
Robotica (2016) volume 34, pp. 1630–1658. © Cambridge University Press 2014
doi:10.1017/S0263574714002483

Robust and fast 3-D scan registration using normal
distributions transform with supervoxel
segmentation
Ji W. Kim∗ and Beom H. Lee
Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea

(Accepted September 23, 2014. First published online: October 29, 2014)

SUMMARY
This paper presents what is termed as the supervoxel normal distributions transform (SV-NDT),
a novel three-dimensional (3-D) registration algorithm which improves the performance of the
three-dimensional normal distributions transform (3-D NDT) significantly. The 3-D NDT partitions
a model scan using a 3-D regular grid. Generating normal distributions using the 3-D regular grid
causes considerable information loss because the 3-D regular grid does not use any information
pertaining to the local surface structures of the model scan. The best type of surface (the constituent
unit of each scan) for modeling with one normal distribution is known to be the plane. The SV-NDT
reduces the loss of information using a supervoxel-generating algorithm at the partitioning stage.
In addition, it uses the information of the local surface structures from the data scan by replacing
the Euclidean distance with a function that uses local geometries as well as the Euclidean distance
when each point in the data scan is matched to the corresponding normal distribution. Experiments
demonstrate that the use of the supervoxel-generating algorithm increases the modeling accuracy of
the normal distributions and that the proposed 3-D registration algorithm outperforms the 3-D NDT
and other widely used 3-D registration algorithms in terms of robustness and speed on both synthetic
and real-world datasets. Additionally, the effect of changing the function to create correspondences
is also verified.
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1. Introduction
In mobile robotics, scan registration algorithms are essential to guarantee the performance of various
applications, such as simultaneous localization and mapping (SLAM), navigation, exploration, rescue,
and surveillance. Many SLAM techniques, in particular, use scan registration methods to estimate the
relative transformation between two scans. Scan registration algorithms allow robots to collect more
information about the surrounding environment by integrating two scans taken at different times or
places.

Scan registration algorithms can be broadly categorized into local methods and global methods.
Local methods conduct a scan registration by iteratively optimizing a cost function which represents
the registration error between two scans. Given that the cost function has local minima, in most
cases, the results from local methods depend on the initial transformation. The initial transformation
can be obtained by odometry, an inertial measurement unit (IMU), or a GPS if this type of system
is available. If the initial transformation is sufficiently close to the ground truth, local methods can
estimate the relative transformation finely compared to global methods. There are various algorithms
used with local methods, such as the iterative closest point (ICP),1 the normal distributions transform
(NDT),2 and the polar scan matching (PSM).3 Global methods undertake scan registration with the
distinct local geometrical features of each scan. They vary depending on their means of extracting
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features such as the Hough transform,4 the fast point feature histogram (FPFH),5 the phase only
matched filtering (POMF),6 and other methods.

One of the most popular scan registration algorithms is the ICP algorithm. The ICP algorithm is
a point-to-point algorithm that estimates the optimal transformation to overlap two scans, a model
and a data scan, by iteratively minimizing the sum of the squared Euclidean distances between the
corresponding points. The ICP algorithm regards the closest points in different scans as corresponding
points. Because a closed-form solution exists for optimizing the sum of the squared Euclidean
distances between associated pairs, the ICP is easily implemented. Although the nearest neighbor
search is a bottleneck when using the ICP due to the high computational cost, using the k-d tree7 or
approximate k-d tree8 can mitigate this problem. However, the assumption that the closest points in
different scans are the corresponding points is satisfied well only when the relative rotation difference
between the two scans is small. Given a large relative rotation difference, points that are far from the
sensor move far away, with many of these points not associated correctly as a result. For this reason,
iterative dual correspondence (IDC)9 generates corresponding points for rotation and translation
separately and alternatively minimizes the sum of the squared Euclidean distances. Metric-based ICP
(MbICP)10 establishes correspondences between two scans with a new metric which takes into account
rotation as well as translation. Every scan is composed of the closest surfaces in the surroundings
to the sensor. Generalized-ICP (G-ICP)11 uses local surface structures while retaining the simplicity
of the ICP. The G-ICP models the vicinity of each point as a locally planar surface by means of a
covariance matrix and applies this information to the cost function to decrease the effect of incorrectly
associated points.

Another algorithm for scan registration is the NDT algorithm. The NDT algorithm was
initially proposed as a two-dimensional scan registration algorithm2and was later extended to three
dimensions.12 The three-dimensional (3-D) NDT algorithm is not a point-to-point method which
performs registration between two scans directly but is instead a point-to-distribution method that
carries out registration between the data scan and a set of distributions generated from the model
scan. Because the NDT does not need to search for the closest points or store the raw data from
the model scan, it has low computational complexity and can greatly reduce the amount of memory
required. In addition, the gradient vector and the Hessian matrix of its score function have analytic
forms, allowing the simple use of standard non-linear optimization methods to estimate the optimal
transformation.

However, the use of a regular grid by the NDT causes several fundamental problems. The first is the
discontinuity of the score function. When a data scan point passes one of its cell boundaries, the value
of the score function jumps. Because this can cause a problem, a method using tri-linear interpolation
between distributions within neighboring voxels, which relieves the effects of discontinuities,13 was
proposed. Furthermore, an alternative method was suggested that modifies the score function so that
it becomes continuous.14 Because this method employs greedy clustering to partition the scan, there
are few distributions. Thus, the modified score function includes the scores of all of the normal
distributions for each point in the data scan. In addition, a distribution-to-distribution registration
approach was proposed which transforms the data scan as well as the model scan into normal
distributions.15 The second fundamental problem is that the registration performance relies on the
cell size of the regular grid. In one study,16 the cell size of each cell was made to vary with the
distance from the sensor in an effort to solve this problem. In addition, the use of multi-layered NDT
(ML-NDT)17 changes the cell size from large to small during the iterative optimization process. A
more serious problem, though, is that a normal distribution in each voxel does not represent the local
structure of the point subset within the voxel accurately because the regular grid does not take into
account the structures of the model scan. When part of the scan data, i.e., that composed of surfaces,
is modeled by a normal distribution, the shape of the point subset which minimizes information loss
is a plane. Thus, in order to utilize the merits of the NDT and minimize the loss of information, the
model scan should be divided into locally planar surfaces by means of segmentation techniques.

Segmentation techniques for a 3-D point cloud can be divided into object-based segmentation
techniques, which separate a point set based on objects, and over-segmentation techniques, which
partition more finely into point subsets by gathering points that have locally similar geometries.
Object-based segmentation methods mostly consist of two stages. The first stage splits the point
cloud into ground points and non-ground points, and the second stage generates objects by
grouping the non-ground points. In another study,18 Gaussian process incremental sample consensus
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(GP-INSAC) is used at the first stage, and the non-ground points are clustered according to the
principle of local voxel adjacency. To increase the speed of the ground segmentation process, the
point cloud is divided into several sectors and one-dimensional GP-INSAC is then carried out for
each sector.19 Another approach with which to extract ground points is a graph-based method.20 In
that study,20 segmentation is performed by means of local convexity. The segment whose normal
vector has the largest z-component is regarded as the ground, and the other segments are considered
as objects. For urban environments, random sample consensus (RANSAC) and a Kalman filter are
used to extract the road and street furniture.21

Over-segmentation techniques are used mainly as a preprocessing stage for image segmentation
in computer vision. Well-known image segmentation approaches such as the Markov random field
(MRF) and the conditional random field (CRF) usually estimate the class of each pixel. However,
because most present-day images have a great number of pixels, a considerable amount of computing
time is required. To reduce the number of regions to be estimated, over-segmentation techniques
such as the use of the superpixels, which groups similar pixels into one region, are used. Recently,
this idea was extended to three dimensions, and some algorithms were proposed in this context. In
one such study,22 non-ground points are partitioned into super-segments according to connectivity
and similarity in the normal direction. Another approach constructs evenly spaced supervoxels by
clustering a voxel-cloud based on the similarity of local geometries.23 Furthermore, over-segmentation
is performed by spheres of different sizes that are determined by the local curvatures and densities.24

In this paper, supervoxel-NDT (SV-NDT) is proposed to solve the problem in which the normal
distributions generated by a regular grid do not represent the local surface structures of the model
scan accurately. SV-NDT exploits the 3-D supervoxel segmentation technique to use local surface
structures to partition the model scan. In addition, the criterion of matching each point in the data
scan to the corresponding distribution is modified using the local geometries of the data scan. The
SV-NDT is evaluated and compared to the 3-D NDT and to several 3-D scan registration algorithms.
In addition, the supervoxel-generating algorithm and the criterion for devising correspondences are
evaluated.

This paper is organized as follows. The problem formulation for 3-D scan registration on the basis
of the 3-D NDT is described in the next section. In Sections 3 and 4, the method of supervoxel
generation and the proposed method are presented in sequence. Section 5 evaluates the performance
of each element of the SV-NDT and the SV-NDT compared to other widely used 3-D registration
algorithms. Finally, this paper is concluded in Section 6.

2. Problem Formulation
The goal of 3-D scan registration is to estimate the optimal transformation between two scans.
The model and the data scan are denoted as Y = {y1, . . . , yNY

} and X = {x1, . . . , xNX
} respectively,

and the set of 3-D rigid transformations is SE(3). A 3-D rigid transformation T is composed of a
translation vector t ∈ R3 and a rotation matrix R ∈ SO(3). A 3-D rotation matrix can be represented
in various ways, such as a unit quaternion and the Euler angles. In our approach, rotation matrices
are represented by the roll, pitch, and yaw convention, which is a sequence of three basic rotations
about the fixed axes x, y, and z. Therefore, the transformation parameter p can be represented by
[tx ty tzθxθyθz]T . If a data scan point xn is transformed by T (p), it can be denoted as T (p) · xn, and the
transformed point x′

n can be written as

x′
n = T (p) · xn = Rz(θz)Ry(θy)Rx(θx)xn + t, (1)

where Rx(θx), Ry(θy), and Rz(θz) are the basic 3-D rotation matrices for rotations about each of the
axes by angles θx , θy , and θz, respectively. In the same manner, the transformed data scan X′ with the
transformation parameter p is denoted by

X′ = {x′
1, . . . , x′

NX
} = {T (p) · x1, . . . , T (p) · xNX

}. (2)

The 3-D NDT performs the registration between the data scan and the normal distributions
generated from the model scan using a 3-D regular grid. To be more concrete from a statistical
point of view, the 3-D NDT adopts the model scan as Gaussian mixture model (GMM) which can
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model an arbitrarily smooth probability density function and estimates the optimal transformation by
maximizing the likelihood function of the transformed data scan.25 The likelihood function of a point
x, is defined as

p(x|GMMmodel) =
N∑

i=1

wi

1

(2π)
3
2
√

det �i

exp

(
− (x − μi)

T �−1
i (x − μi)

2

)
, (3)

where GMMmodel is a set of parameters of the GMM for the model scan, N is the number of
components of the GMM, and wi , μi , and �i are the weight, the mean vector, and the covariance
matrix of the ith component of the GMM, respectively. The likelihood function of the transformed
data scan X′ can then be represented by a function of the transformation parameter p:

�(p) = p
(
X′|GMMmodel

) =
NX∏
n=1

p
(
x′

n|GMMmodel
)
, (4)

where x′
n is the nth point in the data scan and NX is the number of points in the data scan. The optimal

transformation parameter can be estimated by means of the maximum likelihood estimation (MLE)
for Eq. (4). This is equivalent to minimizing the negative log-likelihood which is given by

�̄(p) = − log �(p) = −
NX∑
n=1

log p(x′
n|GMMmodel). (5)

In order to perform the MLE, GMMmodel needs to be obtained from the model scan. Usually, when
the observed data and the number of components of a GMM are given, the set of parameters GMMmodel

is computed by means of an expectation-maximization (EM) algorithm. However, GMMmodel is
obtained without complicated calculations by several simplifications in the 3-D NDT. First, the
model scan Y is divided into the point subsets Yn = {y ∈ Y : y ∈ vn} contained within the voxel vn

using a 3-D regular grid. The mean vector μn and the covariance matrix �n of each voxel vn are then
calculated by

μn = 1

|Yn|
∑

k:yk∈Yn

yk, (6)

�n = 1

|Yn| − 1

∑
k:yk∈Yn

(yk − μn)(yk − μn)T . (7)

Because a covariance matrix of fewer than four points is always singular, voxels which have fewer
than four points are regarded as unoccupied. The normal distribution in each occupied voxel models
the local geometry within each voxel and is considered as a component of the GMM. The weight
wi of each component is set to 1/NX. However, for the sake of simplicity, the likelihood of each
x′

n takes into account only the closest component of the GMM from x′
n. The simplified negative

log-likelihood function can be written as

�̃(p) = −
NX∑
n=1

log p(x′
n|μcn

, �cn
) =

NX∑
n=1

(x′
n − μcn

)T �−1
cn

(x′
n − μcn

)

2
+ const, (8)

where cn is the index of the closest component of the GMM from x′
n. Because Eq. (8) is proportional

to the sum of the squared distances between each transformed point x′
n in the data scan and the mean

vector μcn
of the corresponding distribution of x′

n, it is sensitive to outliers. This problem is alleviated
by substituting the likelihood function of each point with a normal-uniform mixture distribution:26

p̂(x′
n|μcn

, �cn
) = ξ1 exp

(
− (x′

n − μcn
)T �−1

cn
(x′

n − μcn
)

2

)
+ ξ2po, (9)
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where ξ1 and ξ2 are constants such that Eq. (9) integrates over the cnth voxel to one, and po is the
expected ratio of the outliers. The negative log-likelihood of Eq. (9) is somewhat complicated and
can therefore also be approximated by

− log p̂
(
x′

n|μcn
, �cn

) = − log

(
ξ1 exp

(
− (x′

n − μcn
)T �−1

cn
(x′

n − μcn
)

2

)
+ ξ2po

)

≈ − d1 exp

(
−d2

(x′
n − μcn

)T �−1
cn

(x′
n − μcn

)

2

)
+ d3, (10)

where d1, d2, and d3 are constants which are determined by ξ1, ξ2, and po. After dropping the constant
d3, which plays no role in the optimization process, the score of nth data scan point can be defined as

s(p, xn, cn) = d1 exp

(
−d2

(x′
n − μcn

)T �−1
cn

(x′
n − μcn

)

2

)
. (11)

Finally, the cost function of the 3-D NDT, which is the negative of the score function, can be
defined as

cost(p) = −
NX∑
n=1

s(p, xn, cn). (12)

The optimal p can be estimated by minimizing Eq. (12). Given that the first and second derivatives
of this cost function have analytic forms, a standard non-linear optimization algorithm can easily be
used, such as Newton’s method or the Levenberg–Marquardt method. Newton’s method is used in
our approach.

Newton’s method minimizes the cost function by updating arguments iteratively. Each update is
performed to optimize the second-order approximation of the cost function; therefore, Newton’s step
�p can be calculated by solving the following equation:

H�p = −g, (13)

where g and H are the gradient vector and the Hessian matrix of the cost function at p, respectively.
The step size γ is obtained by a line search, after which p is updated by

p ← p + γ�p. (14)

These two steps, computing �p and γ at p and updating p, are iterated until p converges.

3. Supervoxel Generation

3.1. Motivation
The 3-D NDT algorithm does not use the model scan directly but instead employs normal distributions
that are generated from the model scan. A mean vector and a covariance matrix can represent all of the
characteristics of a normal distribution; in other words, an ellipsoid is able to contain the entire set of
information pertaining to a normal distribution. When a surface is modeled as a normal distribution,
the lower its curvature is, the less information it loses. A scan is composed of the closest surfaces
in each direction from the sensor; therefore, the scan should be partitioned into planar surfaces to
reduce the loss of information. If a scan is transformed into normal distributions in the manner of
the 3-D NDT, which uses a 3-D regular grid without considering the surface structures of the model
scan, there will be some distributions whose mean vectors are not on any surfaces modeled by those
distributions, or whose normal vectors, i.e. the eigenvectors corresponding to the minimum eigenvalue
of each covariance matrix, are not parallel to any normal directions of surfaces modeled by those
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Fig. 1. (a) Front view. (b) Top view. The normal distributions which employ a 3-D regular grid to transform
the model scan in a structured environment from the dataset.27 Each ellipsoid represents a normal distribution,
and its surface is a set of the points whose Mahalanobis distance from the mean is equal to 1. Most of the
distributions around the corners cannot model the local surfaces.

Fig. 2. Several examples of 2-D scans which are transformed into identical normal distributions but with different
local geometries.

distributions (Fig. 1). This means that the voxels which have those distributions contain surfaces
having different local geometries concurrently, and those normal distributions represent the average
local geometry. As a result, the surfaces which belong to such voxels cannot be specified precisely
due to the loss of information. Figure 2 shows several examples of two-dimensional scans which are
transformed into identical normal distributions but with different local geometries. Decreasing the
size of the voxels in order to alleviate this problem increases the computational load owing to the
increase in the number of distributions. Moreover, the performance of the 3-D NDT can be diminished
due to the increased number of unoccupied voxels. Thus, a segmentation technique which partitions
the model scan into planar surfaces using the information of the local surface structures is required.

Researchers have recently proposed several scan registration algorithms which use object-based
segmentation methods.28,29 If a model scan is partitioned by means of object-based segmentation
instead of the 3-D regular grid in the 3-D NDT, each object is modeled by one normal distribution.
However, when an object has complex structures, it cannot be represented accurately by one normal
distribution. As mentioned earlier, in order for the model scan to be modeled by normal distributions
accurately, it should be partitioned into locally planar surfaces. To achieve this goal, over-segmentation
techniques are required. The segmentation algorithm in one study24 creates spherical segments with
radii determined by local convexities and densities. However, the spherical shape of each segment
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Fig. 3. Flowchart of the supervoxel-generating algorithm.

is not appropriate for representing a local surface. In another study,22 tiny clusters are constructed
using only the Euclidean distances between points, with the clusters then grouped into segments
after a comparison of features of the local geometry, such as the connectivity and normal directions.
Although this segmentation method can partition the model scan into planar surfaces, it is possible
that a segment would be very large, such as the case of a wall. When this segment is modeled by
one normal distribution, it is impossible to detect holes, such as windows and open doors. In other
work,23 a voxel-cloud is formed using a 3-D regular grid with small voxel size at the beginning. Then,
evenly spaced seed voxels are selected, and each seed voxel is considered as a supervoxel. Finally,
flow-constrained clustering which expands each supervoxel by including voxels that have locally
similar geometries is performed. The sizes of the supervoxels generated when using this method are
limited to a certain upper bound; thus, the supervoxels consist of only local points. In this regard,
this 3-D supervoxel-generating algorithm is consistent with the goal of dividing the model scan into
locally planar surfaces. Therefore, the model scan is partitioned by the 3-D supervoxel-generating
algorithm in our approach.

3.2. Supervoxel-generating algorithm
The 3-D supervoxel-generating algorithm in an aforementioned study23 which uses voxel cloud
connectivity segmentation (VCCS) was proposed to carry out the segmentation of a 3-D colored scan
from a RGB-D camera. However, 3-D scans dealt with by our approach are only non-colored; thus,
the supervoxel-generating algorithm is modified so that it does not use color. In addition, although the
original VCCS uses the FPFH as the local geometric information within each voxel, this information
is simplified, taking the form of a normal vector. Along with these simplifications, a flowchart of
the method used to generate the supervoxels is shown in Fig. 3. A 3-D scan is transformed into
a voxel-cloud with a voxel resolution of Rv , after which a supervoxel set is initialized using seed
voxels which are spaced about a seed resolution that is Rs apart. Next, all supervoxels are expanded
by flow-constrained clustering with an adjacency graph. After that, the mean and the normal vector
of all supervoxels are recalculated. These two steps, an expansion and a recalculation step, are
repeated n times, and the supervoxel set is finally obtained. The number of repetitions n is defined as

https://doi.org/10.1017/S0263574714002483 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714002483


Robust and fast 3-D scan registration using NDT with supervoxel 1637

Fig. 4. A 2-D example of generation of a set of seed voxels.

�√3Rs/Rv	 so that every occupied voxel is contained in one of the supervoxels. In this algorithm, the
seed resolution Rs denotes the voxel size of the 3-D regular grid in the 3-D NDT. The voxel resolution
Rv should be sufficiently smaller than Rs . Rv is set to Rs/10 in our approach. Detailed descriptions
of two sub-processes, the initialization of a set of supervoxels and the expansion of each supervoxel
by means of flow-constrained clustering, are presented in Subsections 3.2.1 and 3.2.2, respectively.

3.2.1. Initialization of a set of supervoxels. First, a voxel-cloud V = {v1, . . . , vNV
} is generated from

the 3-D scan X and the 3-D regular grid Gv
grid with a voxel resolution of Rv . Each vi is an occupied

voxel which contains more than three points and has indices of points contained within it. After
that, the data of all voxels vi in V are initialized. The initialization stage of the voxel data calculates
the mean vector μi and normal vector ni and sets di to zero. di is the distance between vi and the
supervoxel containing vi . Next, the adjacency graph AG = (U, E) of the voxel-cloud V is generated.
A set of nodes is denoted as U = {1, . . . , NV }, and each node i corresponds to the ith voxel vi . The
undirected edge set E of AG is defined as follows:

E = {(i, j )|vj ∈ V ∩ NGv
grid

(vi); vi ∈ V }, (15)

where NGv
grid

(vi) is a set of 26 neighbors of vi in Gv
grid. Then, a set of seed voxels spaced at intervals

of approximately the seed resolution Rs , denoted as Vseed = {vs1, . . . vsNS
}, is created. Initially, a new

3-D regular grid Gs
grid is generated with the seed resolution of Rs . Next, the initial seed voxels which

contain the center of the occupied voxels in Gs
grid are selected in Gv

grid. The closest occupied voxel in
Gv

grid from each initial seed voxel is then considered as the final seed voxel. A 2-D example is shown
in Fig. 4. After that, NS supervoxels are created and initialized. The data of the ith supervoxel to
initialize are svi , Mi , Ni , and Qi . svi is a set of voxels belonging to the ith supervoxel, and Mi and
Ni are respectively a mean vector and a normal vector which are calculated by all points contained
within the voxels in svi . Qi is the set of voxels to visit at the current level in the breadth-first search
(BFS) of the ith supervoxel. In order to perform flow-constrained clustering, the BFS traverses AG

from the node corresponding to the ith seed voxel vsi
. To initialize the clustering process, all instances

of svi and Qi are set to {vsi
} and the voxels adjacent to vsi

in the AG respectively, and Mi and Ni are
calculated.

3.2.2. Expansion of supervoxels by means of flow-constrained clustering. The flow-constrained
clustering stage is based on the BFS of each supervoxel. This clustering stage proceeds in a

https://doi.org/10.1017/S0263574714002483 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714002483


1638 Robust and fast 3-D scan registration using NDT with supervoxel

Fig. 5. Flowchart of the expansion of supervoxels using the flow-constrained clustering.

breadth-first fashion, which means that the level to traverse increases after every BFS traverses
the same level in turn. A flowchart of this sub-process is shown in Fig. 5. A new queue, Q̃i , is the set
of voxels to visit at the next level in the BFS for the ith supervoxel; it is emptied before each level is
traversed. A detailed example of the traversing strategy is shown in Fig. 6. The clustering algorithm
visits all of the adjacent voxels vj of every voxel v in Qi , and each vj is dealt with by dividing it
into three cases. The first case is one in which vj does not belong to any supervoxel. In this case, svi

and Q̃i include vj , and dj is calculated. The distance function between the ith supervoxel and vj is
defined as

D(i, j ) =
∥∥Mi − μj

∥∥
Rs

+ (
1 − Ni · nj

)
. (16)

The second case is that vj already belongs to the i’th supervoxel, but the ith supervoxel is closer
to vj than the i’th supervoxel. In this case, vj moves from the i’th supervoxel to the ith supervoxel
with the update of svi , Q̃i , svi ′ , Q̃i ′ , and dj . The last case is the final case, during which all of the
clustering data remain unchanged. After visiting all voxels in from Q1 to QNS

, each Qi is replaced
with Q̃i .

4. Supervoxel-NDT Registration Algorithm
The SV-NDT partitions the model scan effectively with the supervoxel-generating algorithm presented
in the previous section instead of a 3-D regular grid, which does not take into account the surface
structures of the model scan. This reduces the loss of information when approximating the local
geometries of the model scan to ellipsoids.
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Fig. 6. An example of the traversing strategy of the flow-constrained clustering in a 2-D case. The circled
number within each seed voxel represents the index of each supervoxel. The pairs of a circled number and a
number in each occupied voxel, ij, represent that this voxel is visited by the ith supervoxel at the jth traversing
step. The traversing steps are written up to 30 steps in this figure. The voxels in the same level of each BFS are
visited clockwise direction from left-bottom corner in this figure.

In addition, the criterion to create correspondences between each point in the data scan and each
normal distribution is modified. In the 3-D NDT, each point in the data scan corresponds to the
normal distribution of the voxel containing it. If a point does not belong to an occupied voxel, it
corresponds to the normal distribution of the closest occupied voxel. Similarly, each point in the data
scan corresponds to its closest normal distribution in the SV-NDT as well. However, the distance
function is not the Euclidean distance but the new distance function �. �, taking into account not
only the Euclidean distance but the similarity of the normal vectors between the ith point in the data
scan and the normal distribution of the jth supervoxel, is defined as

�(i, j, p) =
(

1 − log2

(
1 − arccos

∣∣nx′
i
· nYj

∣∣
π
2

))
· ∥∥x′

i − μj

∥∥
2
, (17)

where x′
i is the ith point in the transformed data scan X′, μj is the mean vector of the point subset

Yj within the jth supervoxel, nx′
i

is the normal vector of X′ at x′
i , nYj

is the normal vector of the
surface within the jth supervoxel, and p is the current transformation parameter. nx′

i
and nYj

are
the normalized eigenvectors associated with the smallest eigenvalue of the covariance matrix of
Yj and the points in X′ around x′

i , respectively. The ratio of � to the Euclidean distance at each
included angle between nx′

i
and nYj

is shown in Fig. 7(a). When the included angle equals π/4, � is
equal to double the Euclidean distance, and when the included angle equals π/2, � goes to infinity.
Therefore, the distribution of the surface which is perpendicular to the surface around x′

i cannot be
the corresponding distribution. A simple example of this effect is shown in Fig. 7(b).

A flowchart of the SV-NDT registration algorithm is shown in Fig. 8. First, a supervoxel set SV

is obtained by applying the supervoxel-generating algorithm to the model scan Y . Next, the mean
vector and the covariance matrix of the point subset within each supervoxel are calculated. This
process is carried out using Eqs. (6) and (7) with Yn = {y ∈ Y |y ∈ ∪

k:vk∈svn

vk} for the nth supervoxel.
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Fig. 7. (a) Relationship between the ratio of � to the Euclidean distance and the included angle between the
normal vectors. (b) Comparison between correspondences generated by using � and the Euclidean distance.

After that, each normal vector nxi
of X at xi and each normal vector nYj

of Yj is calculated. Then,
the data scan is transformed by the initial transformation parameter. After the initialization phase,
the iterative optimization phase begins. The first step is to calculate the indices of the corresponding
normal distributions of the transformed data scan X′. The second step is to calculate the cost function
f , the gradient vector g, and the Hessian matrix H. Next, Newton’s step �p and the step size γ

are calculated, after which p is updated by Eqs. (13) and (14). Subsequently, each transformed point
x′

i with its normal vector nx′
i

is calculated with the current transformation parameter p. The normal
distributions of the scan used in Fig. 1, which is generated by the supervoxel-generating algorithm are
shown in Fig. 9. The surface within each supervoxel is mostly flat; thus, many normal distributions
are near-degenerate. We denote the eigenvalues of the covariance matrix of each normal distribution
as λ1, λ2, and λ3, satisfying λ1 ≥ λ2 ≥ λ3. Then, if λ2 is less than λ1/10, λ2 and λ3 are replaced with
λ1/10. Also, if λ2 is greater than or equal to λ1/10 and λ3 is less than λ1/10, only λ3 is replaced with
λ1/10.

5. Evaluation
The performance evaluation of the SV-NDT is separated into an evaluation of the supervoxel-
generating algorithm and the registration process. The experiments for the performance evaluation of
the supervoxel-generating algorithm under various scan conditions are presented in Section 5.1. The
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Fig. 8. Flowchart of the SV-NDT registration algorithm.

performance of the registration process of the SV-NDT is assessed through a comparison with other
widely used scan registration algorithms in Section 5.2.

5.1. Supervoxel-generating algorithm
The experiments to assess the runtime of the supervoxel-generating algorithm and the modeling
accuracy of the normal distributions as generated using the supervoxel-generating algorithm were
performed with several types of model scans. In these experiments, synthetic scan data were used to
control the attributes of the model scans and to simplify the analysis of the results. The synthetic scan
data were generated by setting up a situation in which a robot in an urban environment collected scans
using a Velodyne HDL-64E LiDAR sensor. Therefore, the specifications of the Velodyne HDL-64E
were used to determine the angular resolutions and the field of view. Three scenes were constructed
for the experiments, as shown in Fig. 10. A total of 16 scans were created by varying the three
conditions. The first condition involves the existence of relatively small objects, such as trees, cars,
and posts. The scans without objects are composed of large surfaces such as the ground and buildings.
The second condition is the curvature of the surfaces. The scans in Fig. 10 have only planes. The
rounded surfaces were generated by bending the surfaces around the edges. Given that there could
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Fig. 9. (a) Front view. (b) Top view. The normal distributions which employ the supervoxel-generating algorithm
to transform the model scan which is used in Fig. 1. The normal distributions model the model scan more
accurately using fewer distributions. The number of normal distributions is 87 in Fig. 1 but 78 in Fig. 9.

be four types of surfaces, four scans could be generated per scene by changing these two conditions.
The four scans generated from the second scene are illustrated in Fig. 11. The final condition is the
noise level. The noise is modeled as additive zero-mean Gaussian noise, and its standard deviation
is used as the noise level. Four values, i.e., 0, 1, 5, and 10 cm, were used as the noise levels. The
synthetic scan data contain 251,688 points on average.

First, an evaluation of the runtime of the supervoxel-generating algorithm was performed. The
average runtimes of the supervoxel-generating algorithm using each type of scan are given in Table I
when the seed resolution was set to 5 m. The runtime does not depend on whether the objects exist,
but it increased slightly when the surfaces of the scans were rounded at the edges. However, this result
depends heavily on the noise levels. The runtimes at a noise level of 10 cm are more than doubled
relative to those in noise-free cases. Nevertheless, the overall runtime is quite small, at less than 0.4
s, considering the number of points in the scans.

Next, the evaluation of the modeling accuracy of the normal distributions generated using the
supervoxel-generating algorithm was conducted by comparing the normal distributions generated
using the 3-D regular grid with the resolution equal to the seed resolution of the supervoxel-generating
algorithm. The second scene was selected for the evaluation because it has the most objects, and 0
and 10 cm were used as the noise levels. Initially, noise-free scan data were used; Fig. 12 shows the
normal distributions created by each method according to the type of surface. The columns present
the results of the 3-D regular grid and the supervoxel-generating algorithm, and the rows show the
results for each type of surface, which are in this case large planar surfaces, large rounded surfaces,
large planar surfaces with objects, and large rounded surfaces with objects. For the large planar
surfaces, the simplest type of surfaces, many of the normal distributions shown in Fig. 12(a) do not
model local surface structures accurately because the boundaries of the cell in the 3-D regular grid
do not take into account the boundaries of the local surfaces, which have different local geometries.
However, the normal distributions which are generated with the supervoxel-generating algorithm
model the model scan accurately (Fig. 12(b)). In Fig. 12(b), some supervoxels are composed of
points on a curve and not a surface. It appears that the distributions from those supervoxels do not
model the local surfaces accurately, but this stems from the limited angular resolution of the sensor.
When the ray from the sensor to a point is nearly parallel to the surface containing that point, the
points obtained around that point are locally formed, not as a surface but as a curve due to the limit
of the angular resolution of the sensor, and the curves are far apart from each other. There is no
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Fig. 10. Scenes of the synthetic scan data.
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Fig. 11. Scans created by varying the type of surfaces from the second scene. (a) large planar surface (b) large
rounded surfaces (c) large planar surfaces with objects (d) large rounded surfaces with objects.

Table I. Average runtime for the supervoxel generation using each kind of scans (ms).

������������������Type of surfaces

Noise level (cm)
0 1 5 10

Large planar surfaces 142 264 268 352
Large rounded surfaces 160 269 328 387
Large planar surfaces with objects 148 271 297 333
Large rounded surfaces with objects 148 276 322 353

reason for these curves to be considered as constituents of one local surface when no information
about the angular resolution of the sensor is given. Thus, although supervoxels with ground points
that are far from the sensor may contain a curve, the modeling accuracy is not affected. To evaluate
the influence of the first condition, i.e., the existence of the objects, the first and the second row in
Fig. 12 are compared with the third and last row in Fig. 12, respectively. When the 3-D regular grid is
used, normal distributions that could not model local surfaces were created. This mainly results from
the fact that both the object and some part of the ground were modeled by one normal distribution.
Because a few ground points are far from the sensor, the trees near them are modeled quite well.
With the supervoxel-generating algorithm, although a few distributions deteriorated the modeling
quality, the added objects were modeled accurately by adding small normal distributions. To assess
the influence of the second condition, i.e., whether the surfaces are planar or round, the first and the
third row in Fig. 12 are compared with the second and last row in Fig. 12, respectively. However, the
results of both methods are not affected by the second condition. To evaluate the effect of the final
condition, i.e., the noise level, the same process was repeated with a noise level of 10 cm. These results
are shown in Fig. 13. Because some of the points near the cell boundaries pass these boundaries, the
modeling accuracy of the 3-D regular grid decreased sharply (the left column in Fig. 13). However,
the noise had little impact on the results of the supervoxel-generating algorithm (the right column in
Fig. 13). The supervoxel-generating algorithm created the boundaries of the supervoxels based on
the local surface structures; thus, it is robust to a high noise level.
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Fig. 12. Normal distributions created by each method according to the type of surfaces with zero noise level.
Each column presents the results of the 3-D regular grid and the supervoxel-generating algorithm, and each row
shows the results of each type of surfaces, which are large planar surfaces, large rounded surfaces, large planar
surfaces with objects, and large rounded surfaces with objects.

5.2. Registration
The experiments to assess the performance of the registration process by the SV-NDT used a point
cloud dataset in both synthetic and real-world datasets. Not only the 3-D NDT but also the ICP and the
G-ICP, which are both widely used 3-D scan registration algorithms, were selected for the comparison
of the performance. The comparison factors were the robustness, accuracy, and runtime. These three
algorithms were implemented with a point cloud library (PCL). In addition to those algorithms, the
SV-NDT which uses the Euclidean distance when creating correspondences between the points in
the data scan and the normal distributions was also evaluated on the synthetic scan data in order to
assess the effect of the proposed distance function.
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Fig. 13. Normal distributions created by each method according to the type of surfaces with 10 cm noise level.
Each column presents the results of the 3-D regular grid and the supervoxel-generating algorithm, and each row
shows the results of each type of surfaces, which are large planar surfaces, large rounded surfaces, large planar
surfaces with objects, and large rounded surfaces with objects.

First, the synthetic scan data are used for the experiments. Each point in the synthetic scan data
used in the previous section was paired by creating new scans whose origins are 5 m away from the
origins of the existing scans. Therefore, a total of 48 scan pairs were used, and the raw data were used
for the experiments. The seed resolution in the SV-NDT and the voxel resolution in the 3-D NDT
were set to 5 m. Likewise, the maximum distance threshold between two corresponding points is a
parameter in the ICP and the G-ICP, and it was set to 10 m for each algorithm. These parameters were
determined from among 2.5, 5, and 10 m by experiments to determine which one provides the best
performance with those scan data. The registration experiments were performed using a variety of
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Fig. 14. Registration results of each registration algorithm according to the noise levels using the type of large
planar surfaces. (a) success rate (b) runtime (c) final translation error (d) final rotation error.

initial transformation errors. The tested initial transformation errors were composed of the translation
errors from −3 to 3 m at intervals of 1.5 m along the x and y axes and the rotation errors from −30
to 30◦ at intervals of 15◦ about the z axis. Thus, a total of 125 initial transformation errors were
tested for each scan pair. To measure the robustness and accuracy, the success criteria were set to a
translation error of 0.3 m and a rotation error of 0.05 radians. The robustness of each registration
algorithm was measured by the success rate, and the success rate of each algorithm according to
the conditions, the type of surfaces and the noise level, was calculated by the success rate out of a
total 375 registration results generated by applying 125 initial transformation errors to three scenes
with the same conditions. The runtime and the accuracy of each algorithm were measured using the
runtime, the final translation error, and the final rotation error of the successful registration cases.
For each type of surface, the results for each algorithm according to the noise level are illustrated
in Figs. 14–17. The results in Figs. 14–17 were obtained using large planar surfaces, large rounded
surfaces, large planar surfaces with objects, and large rounded surfaces with objects. To compare
each algorithm easily, every figure is divided into five sections (from left: SV-NDT, SV-NDT with
the Euclidean distance (SV-NDT-E), the 3-D NDT, ICP, and G-ICP). Each section shows the results
of each algorithm according to the noise level (from left: 0, 1, 5, and 10 cm).

The first plot of each figure shows the success rate of each algorithm using bar graphs. The second
to fourth plots of each figure respectively present the runtime, final translation and rotation error of
each algorithm using boxplots. In each boxplot, the red line shows the median, and the blue box
represents the range from the 25th percentile to the 75th percentile. The length of the whiskers is
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Fig. 15. Registration results of each registration algorithm according to the noise levels using the type of large
rounded surfaces. (a) success rate (b) runtime (c) final translation error (d) final rotation error.

1.5 times the length between the 25th percentile and the 75th percentile, and the results outside the
whiskers are considered as outliers.

First, the robustness of each algorithm was analyzed. As shown in the figures, the most robust
algorithm is the SV-NDT, and its success rates are greater than 0.9 in all but two cases of conditions.
Moreover, its lowest success rate is 0.8373. The G-ICP is more robust than the SV-NDT-E except
for the case of the large rounded surfaces, and it is followed by the 3-D NDT and the ICP. The 3-D
NDT is more robust than the ICP, but it cannot overcome the large initial transformation errors. For
all except for the SV-NDT-E, the success rates increased when the scan data with the objects were
used, as the objects provide additional information with which to estimate the relative transformation
between the two scans. The success rates of the SV-NDT and the SV-NDT-E when rounded surfaces
are used are larger than those when planar surfaces are used, but the G-ICP has the opposite effect.
The overall robustness levels of the SV-NDT, the SV-NDT-E, and the 3-D NDT depend little on the
noise level, whereas the robustness of the G-ICP relies heavily on the noise level. When the noise
level is 10 cm, the success rate of the G-ICP falls rapidly. This outcome results from the number of
points used to estimate the covariance matrices. The SV-NDT and the 3-D NDT use points in each
part of the partitioned model scan; thus, many covariance matrices are reliably estimated due to the
use of a sufficient number of points. However, the G-ICP uses only a predefined number of points
around each point to estimate the covariance.

Next, the runtime of each algorithm is evaluated. The ICP is the fastest, followed by the SV-
NDT, the SV-NDT-E, the G-ICP, and the 3-D NDT. The ICP achieves success only when the initial
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Fig. 16. Registration results of each registration algorithm according to the noise levels using the type of large
planar surfaces with objects. (a) success rate (b) runtime (c) final translation error (d) final rotation error.

transformation errors are quite small. Thus, the runtime is very small, about 8.86 s, compared to
the other algorithms. The median runtimes of the SV-NDT and the G-ICP, about 24.26 and 23.14
s respectively, are similar to each other, but their corresponding 75th percentiles, about 29.43 and
40.58 s, differ considerably. The median runtime of the SV-NDT-E is about 30.07 s, which is larger
than that of the G-ICP, but the 75th percentile of the SV-NDT-E, about 36.03 s, is smaller than that
of the G-ICP.

Finally, the accuracy levels were compared. The results of the SV-NDT, the SV-NDT-E, and the
3-D NDT do not show any tendency with regard to different noise levels. In addition, they show
similar accuracy levels in many cases. However, the G-ICP shows a clear tendency. In the noise-free
case, the G-ICP is the most accurate, but the accuracy decreases sharply with an increase in the noise
level. The reason is identical to that of the success rate: the number of points used to estimate each
covariance matrix. The overall accuracy of the 3-D NDT is much lower than that of the SV-NDT
because the normal distributions generated when using the 3-D regular grid cannot model the model
scan accurately, as shown in Section 5.1.

The SV-NDT-E is significantly superior to the 3-D NDT in all aspects but lacks the performance
in terms of the robustness and runtime compared to the SV-NDT. This shows that the registration
performance is heavily affected by the modeling accuracy of the normal distributions as transformed
from the model scan. Moreover, the proposed distance function has a positive effect on the size of
the basin of attraction and the speed of convergence.
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Fig. 17. Registration results of each registration algorithm according to the noise levels using the type of large
rounded surfaces with objects. (a) success rate (b) runtime (c) final translation error (d) final rotation error.

The real-world dataset is the Ford Campus Vision and Lidar Data Set30 gathered using a Velodyne
HDL-64E LiDAR sensor. Five distinguishing scan pairs with time step differences of 10 were selected
for the test. Figure 18 and Table II show the positions and the detailed surroundings of the test scan
pairs, respectively. The raw data, which contain 78,341 points on average, were used in an intact form.
The seed resolution in the SV-NDT and the voxel resolution in the 3-D NDT were set to 10 m and 5
m, respectively, and the maximum correspondence distance was set to 10 m for each algorithm. These
parameters were determined from among 3, 5, 10, and 20 m by experiments to determine which one
provides the best performance with the dataset.

Initially, cases in which the initial transformation errors consist of either translation or rotation
errors were evaluated so as to evaluate the robustness of each algorithm to the initial translation and
initial rotation errors separately. First, experiments to test the robustness to initial translation errors
were performed for each algorithm. The tested initial translation errors ranged from −5 to 5 m at
intervals of 1 m along the x and y axes. Figure 19 shows boxplots of the results of these experiments.
The horizontal axis represents the magnitude of each initial translation error vector. Because the initial
translation errors are two-dimensional vectors, the magnitude difference is not uniform. The dashed
line represents the success criterion, which was set to 0.3 m. The results show that the SV-NDT and
the G-ICP are most robust to the initial translation error. In the ICP case, the final translation errors
increase with greater initial translation errors. The 3-D NDT fails in registration when the initial
translation errors are larger than 4 m. However, all of the medians of the final translation errors of
the SV-NDT and the G-ICP are under the dashed line. Nevertheless, the SV-NDT has many outliers
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Fig. 18. Positions of the test scan pairs with full path of the dataset.

Table II. Detailed surroundings of the test scan pairs.

Scan pair number Detailed surroundings

1 A straight road with low car density
2 A straight road with high car density
3 Turning left at an intersection
4 Going straight at an intersection
5 A parking lot

when the initial translation errors are greater than or equal to the square root of 18. About half of
these outliers occur from the second scan pair. The major characteristic of the environment of the
second scan pair is that there are numerous moving cars. Considering that most of the scanned points
from cars are from the sides of the cars, the estimated local surfaces from the cars are perpendicular
to the ground. The G-ICP algorithm makes correspondences using the Euclidean distance and takes
the normal directions of the local surfaces into consideration by adjusting for the influence of the
correspondences via a cost function according to the similarity of the normal directions. The points
from moving cars in the data scan correspond to the points from the ground; thus, their influences on
the cost function are reduced sharply. Consequently, the G-ICP has few outliers in spite of the many
moving cars which existed in this case. However, the SV-NDT algorithm takes the normal directions
of the local surfaces into account when making correspondences. Thus, the points from moving cars
in the data scan correspond to the distributions from the same cars which are, however, not in the same
position or from other surfaces which are not parallel to the ground. As a result, a few final translation
errors are quite large and are therefore considered as outliers, but most of the final translation errors,
at least three quarters of them except for the initial translation errors, are the square roots of 18 and
50, i.e., small enough to be regarded as successful cases. Next, experiments to test the robustness to
the initial rotation error were performed for each algorithm. The tested initial rotation errors ranged
from −50 to 50◦ at intervals of 10◦ about the z axis. Boxplots of the results of these experiments are
shown in Fig. 20. The dashed line, the success criterion, was set to 0.05 radians. The SV-NDT, the
3-D NDT, and the G-ICP carried out the scan registration successfully with an initial rotation error
of up to 20◦, but the ICP failed with small initial rotation errors. Because the 25th percentiles of the
final rotation errors of the SV-NDT and the 3-D NDT are under the dashed line in the case of 30◦, the
SV-NDT and the 3-D NDT are the most robust algorithms with regard to the initial rotation errors.

Given that the initial transformation error consists of both translation and rotation error concurrently
in general cases of scan registration, an assessment of those cases is also required. Thus, experiments
whose initial transformation errors were composed of initial translation and initial rotation errors
were performed for each algorithm. The tested initial formation errors ranged from −5 to 5 m of the
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Fig. 19. The boxplots of the final translation errors of each registration algorithm according to the initial
translation errors when the initial transformation errors consist of only the initial translation errors. (a) SV-NDT
(b) 3-D NDT (c) ICP (d) G-ICP.

initial translation error at intervals of 1 m along the x and y axes and from −50 to 50◦ of the initial
rotation error at intervals of 10◦ about z axis. In other words, each algorithm runs a total of 1331
registration per scan pair. Boxplots of the translation and the rotation part of the results are shown
in Figs. 21 and 22, respectively. The SV-NDT outperforms the other scan registration algorithms.
Because the initial translation and rotation errors were combined, the overall magnitude of the final
translation or rotation errors and the numbers of outliers are increased for all algorithms. This stems
from the differences in the sizes of the basins of attraction of each registration algorithm. Because the
sizes of the basins of attraction of the 3-D NDT and the ICP are small, the estimated transformations
are close to the initial transformation. Thus, the final transformation errors increase with the initial
transformation errors, but they are narrowly distributed. As a result, the numbers of outliers of the
3-D NDT and the ICP are small. However, in that the SV-NDT and the G-ICP have large basins of
attraction of the correct solution, these algorithms can overcome large initial transformation errors,
but in the cases with converging local minima, the distributions of the final transformation errors are
wide. This is why the SV-NDT and the G-ICP have many outliers, as shown in Figs. 21 and 22. In
spite of that, the medians of the final translation errors of the SV-NDT are under the dashed line when
the initial translation errors are less than 5 m. Although the 25th percentiles of the final translation
errors of the G-ICP are as low as those of the SV-NDT, the medians increase with the initial translation
error. The success rate of the 3-D NDT is greater than 25% when the initial translation error is as
high as 4 m, but the 3-D NDT fails in registration when the initial translation errors are larger than
4 m. Because the ICP is not robust to the initial rotation errors, the robustness decreases drastically
regardless of the initial translation error. According to Fig. 22, the SV-NDT succeeded in most of the
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Fig. 20. The boxplots of the final rotation errors of each registration algorithm according to the initial rotation
errors when the initial transformation errors consist of only the initial rotation errors. (a) SV-NDT (b) 3-D NDT
(c) ICP (d) G-ICP.

registrations up to an initial rotation error of 20◦, and the 3-D NDT and G-ICP achieved success up to
an initial rotation error of 10◦. In addition, the success rate of the SV-NDT is greater than 50% when
the initial rotation error is 30◦.

The success rate of each algorithm is summarized in Fig. 23 and in the first row of Table III. The
SV-NDT far surpasses the 3-D NDT and is superior to the other algorithms on average although the
G-ICP is better than the SV-NDT on scan pairs 3 and 4, which were collected at intersections. The
overall success rates are somewhat low, as the initial translation errors are two-dimensional. When
magnitude of the initial translation error is larger, there exist more cases of the initial translation error
with the same magnitude. When the initial transformation error is larger than 5 m for translations
and larger than 30◦ for rotations, no algorithm works well. There are 848 of these cases, representing
63.7% out of the 1331 cases in total. The second row in Table III shows the partial averages of the
success rates, apart from those cases.

For a comparison of the accuracy levels, the final transformation errors of the successful registration
cases were evaluated. Boxplots of the translation part and the rotation part of these results are shown
in Fig. 24, and medians in the boxplots are summarized in the third and fourth row in Table III. In the
translation part, the 3-D NDT and the G-ICP show the best results on the basis of the median values,
followed by the SV-NDT and the ICP. The difference between the median values of the SV-NDT and
the NDT is approximately 1 cm, which is tiny with respect to the scale of the scans, about 120 m,
showing that the translation accuracy levels of the SV-NDT, the 3-D NDT, and the G-ICP are nearly
identical. In the rotation part, the SV-NDT is slightly superior to the other algorithms, followed by
the G-ICP, the ICP, and the 3-D NDT, but they are also about the same.
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Fig. 21. The boxplots of the final translation errors of each registration algorithm according to the initial
translation errors when the initial transformation errors consist of both initial translation and initial rotation
errors. (a) SV-NDT (b) 3-D NDT (c) ICP (d) G-ICP.

Finally, the runtimes of each registration algorithm were assessed. Figure 25 shows boxplots of
the runtimes of the successful registration cases. The ICP is the fastest, followed by the SV-NDT, the
G-ICP, and the 3-D NDT. The ICP succeeded in registrations with only minor initial transformation
errors; thus, its runtime value is much lower than that of the others. The median values of the runtimes
of each algorithm are shown in the last row of Table III. The SV-NDT is about 1.96 times faster
than the G-ICP and is about 5.92 times faster than the 3-D NDT. Additionally, the runtimes of the
supervoxel-generating algorithm for each scan pair are presented in Table IV. These runtimes are
about 68.4 milliseconds on average, and they are only 1.70 percent of the average of the overall
runtimes of the SV-NDT registration algorithm.

6. Conclusions
In this paper, a novel algorithm based on the 3-D NDT registration algorithm called the SV-NDT
is proposed. It reduces the information loss of local surface structures with a supervoxel-generating
algorithm when transforming the model scan into normal distributions, and it utilizes the local
surface structures of the data scan through the use a newly proposed distance function which selects
the corresponding distribution of each point in the data scan rather than the Euclidean distance.
The results of an evaluation of the supervoxel-generating algorithm on synthetic scan data show
that the algorithm greatly increases the modeling accuracy of the normal distributions. Furthermore,
experiments which ran a performance evaluation of the SV-NDT on synthetic and real-world datasets
demonstrated that the robustness and speed of the SV-NDT significantly exceed those of previous
algorithms while maintaining comparable levels of accuracy.
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Fig. 22. The boxplots of the final rotation errors of each registration algorithm according to the initial rotation
errors when the initial transformation errors consist of both initial translation and initial rotation errors. (a)
SV-NDT (b) 3-D NDT (c) ICP (d) G-ICP.

Fig. 23. Success rate of each algorithm for each scan pair.
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Table III. Performances of each algorithm.

SV-NDT 3-D NDT ICP G-ICP

Success rate average 0.5098 0.1231 0.0057 0.3757
Success rate partial average 0.7342 0.3391 0.0157 0.5921
Translation accuracy (mm) 73.523 61.471 190.58 61.31
Rotation accuracy (mrad) 3.017 4.183 3.502 3.50
Runtime (s) 4.025 23.835 1.862 7.88

Fig. 24. Accuracy of each registration algorithm (a) translation part (b) rotation part.

Fig. 25. Runtime of each algorithm.

Table IV. Runtimes of the supervoxel-generating algorithm for each scan pair.

Scan pair number 1 2 3 4 5

Runtime (ms) 62 65 72 74 69
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In future work, performance evaluations of the SV-NDT on datasets which are obtained by various
sensors or in different environments can be carried out. In addition, to improve the performance of the
proposed algorithm more, a method that generates supervoxels more consistently can be investigated
to exploit supervoxels for loop detection and initial pose estimation purposes. Finally, the SV-NDT
can be applied to 3-D SLAM from 3-D scan registration to the graph optimization.
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