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 A generalised approach for the modelling of articulated open
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 SUMMARY
 In this paper a model to cover all possible topologies of
 robot manipulators composed of prismatic and revolute
 joints is presented .  For simplicity ,  only planar systems
 are considered ,  hence to provide plane positioning ,
 systems handled are of three degrees of freedom .  The
 physical model assumes three moving rigid links in
 articulation with one revolute and one prismatic joint
 between each link pair ,  forming a six degrees of freedom
 open chain linkage .  Among each joint pair ,  one is real
 and the other fictitious .  The real joint is arbitrarily
 actuated by an externally applied force or torque while
 the fictitious one is acted upon by an appropriately
 controlled force or torque as to keep that joint velocity
 zero ,  keeping fixed at its initial position .  The physical
 model is accompanied by a mathematical model obtained
 by Lagrange formualtion .  This approach is called ‘The
 method of Fictititous Degrees of Freedom’ .

 KEYWORDS :  Robot dynamics ;  Equations of motion ;  Articu-
 lated linkages .

 1 .  INTRODUCTION
 In robotics ,  extensive research is carried out to explore
 and understand the dynamic behaviour of open
 kinematic chains composed of rigid links articulated
 through various types of joints and actuators to drive
 them .  Once the dynamic behaviour of a manipulator is
 understood ,  it can be controlled to move smoothly ,  free
 of jerk and vibrations even if it is a cheap machine
 having dynamically disadvantageous features .  Problems
 of this kind have been studied at various works .  Jones for
 example has shown how the residual vibrations on the
 translational motion of a cam follower can be eliminated
 by a velocity shock given by the cam at the beginning of
 the rise period in his paper published in 1977 . 1  The ef fect
 of velocity shocking is practically obtainable from
 hydraulic servo systems which are widely used to power
 heavy duty robot manipulators .  Alici has extended this
 basic idea to a two degrees of freedom planar
 manipulator carrying a dynamic load and shown that
 residual vibrations of the load can be eliminated by
 velocity shocks superimposed onto the harmonic motion
 profile of each degree of freedom in a simulation work
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 reported in his paper published in 1993 . 2  A realistic
 digital simulation of the system provides the designer a
 versatile tool ,  with which ideas on motion design can be
 tested .  Many simulation programs have been developed
 capable of handling a variety of mechanical networks ,
 such as DAMN ,  DRAM ,  ADAMS ,  IMP ,  VECNET ,
 KIDYAN ,  CATIA 3  and Working Model ,  some of which
 are commercially available .  Most of these programs can
 simulate robotic manipulators but since they are
 multi-purpose and large ,  their use is time consuming and
 costly .  Computation ef ficiency can be of great concern as
 discussed by Walker and Orin in their 1982 paper 4  based
 on the dynamic modelling of multi degrees of freedom
 open kinematic chains with Newton-Euler equations .
 Further ,  some of them will not generate equations of
 motion to work on in closed form .  A variety of
 approaches in the description of the linkage and
 mathematical modelling exists .  Gorur ,  for example
 locates the joints first and describes the links by assigning
 various stif fnesses between joints . 5  Variable stif fnesses
 enable statically determine and indeterminate structures ,
 mechanisms and open chains composed of binary links
 with revolute elements to be modelled by Newton-Euler
 formulation .  Robotic manipulators are relatively simple
 and the model presented in this article is bringing a neat
 approach ,  easily understandable both physically and
 mathematically .

 2 .  MODEL REQUIREMENTS
 The basic task of a robot manipulator is to bring an
 object to a specific location in space at the required
 angular orientation .  In general the manipulator must
 have 6 degrees of freedom ,  at least 3 of which are
 rotational .  Gross spatial displacement is obtained by a 3
 degrees of freedom arm ,  which is composed of a 2
 degrees of freedom ,  planar dyad ,  movable either around
 a revolute axis in ,  or along a prismatic axis perpendicular
 to ,  the dyad plane .  The wrist generally provides 3 or less
 rotational degrees of freedom which facilitate the angular
 orientation .  In robot manipulators multi degrees of
 freedom joints are unfavourable due to the requirement
 for multiple power transmission elements to be packed in
 a small space and the greater bearing loads in
 comparison to that of single degree of freedom joints .
 Therefore ,  universally only single degree of freedom ,
 single input-single output joints are utilised .  These the
 re y  olute  and  prismatic  joints .  In most manipulators at
 least 3 links are co-planar and so ,  in this article 3 degrees
 of freedom ,  planar articulated open chains composed of
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 revolute and prismatic joints are aimed at .  Planar
 manipulators have been the subject of numerous studies
 on robotics like that of Horn , 6  Backhouse , 7  and Alici 2  as
 the initial step towards a thorough understanding of their
 dynamic behaviour .  The mathematical model should
 provide compatibility with the real system in the
 following aspects :

 1 .  Kinematic compatibility
 The motion of all the bodies in the model must be the
 same as that of the real system .  To obtain kinematic
 compatibility ,  the joint types ,  their degrees of freedom
 and ranges of motion and structural dimensions of the
 links must be in consistency with the real system .  This
 ensures the joints to be positioned relative to each other
 correctly ,  leading to a properly modelled relative motion
 of the moving planes and points on these planes like
 mass centers ,  points of application of forces etc .
 kinematic compatibility is defined by constraint equa-
 tions in the form :

 f j ( x i )  5  0  for  i  5  1  ?  ?  ?  m
 (1)

 j  5  1  ?  ?  ?  ( m  2  n )

 for an  n  degree of freedom system .  The total number of
 such equations is ( m  2  n ) if  m  many coordinates are
 defined in  x .

 Kinematic compatibility can be suf ficient for systems
 where forces acting are negligibly small .

 2 .  Static compatibility
 The forces external to the system and the bearing forces
 interacting at the joints must be consistent with that of
 the real system when the system is static .  This can be
 expressed by a set of algebraic equations as :

 O
 k

 Q k
 ­ x k

 ­ x i
 5  0  (2)

 where  Q k   are  k  many externally applied forces or torques
 and  x k   are coordinates on which these forces directly act .
 Static compatibility can be suf ficient for systems moving
 with negligible accelerations .

 3 .  Dynamic compatibility
 All the static and dynamic forces external to the system
 and interacting at the joints must be consistent with that
 of the real system .  Such forces may come from actuators ,
 viscous dampers ,  balancing springs or friction .  To
 achieve this ,  apart from kinematic compatibility ,  all the
 inertial properties in the model must be assigned the
 same numerical values as of the real system .  Dynamic
 compatibility can be represented by  Lagrange Formula-
 tion  as :

 d

 dt

 ­ L

 ­ x ~  i
 2

 ­ L

 ­ x i
 5 O

 k
 Q k

 ­ x k

 ­ x i
 (3)

 where  L  is the Lagrangian and  t  is time .  A dynamically
 compatible simulation will generate the same motion
 profile as the real system upon the application of the
 same magnitudes of external forces .

 These three criteria are closely related to each other .
 Kinematic compatibility defines the structure of the
 manipulator while static and dynamic compatibilities
 define the response of the manipulator to external forces .
 Static compatibility is a subset of dynamic compatibility
 and both stand on correctly formulated constraint
 equations and are taken care of in the mathematical
 model .

 3 .  THE PHYSICAL MODEL
 The physical model describes the structure of the
 manipulator .  The manipulator to be modelled will have
 three moving links connected to each other in
 articulation and to the ground to form a 3 degrees of
 freedom open chain .  Normally two of the movabilities
 will provide the gross point positioning in plane while the
 third will provide the angular orientation .  So at least one
 degree of freedom must be revolute .  The joint between
 any link pair can either be a prismatic (P) or a revolute
 (R) joint ,  hence a total of 7 chain configurations are
 possible as :  RRR ,  RRP ,  RPR ,  PRR ,  RPP ,  PRP and
 PPR .  As it can not facilitate angular orientation ,  a PPP
 configuration is not suitable .  A link can be defined by the
 type of joint it starts and ends with ,  hence possible link
 types are RR ,  RP ,  PR and PP links .  To define the
 position of a link plane ,  3 independent variables are
 required .  These can be the  x  and  y  coordinates of a
 characteristic point and the angle of a characteristic
 straight line in the plane .  For convenience ,  the
 characteristic straight line is selected to pass through a
 characteristic point .  The location of a revolute joint will
 be represented by the coordinates of the point where a
 joint axis pierces the plane of motion .  Similarly ,  a
 prismatic joint is represented by a vector in the plane of
 motion ,  coinciding with the direction of the sliding axis
 and with magnitude equal to the instantaneous
 displacement of that joint .  A link starts with the
 characteristic point ,  which always coincides with the
 point where the preceding link ends .

 Joints between any link pair can be revolute or
 prismatic .  The model must facilitate both and constrain
 whichever is not existing or fictitious .  Three moving links
 in articulation ,  each having the ability to rotate or
 translate with respect to the precedling link form a 6
 degrees of freedom system .  Among the two joints
 between a link pair ,  one is real and the other is fictitious
 according to the type of the manipulator to be modelled .
 Distinction between the functions of the joints is done by
 appropriate  Existence Factors .  Existence factors are
 binary information bits one for each joint ,  as  EF 1  and  EF 2

 for the prismatic and revolute joints respectively between
 the fixed link and the first moving link .  Similarly  EF 3  and
 EF 4  are for the prismatic and revolute joints ,
 respectively ,  between the first and second moving links
 and  EF 5  and  EF 6  are for the prismatic and revolute joints
 respectively between the second and third moving links
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 to describe whether they are real or fictitious .  If an  EF  is
 1 ,  that particular joint is real and if 0 ,  it is fictitious .
 Therefore ,  the following statements are always true :

 ( EF 1  5  1  ?  AND  ?  EF 2  5  0)  ?  OR  ?  ( EF 1  5  0  ?  AND  ?  EF 2  5  1)

 ( EF 3  5  1  ?  AND  ?  EF 4  5  0)  ?  OR  ?  ( EF 3  5  0  ?  AND  ?  EF 4  5  1)

 ( EF 5  5  1  ?  AND  ?  EF 6  5  0)  ?  OR  ?  ( EF 5  5  0  ?  AND  ?  EF 6  5  1)

 (4)

 In the mathematical model ,  topology of the actual
 manipulator to be modelled will be defined and
 adaptation of the equations to describe the motion of
 that particular topology is achieved by making use of
 magnitudes of the existence factors .

 All 6 joints in the model can be thought of having
 motors of their own ,  each one being controllable
 independently .  If for example first joint is a revolute ,   EF 1

 will be 0 and  EF 2  will be 1 .  The prismatic axis there will
 be appropriately controlled to produce zero joint velocity
 and acceleration .  Prismatic action will freeze at its initial
 position while the revolute joint will be actuated
 arbitrarily .  If on the other hand this joint is prismatic ,  the
 rotary motor actuating the revolute joint will be
 appropriately controlled to produce zero joint velocity
 and acceleration .  Revolute action will freeze at its initial
 position while the prismatic joint will be actuated
 arbitrarily .  The force or torque generated to constrain a
 movability is called the  Generalised Constraint Force or
 Torque .  It can be thought that two dif ferent command
 inputs are made available to the servo amplifier of a
 motor ,  one being the variable command signal from a
 controller and the other a constant voltage corresponding
 to the initial joint position .  Switching of the amplifier
 input to the variable command signal is provided by the
 corresponding  EF ,  and to the constant voltage by  EF  or
 (1  2  EF  ) .  Normally the Generalised Constraint Forces or
 Torques acting on a joint defined as fictitious can be
 obtained as the product of the positional error of that
 joint with respect to its initial value and a high gain .
 Normally a high frequency noise is imposed onto the
 profile of this force and the solution can get out of
 control . 3  Noise can be dampened by an appropriate
 derivative component .  Similar techniques have been
 developed at which simultaneous solutions of algebraic , 8

 dif ferential 9  or mixtures of algebraic and dif ferential
 equations are solved ,  the solution modifying itself in
 proportion to the error and to the gradient of the error
 and descending towards its correct value .  This kind of an
 approach is easy to grasp and formulate , 3  but contains
 undetermined expressions .  A closed form solution should
 always be preferred for faster and more ef ficient digital
 computation .  Further ,  closed form equations of motion
 may yield clues on how to shape the profile of the
 actuation forces ,  which then can presumably be obtained
 from computer controlled servo actuators .  The general-
 ised constraint forces or torques can be extracted from
 closed form equations of motion ,  as to make the relative
 acceleration of the succeeding link with respect to the

 preceding zero throughout the time .  Within this context ,
 construction of each link must facilitate a relative
 rotation and a relative translation ,  hence a link plane will
 contain two kinematic elements ,  one a revolute at the
 characteristic point and a prismatic .

 A vector of constant magnitude ,  named  A  is placed
 between the revolute and prismatic elements on a link ,  to
 identify their spacing .  It starts from the characteristic
 point and stretches up to the prismatic element ,
 perpendicular to it and constituates the characteristic
 line .  Figure 1 shows The generalised 6 degrees of
 freedom model on which the forecoming formulation is
 done ,  showing all the related nomenclature .  Figure 2
 shows dif ferent link types in this model .  It must be noted
 that :

 ( i )  Dimension of an RR link ,  that is magnitude of its  A
 vector can not be zero ,  otherwise two revolute joints
 coincide and one of them becomes redundant reducing
 the total degrees of freedom by 1 .
 ( ii )  Two successive prismatic axes can not be parallel ,
 otherwise one of them becomes redundant reducing the
 total degrees of freedom by 1 .
 ( iii )  Magnitude of vector  A  of a PR or RP link can be
 zero .  This combines a rotation and translation into a
 turn - slide  joint .
 ( i y  )  Vector  A  of a PP link can be of zero magnitude .
 Location of points of interest like mass centers ,  actuator
 connections etc .  are defined by a pair of relative

 Fig .  1 .  6 degrees of freedom PRPRPR open chain linkage .  This
 chain can model any configuration of 3 degrees of freedom
 planar manipulators composed of revolute and prismatic joints
 by the appropriate control of joint motors .
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 Fig .  2 .  Possible link types to form planar manipulators
 composed of Prismatic and revolute joints .

 coordinates  p  and  q ,   p  along vector  A  and  q
 perpendicular to it .  This physical model provides
 kinematic ,  static and dynamic compatibilities with a real
 system excepting forces of Coulomb friction .  Coulomb
 friction is dependent on actual joint configuration and
 dimensions .

 4 .  THE MATHEMATICAL MODEL
 The dif ferential equations of motion of the system shown
 in Figure 1 ,  working in the vertical plane can be derived
 using the  Lagrange  formulation of equation (3) .
 Lagrangian of the system is ;

 L  5  T  2  V  (5)

 where  T  is the total kinetic energy as :

 T  5  O 4
 n 5 2

 ( 1 – 2 m n …  2
 g n

 1  1 – 2 I n θ ~  2
 n )  (6)

 and  V  is the total potential energy as :

 V  5  O 4
 n 5 2

 ( m n  y g n
 g )  (7)

 m n   is the mass and  I n   is the mass moment of inertia of the
 n ’th link ,   y g n

   is the elevation and  …  g n
   is the velocity of its

 mass center and  θ ~  n   is its absolute angular velocity .
 Counters of equations (6) and (7) start from 2 as the first
 link is ground ,  which is not movable .  For each one of six
 degrees of freedom ,  one equation has to be derived .
 Equation defining the motion of the generalised

 coordinate  B 1  comes up as :

 B ̈  1 [ m 2  1  m 3  1  m 4 ]  1  θ ̈  2 [ h m 2 q 2  1  B 2 ( m 3  1  m 4 ) j

 3  sin  ( θ  1  2  θ  2 )  1  h m 2  p 2  1  A 2 ( m 3  1  m 4 ) j  cos  ( θ  1  2  θ  2 )]

 1  B ̈  2 [( m 3  1  m 4 )  cos  ( θ  1  2  θ  2 )]  1  θ ̈  3 [ h m 3 q 3  1  m 4 B 3 j

 3  sin  ( θ  1  2  θ  3 )  1  h m 3  p 3  1  m 4 A 3 j  cos  ( θ  1  2  θ  3 )]

 1  B ̈  3 [ m 4  cos  ( θ  1  2  θ  3 )]  1  θ ̈  4 [ m 4 h q 4  sin  ( θ  1  2  θ  4 )

 1  p 4  cos  ( θ  1  2  θ  4 ) j ]  5  F B I
 2  ( m 2  1  m 3  1  m 4 ) g  cos  θ  1

 2  [ m 2  p 2 θ ~  2
 2  1  θ ~  2 ( A 2 θ ~  2  1  2 B ~  2 )( m 3  1  m 4 )]  sin  ( θ  1  2  θ  2 )

 1  [ m 2 q 2 θ ~  2
 2  1  B 2 θ ~  2

 2 ( m 3  1  m 4 )]  cos  ( θ  1  2  θ  2 )

 2  [ m 3  p 3 θ ~  2
 3  1  m 4 θ ~  3 ( A 3 θ ~  3  1  2 B ~  3 )]  sin  ( θ  1  2  θ  3 )

 1  θ ~  2
 3 ( m 3 q 3  1  m 4 B 3 )  cos  ( θ  1  2  θ  3 )

 2  m 4  p 4 θ ~  2
 4  sin  ( θ  1  2  θ  4 )  1  m 4 q 4 θ ~  2

 4  cos  ( θ  1  2  θ  4 )  (8)

 Similarly equation of motion of the coordinate  θ  2  is :

 B ̈  1 [ h m 2 q 2  1  B 2 ( m 3  1  m 4 ) j  sin  ( θ  1  2  θ  2 )  1  h m 2  p 2

 1  A 2 ( m 3  1  m 4 ) j  cos  ( θ  1  2  θ  2 )]  1  θ ̈  2 [ I 2  1  m 2 (  p 2
 2  1  q 2

 2 )

 1  ( m 3  1  m 4 )( A 2
 2  1  B  2

 2 )]  1  B ̈  2 [ A 2 ( m 3  1  m 4 )]  1  θ ̈  3 [ h m 3

 3  ( A 2 q 3  2  B 2  p 3 )  1  m 4 ( A 2 B 3  2  B 2 A 3 ) j  sin  ( θ  2  2  θ  3 )

 1  h m 3 ( A 2  p 3  1  B 2 q 3 )  1  m 4 ( A 2 A 3  1  B 2 B 3 ) j  cos  ( θ  2  2  θ  3 )]

 1  B ̈  3 [ m 4 h A 2  cos  ( θ  2  2  θ  3 )  2  B 2  sin  ( θ  2  2  θ  3 ) j ]

 1  θ ̈  4 [ m 4 h ( A 2 q 4  2  B 2  p 4 )  sin  ( θ  2  2  θ  4 )  1  ( A 2  p 4  1  B 2 q 4 )

 3  cos  ( θ  2  2  θ  4 ) j ]  5  τ θ  2
 2  ( m 3  1  m 4 )[2 B 2 B ~  2 θ ~  2

 1  g ( A 2  cos  θ  2  2  B 2  sin  θ  2 )]  2  m 2 g (  p 2  cos  θ  2  2  q 2  sin  θ  2 )

 2  [ m 3 θ ~  2
 3 ( A 2  p 3  1  B 2 q 3 )  1  m 4 h 2 A 2 B ~  3 θ ~  3  1  θ ~  2

 3 ( A 2 A 3

 1  B 2 B 3 ) j ]  sin  ( θ  2  2  θ  3 )  2  [ 2 m 3 θ ~  2
 3 ( A 2 q 3  2  B 2  p 3 )

 1  m 4 h 2 B 2 B ~  3 θ ~  3  2  θ ~  2
 3 ( A 2 B 3  2  B 2 A 3 ) j ]

 3  cos  ( θ  2  2  θ  3 )  2  θ ~  2
 4 m 4 ( A 2  p 4  1  B 2 q 4 )  sin  ( θ  2  2  θ  4 )

 1  θ ~  2
 4 m 4 ( A 2 q 4  2  B 2  p 4 )  cos  ( θ  2  2  θ  4 )  (9)

 and equation of motion of the coordinate  B 2  is :

 B ̈  1 [( m 3  1  m 4 )  cos  ( θ  1  2  θ  2 )]  1  θ ̈  2 [ A 2 ( m 3  1  m 4 )]

 1  B ̈  2 [ m 3  1  m 4 ]  1  θ ̈  3 [( m 3 q 3  1  m 4 B 3 )  sin  ( θ  2  2  θ  3 )

 1  ( m 3  p 3  1  m 4 A 3 )  cos  ( θ  2  2  θ  3 )]  1  B ̈  3 [ m 4  cos  ( θ  2  2  θ  3 )]

 1  θ ̈  4 [ m 4 h q 4  sin  ( θ  2  2  θ  4 )  1  p 4  cos  ( θ  2  2  θ  4 ) j ]

 5  F B 2  1  ( m 3  1  m 4 )( B 2 θ ~  2
 2  2  g  cos  θ  2 )

 1  [ 2 m 3  p 3 θ ~  2
 3  2  m 4 θ ~  3 ( A 2 θ ~  3  1  2 B ~  3 )]

 3  sin  ( θ  2  2  θ  3 )  1  θ ~  2
 3 ( m 3 q 3  1  m 4 B 3 )  cos  ( θ  2  2  θ  3 )

 2  m 4  p 4 θ ~  2
 4  sin  ( θ  2  2  θ  4 )  1  m 4 q 4 θ ~  2

 4  cos  ( θ  2  2  θ  4 )  (10)

https://doi.org/10.1017/S0263574797000611 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574797000611


 Planar linkages  527

 Equation of motion of the coordinate  θ  3  is :

 B ̈  1 [( m 3 q 3  1  m 4 B 3 )  sin  ( θ  1  2  θ  3 )  1  ( m 3  p 3  1  m 4 A 3 )

 3  cos  ( θ  1  2  θ  3 )]  1  θ ̈  2 [ h m 3 ( A 2 q 3  2  B 2  p 3 )

 1  m 4 ( A 2 B 3  2  B 2 A 3 ) j  sin  ( θ  2  2  θ  3 )  1  h m 3 ( A 2  p 3  1  B 2 q 3 )

 1  m 4 ( A 2 A 3  1  B 2 B 3 ) j  cos  ( θ  2  2  θ  3 )]

 1  B ̈  2 [( m 3 q 3  1  m 4 B 3 )  sin  ( θ  2  2  θ  3 )

 1  ( m 3  p 3  1  m 4 A 3 )  cos  ( θ  2  2  θ  3 )]  1  θ ̈  3 [ I 3  1  m 3 (  p 2
 3  1  q 2

 3 )

 1  m 4 ( A 2
 3  1  B  2

 3 )]  1  B ̈  3 [ m 4 A 3 ]  1  θ ̈  4 [ m 4 h ( A 3 q 4  2  B 3  p 4 )

 3  sin  ( θ  3  2  θ  4 )  1  ( A 3  p 4  1  B 3 q 4 )  cos  ( θ  3  2  θ  4 ) j ]

 5  τ θ  3  2  m 3 g (  p 3  cos  θ  3  2  q 3  sin  θ  3 )

 2  m 4 [2 B 3 B ~  3 θ ~  3  1  g ( A 3  cos  θ  3  2  B 3  sin  θ  3 )]

 1  [ m 3 h 2 p 3 B ~  2 θ ~  2  1  θ ~  2
 2 ( A 2  p 3  1  B 2 q 3 ) j

 1  m 4 h 2 A 3 B ~  2 θ ~  2  1  θ ~  2
 2 ( A 2 A 3  1  B 2 B 3 ) j ]  sin  ( θ  2  2  θ  3 )

 2  [ m 3 h 2 q 3 B ~  2 θ ~  2  1  θ ~  2
 2 ( A 2 q 3  2  B 2  p 3 ) j

 1  m 4 h 2 B 3 B ~  2 θ ~  2  1  θ ~  2
 2 ( A 2 B 3  2  B 2 A 3 ) j ]  cos  ( θ  2  2  θ  3 )

 2  m 4 θ ~  2
 4 ( A 3  p 4  1  B 3 q 4 )  sin  ( θ  3  2  θ  4 )

 1  m 4 θ ~  2
 4 ( A 3 q 4  2  B 3  p 4 )  cos  ( θ  3  2  θ  4 )  (11)

 Equation of motion of the coordinate  B 3  is :

 B ̈  1 [ m 4  cos  ( θ  1  2  θ  3 )]  1  θ ̈  2 [ m 4 h A 2  cos  ( θ  2  2  θ  3 )

 2  B 2  sin  ( θ  2  2  θ  3 ) j ]  1  B ̈  2 [ m 4  cos  ( θ  2  2  θ  3 )]  1  θ ̈  3 [ m 4 A 3 ]

 1  B ̈  3 [ m 4 ]  1  θ ̈  4 [ m 4 h q 4  sin  ( θ  3  2  θ  4 )  1  p 4  cos  ( θ  3  2  θ  4 ) j ]

 5  F B 3  1  m 4 ( B 3 θ ~  2
 3  2  g  cos  θ  3 )  1  m 4 θ ~  2 ( A 2 θ ~  2  1  2 B ~  2 )

 3  sin  ( θ  2  2  θ  3 )  1  m 4 B 2 θ ~  2
 2  cos  ( θ  2  2  θ  3 )

 2  m 4  p 4 θ ~  2
 4  sin  ( θ  3  2  θ  4 )  1  m 4 q 4 θ ~  2

 4  cos  ( θ  3  2  θ  4 )  (12)

 and the equation of motion of coordinate  θ  4  is :

 B ̈  1 [ m 4 h q 4  sin  ( θ  1  2  θ  4 )  1  p 4  cos  ( θ  1  2  θ  4 ) j ]

 1  θ ̈  2 [ m 4 h ( A 2 q 4  2  B 2  p 4 )  sin  ( θ  2  2  θ  4 )

 1  ( A 2  p 4  1  B 2 q 4 )  cos  ( θ  2  2  θ  4 ) j ]

 1  B ̈  2 [ m 4 h q 4  sin  ( θ  2  2  θ  4 )  1  p 4  cos  ( θ  2  2  θ  4 ) j ]

 1  θ ̈  3 [ m 4 h ( A 3 q 4  2  B 3  p 4 )  sin  ( θ  3  2  θ  4 )

 1  ( A 3  p 4  1  B 3 q 4 )  cos  ( θ  3  2  θ  4 ) j ]

 1  B ̈  3 [ m 4 h q 4  sin  ( θ  3  2  θ  4 )  1  p 4  cos  ( θ  3  2  θ  4 ) j ]

 1  θ ̈  4 [ I 4  1  m 4 (  p 2
 4  1  q 2

 4 )]

 5  τ θ  4  2  m 4 g (  p 4  cos  θ  4  2  q 4  sin  θ  4 )

 1  [ m 4 h 2 p 4 B ~  2 θ ~  2  1  θ ~  2
 2 ( A 2  p 4  1  B 2 q 4 ) j ]  sin  ( θ  2  2  θ  4 )

 2  [ m 4 h 2 q 4 B ~  2 θ ~  2  1  θ ~  2
 2 ( A 2 q 4  2  B 2  p 4 ) j ]  cos  ( θ  2  2  θ  4 )

 1  [ m 4 h 2 p 4 B ~  3 θ ~  3  1  θ ~  2
 3 ( A 3  p 4  1  B 3 q 4 ) j ]  sin  ( θ  3  2  θ  4 )

 2  [ m 4 h 2 q 4 B ~  3 θ ~  3  1  θ ~  2
 3 ( A 3 q 4 B 3  p 4 ) j ]  cos  ( θ  3  2  θ  4 )  (13)

 Nomenclature is as shown in Figure 1 .  Equations (7 – 13)
 can be represented in matrix form as :

 (14) u M u  ?

 B ̈  1

 θ ̈  2

 B ̈  2

 θ ̈  3

 B ̈  3

 θ ̈  4

 5

 F B 1  1  f  B 1

 τ θ  2  1  f  θ  2

 F B 2  1  f  B 2

 τ θ  3  1  f  θ  3

 F B 3  1  f  B 3

 τ θ  4  1  f  θ  4

K K K K
 M  is the symmetric  mass matrix . F x i   and  τ x i ’s are
 externally applied driving forces and torques whose
 values are arbitrary and  f x i ’s are the sum of respective
 components of all velocity dependent forces ,  namely
 Coriolis  and  Centrifugal  and the ef fects of  gra y  ity .

 Generalised Constraint Forces ,  which are activated by
 appropriate  Existence Factors  should be added on the
 motion equation of each degree of freedom in the same
 format as the external driving forces .  Also ,  if there is a
 rotary actuator to drive a rotational degree of freedom ,
 its reaction torque acts on the preceding rotational
 movability .  With their inclusion ,  equation (14) becomes :

 u M u  ?

 B ̈  1

 θ ̈  2

 B ̈  2

 θ ̈  3

 B ̈  3

 θ ̈  4

 5

 F B I
 1  F const B I

 ?  EF 2  1  f  B 1

 τ θ  2  1  τ  const θ  2
 ?  EF 1  2  τ θ  3  2  τ  const θ  3

 ?  EF 3  1  f  θ  2

 F B 2  1  F const B 2
 ?  EF 4  1  f  B 2

 τ θ  3  1  τ  const θ  3
 ?  EF 3  2  τ θ  4  2  τ  const θ  4

 ?  EF 5  1  f  θ  3

 F B 3  1  F const B 3
 ?  EF 6  1  f  B 3

 τ θ  4  1  τ  const θ  4
 ?  EF 5  1  f  θ  4

K K K K
 (15)

 where  F const x i
   and  τ const x i

   are corresponding generalised
 constraint forces and torques .

 If the tipmost or third joint is prismatic ,  then  EF 5  5  1
 and  EF 6  5  0 .  Generalised constraint torque on coordinate
 6 ,  i . e .   τ  const θ  4

  will be active ,  constraining any rotation of
 the tipmost link with respect to the preceding .  This
 torque is a variable taking its instantaneous value from
 the dynamics of the rest of the system as to make the
 acceleration of the coordinate  θ  4  the same as the
 acceleration of the preceding link ,  that is ,   θ ̈  3  5  θ ̈  4  .  This
 particular constraint torque hence can be formulated as :

 τ  const θ  4
 5  M (6 ,  1) B ̈  1  1  M (6 ,  2) θ ̈  2  1  M (6 ,  3) B ̈  2

 1  M (6 ,  4) θ ̈  3  1  M (6 ,  5) B ̈  3  1  M (6 ,  6) θ ̈  3  2  τ θ  4  2  f  θ  4  (16)

 Substitution of equation (16) into equation (15) produces
 the final form of the motion equation for the coordinate
 θ  4   as :

 B ̈  1 [ M (6 ,  1)  ?  EF 6 ]  1  θ ̈  2 [ M (6 ,  2)  ?  EF 6 ]  1  B ̈  2 [ M (6 ,  3)  ?  EF 6 ]

 1  θ ̈  3 [ M (6 ,  4)  ?  EF 6  2  M (6 ,  6)  ?  EF 5 ]  1  B ̈  3 [ M (6 ,  5)  ?  EF 6 ]

 1  θ ̈  4 [( M (6 ,  6)]  5  [ τ θ  4
 1  f θ  4

 ]  ?  EF 6  (17)
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 Instead ,  if the tipmost joint is revolute ,  then  EF 5  5  0 and
 EF 6  5  1 .  Generalised constraint force on coordinate  B 3  is
 active constraining any translation of the tipmost link
 with respect to the preceding .  Instantaneous value of this
 constraint force is calculable from equation (15) as to
 make the acceleration of  B 3  zero as :

 F const B 3
 5  M (5 ,  1) B ̈  1  1  M (5 ,  2) θ ̈  2  1  M (5 ,  3) B ̈  2

 1  M (5 ,  4) θ ̈  3  1  M (5 ,  6) θ ̈  4  2  F B 3  2  f  B 3  (18)

 Substitution of equation (18) into (15) yields the final
 form of the motion equation for the coordinate  B 3  as ;

 B ̈  1 [ M (5 ,  1)  ?  EF 5 ]  1  θ ̈  2 [ M (5 ,  2)  ?  EF 5 ]  1  B ̈  2 [ M (5 ,  3)  ?  EF 5 ]

 1  θ ̈  3 [ M (5 ,  4)  ?  EF 5 ]  2  B ̈  3 [ M (5 ,  5)]  1  θ ̈  4 [ M (5 ,  6)  ?  EF 5 ]

 5  [ F B 3  1  f  B 3 ]  ?  EF 5  (19)

 Similarly if the second joint is prismatic ,   EF 3  5  1 and
 EF 4  5  0   hence 4’th coordinate ,  that is  θ  3  becomes
 fictitious with the action of the Generalised Constraint
 Torque  τ  const θ  3

  to make the angular accelerations of links
 2 and 3 the same .  The expression for  τ  const θ  3

  can be
 extracted from equation (15) with the substitution of
 θ ̈  2  5  θ ̈  3   as :

 τ  const θ  3
 5  B ̈  1 [ M (4 ,  1)  1  M (6 ,  1)  ?  EF 5 ]  1  θ ̈  2 [ M (4 ,  2)

 1  M (4 ,  4)  1  h M (6 ,  2)  1  M (6 ,  4)  1  M (6 ,  6) j  ?  EF 5 ]

 1  B ̈  2 [ M (4 ,  3)  1  M (6 ,  3)  ?  EF 5 ]

 1  B ̈  3 [ M (4 ,  5)  1  M (6 ,  5)  ?  EF 5 ]  1  θ ̈  4 [ M (4 ,  6)]

 1  [ 2 τ θ  3  1  τ θ  4  2  f  θ  3  2  h τ θ  4  1  f  θ  4 j  ?  EF 5 ]  (20)

 Substitution of equation (20) into equation (15) yields
 the final form of the motion equation for the coordinate
 θ  3   as :

 B ̈  1 [ h M (4 ,  1)  1  M (6 ,  1)  ?  EF 5 j  ?  EF 4 ]

 1  θ ̈  2 [ h M (4 ,  2)  1  M (6 ,  2)  ?  EF 5 j  ?  EF 4  2  M (4 ,  4)  ?  EF 3

 2  h M (6 ,  4)  1  M (6 ,  6) j  ?  EF 5  ?  EF 3 ]

 1  B ̈  2 [ h M (4 ,  3)  1  M (6 ,  3)  ?  EF 5 j  ?  EF 4 ]

 1  θ ̈  3 [ M (4 ,  4)  1  h M (6 ,  4)  1  M (6 ,  6) j  ?  EF 5 ]

 1  B ̈  3 [ h M (4 ,  5)  1  M (6 ,  5)  ?  EF 5 j  ?  EF 4 ]

 1  θ ̈  4 [ M (4 ,  6)  ?  EF 4 ]

 5  [ τ θ  3  2  τ θ  4  ?  EF 6  1  f  θ  3  1  f  θ  4  ?  EF 5 ]  ?  EF 4  (21)

 Instead ,  if the second joint is revolute ,  then  EF 3  5  0 and
 EF 4  5  1 ,  hence the third coordinate becomes fictitious
 with the action of the associated Generalised Constraint
 Force to make that particular joint acceleration zero .
 Instantaneous value of  F const B 2

  is calculable from equation
 (15) by substituting  B ̈  2  5  0 as :

 F const B 2
 5  M (3 ,  1) B ̈  1  1  M (3 ,  2) θ ̈  2  1  M (3 ,  4) θ ̈  3

 1  M (3 ,  5) B ̈  3  1  M (3 ,  6) θ ̈  4  2  F B 2  2  f  B 2
 (22)

 Substitution of equation (22) into equation (15) yields
 the final form of the motion equation for the coordinate

 B 2  as :

 B ̈  1 [ M (3 ,  1)  ?  EF 3 ]  1  θ ̈  2 [ M (3 ,  2)  ?  EF 3 ]  1  B ̈  2 [ M (3 ,  3)]

 1  θ ̈  3 [ M (3 ,  4)  ?  EF 3 ]  1  B ̈  3 [ M (3 ,  5)  ?  EF 3 ]

 1  θ ̈  4 [ M (3 ,  6)  ?  EF 3 ]  5  [ F B 2  1  f  B 2 ]  ?  EF 3  (23)

 If the first joint ,  that is ,  the one connecting the first
 moving link to ground is prismatic ,  then  EF 1  5  1 and
 EF 2  5  0 .  Generalised Constraint Torque on coordinate 2 ,
 i . e .   τ  const θ  2

  will be active constraining any rotation of the
 first moving link .  This torque is a variable whose
 instantaneous value can be extracted from equation (15)
 to satisfy  θ ̈  2  5  0 as :

 τ  const θ  2
 5  B ̈  1 [ M (2 ,  1)  1  h M (4 ,  1)  1  M (6 ,  1)  ?  EF 5 j  ?  EF 3 ]

 1  B ̈  2 [ M (2 ,  3)  1  h M (4 ,  3)  1  M (6 ,  3)  ?  EF 5 j  ?  EF 3 ]

 1  θ ̈  3 [ M (2 ,  4)]  1  B ̈  3 [ M (2 ,  5)

 1  h M (4 ,  5)  1  M (6 ,  5)  ?  EF 5 j  ?  EF 3 ]

 1  θ ̈  4 [ M (2 ,  6)  1  M (4 ,  6)  ?  EF 3 ]

 5  [ 2 τ θ  2  1  τ θ  3  2  f  θ  2  2  h τ θ  3  1  f  θ  3  2  τ θ  4

 1  τ θ  4  ?  EF 5  1  f  θ  4  ?  EF 5 j  ?  EF 3 ]  (24)

 Substitution of equation (24) into equation (15) yields
 the final form of the motion equation for the coordinate
 θ  2   as :

 B ̈  1 [ h M (2 ,  1)  1  ( M (4 ,  1)  1  M (6 ,  1)  ?  EF 5 )  ?  EF 3 j  ?  EF 2 ]

 1  θ ̈  2 [ M (2 ,  2)  1  h M (4 ,  2)  1  M (4 ,  4)  1  ( M (6 ,  2)

 1  M (6 ,  4)  1  M (6 ,  6))  ?  EF 5 j  ?  EF 3 ]  1  B ̈  2 [ h M (2 ,  3)

 1  ( M (4 ,  3)  1  M (6 ,  3)  ?  EF 5 )  ?  EF 3 j  ?  EF 2 ]

 1  θ ̈  3 [ M (2 ,  4)  ?  EF 2 ]

 1  B ̈  3 [ h M (2 ,  5)  1  ( M (4 ,  5)  1  M (6 ,  5)  ?  EF 5 )  ?  EF 3 j  ?  EF 2 ]

 1  θ ̈  4 [ h M (2 ,  6)  1  M (4 ,  6)  ?  EF 3 j  ?  EF 2 ]

 5  [ τ θ  2
 2  τ θ  3

 ?  EF 4  2  τ θ  4
 ?  EF 3  ?  EF 6

 1  f  θ  2  1  f  θ  3  ?  EF 3  1  f  θ  4  ?  EF 3  ?  EF 5 ]  ?  EF 2  (25)

 Instead ,  if the first joint is revolute ,  then  EF 1  5  0 and
 EF 2  5  1 ,  hence the first coordinate becomes fictitious
 with the action of the Generalised Constraint Force to
 make that particular joint acceleration zero .  Instan-
 taneous value of  F const B 1

  is derivable from equation (15) ,
 by substituting  B ̈  1  5  0 as :

 F const B 1
 5  M (1 ,  2) θ ̈  2  1  M (1 ,  3) B ̈  2  1  M (1 ,  4) θ ̈  3

 1  M (1 ,  5) B ̈  3  1  M (1 ,  6) θ ̈  4  2  F B 1  2  f  B 1
 (26)

 Substitution of equation (26) into equation (15) yields
 the final form of the motion equation for the coordinate
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 B 1  as :

 B ̈  1 [ M (1 ,  1)  1  θ ̈  2 [ M (1 ,  2)  ?  EF 1 ]  1  B ̈  2 [ M (1 ,  3)  ?  EF 1 ]
 1  θ ̈  3 [ M (1 ,  4)  ?  EF 1 ]  1  B ̈  3 [ M (1 ,  5)  ?  EF 1 ]
 1  θ ̈  4 [ M (1 ,  6)  ?  EF 1 ]  5  [ F B 1

 1  f  B 1
 ]  ?  EF 1  (27)

 Equations (17) ,  (19) ,  (21) ,  (23) ,  (25) ,  (27) together ,  when
 used with proper Existence Factors define the motion of
 any 3-degrees of freedom ,  open loop link chain
 composed of prismatic and revolute joints .

 Fig .  3 .  Chrono-cyclograph of a triple pendulum with of fset
 mass centers ,  motion starting from rest when all the revolute
 joints are alligned on a horizontal line .  Time increment is 0 . 1
 second .  Linkage parameters ,  initial values of generalised
 coordinates and velocities and the forcing functions active are
 listed below the figure .

 Fig .  4 .  Motion profile of the triple pendulum shown in Figure
 3 .  Due to damping ,  system comes to rest after some time .
 While at rest ,  overall mass center is on the vertical line passing
 through the ground pivot .

 Fig .  5 .  Chrono-cyclograph of a triple pendulum ,  motion
 starting from rest when all the links are horizontal .  Time
 increment is 0 . 1 seconds .  Linkage parameters ,  initial values of
 generalised coordinates and velocities and tbe forcing functions
 active are shown below the picture .
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 Fig .  6 .  Profiles of angular positions and energy levels of the links of the triple pendulum shown in Figure 5 .  As the system is
 conservative ,  total energy stays constant .

 5 .  EXAMPLES
 First example to demonstrate the applicability of the
 mathematical model presented with equations (17) ,  (19) ,
 (21) ,  (23) ,  (25) and (27) is the motion of a triple
 pendulum with of fset mass centers .  The linkage
 parameters ,  initial values of generalised coordinates and
 velocities and the forcing functions active are shown in
 Figure 3 .  The equations of motion can be integrated by
 any commercially available numerical integration rout-
 line like DRKGS of IBM or D02BAF of NAG libraries .
 A chrono-cyclograph of the RRR chain under considera-
 tion is shown in Figure 3 for the first 1 . 5 seconds of the
 motion at 0 . 1 second intervals .  Revolute joints are
 dampened and system comes to rest after some time as
 shown in the motion profile of Figure 4 .  The final angular
 position of the links are such that the system mass center
 is on the vertical line passing through the ground pivot ,
 hence demonstrating the static compatibility .

 The second example is the motion of a triple
 pendulum whose linkage parameters ,  initial values of
 generalised coordinates and velocities and the forcing
 functions active are shown in Figure 5 .  All the active and

 dissipative forces are zero ,  hence the system is
 conservative .  Motion develops with the profile shown in
 Figure 6 .  Total kinetic and potential energy levels vary in
 opposite polarity to keep the total energy constant ,
 demonstrating a dynamic compatibility of the model with
 a triple pendulum .

 The third example is the motion of an RPR linkage
 under PD control to trace a circular trajectory .  Figure 7
 shows the first few discrete positions of the manipulator
 at the beginning of the motion and the path traced by
 the tip point of the manipulator .  At the beginning of
 the motion ,  manipulator is at rest with gravity being
 the only active force .  As seen ,  joint motions display
 some overshoots and vibrations due to the initial
 of fsets in actual and commanded positions which decay
 and manipulator follows the commanded trajectory
 smoothly .

 6 .  CONCLUSION
 6 second order dif ferential equations defining the system
 are simultaneously integrated .  Results for joint positions
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 Fig .  7 .  An RPR manipulator ,  initially at rest under the action
 of gravity ,  commanded to trace a circular path .  Joints are
 actuated by classical PD control whose characteristics are listed
 below the figure with other system parameters and initial values
 of generalised coordinates and velocities .

 velocities and accelerations at incremental time intervals
 are printed out and a neat zero acceleration and velocity
 on the relative motion of two successive links connected
 at a fictitious joint are observed .  As there is no noise or
 dither on the constrained motion ,  integration process
 becomes fast and accurate .  The 6 degrees of freedom
 system behaves like having only 3 degrees of freedom
 during the solution .  For a complete robot simulation the
 mathematical models for the servo drives and the profiles
 of any external forces which might be acting on the end
 ef fector should be included in the equations of motion .
 The original simulation work a part of which is presented
 in this paper is capable of attaching intermediary
 links between any link pair ,  exerting some sort of active
 forces like balancing springs ,  dashpots and linear
 actuators .  Their masses and variable inertias are in-
 cluded in the equations of motion .  a graphics pack-
 age produces a pictorial representation of the
 manipulator under consideration in animated form .
 The package as a whole and the method of fictitious
 degrees of freedom have proved to be an easy and
 neat way of providing flexibility in system definition and
 modelling .
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