − 2m)(σx)

2mṡ |x=s−

� (1 − 2m)̇s(t)(σx)
2m|x=s− , (2.55)

where we used (2.52) to discard the integral term.

By a similar calculation, there also follows

d

dt
‖(σx)

m‖2
L2(s,1) � −(1 − 2m)̇s(t)(σx)

2m|x=s+ . (2.56)
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If we regard σx as a function in L2(0, 1), then adding (2.55) and (2.56), and using (2.53),

results in

d

dt
‖(σx)

m‖2
2 � (1 − 2m)

(σx(s
+) − σx(s

−))

(ρ2 − ρ1)
((σx)

2m(s+) − (σx)
2m(s−)). (2.57)

Now, if 2m= 2n, n= 1, 2, . . . then, inductively, there is a positive multi-nomial Fn(a, b)

such that

(a− b)(a2n − b2n ) = Fn(a, b)(a+ b), ∀a, b. (2.58)

Using (2.58) in the right-hand side of (2.57) with a= σx(s
+), b= σx(s

−) shows that

‖(σx)
m‖2

2 is decreasing for 2m= 2n, provided

σx(s
+) + σx(s

−) � 0 ∀t. (2.59)

This condition can be guaranteed, for example, by choosing data (ρ0, s0) for SP1

satisfying the traditional condition (2.20), and by appealing to the Maximum Principle in

each phase.

Thus, assuming (2.59) holds, we have

‖σx‖L2n (t) � ‖σx‖L2n (0) � ‖σx‖∞(0), (2.60)

for n = 1, 2, . . . , and therefore, by [1, Theorem 2.8],

‖σx‖∞(t) � ‖σx‖∞(0). (2.61)

In one dimension, such an a priori bound on ‖σx‖∞, which of course also gives a

pointwise bound on the corresponding ρx and on ṡ(t), is actually enough to continue the

local solution of SP1 obtained in Section 2.3, by standard theory. Indeed, if v and w are

as in (2.24)–(2.25), then combining the estimates of Appendix A gives, for 3<q< 4, and

a constant C which is controlled by σx,

|v|
(
2− 3

q

)
QT

� C(‖v0‖C2((0,1)) + ρ1), (2.62)

and an analogous estimate for w.

Thus, for some β > 0, the Hβ+1, 12 (β+1) norm of v and w is controlled by σx and the C2

norm of the initial data. Given this, Lemma A.1 implies in turn that the Hβ+2, 12 (β+2) norm

of v and w is controlled by σx and the Cβ+2 norm of the initial data. A careful inspection

of the proof of Theorem 2.2 shows that control of the Hβ+2, 12 (β+2) norm is enough to

give a lower bound on the existence time, T , for local solutions, and hence our classical

solutions v and w can always be extended onto a longer time interval.

We have already seen (Theorem 2.1) that if the total mass M lies outside the interval

(ρ�, ρ�), it cannot be ruled out that s(t) will hit the domain boundary in finite time;

should this occur, the solution can be continued via the Neumann problem on Ω= (0, 1),

as mentioned above. Note that, on a disappearing phase, the solution (in terms of the

original variable ρ) merely approaches ρ1 or ρ2, as appropriate, by the boundedness of the

gradient. Since we have already extended our definition of SP1 to cover such eventualities,

we have therefore proved
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Theorem 2.3 Given phase-wise smooth initial data (ρ0(x), s0) satisfying (2.20) and the

first-order compatibility condition, problem SP1 has a unique smooth, global-in-time solu-

tion (ρ(x, t), s(t)), such that the corresponding ‖σx‖∞ is monotonically decreasing for

all t.

In general, it is not clear whether a corresponding global-existence result can be obtained

in the situation where (2.20) is not satisfied. An exception to this is the special case of

1-phase problems, to which we now turn our attention.

2.3.4 Global existence for 1-phase problems; mass Lagrange coordinates

If the initial density is constant for either x< s0 or x> s0, then we refer to the corresponding

evolution problem SP1 as a one-phase problem. As a consequence of the Neumann

condition at the domain boundary, it then turns out that there is a change of the spatial

variable, different from a simple rescaling, which transforms the one-phase SP1 into a

regular quasi-linear parabolic problem on a fixed domain. This allows us to prove a

global-existence theorem, using standard parabolic theory, regardless of the direction of

the gradient at the phase boundary.

Without loss of generality, let us assume that ρ is constant (= ρ2) in the high-density

phase, and variable in the low-density phase, and let us again make the change of

dependent variable σ=K(ρ) on 0 � x � s(t). Since we are assuming ρ<ρ� in the

low-density phase, this change of variable is invertible there, with inverse denoted by

ρ= b(σ) :=K−1(σ).

In terms of σ, the governing equation (1.1) becomes

∂b(σ)

∂t
=

∂2σ

∂x2
, (2.63)

subject to σx = 0 at x= 0, and σ=K(ρ1) at x= s(t), while the Rankine–Hugoniot condition

takes the form

ds

dt
=

∂σ

∂x
(s−)/(ρ2 − ρ1). (2.64)

Next, we transform (2.63) by introducing so-called mass Lagrange coordinates [5], (τ, y),

which are defined by

τ = t, y =

∫ s(t)

x

[ρ2 − b(σ(x̂, t))] dx̂. (2.65)

Since, by construction, ∂y
∂x

= −(ρ2 − b(σ))< 0, this coordinate change is good, and, intro-

ducing v(y, τ) = σ(x, t), (2.63) now takes the form

b′(v)

(ρ2 − b(v))2
∂v

∂τ
=

∂2v

∂y2
, (2.66)

which is a regular quasi-linear parabolic equation for v.
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Clearly, the moving boundary x= s(t) gets mapped to y= 0, and, as a consequence of

conservation of mass, the domain boundary x= 0 gets mapped to

y0 :=

∫ s(0)

0

[ρ2 − b(σ(x, 0))] dx = const. (2.67)

Thus, (2.66) is to be solved on a fixed spatial domain subject to the boundary conditions
∂v
∂y

= 0 at y= y0, and v=K(ρ1) at y= 0.

It is well known that this problem has a unique, global classical solution v(y, τ), given

H1 initial data compatible with the Dirichlet condition at y= 0 [2, 4]. The corresponding

jump location s(t), which can be reconstructed from v(y, τ) by integrating, for each t= τ,

the equation

∂y

∂x
= b(v(y, τ)) (2.68)

from the point (x= 0, y= y0) until y hits zero, could conceivably hit x= 1 in finite time

(see the numerics in the next subsection). If this occurs, the solution of (2.66) should be

stopped, and then continued for all time via NP for (1.1) on Ω= (0, 1).

We thus arrive at

Theorem 2.4 Given smooth, one-phase initial data which satisfies the first-order compatib-

ility condition, problem SP1 has a unique smooth, global-in-time solution (ρ(x, t), s(t)).

2.3.5 Linear stability near a discontinuous steady state

The use of rescaled coordinates, as introduced early on in this subsection, allows us to

investigate linear stability of the unique discontinuous steady state (2.7) of SP1, which

exists as long as

ρ1 < M < ρ2. (2.69)

Linearising (2.24) and (2.25) around v= ρ1 and w= ρ2, respectively, and using hats to

denote differentials, we get the pair of heat equations

v̂t =
1

(s∗)2
D(ρ1)v̂xx, (2.70)

ŵt =
1

(1 − s∗)2
D(ρ2)ŵxx, (2.71)

which are to be solved subject to v̂(1) = 0, v̂x(0) = 0, ŵ(0) = 0, ŵx(1) = 0, while linearising

(2.27) around s= s∗ gives

ŝ = (ρ1 − ρ2)
−2

{
−(ρ1 − ρ2)

∫ 1

0

ŵ dx+ (ρ2 −M)

∫ 1

0

(v̂ − ŵ) dx

}
. (2.72)

For a solution (v̂, ŵ, ŝ) of the linearisation, it is therefore clear that, say, ‖v̂‖∞ → 0 and

‖ŵ‖∞ → 0 as t → ∞, and also that ŝ → 0 as t → ∞. In this sense, then, the unique

discontinuous steady state of SP1 is always linearly stable, whenever it exists.
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Figure 2. (Colour online) Solution of SP1 with α= 0.85 and initial data satisfying (2.20). Density

profile shown at (a) t = 0, (b) t = 0.0125, (c) t = 0.1289, (d) t = 0.456.

2.4 Numerical simulations

As well as facilitating mathematical analysis, the rescaled, fixed-boundary representation

of SP1, (2.24), (2.25), (2.26), also comes in useful for numerical simulations.

Specifically, we use a method-of-lines approach in which the diffusion terms in (2.24)

and (2.25) are discretised using the random-walk model (1.3), while the advection terms

are discretised by means of a standard, explicit upwinding scheme. A simulation in which

the global-existence criterion (2.20) is satisfied is shown in Figure 2, and one in which it

is violated is shown in Figure 3. In each case, the solution approaches the appropriate

discontinuous steady state at large times. Several other simulations have been carried out

in the case where (2.20) is violated, and no singularities have been observed to develop.

Turning to the question of bistability for certain values of the mass M, we next show

in Figure 4 a close-up of a solution with M= 0.3184 and α= 0.85, for which the phase

boundary hits the domain boundary in finite time. This should be compared with the

simulation shown in Figure 5, in which the solution has the same mass and adhesion

coefficient, but this time evolves to the unique discontinuous steady state as t → ∞.
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Figure 3. (Colour online) Solution of SP1 with α= 0.85 and initial data violating (2.20). Density

profile shown at (a) t = 0, (b) t = 0.0125, (c) t = 0.1289, (d) t = 0.456.

It is perhaps worth noting that such bistability cannot occur if the traditional restriction

(2.20) is imposed on the initial data, by Theorem 2.1.

3 Multi-phase problems

We now consider the general case of our Stefan-problem set-up, in which the initial

density profile jumps n times across the the unstable region Iα. This initial/boundary-

value problem will be denoted by SPn.

3.1 Formulation

The problem SPn consists of looking for a piecewise smooth ρ which satisfies the diffusion

equation (1.1) away from n discontinuities si(t), with 0<si < si+1< 1, such that ρ always

jumps between ρ1 and ρ2 at the si, which evolve according to the Rankine–Hugoniot
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Figure 4. Close-up of a solution of SP1 with M= 0.3184 and α= 0.85, such that s(t) hits x= 1 in

finite time. Density profile shown at (a) t = 0, (b) t = 0.001, (c) t = 0.0051, (d) t = 0.012. The density

to the left of x= 0.7 is essentially constant throughout the simulation.

condition

dsi

dt
=

(J+
i − J−

i )

[ρi]
, (3.1)

where J±
i = −D(ρ(s±

i (t), t))∂xρ(s
±
i (t), t), and [ρi] = (ρ(s+i , t) − ρ(s−

i , t)) ( = ± (ρ2 − ρ1)), and

the Neumann condition is again imposed at the domain boundary x= 0, 1; a schematic

for SPn is given in Figure 6.

We also allow for the possibility that s1 or sn may hit the domain boundary in finite

time, or that neighbouring discontinuities could collide, leading to the annihilation of

a phase. Should any of these events occur, the solution can be continued via SPn−1 or
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Figure 5. Solution of SP1 with M= 0.3184 and α= 0.85 which evolves to a discontinuous steady

state as t → ∞. Density profile shown at (a) t = 0, (b) t = 0.0373, (c) t = 0.6264, (d) t = 0.7479.

SPn−2, as appropriate, and so on. A solution continued in this way will still be referred

to globally as a solution of SPn.

3.2 Steady states and their stability

The steady-state picture for SPn, given n � 2, is more complicated than that for SP1.

First of all, for a given mass M satisfying ρ1<M<ρ2, there is a continuum of two-

valued, n-jump steady states, each of which is given by a choice of the si which merely

has to be compatible with M. Moreover, discontinuous steady states with fewer than n

jumps can also be considered permissible – these could be approached dynamically by
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ρ = ρ

#

0

bρ

ρ

Figure 6. Example of a density profile for the multi-jump Stefan problem SPn.

(multiple) coalescence events, and/or by (successive) collisions of phase boundaries with

the domain boundary. Each steady state with more than one discontinuity is expected to

be merely neutrally stable, since the total mass is invariant under small translations of an

internal phase (i.e. one which does not touch the domain boundary).

If the stronger condition ρ� <M<ρ� holds, then there is no possible continuous steady

state, and thus, for a global solution of SPn, at least one discontinuity must remain as

t → ∞. If, instead, ρ1<M � ρ� or ρ� � M<ρ2, then the uniform steady state exists

alongside the discontinuous family already discussed. In this regard, note that Figures 4

and 5 could be considered as simulations of one half of a reflection-symmetric SP2, with

ρ1<M<ρ�, in which the central high-density phase is either annihilated in finite time

(Figure 4) or preserved as t → ∞ (Figure 5), depending on the proximity of the initial

data to the (unique) discontinuous, symmetric steady state.

In general, it is difficult to say anything analytical about the stability of steady states

of SPn, although in each phase the solution will still decay to ρ1 or ρ2, as appropriate,

exponentially in L2, by essentially the same calculation as in Section 2.2, as long as the

relevant phase boundaries stay away from the domain boundary.

Finally, note that if M � ρ2 or M � ρ1, then there is only one possible steady state,

namely the uniform one, and, by L2 decay, phase boundaries for a global solution must

disappear in finite time (or possibly infinite time in the exceptional cases M= ρ1, ρ2) via

coalescence events, or by merging with the domain boundary. For the subsequent NP ,

exponential L2 convergence to the uniform steady state ρ=M follows as before.
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3.3 A local-existence-and-uniqueness theorem for smooth data

The multi-phase problem SPn is solved, locally in time, in the same way as SP1; in each

phase the spatial variable is rescaled in order to fix the moving boundary (or boundaries),

and the same estimates go through as before.

To be explicit, on the interval [si, si+1] we make the coordinate transformation

(x, t) → (x̂, t̂) : x̂ =
(x− si)

(si+1 − si)
, t̂ = t, (3.2)

such that, writing vi(x̂, t̂) = ρ(x, t), the governing PDE (1.1) becomes, upon dropping hats

∂vi
∂t

= (si+1 − si)
−2 ∂

∂x

(
D(vi)

∂vi
∂x

)
+

((̇si+1 − ṡi)x+ ṡi)

(si+1 − si)

∂vi
∂x
, (3.3)

on [0, 1] × [0, T ], for i= 0, 1, 2, . . . , n, where we adopt the conventions s0(t) = 0 and

sn+1(t) = 1.

On an internal phase, this equation is to be solved subject to the appropriate Dirichlet

conditions at x= 0, 1, while on an extremal phase the mixed Neumann/Dirichlet conditions

are used, as in the two-phase case (see Figure 6).

The rescaled family of Rankine–Hugoniot conditions takes the form

dsi

dt
= −

(
D(ρ2)(vi+1)x(0, t)

(si+1 − si)
− D(ρ1)(vi)x(1, t)

(si − si−1)

)
(ρ2 − ρ1)

−1, (3.4)

for i = 1, 2, . . . , n.

Equations (3.3), (3.4) are solved by the same kind of iteration employed for SP1; the

required Hölder estimates are obtained via linear parabolic theory and Picard’s Theorem

for systems of ordinary differential equations (ODEs).

The upshot of all this is

Theorem 3.1 Given initial data (v0i , w
0
i , s

0
i ), i= 1, 2, . . . , n, for which the v0i and w0

i belong

to the Hölder space Cl+2, l > 0, and such that the first-order compatibility conditions are

satisfied, the system of equations (3.3), (3.4), and hence problem SPn, has a unique classical

solution on some small time interval [0, T ].

3.4 Continuation of the local solution, subject to a sign condition on the solution gradient

at discontinuities

With the same notation as in Secttion 2.4, and by a similar calculation, it is straightforward

to see that the gradient of a local solution of SPn satisfies, for m= 1, 2, . . . , the a priori

estimate

d

dt
‖(σx)

m‖2
L2((0,1)) �

(
1 − 2m

ρ2 − ρ1

)∑
i

sign[ρ]i
(
σx(s

+
i ) − σx(s

−
i )

) (
σ2m
x (s+i ) − σ2m

x (s−
i )

)
. (3.5)

Thus, ‖σx‖∞, and hence also the ‖ρx‖L∞((si,si+1)) and ṡi, are bounded for all time, provided

sign[ρ]i
(
σx(s

+
i ) + σx(s

−
i )

)
� 0, ∀i. (3.6)
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si (t ) s
i+1(t )

t

xx

ρρ

Figure 7. Two coalescing high-density phases; note that the resulting single high-density phase

has a corner at the point and time of coalescence.

This condition holds if, for example,

ρ0 � ρ1 in low-density phases, ρ0 � ρ2 in high-density phases, (3.7)

which is the multi-phase analogue of (2.20).

Inequalities (3.7) therefore guarantee global existence of the corresponding solution to

SPn, modulo coalescence events, and the possibility that an extremal discontinuity might

hit the boundary in finite time.

3.5 Coalescence events and continuation thereafter

In order to continue a solution of SPn after the coalescence of two phases, it is necessary

to extend our existence theory (which has thus far required the initial data to lie in Cl+2)

to the case where the initial density profile may have a ‘corner’ in one of the phases. This

can be seen by considering the situation illustrated in Figure 7, in which two high-density

phases coalesce, thus annihilating a low-density phase.

If we make the assumption that condition (3.7) holds, then, in fact, the required

extension for such phase-wise H1 data follows from [5, Theorem 14, Section V], and

hence, putting together the results of this section, we therefore arrive at

Theorem 3.2 Given n initial jump locations (si)0, and a phase-wise smooth initial density

profile ρ0 satisfying the first-order compatibility conditions at phase boundaries, along with

the gradient condition (3.7), the multi-phase Stefan problem SPn has a unique, global classical
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solution, on the understanding that phases may in time be annihilated via coalescence events,

or that an extremal discontinuity may hit the domain boundary in finite time. Moreover,

‖σx‖∞ is monotonically decreasing for all time.

We end by noting that it is not clear whether even a local existence theorem for SPn
can be proved for merely H1 data if (3.7) is not satisfied; one can, for example, proceed

by approximating H1 data with smooth data, but it seems that the a priori bound on σx
implied by (3.7) is required to get the necessary convergence.

4 Concluding remarks

The results of this paper can be interpreted as saying that cell–cell adhesion is enough

to stabilise sharp-edged aggregations of diffusing cells if there is enough mass present in

the biological domain, and that diffusion homogenises the cell density in each given high-

or low-density phase. For low masses, however, narrow high-density regions can become

annihilated even if the adhesion is very strong – that is to say, diffusion in the low-density

regions wins, leading to a globally uniform cell density at large times. In the case of

intermediate masses, bistability becomes possible – either adhesion or diffusion can win

out, depending on the profile of the initial data.

Next, while being motivated by the adhesion–diffusion equations (1.1) and (1.6), it

should be clear that the analysis carried out in this paper does not require that the

diffusivity D(ρ) have the special form (1.2); indeed, all arguments go through for any

equation of the form ρt =K(ρ)xx, provided the C2 function K is increasing outside an

unstable interval of ρ values, and provided [K(ρ)]i = 0 at jump locations si.

Finally, one rather obvious biologically relevant extension of the work described here

would be to carry out a similar analysis with a chemotactic term factored into the right-

hand side of (1.1). In that situation, one could imagine beginning with a low-density initial

datum, evolving the solution until, through chemotactic aggregation, ρ hits the unstable

region Iα at some point xc, and then continuing the solution via a Stefan problem with an

initial spike at xc which jumps from ρ1 to ρ2. The transition from well-posed Neumann

problem to Stefan problem is somewhat singular in that case, and is the subject of ongoing

analytical investigation.
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Appendix A Linear parabolic theory

First of all, we have

Lemma A.1 The equation

∂u

∂t
= D(x, t)

∂2u

∂x2
+ a(x, t)

∂u

∂x
+ b(x, t)u+ f(x, t), (A 1)
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with initial data u0 ∈ Cl+2([0, 1]), 0 < l < 1, subject to the boundary conditions ux(0, t) = 0,

u(1, t) = u1, and the first-order compatibility condition

D(x, 0)
∂2u0

∂x2
+ a(x, 0)

∂u0

∂x
+ b(x, 0)u0 + f(x, 0) = 0 at x = 1 (A2)

has a unique solution u ∈ Hl+2,(l+2)/2(QT ) on QT = [0, 1] × [0, T ], which satisfies the

estimate

|u|(l+2)
QT

� c
(

|f|(l)QT + ‖u0‖Cl+2([0,1]) + |u1|
)

(A 3)

with the constant c remaining bounded as T → 0, provided D(x, t) � ε> 0 and all the

coefficients and the inhomogeneity in (A 1) are bounded in Hl,l/2(ΩT ).

For the proof, see [4, Chapter 4, Theorems 5.2–5.4].

Next, let H2((0, 1)) denote the usual second-order L2-type Sobolev space on the unit

interval, let W 1,q((0, 1)), q > 1, be the Sobolev space with norm

‖u‖1,q = ‖u‖Lq((0,1)) + ‖ux‖Lq((0,1)), (A 4)

and, for q > 2, let W 2− 2
q
,q((0, 1)) denote the fractional-order Sobolev space with norm

‖u‖2− 2
q
,q = ‖u‖1,q +

{∫
Ω

∫
Ω

|u′(x) − u′(y)|q
|x− y|1+σq dx dy

}1/q

, (A 5)

where Ω= (0, 1), σ= 1 − 2
q
.

Then it is elementary to prove

Lemma A.2 H2((0, 1)) ↪→ W 2− 2
q
,q((0, 1)), for 2<q< 4.

Next, let W 2,1
q (QT ) be the Lq-type parabolic Sobolev space with norm

‖u‖(2)
q,QT

= ‖u‖q(QT ) + ‖ux‖q(QT ) + ‖uxx‖q(QT ) + ‖ut‖q(QT ). (A 6)

Then, by the fractional-order case of [4, Chapter IV, Theorem 9.1], we have

Lemma A.3 If u is the solution of the mixed Dirichlet/Neumann problem for (A 1),

then we have, for q > 3,

‖u‖(2)
q,QT

� c
(

‖u(·, 0)‖2− 2
q
,q(Ω) + |u1|

)
, (A 7)

where c depends on the L∞ norm of the coefficients in (A 1).

Finally, by [4, Chapter IV, top of p. 343], we have

Lemma A.4 For u ∈ W 2,1
q (QT ), and q > 3, there holds the imbedding inequality

|u|(2− 3
q
)

QT
� c‖u‖(2)

q,QT
. (A 8)
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Appendix B A useful inequality

Lemma B.1 For a function u ∈ H2+l, 12 (2+l)(ΩT ), 0< l < 1, such that ΩT =Ω×[0, T ], Ω ⊂ �,

we have

|u|(l+1)
ΩT

� C(Ω, l)
(
Tδ |u|(l+2)

ΩT
+ ‖u(·, 0)‖C2(Ω)

)
, (B 1)

where δ= min{l/2, (1 − l)/2}.

Proof The parabolic Hölder norms in question are, when written out in full,

|u|(l+1)
ΩT

:= ‖u‖C(ΩT ) + ‖ux‖C(ΩT ) + 〈ux〉lx,ΩT
+ 〈u〉(l+1)/2

t,ΩT
+ 〈ux〉l/2t,ΩT ,

|u|(l+2)
ΩT

:= ‖u‖C(ΩT ) + ‖ux‖C(ΩT ) + ‖uxx‖C(ΩT ) + ‖ut‖C(ΩT )

+ 〈ux〉lx,ΩT + 〈uxx〉lx,ΩT + 〈ut〉lx,ΩT
+ 〈ut〉l/2t,ΩT + 〈ux〉(l+1)/2

t,ΩT
+ 〈uxx〉l/2t,ΩT . (B 2)

We proceed to estimate each of the terms appearing in |u|(l+1)
ΩT

.

First,

‖u‖C(ΩT ) � T‖ut‖C(ΩT ) + ‖u(·, 0)‖C(Ω). (B 3)

Second,

‖ux‖C(ΩT ) � sup
x,t

|ux(x, t) − ux(x, 0)| + sup
x

|ux(x, 0)|

�T (l+1)/2〈ux〉(l+1)/2
t,ΩT

+ ‖ux(·, 0)‖C(ΩT ). (B 4)

Third,

〈ux〉lx,ΩT = sup
x,x′ ,t

|ux(x, t) − ux(x
′, t)|

|x− x′|l

= sup
x,x′ ,t

|
∫ x

x′ uxx(x
′′, t) dx′′|

|x− x′|l

� sup
x,x′

|x− x′|1−l‖uxx‖C(ΩT )

=C(Ω, l)‖uxx‖C(ΩT )

�C sup
x,t

(|uxx(x, t) − uxx(x, 0)| + |uxx(x, 0)|)

�CT l/2〈uxx〉l/2t,ΩT + ‖uxx(·, 0)‖C(Ω). (B 5)

Fourth,

〈u〉(l+1)/2
t,ΩT

= sup
x,t,t′

|u(x, t) − u(x, t′)|
|t− t′|(l+1)/2

� ‖ut‖C(ΩT )T
(1−l)/2. (B 6)
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Fifth,

〈ux〉l/2t,ΩT = sup
x,t,t′

|ux(x, t) − ux(x, t
′)|

|t− t′|l/2

� T
1
2 〈ux〉(l+1)/2

t,Ω . (B 7)

Putting these estimates together gives the desired result. �

Appendix C Weak formulation of the multi-phase problem

Subject to a restriction on the initial data, a weak formulation of SPn can be written

down in such a way that the Rankine–Hugoniot condition becomes ‘hidden’, thus aiding

mathematical analysis. Essentially the same kind of formulation was written down many

years ago by Ladyženskaya et al. [4], and, for example, their uniqueness proof goes

through without change.

For the construction that follows, we are forced to assume that

ρ � ρ1 in low-density phases, and ρ � ρ2 in high-density ones. (C 1)

Recall that on each phase we have

∂ρ

∂t
=

∂2K(ρ)

∂x2
, (C 2)

and that the Rankine–Hugoniot condition (2.5) is satisfied at each jump. Since

K(ρ1) =K(ρ2), we can define a somewhat flattened K̃(ρ) by

K̃(ρ) =

{
K(ρ) : ρ � [ρ1, ρ2],

K(ρ1)(= K(ρ2)) : ρ ∈ [ρ1, ρ2],
(C 3)

such that K̃ has a piecewise smooth, monotonically increasing inverse, which we denote

by b; the functions K̃ and b are depicted in Figure 8.

If we introduce the new independent variable σ= K̃(ρ), then clearly the equation

∂

∂t
b(σ) =

∂2σ

∂x2
(C 4)

is satisfied in each phase by (C 1).

In terms of σ, the jump condition takes the simple form

dsi

dt
= − (σx(s

+
i ) − σx(s

−
i ))

(ρ2 − ρ1)
, (C 5)

for i = 1, . . . , n.

To obtain the correct weak formulation on QT = [0, 1] × [0, T ], first note that for a

smooth test function φ(x, t) such that φ(x, T ) = 0, we have, for classical solutions of SPn,
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~
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σρ

Figure 8. The functions K̃(ρ) and b(σ).

and with ρ := b(σ),

d

dt

∫ 1

0

b(σ)φdx =

n∑
i=1

ṡi[ρ]iφ(si, t) +

∫ 1

0

(φ∂tb(σ) + b(σ)∂tφ) dx (C 6)

=⇒ −
∫ 1

0

b(σ)φ(x, 0) dx =

∫ T

0

n∑
i=1

ṡi[ρ]iφ(si, t) dt+

∫ T

0

∫ 1

0

(φ∂tb(σ) + b(σ)∂tφ) dx dt, (C 7)

where [ρ]i is the leap of ρ at si.

For the right-hand side of (C 4), we have the weak form

∫ T

0

∫ 1

0

φσxx dx dt =

∫ T

0

∫ 1

0

σφxx dx dt−
∫ T

0

n∑
i=1

φ(si, t)[σx]i dt−
∫ T

0

n∑
i=1

φx(si, t)[σ]i dt.

(C 8)

Thus, using (C 5), and noting that σ is continuous at si by construction, we arrive at

∫ T

0

∫ 1

0

(b(σ)∂tφ+ σφxx) dx dt+

∫ 1

0

b(σ)φ|t=0 dx = 0 (C 9)

for all smooth φ(x, t) such that φ(x, T ) = 0, as the weak formulation of SPn.

This is identical to the problem considered in Chapter V.9 of [4], and existence and

uniqueness of solutions follows by exactly the same argument used there, since one

merely requires that b(σ) be piecewise smooth and monotonically increasing. We record

this result as

Lemma C.1 For a given bounded, continuous initial datum ψ(x), (C 9) has a unique

bounded solution σ(x, t).

https://doi.org/10.1017/S0956792509990167 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792509990167


136 K. Anguige

References

[1] Adams, R. (1975) Sobolev Spaces, Academic Press.

[2] Amann, H. (1989) Dynamic theory of quasilinear parabolic systems. III. Global existence. Math.

Z. 202, 219–250.

[3] Anguige, K. & Schmeiser, C. (2009) A one-dimensional model of cell diffusion and aggregation,

incorporating volume-filling and cell-to-cell adhesion. J. Math. Biol. 58, 395–427.
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