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Abstract

In this paper we treat a pure death process coming down from infinity as a natural
generalization of the death process associated with the Kingman coalescent. We establish
a number of limit theorems including a strong law of large numbers and a large deviation
theorem.
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1. Introduction

The number of lineages in the Kingman coalescent [5] instantaneously comes down from
infinity by jumps n → n − 1 at rate λn = (

n
2

)
. As a natural extension of the Kingman setting,

we consider a pure death process (Z(t), t ≥ 0) absorbing at state n = 1 and having death rates
(λn, n ≥ 2) such that

∑∞
n=2λ

−1
n < ∞. Assume that Z(0) = ∞ and denote, for n ≥ 2,

Tn = inf{t : Z(t) = n − 1} = Xn + Xn+1 + · · · ,

where X2, X3, . . . are independent exponentially distributed holding times with EXi = λ−1
i .

Since the mean values An = ETn = ∑∞
i=n λ−1

i are finite, we have An → 0 as n → ∞,
which implies that the process instantaneously comes down from infinity, in that P(Z(t) <

∞ | Z(0) = ∞) = 1 for any t > 0.
In this paper we are interested in the asymptotic properties of Z(t) as t → 0. In view of the

relation {Z(t) ≥ n} = {Tn > t}, the step function

v(t) =
∞∑

n=2

n 1[An+1,An)(t) + 1[A2,∞)(t),

being a generalized inverse of the sequence (An), gives the speed of coming down from infinity
for the process Z(t); see [2]. Recall that for the Kingman coalescent, An = 2/n and v(t) ∼ 2/t

as t → 0.
Our main results, Theorems 1–3, are presented in Section 2. In Theorem 1 we neatly

summarize limit theorems for Tn that, with some additional effort, can be deduced from more
general results recently obtained in [1] for birth–death processes. We give direct concise proofs.
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In Theorem 2 we deal with Z(t). In particular, we show weak and strong laws of large numbers

Z(t)

v(t)
→ 1, t → 0, (1)

which improve their counterparts from [1]. Theorem 3 is an explicit large deviation theorem
generalizing a recent result in [4] obtained for the Kingman coalescent.

Our results can be also interpreted in terms of an explosive pure birth process N(u) =
Z(T2 − u) obtained from the pure death process (Z(t), 0 < t ≤ T2) by time reversing. The
time-reversed process N(u) can be viewed as a model for the number of neutrons at time u in
a nuclear chain reaction exploding at a finite random time T2; see [7] and [9]. Knowing the
speed of explosion v(t) and the current population size N(u), one can hope to predict the time
t = T2 − u left to the explosion event; see [8].

2. Results

Consider a pure death process with finite An = ETn, and set B2
n = ∑∞

i=n λ−2
i and C3

n =∑∞
i=n λ−3

i . In this paper we use a natural notational agreement of the type Anx := A�nx	. We
start by mapping the connections among various conditions on the death rates appearing in our
limit theorems. Besides condition Bn = o(An), we will mention a group of related conditions
requiring the existence of a limit for λn/λn+1, or existence of a (possibly infinite) limit for
λnAn, or

An inf
k>nx

λk → ∞, n → ∞ for all x > 1. (2)

Also, the following two pairs of conditions are important:

∞∑
i=2

λ−2
i A−2

i < ∞, (3)

∞∑
i=2

λ−2
i A−2

ix < ∞ for all x ∈ (0, 1), (4)

Anx = o(An) for all x > 1, (5)

lim sup
n→∞

Anx

An

< 1 for all x > 1. (6)

Condition λn/λn+1 → α ∈ [0, 1) is equivalent to λnAn → 1/(1 − α), due to the recursion
λnAn = 1 + (λn/λn+1)λn+1An+1. Under this condition, we have An+1/An → α, which
implies (5), which implies (6).

Condition λnAn → ∞ is equivalent to Bn = o(An) and holds, in particular, if λn/λn+1 →
1. Indeed, for an arbitrary small ε ∈ (0, 1), if Bn = o(An) then, for sufficiently large n,
λ−2

n ≤ B2
n ≤ ε2A2

n, implying that λ−1
n ≤ ε(λ−1

n + An+1). Thus, λ−1
n ≤ ε(1 − ε)−1An+1 and

λnAn → ∞. On the other hand, given λnAn → ∞,

A2
n − B2

n = 2
∞∑

i=n

∞∑
j=i+1

λ−1
i λ−1

j = 2
∞∑

i=n

λ−1
i Ai+1 ≥ ε−1B2

n

for all sufficiently large n, which yields Bn = o(An).
Condition λnAn → ∞ implies (2), because infk>nx λkAk ≤ An infk>nx λk for x > 1.
Condition (3) implies Bn = o(An) and (4), since A2

n

∑∞
i=nλ

−2
i A−2

i ≥ B2
n .
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Theorem 1. (i) If λn/λn+1 → α ∈ [0, 1) then, for all x ≥ 0,

P(A−1
n Tn ≤ x) → Fα(x), n → ∞,

∫ ∞

0
e−ux dFα(x) =

∏
i≥0

1

uαi(1 − α) + 1
.

(ii) If Bn = o(An) then A−1
n Tn → 1 in probability as n → ∞.

(iii) If (3) holds then A−1
n Tn → 1 almost surely as n → ∞.

(iv) If Bn = o(An) and Cn = o(Bn) then, for x ∈ (−∞, ∞),

P(Tn ≤ An + Bnx) → �(x), n → ∞,

where �(·) is the standard normal distribution function.

Theorem 2. (i) If either (5) holds, or (2) and (6) hold together, then (1) holds in probability.

(ii) If (4) and (6) hold then (1) holds almost surely.

(iii) If λn/λn+1 → α ∈ [0, 1) then, for each k = 0, ±1, ±2, . . . ,

P(Z(An) < n + k) → Fα(α−k), n → ∞.

(iv) Let Bn = o(An) and Cn = o(Bn). If bn = o(n) is such that

An − An+xbn

Bn+xbn

→ h(x), n → ∞ for all x ∈ (−∞, ∞),

then

P

(
Z(t) − v(t)

bv(t)

≤ x

)
→ �(h(x)) as t → 0 for all x ∈ (−∞, ∞).

Parts (i) and (ii) of Theorem 2 improve the pure death case results of [1], which can be stated
in our notation as follows:

If either λnAn has a finite limit, or λnAn → ∞ holds together with (6), then (1)
holds in probability. If λnAn → ∞ together with (3) and (6) then (1) holds almost
surely.

Part (iii) has no counterpart in [1]. Part (iv) should be compared to the pure death case of [1,
Proposition 4.6].

An important class of pure death processes coming down from infinity is set out by the
constraint

λn = nβL(n), β > 1, (7)

where the function L : [1, ∞) → (0, ∞) is assumed to slowly vary at ∞. For the Kingman
coalescent, this condition holds with β = 2. By the properties of regularly varying functions
(see [3]), condition (7) entails

An = n1−βL1(n), L1(n) ∼ (β − 1)−1L−1(n), n → ∞,

implying that v(t) regularly varies at 0 with index 1/(1 − β). In this case, condition (6) holds
but not (5). By Theorem 2, if (7) holds then (1) is valid almost surely and the limit distribution
of (Z(t) − v(t))/

√
v(t) is normal with mean 0 and variance 1/(2β − 1).
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Examples. We give five simple examples illustrating the wide range of regimes covered by
Theorem 2. For all our examples, the key condition

∑∞
n=2λ

−1
n < ∞ is easily verified. We see

that the faster the decay of An as n → ∞, the slower is the speed of coming down from
infinity.

1. Let An = (log n)−a for some a > 0. Then, as n → ∞,

λn ∼ a−1n(log n)1+a, Bn ∼ a−1n−1/2(log n)−1−a,

Cn ∼ a−1n−2/3(log n)−1−a.

In this case, v(t) ∼ et−1/a
as t → 0. Since (6) is not valid, Theorem 2 does not apply.

2. If An ∼ cn1−β for some β > 1 and c > 0, then condition (7) is valid and we obtain
v(t) ∼ c−1/(β−1)t1/(β−1) as t → 0. A special case with β = 2 is obtained when
λn = (2n

3

)
, so that the process 2Z(t) describes a triplewise coalescent (in contrast to the

pairwise Kingman coalescent).

3. If An = e−nρ
for some ρ ∈ (0, 1) then v(t) ∼ (log(t−1))1/ρ as t → 0. This yields

an example when both λn/λn+1 → 1 and (5) take place. Observe that, for ρ ∈ [ 1
2 , 1),

condition (4) holds, while (3) is not satisfied.

4. Set An = e−n/ log n. In [1] it was shown that in this case, A−1
n Tn → 1 in probability,

but not almost surely. Here v(t) ∼ log(t−1) log log(t−1) as t → 0. Since conditions (4)
and (5) are satisfied, we conclude that (1) holds almost surely.

5. If An = e−n then the fast decay of An ensures that λn/λn+1 → 1/e, and (1) holds almost
surely with v(t) ∼ log(t−1) as t → 0. For this example, condition Cn = o(Bn) fails and
the central limit theorem does not apply.

In the next results we focus on pure death processes satisfying condition (7). For a given
x > 0, define τ = τ(x) as the solution of∫ ∞

1

dy

(β − 1)−1yβ − τ
= x.

Observe that τ(x) is a strongly increasing function with

lim
x→0

τ(x) = −∞, τ (1) = 0, lim
x→∞ τ(x) = (β − 1)−1.

Define two families of functions by I (x) = −(β − 1)xτ(x) − log(1 − (β − 1)τ (x)) and
J (x) = xI (xβ−1), which are illustrated in Figure 1.

Lemma 1. The above defined functions I (x) and J (x) are both nonnegative and strictly convex
over x ∈ (0, ∞) with I (1) = J (1) = 0. They satisfy the following asymptotical relations:

I (x) ∼ (β − 1)−1x, J (x) ∼ (β − 1)−1xβ, x → ∞,

I (x) = c(β)x−1/(β−1) − β(β − 1)−1 log(x−1) − log c(β) − β + o(1), x → 0,

J (x) = c(β) − (β log x + log c(β) + β)x + o(x), x → 0,

where c(β) = {(1 − 1/)π/ sin(π/β)}β/(β−1).
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Figure 1: Three pairs of profiles for the rate functions I (x) (left) and J (x) (right). Parameter values
β = 1.3 (dotted lines), β = 2 (solid lines), and β = 3 (dashed lines).

Theorem 3. Consider a death process satisfying (7) with β > 1. If x ≥ 1 then

n−1 log P(Tn > xAn) → −I (x), n → ∞, (8)

v(t)−1 log P(Z(t) > xv(t)) → −J (x), t → 0. (9)

On the other hand, if 0 < x ≤ 1 then

n−1 log P(Tn < xAn) → −I (x), n → ∞,

v(t)−1 log P(Z(t) < xv(t)) → −J (x), t → 0.

3. Proofs

We start with two lemmas. Lemma 2 is a version of Kolmogorov’s inequality used in the
proof of Lemma 3.

Lemma 2. If an infinite sum ξ1+ξ2+· · · of independent zero-mean random variables converges
almost surely, and ζn := ξn + ξn+1 + · · · , then, for each ε > 0,

P

(
sup
k≥n

|ζk| ≥ ε
)

≤ ε−2
Eζ 2

n , n ≥ 1.

Proof. It is easy to check that the sequence ζn forms a backward martingale. Setting Bk =
{|ζk| ≥ ε, |ζk+1| < ε, |ζk+2| < ε, . . .}, we obtain

E(ζ 2
n ) ≥

∞∑
k=n

E(ζ 2
n 1Bk

) ≥
∞∑

k=n

E(ζ 2
k 1Bk

) ≥ ε2
∞∑

k=n

P(Bk) = ε2
P

(
sup
k≥n

|ζk| ≥ ε
)
,

using the submartingale property of ζ 2
n . �

Lemma 3. If
∑

λ−2
i A−2

i(1−ε) < ∞ for some ε ∈ [0, 1) then, for any δ > 0,

P

(
sup
k≥n

|Tk − Ak|
Ak(1−ε)

> δ

)
→ 0, n → ∞.

Proof. The following proof is an adaptation of the proof of [6, Proposition 1]. For a given n,
let un be the unique natural number satisfying 2−un−1 < An(1−ε) ≤ 2−un . Clearly, un ≤ un+1
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and un → ∞. Setting vj = min{k : uk = j}, we obtain

P

(
sup
k≥n

A−1
k(1−ε)|Tk − Ak| ≥ ε

)
≤

∑
j≥un

P

(
max

k : uk=j
A−1

k(1−ε)|Tk − Ak| ≥ ε
)

≤
∑
j≥un

P

(
max

k : uk=j
|Tk − Ak| ≥ ε2−j−1

)

≤
∑
j≥un

P

(
sup
k≥vj

|Tk − Ak| ≥ ε2−j−1
)
.

Note that for some j the set of indices {k : uk = j} might be empty—in such a case the
corresponding maximum is assumed to be 0.

By Lemma 2 applied to ξi = Xi − λ−1
i having centered exponential distributions, we see

that there is a positive constant c such that∑
j≥un

P

(
sup
k≥vj

|Tk − Ak| ≥ ε2−j−1
)

≤
∑
j≥un

cε−24j+1
∑
k≥vj

λ−2
k

= cε−2
∑
j≥un

4j+1
∑
l≥j

4−l
∑

k : uk=l

(λk2−l )−2

≤ cε−2
∑
l≥un

l∑
j=un

4j−l+1
∑

k : uk=l

(λkAk(1−ε))
−2.

Thus,

P

(
sup
k≥n

A−1
k(1−ε)|Tk − Ak| ≥ ε

)
≤ 4cε−2

∑
l≥un

∑
k : uk=l

λ−2
k A−2

k(1−ε) = 4cε−2
∑

k≥Kn

λ−2
k A−2

k(1−ε),

where Kn = min{k : uk = un} is vj for j = un. By the monotonicity of An, we have Kn → ∞
as n → ∞, and the statement of Lemma 3 follows. �

Proof of Theorem 1. (i) Observe first that, for any given u0 > 0, the moment generating
function

EeuTn =
∞∏

i=n

λi

λi − u
= exp

{
−

∞∑
i=n

log(1 − uλ−1
i )

}
, u ∈ (−∞, u0], (10)

is well defined for all sufficiently large n. Since (λn+iAn)
−1 → αi(1 − α) for all i ≥ 0, a

bounded convergence argument yields that, for each u ≥ 0,

Ee−uTn/An =
∏
k≥n

1

u(λkAn)−1 + 1
→

∏
i≥0

1

uαi(1 − α) + 1
, n → ∞.

(ii) Convergence in probability is easily derived using the Chebyshev inequality.
(iii) Almost sure convergence is a straightforward corollary of Lemma 3 with ε = 0.
(iv) Using (10) and the notation ξi = Xi − λ−1

i , we find that, for each u ≥ 0,

E exp{−u(ξn + ξn+1 + · · · )} = exp

{
−

∞∑
i=n

(log(1 + uλ−1
i ) − uλ−1

i )

}
.
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Using the inequalities x − x2/2 ≤ log(1 + x) ≤ x − x2/2 + x3/3 available for x ≥ 0, we
conclude that under condition Cn = o(Bn),

E exp{−uB−1
n (ξn+1 + ξn+2 + · · · )} ∼ exp

{ ∞∑
i=n

(uB−1
n λ−1

i )2

2

}
= exp

{
u2

2

}
. �

Proof of Theorem 2. Observe that (1) is equivalent to Z(An)/n → 1 as n → ∞, since

Z(An−1)

n
≤ Z(t)

v(t)
≤ Z(An)

n
, n = v(t).

(i) We first show that

P(Tn(1+ε) > An) → 0, n → ∞, ε ∈ (0, 1). (11)

If (5) holds then (11) easily follows from the Markov inequality.
Given (2) and (6), we fix arbitrary ε ∈ (0, 1) and u ∈ (0, ∞), and observe that there exist a

δ ∈ (0, 1) and an n0 = n0(ε, u) such that, for all n ≥ n0,

An(1+ε)

An

< δ, Anλk > (2 − δ)(1 − δ)−1u, k > n(1 + ε),

so that the moment generating function

E exp

{
uTn(1+ε)

An

}
=

∏
k>n(1+ε)

1

1 − (Anλk)−1u

is well defined. By an exponential version of Markov’s inequality,

P(Tn(1+ε) > An) ≤ exp{−u}E exp

{
uTn(1+ε)

An

}

= exp{−u} exp

{
−

∑
k>n(1+ε)

log(1 − (Anλk)
−1u)

}
.

This together with (1 − x) log((1 − x)−1) ≤ x for x ∈ (0, 1), yields

P(Tn(1+ε) > An) ≤ exp{−u} exp

{ ∑
k>n(1+ε)

(Anλk)
−1u

1 − (Anλk)−1u

}

≤ exp{−u} exp

{
(2 − δ)A−1

n u
∑

k>n(1+ε)

λ−1
k

}

≤ exp{−u(1 − δ)2}.
Letting u → ∞, we see that (11) holds also under conditions (2) and (6). Since

P(Z(An) ≥ n(1 + ε)) = P(Tn(1+ε) > An),

we derive from (11) that P(Z(An) ≥ n(1 + ε)) → 0. Similarly, P(Z(An) ≤ n(1 − ε)) → 0 as
n → ∞.
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(ii) It suffices to prove Z(An)/n → 1 almost surely or, in other terms,

P

(
sup
k≥n

Z(Ak) − k

k
≥ ε

)
→ 0, P

(
inf
k≥n

Z(Ak) − k

k
≤ −ε

)
→ 0, n → ∞.

To check the first convergence, observe that

P

(
sup
k≥n

Z(Ak) − k

k
≥ ε

)
= P(there exist k ≥ n : Z(Ak) ≥ (1 + ε)k)

= P

(
there exist k ≥ n : T(1+ε)k > Ak

)

= P

(
there exist k ≥ n : T(1+ε)k − A(1+ε)k

Ak

> −A(1+ε)k

Ak

)
.

By condition (6), it follows that, for some δ ∈ (0, 1) and all n ≥ n0(ε),

P

(
sup
k≥n

Z(Ak) − k

k
≥ ε

)
≤ P

(
there exist k ≥ n : T(1+ε)k − A(1+ε)k

Ak

> δ

)

≤ P

(
there exist k ≥ n(1 + ε) : Tk − Ak

Ak/(1+ε)

> δ

)
.

Given (4), we can apply Lemma 3 and obtain the first required convergence. The second
convergence is verified similarly.

(iii) This follows from Theorem 1(i) in view of the relations

P(Z(An) ≥ n + k) = P

(
Tn+k

An+k

>
An

An+k

)
, An+k/An → αk.

(iv) This is obtained from Theorem 1(iv) using the equality

P

(
Z(An) − n

b(n)
≥ x

)
= P(Tn+xb(n) > An) = P

(
Tn+xb(n) − An+xb(n)

Bn+xb(n)

>
An − An+xb(n)

Bn+xb(n)

)
.

This completes the proof. �
Proof of Lemma 1. The function τ(x) satisfies 
′(τ (x)) = x, where


(u) = −
∫ ∞

1
log(1 − (β − 1)uy−β) dy, u ≤ 1/(β − 1).

This yields τ ′(x) = 1/
′′(τ (x)). Using integration by parts, we have


(τ(x)) = −
∫ ∞

1
log(1 − (β − 1)τ (x)y−β) dy = log(1 − (β − 1)τ (x)) + βxτ(x).

Thus, the defining expression for I (x) can be written as I (x) = xτ(x) − 
(τ(x)) for x > 0.
It follows that I ′(x) = τ(x) and I ′′(x) = τ ′(x) = 1/
′′(τ (x)). In view of


′′(u) =
∫ ∞

1

dy

((β − 1)−1yβ − u)2 > 0,

we conclude that I (x) is a convex function with a minimal value I (1) = 0.
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On the other hand, J (x) = xI (xβ−1) is also a convex function with minimal value J (1) = 0.
Indeed,

J ′(x) = (β − 1)xβ−1τ(xβ−1) + I (xβ−1) = R(xβ−1),

where R(x) = (β−1)xτ(x)+I (x). In particular, J ′(1) = R(1) = 0. To verify that R′(x) > 0,
observe that

R′(x) = (β − 1)τ (x) + (β − 1)xτ ′(x) + τ(x) = βτ(x) + (β − 1)xτ ′(x).

We have R′(x) = τ ′(x)r(τ (x)), where τ ′(x) > 0 and

r(u) = βu
′′(u) + (β − 1)
′(u)

=
∫ ∞

1

βu dy

((β − 1)−1yβ − u)2 +
∫ ∞

1

(β − 1) dy

(β − 1)−1yβ − u

=
∫ ∞

1

(yβ + u) dy

((β − 1)−1yβ − u)2 .

Clearly, r(u) > 0 for u ≥ −1, and it remains to show that r(−u) > 0 for u > 1. To see this,
observe that in view of

r(−u) =
∫ ∞

1

(yβ − u) dy

((β − 1)−1yβ + u)2 = u1/β−1
∫ ∞

u−1/β

(yβ − 1) dy

((β − 1)−1yβ + 1)2 ,

we find that, using MATHEMATICA® software, for β > 1,

r(−u) > u1/β−1(β − 1)2
∫ ∞

0

(yβ − 1) dy

(yβ + β − 1)2 = 0.

Turning to the stated asymptotics as x → ∞, observe that


′′(u) =
∫ ∞

1

dy

((β − 1)−1yβ − u)2

= (β − 1)2

h2

∫ ∞

1

dy

((yβ − 1)/h + 1)2

= (β − 1)2

βh

∫ ∞

0

(1 + zh)1−1/β

(z + 1)2 dz,

where h = 1 − (β − 1)u and z = (yβ − 1)/h. This yields


′′(u) ∼ (β − 1)2

β(1 − (β − 1)u)
, u → (1 − β)−1.

Therefore, using L’Hospital’s rule, we find that, as x → ∞,

x−1 log(1 − (β − 1)τ (x))−1 ∼ (β − 1)τ ′(x)

1 − (β − 1)τ (x)
= β − 1


′′(τ (x))(1 − (β − 1)τ (x))
→ β

β − 1
.

This implies that

x−1I (x) = −(β − 1)τ (x) − x−1 log(1 − (β − 1)τ (x)) → −1 + β

β − 1
= 1

β − 1
.
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The last assertion of the lemma yields an asymptotic as x → 0. We prove it by first noting
that (again using MATHEMATICA)


′(−u) = u1/β−1
∫ ∞

u−1/β

dy

(β − 1)−1yβ + 1

= u1/β−1
∫ ∞

0

dy

(β − 1)−1yβ + 1
− u1/β−1

∫ u−1/β

0

dy

(β − 1)−1yβ + 1

= u1/β−1(β − 1)1/β π/β

sin(π/β)
− u−1 + o(u−1) as u → ∞,

and, therefore, as x → 0,

x = |τ(x)|1/β−1(β − 1)1/β π/β

sin(π/β)
− |τ(x)|−1 + o(|τ(x)|−1).

Solving the last equation, we obtain, as a first approximation,

τ(x) ∼ −b(β)x−β/(β−1), b(β) := (β − 1)1/(β−1)

(
π/β

sin(π/β)

)β/(β−1)

= c(β)

β − 1
,

and then more exactly τ(x) = x−1 − b(β)x−β/(β−1) + o(x−1) as x → 0. Thus,

I (x) = −(β − 1)xτ(x) − log(1 − (β − 1)τ (x))

= c(β)x−1/(β−1) − β

β − 1
log(x−1) − log c(β) − β + o(1),

and J (x) = c(β) − (β log x + log c(β) + β)x + o(x) as x → 0. �
Proof of Theorem 3. Here we prove only the first half of Theorem 3 since the second half

is proved similarly. Our proof is more direct than that of [4] and uses the classical Cramer’s
device of ‘tilted distributions’.

Let x > 1. The required upper bound for (8) is obtained from

P(Tn > xAn) = P(eτ(x)nA−1
n Tn > exτ(x)n) ≤ Eeτ(x)nA−1

n Tne−xτ(x)n.

Indeed, using (10) we have

n−1 log P(Tn > xAn) ≤ −1

n

∞∑
i=n

log

(
1 − τ(x)

λiAnn−1

)
− xτ(x),

and it remains to see that, by the dominated convergence theorem,

−1

n

∞∑
i=n

log

(
1 − u

λiAnn−1

)
=

∫ ∞

1
log

(
1 − u

λynAnn−1

)
dy → 
(u).

Here the dominating function is found from the uniform bounds

(1 − ε)yβ−ε ≤ λyn

λn

≤ (1 + ε)yβ+ε, n ≥ n0(ε), y ∈ [1, ∞),

where n0(ε) does not depend on y.
The lower bound for (8) is derived using the so-called tilted distributions. �
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Lemma 4. Let (7) hold with β > 1, and set λ̃i,n = λi − τ(xn)nA−1
n . If xn → x then λ̃i,n > 0,

i ≥ n, for all sufficiently large n. Moreover, as n → ∞,

Ãn

An

→ x, n

(
B̃n

An

)2

→ 
′′(τ (x)), n2
(

C̃n

An

)3

→ 1

2

′′′(τ (x)),

where Ãn, B̃2
n , and C̃3

n denote the sums
∑∞

i=n(λ̃i,n)
−j with j = 1, 2, 3, respectively. There

exists a sequence xn → x such that Ãn = xAn for all sufficiently large n.

Proof. We suppose that xn → x. We have λny ∼ yβ(β − 1)−1A−1
n for y ≥ 1. Since

τ(x) < (β − 1)−1, it follows that λ̃i,n > 0 for all i ≥ n and sufficiently large n. Furthermore,
by the dominated convergence theorem,

Ãn

An

= n−1
∞∑

i=n

1

λiAnn−1 − τ(xn)

=
∫ ∞

1

dy

λynAnn−1 − τ(xn)

→
∫ ∞

1

dy

yβ(β − 1)−1 − τ(x)

= 
′(τ (x))

= x,

n

(
B̃n

An

)2

→
∫ ∞

1

1

(yβ(β − 1)−1 − τ(x))2 dy = 
′′(τ (x)),

n2
(

C̃n

An

)3

→
∫ ∞

1

1

(yβ(β − 1)−1 − τ(x))3 dy = 1

2

′′′(τ (x)), n → ∞.

To prove the last statement of Lemma 4, take xn ≡ u and consider the sequence an(u) =
Ãn/An = ∫ ∞

1 dy/(λynAnn
−1−τ(u)). We know that each function an is continuous and strictly

monotone, and that an(u) → u. Therefore, for the given x > 1 and a small ε > 0, if n is
sufficiently large, we have

x − 2ε < an(x − ε) < x − ε

2
< x + ε

2
< an(x + ε) < x + 2ε.

We conclude that there exists an xn such that an(xn) = x and xn → x. �

We return to the proof of Theorem 3. Besides the random variables Xi with exponential
distributions Exp(λi), we introduce their tilted versions X̃i,n having exponential distributions
Exp(λ̃i,n), where λ̃i,n are defined according to Lemma 4 in such a way that Ãn = xAn. If Fn(y)

and F̃n(y) are the distribution functions for Tn = ∑∞
i=nXi and T̃n = ∑∞

i=nX̃i,n, then

∫ ∞

−∞
euy dF̃n(y) = EeuT̃n

=
∞∏

i=n

λ̃i,n

λ̃i,n − u
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= Ee(u+τ(x)n/An)Tn

Ee(τ (x)n/An)Tn

= 1

Eeτ(x)nTn/An

∫ ∞

−∞
e(u+τ(x)n/An)y dFn(y),

implying that

dF̃n(y) = eτ(x)ny/An

Eeτ(x)nTn/An
dFn(y).

Thus, for any b > x, we obtain

P(Tn > xAn) =
∫ ∞

xAn

dFn(y) ≥ E[eτ(x)nTn/An ]e−τ(x)nb

∫ bAn

xAn

dF̃n(y).

Lemma 4 yields an analog of Theorem 1(iv) stating that E(T̃n ≤ Ãn + uB̃n) → �(u). Since
Ãn = xAn, this implies that

∫ bAn

xAn
dF̃n(y) → 1

2 , so that

lim inf
n→∞ n−1 log P(Tn > xAn) ≥ 
(τ(x)) − bτ(x).

To complete the proof of (8), send b → x. To prove (9), observe that

n−1 log P(Z(An) > nx) ∼ x(nx)−1 log P(Tnx > xβ−1Anx) → xI (xβ−1), n → ∞. �
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