
J. Fluid Mech. (2014), vol. 739, pp. 392–420. c© Cambridge University Press 2013 392
doi:10.1017/jfm.2013.620

A generalized Reynolds analogy for compressible
wall-bounded turbulent flows

You-Sheng Zhang1,2, Wei-Tao Bi1,†, Fazle Hussain3 and Zhen-Su She1

1State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and
Engineering Science, College of Engineering, Peking University, Beijing 100871, China
2Institute of Applied Physics and Computational Mathematics, Beijing 100094, China

3Department of Mechanical Engineering,Texas Tech University, Lubbock, TX 79409-1021, USA

(Received 7 April 2013; revised 7 October 2013; accepted 17 November 2013;

A generalized Reynolds analogy (GRA) is proposed for compressible wall-bounded
turbulent flows (CWTFs) and validated by direct numerical simulations. By
introducing a general recovery factor, a similarity between the Reynolds-averaged
momentum and energy equations is established for the canonical CWTFs (i.e. pipes,
channels, and flat-plate boundary layers that meet the quasi-one-dimensional flow
approximation), independent of Prandtl number, wall temperature, Mach number,
Reynolds number, and pressure gradient. This similarity and the relationships between
temperature and velocity fields constitute the GRA. The GRA relationship between
the mean temperature and the mean velocity takes the same quadratic form as Walz’s
equation, with the adiabatic recovery factor replaced by the general recovery factor,
and extends the validity of the latter to diabatic compressible turbulent boundary layers
and channel/pipe flows. It also derives Duan & Martı́n’s (J. Fluid Mech., vol. 684,
2011, pp. 25–59) empirical relation for flows at different physical conditions (wall
temperature, Mach number, enthalpy condition, surface catalysis, etc.). Several key
parameters besides the general recovery factor emerge in the GRA. An effective
turbulent Prandtl number is shown to be the reason for the parabolic profile of
mean temperature versus mean velocity, and it approximates unity in the fully
turbulent region. A dimensionless wall temperature, that we call the diabatic parameter,
characterizes the wall-temperature effects in diabatic flows. The GRA also extends the
analysis to the fluctuation fields. It recovers the modified strong Reynolds analogy
proposed by Huang, Coleman & Bradshaw (J. Fluid Mech., vol. 305, 1995, pp.
185–218) and explains the variation of the temperature–velocity correlation coefficient
with wall temperature. Thus, the GRA unveils a generalized similarity principle behind
the complex nonlinear coupling between the thermal and velocity fields of CWTFs.
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1. Introduction
Compressible wall-bounded turbulent flows (CWTFs) are ubiquitous on the surfaces

of high-speed flying vehicles, gas turbine blades, rocket motor nozzles, etc. In these
flows, heat transfer is as important as the aerodynamic force (Smits & Dussauge

† Email address for correspondence: weitaobi@pku.edu.cn

first published online 20 December 2013)
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2006). For the structure to be safe, efficient, reliable and economical, an accurate
estimation of the velocity and thermal fields is needed, which is difficult due to the
nonlinear coupling between the kinetic and thermal quantities, affected by varied flow
conditions in aerospace applications. The topic has a long history of study, focusing
on establishing quantitative relationships between temperature and velocity through
the similarity of momentum and energy transport in wall-bounded turbulent flows
(Reynolds 1874; Morkovin 1962; Walz 1966; Cebeci & Smith 1974; Gaviglio 1987;
Huang, Coleman & Bradshaw 1995; Brun et al. 2008). These theories, generally
referred to as the Reynolds analogy, have been utilized to develop integral methods to
calculate the wall heat flux and the skin friction (Van Driest 1951; Spalding & Chi
1964; Sheshagir & Paranjpe 1969; Hopkins & Inouye 1971; Stalker 2005); they have
also been used to develop models for compressible turbulence (Rubesin 1990; Jiang &
Campbell 2008).

Being one of the very few theoretical concepts in compressible turbulence, the
Reynolds analogy theory continues to attract much attention (Guarini et al. 2000;
Maeder, Adams & Kleiser 2001; Pirozzoli, Grasso & Gatski 2004; Brun et al.
2008; Duan 2011; Pirozzoli & Bernardini 2011). On one hand, these theories are
still inadequate in depicting complex flows, e.g. CWTFs with pressure gradient and
surface heat flux, for which the mechanism is generally unclear. On the other hand,
quantitatively accurate mean-field theories of wall-bounded turbulent flows are now
promising, particularly with the help of direct numerical simulation (DNS) data (She
et al. 2010, 2011 (unpublished observations), 2012), in which the Reynolds analogy
theories present a way to decouple the effects of the thermal and velocity fields.
With quantitative comparison to DNS data, the Reynolds analogy itself may also be
improved and the mechanism elucidated. This is the aim of the present study.

The first temperature–velocity relationship was presented by Reynolds (1874) for
incompressible flows through the similarity between the Reynolds-averaged momentum
and energy equations – the so-called Reynolds analogy. This theory was then extended
to compressible flows. Busemann (1931) and Crocco (1932) independently obtained a
relation for compressible laminar boundary layers by assuming unity Prandtl number
(Pr, for air Pr ≈ 0.7). Their derivations were extended to turbulent boundary layers
by Van Driest (1951). These studies show that the mean temperature is a quadratic
function of the mean velocity:

T̄

T̄δ
= T̄w

T̄δ
+ T̄cδ − T̄w

T̄δ

ū

ūδ
+ T̄δ − T̄cδ

T̄δ

(
ū

ūδ

)2

, T̄cδ = T̄δ + c
ū2
δ

2Cp
, (1.1)

where T is temperature, u is streamwise velocity, Cp is specific heat at constant
pressure, an overbar denotes a Reynolds average, subscript w denotes wall, and
subscript δ denotes boundary layer edge (δ = δ99). The c in (1.1) is a parameter
that equals one in the Crocco–Busemann relation, but modified to the recovery
factor r of ∼0.9 by Walz (1966) to account for the deviation of Pr from unity.
Equation (1.1) with c = r was called the modified Crocco–Busemann relation or
Walz’s equation. Various theories (Whitfield & High 1977), measurements (Laderman
& Demetriades 1974; Owen, Horstman & Kussoy 1975; Laderman 1978) and DNS
(Gatski & Erlebacher 2002; Pirozzoli et al. 2004; Duan 2011) show that Walz’s
equation improves the Crocco–Busemann relation and agrees with DNS very well
in adiabatic compressible turbulent boundary layers (CTBLs). In diabatic CTBLs,
however, Walz’s equation clearly deviates from DNS (Duan 2011).
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Here, we introduce a general recovery factor rg that includes the effects of Pr,
wall temperature, pressure gradient, etc., and derive (1.1) with c = rg. Development of
the new relation is based on a generalized similarity between the Reynolds-averaged
momentum and energy equations of the CWTFs that meet the quasi-one-dimensional
flow approximation. We call this newly derived similarity a generalized Reynolds
analogy (GRA). In this paper, the mean relation of the GRA (i.e. (1.1) with c = rg)
is validated by DNS of CTBLs, compressible channel flows (CCFs) and compressible
pipe flows (CPFs). Duan & Martı́n (2011) recently presented an empirical relation
based on DNS of a broad category of CTBLs. As will be demonstrated, Duan and
Martı́n’s relation can be derived by the GRA relation, and their empirical constant is
revealed to be the product of Pr and the Reynolds analogy factor s.

Regarding the fluctuation fields, sets of relations with respect to the correlations
of the streamwise velocity fluctuation u′ and the temperature fluctuation T ′ have
also been proposed. The first set was identified by Morkovin (1962) and known
collectively as the strong Reynolds analogy (SRA). The SRA was derived for zero-
pressure-gradient adiabatic CTBLs under two assumptions: (a) Pr = 1; and (b) T ′t = 0,
where Tt = T + uiui/(2Cp) is total temperature. In numerous studies (Gaviglio 1987;
Guarini et al. 2000; Maeder et al. 2001; Duan 2011), most SRA relations have been
found invalid. This invalidity was generally ascribed to failure to satisfy assumption
(b). Later, Cebeci & Smith (1974) extended the SRA to consider the wall heat flux,
but the extended SRA is still inadequate in describing the experimental (Gaviglio
1987) and DNS (Duan 2011) data for diabatic flows.

Some modified SRAs, invoking different assumptions, have a common form:√
T ′2/T̄

(γ − 1)M2
√

u′2/ū
= 1

a
(
1− ∂T̄t/∂T̄

) , (1.2)

where a is chosen to be 1, 1.34, Prt (i.e. turbulent Prandtl number) or 1/Prm (i.e.
mixed Prandtl number) in the models proposed by Gaviglio (1987), Rubesin (1990),
Huang et al. (1995) and Brun et al. (2008) respectively, γ = 1.4 is the ratio of
specific heats, M = ū/

√
γRT̄ is local Mach number, and R is the constant of ideal

gas. Among the four modified SRAs, Huang’s model (HSRA) agrees best with
DNS under different wall temperature conditions and flow situations including external
(Guarini et al. 2000; Maeder et al. 2001; Pirozzoli et al. 2004; Duan 2011; Pirozzoli &
Bernardini 2011) and internal flows (Huang et al. 1995). Guarini et al. (2000) showed
via a thorough analysis that HSRA revealed a key analogy between the normalized
rates of turbulent heat and momentum transfers. In the present paper, we prove that
this key analogy, and hence HSRA, are a consequence of the GRA, which is an
advance since HSRA was proposed phenomenologically (Gaviglio 1987; Huang et al.
1995). A slight modification to HSRA is also suggested by the GRA, and this agrees
with DNS better than HSRA. These findings are obtained by considering the deviation
from real turbulence of the strong analogy assumption of the SRA (for zero-pressure-
gradient adiabatic CTBLs, assumption b given above). As will be shown, this deviation
can be utilized to explain the reason for the validity of HSRA and the variation of the
temperature–velocity correlation coefficient with wall temperature.

This paper presents the theory of the GRA, its validation, and application. The paper
is structured as follows. The DNS cases used for assessing the GRA and the other
Reynolds analogy theories are briefly described in § 2. The existing Reynolds analogy
theories are reviewed and analysed in § 3. The GRA is derived in § 4, followed by
the results on the mean temperature–velocity relationship in § 5 and the fluctuation

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

62
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.620


Generalized Reynolds analogy for compressible wall-bounded turbulent flows 395

temperature–velocity relationship in § 6. Discussions appear in § 7 and conclusions in
§ 8. Appendices give derivations of some important formulae.

2. DNS for assessing the Reynolds analogy theories
We assess the GRA and the other Reynolds analogy theories using the DNS data

listed in table 1. The DNS were carried out by several groups and on different flows,
including Ghosh, Foysi & Friedrich (2010) for CPF and CCF, Huang et al. (1995) for
CCFs, Duan (2011) for CTBLs, Wang (2012) for CCFs, and Pirozzoli & Bernardini
(2011) and us for CTBLs that employ a spatially evolving simulation. The DNS
of Wang and ours have used the code developed by Xin-Liang Li with numerical
details documented in Li, Ma & Fu (2001) for CCFs and Li, Fu & Ma (2006) for
CTBLs. In table 1, notation CPFM1.30Θ − 0.77, for example, denotes a CPF at
M = 1.30 and Θ = −0.77. Here the M for external and internal flows, respectively,
are defined as M∞ = ū∞/

√
γRT̄∞ (Duan 2011) and Mm = ūm/

√
γRT̄w (Ghosh et al.

2010), where subscript ∞ denotes free stream and subscript m means averaged
in the pipe/channel cross-section. Θ = (T̄w − T̄δ)/(T̄r − T̄δ) is a dimensionless wall
temperature that we call the diabatic parameter. Θ is calculated by using the recovery
temperature T̄r ≡ T̄δ + rū2

δ/(2Cp) with the recovery factor r = 0.9 for all the DNS. In
CCFs/CPFs δ denotes the channel/pipe centre. Note that the DNS cases in table 1
cover adiabatic/diabatic walls, with/without pressure gradients and both external and
internal flows. The parameter space is also broad, and consists of Reynolds number
(Reτ = 220 ∼ 2100), Mach number (M = 2.00 ∼ 9.40) and the diabatic parameter
(Θ =−1.01∼ 1.00).

3. A review of the Reynolds analogy theories
The time-averaged Navier–Stokes equations are (Gatski & Bonnet 2009)

∂xi(ρui)= 0, (3.1)

∂xj(ρuiuj)=−∂xi p̄+ ∂xj(τxixj), (3.2)

∂xj(ρujH)= ∂xj(uiτxixj)− ∂xj(qxj), (3.3)

where (3.1)–(3.3) are the continuity, momentum, and energy equations, ρ is density,
p is pressure, H = CpTt = h + uiui/2 is total enthalpy, h = CpT is enthalpy, τxixj =
2µ(Sij − Skkδij/3) is the viscous stress tensor with Sij = (∂xjui + ∂xiuj)/2, qxi = −k∂xiT
is heat flux, µ is viscosity that is related to thermal conductivity k by Pr = Cpµ/k. In
this paper the following approximations are frequently adopted:

uiui ≈ u2, u2 ≈ ū2 + 2ūu′, (3.4)

which are called the quasi-parallel flow approximation and the small turbulence
intensity approximation, respectively. They are both rather accurate and widely applied
in the analysis of canonical CWTFs. For convenience, the review in this section is
limited to zero-pressure-gradient CTBLs.

3.1. Crocco–Busemann relation (1931, 1932), SRA (1962), and extended SRA (1974)
Owing to Young’s work in 1951 (Howarth 1953; Spina, Smits & Robinson 1994), the
energy equation can be written in the form of total enthalpy (Gatski & Bonnet 2009):

ρ̄ū∂xH̄ + ρ̄v̄∂yH̄ = ∂y[(µ̄/Pr)∂yH̄ − ρH′v′]
+ ∂y[µ̄(1− 1/Pr)∂y(ūiūi/2− u′iu′i/2)]. (3.5)
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Case Reτ Case Reτ

CPFM1.30Θ − 0.77
(Ghosh2010)

245 CCFM6.00Θ − 0.97
(Wang2012)

987

CCFM1.26Θ − 0.94
(Ghosh2010)

246 CCFM6.00Θ − 1.01
(Wang2012)

1536

CCFM1.50Θ − 0.71
(Huang1995)

220 CTBLM2.00Θ1.00
(Pirozzoli2011)

1116 (205∼ 1123 in DNS)

CCFM3.00Θ − 0.72
(Huang1995)

448 CTBLM2.25Θ0.99 550 (500∼ 1000 in DNS)

CCFM1.50Θ − 0.54
(Wang2012)

430 CTBLM4.50Θ0.93 550 (325∼ 600 in DNS)

CCFM3.00Θ − 0.71
(Wang2012)

431 CTBLM4.50Θ0.41 800 (600∼ 860 in DNS)

CCFM3.00Θ − 0.75
(Wang2012)

693 CTBLM4.50Θ0.00 2100 (1950∼ 2350 in DNS)

CCFM3.00Θ − 0.78
(Wang2012)

918 CTBLM6.00Θ0.92 550 (275∼ 600 in DNS)

CCFM6.00Θ − 0.73
(Wang2012)

430 CTBLM3.40∼ 9.40Θ 377, 398, . . . , 938

0.60∼−0.29 (Duan2011)

TABLE 1. The DNS used for assessing the Reynolds analogy theories. Data taken from Ghosh et al. (2010), Huang et al. (1995), Duan
(2011), Wang (2012), and from Pirozzoli & Bernardini (2011) and our DNS that employ a spatially evolving simulation.
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If Pr = 1, the momentum and energy equations would display a similarity to give

ρ̄ū∂xū+ ρ̄v̄∂yū= ∂y(µ̄∂yū− ρu′v′), (3.6)

ρ̄ū∂xH̄ + ρ̄v̄∂yH̄ = ∂y(µ̄∂yH̄ − ρH′v′). (3.7)

To find an analogy solution of (3.6) and (3.7), a ‘strong’ analogy assumption has been
introduced:

H′ = Uwu′, (3.8)

where Uw is a proportionality constant with dimension of velocity. Subtracting (3.6)
from (3.7) gives

(ρ̄ū∂x + ρ̄v̄∂y − ∂y(µ̄∂y))(H̄ − Uwū)= 0, (3.9)

whose solution is

H̄ − H̄w = Uwū, (3.10)

where H̄w is the total enthalpy at the wall and Uw = −q̄yw/τ̄w. The mean
temperature–velocity relation can be derived from (3.10), as

T̄

T̄δ
= T̄w

T̄δ
+ T̄tδ − T̄w

T̄δ

ū

ūδ
+ T̄δ − T̄tδ

T̄δ

(
ū

ūδ

)2

, T̄tδ = T̄δ +
ū2
δ

2Cp
. (3.11)

Equation (3.11) is called the Crocco–Busemann relation since it is similar to the
relation derived by Busemann (1931) and Crocco (1932) for compressible laminar
boundary layers.

In the case of an adiabatic wall, q̄yw = 0 gives Uw = 0. The strong analogy solutions
become T̄t = T̄w and T ′t = 0. The former has been moderately well confirmed by DNS
(Guarini et al. 2000), which shows the mean total temperature to deviate from a
constant value by less than 7 % for an M = 2.5 CTBL. The latter leads to

T ′ + (ū/Cp)u
′ = 0. (3.12)

This instantaneous relation has several statistical consequences: u′T ′ = −(ū/Cp)u′2,√
T ′2 = (ū/Cp)

√
u′2, and ρT ′v′ =−(ū/Cp)ρu′v′, and also√

T ′2/T̄

(γ − 1)M2
√

u′2/ū
= 1, (3.13)

Ru′T ′ = u′T ′√
u′2
√

T ′2
=−1, (3.14)

Prt = ρu′v′(∂T̄/∂y)

ρT ′v′(∂ ū/∂y)
= 1, (3.15)√

T ′2

T̄w − T̄δ
= 2

ū

ūδ

√
u′2

ūδ
. (3.16)

In (3.13), M = ū/
√
γRT̄ . Equations (3.12)–(3.16) identified by Morkovin (1962) are

collectively known as the strong Reynolds analogy.
The assumption of negligible T ′t (i.e. (3.12)) was invalidated by both experiment

(Debieve, Gouin & Gaviglio 1982; Gaviglio 1987) and DNS (Guarini et al. 2000;

Maeder et al. 2001; Duan, Beekman & Martı́n 2011). They showed that
√

T ′2t is
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comparable to
√

T ′2. Consequently, the SRA relations are generally poorly satisfied.
For example, the predictions of Ru′T ′ = −1 and Prt = 1 clearly deviate from the
observed values of Ru′T ′ =−0.7∼−0.5 and Prt = 0.7∼ 0.9 in quasi-adiabatic CTBLs
up to the hypersonic regime (Guarini et al. 2000; Maeder et al. 2001; Pirozzoli et al.
2004; Duan 2011; Pirozzoli & Bernardini 2011). However, (3.13) is well satisfied
in both experiments (Gaviglio 1987) and numerical simulations (Guarini et al. 2000).
Then a question arises as to why (3.13) is satisfied under an incorrect assumption.
Regarding this, both Debiève (1976) and Gaviglio (1987) demonstrated that (3.12) is a
sufficient but not necessary condition of (3.13). By rearranging the r.m.s. of the total
temperature fluctuations as √

T ′2 − T ′2t + 2T ′t T ′/T

(γ − 1)M2
√

u′2/ū
= 1, (3.17)

Guarini et al. (2000) pointed out that the validity of (3.13) came from T ′2 �
T ′2t − 2T ′t T ′, instead of T ′2t = 0. Gaviglio (1987) noticed that the total temperature
fluctuation could be written in a general form as√

T ′2t =
[
T ′2 + u′2(ū/Cp)

2 + 2(ū/Cp)

√
u′2
√

T ′2Ru′T ′
]1/2

. (3.18)

Applying (3.13)–(3.18), one obtains Ru′T ′ = T ′2t /(2T ′2)−1 (Gaviglio 1987), which
performs better than (3.14).

SRA can be extended to diabatic flows. Substituting T̄tδ − T̄w = ūδ(Uw/Cp) into the
assumption H′ = Uwu′, with the approximations in (3.4), one obtains

− T ′/T̄
(γ − 1)M2u′/ū

= 1− Cp
T̄tδ − T̄w

ūδū
, (3.19)√

T ′2/T̄

(γ − 1)M2
√

u′2/ū
= 1− Cp

T̄tδ − T̄w

ūδū
. (3.20)

The instantaneous relationship (3.19) was proposed by Cebeci & Smith (1974), and
the r.m.s. form of (3.19), i.e. (3.20), was suggested as an extended SRA by Gaviglio
(1987). In the case when there is heat flux at the wall, the extended SRA is a
noteworthy improvement over the SRA, but the deviation from real turbulence is still
noticeable (Gaviglio 1987).

3.2. Walz’s equation (1962)
The deviation of Pr from unity is one of the reasons responsible for the
difference between DNS and Crocco–Busemann relation, which was modified later
by Walz (1962). Walz presented an approximate solution of the Reynolds-averaged
Navier–Stokes equations with the assumption of constant mixed Prandtl number,
i.e. Prm = const, which is a reasonable approximation for CTBLs and other shear
flows (Smits & Dussauge 2006). Prm is defined by Prm = Cp(µ̄ + µ̄t)/(k̄ + k̄t),
where µ̄t = (−ρu′v′)/(∂ ū/∂y) is eddy viscosity and k̄t = (−CpρT ′v′)/(∂T̄/∂y) is eddy
thermal conductivity.

In Walz’s derivation, temperature is assumed a function of only u, and the Reynolds-
averaged Navier–Stokes equations are written in terms of the independent variables x
and u, instead of x and y. After neglecting most streamwise derivatives, the energy
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equation can be written (Walz 1966; Smits & Dussauge 2006)

τ̄
[
∂ū(∂ūT̄/Prm)+ 1/Cp

]+ (1/Prm − 1)∂ūT̄∂ūτ̄ = 0, (3.21)

where τ̄ is the total shear stress. The boundary conditions are (a) ū = 0 : T̄ =
T̄w, (∂τ̄ /∂y)y=0 = dp/dx = 0; (b) ū = ūδ : T̄ = T̄δ, τ̄ = τ̄δ = 0. With the assumption
Prm = const, (3.21) can be integrated two times to obtain

T̄

T̄δ
= T̄w

T̄δ
+ T̄r − T̄w

T̄δ
f1 + T̄δ − T̄r

T̄δ
f2, (3.22)

where f1, f2 and r in Tr are functions of τ̄ /τ̄w, Prm and ū/ūδ (Walz 1966). Using
a linear approximation τ̄ /τ̄w = 1 − y/δ and Prm = 0.86 averaged over the boundary
layer, Walz (1966) found that f1 = ū/ūδ, f2 = (ū/ūδ)2 and r = 0.88. Then, (3.22) has the
same form as (3.11), and was called the modified Crocco–Busemann relation or Walz’s
equation.

Here we notice that Walz’s equation can be rewritten as

H̄r − H̄w = Uwū, (3.23)

where H̄r = CpT̄ry is a local recovery enthalpy and T̄ry = T̄ + rū2/(2Cp) is a local
recovery temperature, Uw = −Prq̄yw/τ̄w. The emphasis on local here is to distinguish
T̄ry from T̄r. Comparing with (3.10), (3.23) suggests an analogy between local excess
recovery enthalpy and velocity.

3.3. Modified SRAs (1987, 1990, 1995, 2008)
Gaviglio (1987) attempted to establish a relationship between u′ and T ′ based on the
dominant role of the large-scale motion in CWTFs. He proposed that the fluctuating
velocity and temperature induced by the large-scale movements are proportional to
the local gradient of mean velocity and temperature, which gives aT ′/∂yT̄ = u′/∂yū

and a
√

T ′2/∂yT̄ =
√

u′2/∂yū with a being the ratio of the velocity mixing length

`u =
√

u′2/(∂ ū/∂y) over the temperature mixing length `T =
√

T ′2/(∂T̄/∂y). Based
on experimental data, Gaviglio assumed a = 1 to obtain (1.2). Rubesin (1990)
independently gave an equivalent form of (1.2) with a associated with some turbulence
modelling constants. Huang et al. (1995) showed that a should be equal to Prt.
Indeed, multiplying both sides of aT ′/∂yT̄ = u′/∂yū by ρv′ and averaging, one obtains
a = (ρv′u′∂yT̄)/(ρv′T ′∂yū) = Prt, which gives the HSRA. In a recent work by Brun
et al. (2008), a was modelled to be 1/Prm for channels.

HSRA works well for canonical CWTFs under different wall conditions. In channel
flows over cold walls, Huang et al. (1995) showed that HSRA is an improvement
over the extended SRA. In CTBLs, Duan’s DNS up to M = 12 showed that HSRA
is effective for adiabatic and diabatic, catalytic and non-reacting walls under low- and
high-enthalpy conditions (Duan 2011).

3.4. The empirical relation of Duan & Martín (2011)
Recently, Duan & Martı́n (2011) successfully removed the explicit dependence of the
mean temperature–velocity relationship on the thermal and chemical wall conditions
with an empirical relation, in which a dimensionless excess recovery enthalpy
H̄∗r = (H̄r − H̄w)/(H̄rδ − H̄w) is defined. For a calorically perfect gas, H̄∗r reduces to
a dimensionless excess recovery temperature: T∗ry = (T̄ry − T̄w)/(T̄rδ − T̄w). By plotting
T̄∗ry versus ū/ūδ, they found that all the DNS data collapse, independently of the
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free-stream Mach number, wall temperature, surface catalysis and enthalpy conditions.
The best fitting of T̄∗ry = f (ū/ūδ) gives

f

(
ū

ūδ

)
= (1− α)

(
ū

ūδ

)2

+ α
(

ū

ūδ

)
, α = 0.8259. (3.24)

By expanding the equation T̄∗ry = f (ū/ūδ), Duan & Martı́n (2011) obtained a mean
temperature–velocity relationship:

T̄

T̄δ
= T̄w

T̄δ
+ T̄r − T̄w

T̄δ
f

(
ū

ūδ

)
+ T̄δ − T̄r

T̄δ

(
ū

ūδ

)2

. (3.25)

The only difference between (3.25) and Walz’s equation (3.22) is that ū/ūδ in the
second term of the right-hand side of Walz’s equation is replaced by f (ū/ūδ).

3.5. A few remarks
We recall here the key approximations and assumptions involved in the previous
Reynolds analogy theories, which result in the final differences between the theories
and the real turbulence. In the Crocco–Busemann relation, SRA and the extended SRA,
the approximation Pr = 1 and the assumption H′ = Uwu′ are introduced. Both are not
good descriptions of the real turbulence. Young pointed out that the difference caused
by Pr 6= 1 represents a measurement of the dissimilarity of the two different modes
of transfer for vector ρu and scalar Tt which do not respond in the same manner
to change in density and pressure (Gaviglio 1987). The assumption H′ = Uwu′ is an
‘exact’ analogy, too strong to be met in real turbulence. A consequence of this equation
of instantaneous fluctuations is the rigorous relation |Ru′T ′ | = 1, which is invalid in real
turbulence.

Two key approximations are made to derive Walz’s equation: (a) Prm = const; (b)
τ̄ /τ̄w = 1 − y/δ. Since f1, f2 and r are complex functions of Prm and τ̄ /τ̄w, it is
difficult to quantify the error introduced by the two approximations, especially (b).
However, our DNS data show that: (i) for quasi-adiabatic CTBLs, 1 − τ̄ /τ̄w = (y/δ)n
with n ≈ 1.35 at M = 2.25 and n ≈ 1.10 at M = 6.00; (ii) for diabatic CTBLs, the
performance of approximation (b) becomes worse.

All in all, an improved theory should avoid, if possible, those approximations and
assumptions that are inconsistent with actual turbulence physics. Also, this improved
theory would be better proposed based on the conservation laws, instead of schematic
or phenomenological models like some modified SRAs. Deriving successful relations
(such as those of Duan & Martı́n 2011 and Huang et al. 1995) is another target of an
improved theory, since many flow properties have been captured by these formulae. In
the next section, we present a generalized Reynolds analogy that we believe to meet
the above requirements.

4. Generalized Reynolds analogy
4.1. Generalized Reynolds analogy as a formal generalization of the SRA

We now give a derivation of the GRA as a formal generalization of the SRA. In
the case of zero pressure gradient and unity Prandtl number, the SRA finds that the
Reynolds-averaged momentum and energy equations of CTBLs are similar and admit
the solution

H̄ − H̄w = Uwū, (4.1)

H′ = Uwu′. (4.2)
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For Pr 6= 1, different molecular momentum and thermal transports lead to differing
velocity and temperature fields. In air flow over an adiabatic wall without pressure
gradient, the Prandtl number of 0.7 results in a temperature deficiency in the wall
vicinity, which is accounted for in Walz’s equation using the recovery factor r of ∼0.9.
In other words, it is the local recovery enthalpy, rather than the total enthalpy, that
approximately keeps constant in the shear region, i.e. (3.23) with Uw = 0. Based on
these observations, we introduce a general recovery factor rg to account for the effect
of Pr 6= 1 in flows over diabatic walls, and assume a formal generalization of (4.1) as

H̄g − H̄w = Uwū, (4.3)

where Hg ≡ CpT + rgu2/2 is a general recovery enthalpy, and Uw = −Prq̄yw/τ̄w. Note
that rg is a mean-field quantity that, in general, varies with the wall-normal coordinate,
and (4.3) and its wall-normal derivative equation are valid at the wall independent of
rg. We can also define a general recovery temperature Trg so that Hg = CpTrg. For an
adiabatic wall condition and assuming rg = r, (4.3) leads to Walz’s equation.

The problem with (4.2) is that this ‘strong’ analogy can hardly be satisfied in
real turbulence. For an adiabatic flow, (4.2) predicts a negligible total temperature
fluctuation intensity, clearly invalid (Guarini et al. 2000; Maeder et al. 2001; Duan
et al. 2011). Therefore, we introduce for the general recovery enthalpy fluctuations:

H′g + Cpφ
′ = Uwu′, (4.4)

where H′g = CpT ′rg = CpT ′ + rgūu′, with a residual temperature φ′ that is the
instantaneous difference between T ′rg and (Uw/Cp)u′ in real turbulence. The
introduction of φ′ remedies the contradiction of (4.2) for adiabatic flows: when Uw = 0,
T ′rg = −φ′. With a non-negligible φ′, one can describe a non-zero T ′rg in adiabatic
flows.

Now, we determine rg by considering the turbulent momentum and thermal transport,
which occurs mainly in the wall-normal direction. Multiplying (4.4) by (ρv)′ and
averaging, rg is solved as

rg = Cp

u

[
Uw

Cp
− (ρv)

′T ′

(ρv)′u′
− (ρv)

′φ′

(ρv)′u′

]
. (4.5)

Equation (4.5) can further be written as

rg = Cp

ū

[
∂T̄

∂ ū

∣∣∣∣
w

− 1

Pre

∂T̄

∂ ū

]
, (4.6)

where

Pre ≡ Prt

1+ ε , (4.7)

Prt ≡ (ρv)′u′

(ρv)′T ′
∂T̄/∂y

∂ ū/∂y
, (4.8)

and ε = ((ρv)′φ′/(ρv)′T ′). Pre is called an effective turbulent Prandtl number and
Prt is a new turbulent Prandtl number. Note that Prt is different from the classical
definition of Prt ≡ (ρv′u′/ρv′T ′)((∂T̄/∂y)/(∂ ū/∂y)): Prt = Prt(1 + v̄ρ ′u′/ρv′u′)/(1 +
v̄ρ ′T ′/ρv′T ′), which results in a quantitative difference between Prt and Prt in CTBLs
where both v̄ and ρ ′ are non-zero. We will address this quantitative difference later
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on. In an adiabatic flow, ε = −(ρv)′T ′rg/(ρv)′T ′, which is the ratio between the wall-
normal turbulent transfer of the general recovery energy to the wall-normal heat flux.
Morkovin (1962) assumed that (ρv)′T ′t is much smaller than (ρv)′T ′ , found to be only
approximately valid near the wall (Guarini et al. 2000). Thus, we can deduce that ε is
generally not negligible.

Substitution of (4.6) into (4.3) gives the differential equation for the mean
temperature:

T̄ − ū

2

[
∂T̄

∂ ū

∣∣∣∣
w

+ 1

Pre

∂T̄

∂ ū

]
= T̄w. (4.9)

Equation (4.9) shows that Pre determines the profile of mean temperature versus mean
velocity, which is the reason why we call Pre the effective turbulent Prandtl number.
Similarly, the relationship between T ′ and u′ can be derived by substituting (4.5) into
(4.4), yielding

T ′ − 1

Prt

∂T̄

∂ ū
u′ + φ′ − (ρv)

′φ′

(ρv)′u′
u′ = 0. (4.10)

So far, by formally generalizing the SRA, we have proposed a possible Reynolds
analogy between the excess general recovery enthalpy and the streamwise velocity
for compressible wall-bounded turbulence with arbitrary Prandtl number and with
heat flux at the wall. This proposal, that we call the generalized Reynolds analogy,
consists of (4.3), (4.4) and (4.6) (or (4.5)), with φ′ to be determined by invoking
additional models. In the next section, the GRA is validated as a solution of the
Reynolds-averaged momentum and energy equations of CWTFs.

4.2. Validation of the generalized Reynolds analogy
In this validation, we restrict our analysis to the CWTFs that satisfy the quasi-parallel-
flow approximation and the low-turbulence-intensity approximation expressed by (3.4),
and the small-streamwise-derivative approximation that is widely applied in boundary
layer theory. These approximations can be concluded to be the quasi-one-dimensional
flow approximation that is valid for the canonical CWTFs such as CCFs, CPFs,
and CTBLs with moderate pressure gradients. Applying these approximations, the
Reynolds-averaged streamwise momentum equation and energy equation of a CWTF
can be written as (see appendix A)

ρu∂xū+ ρv∂yū=−∂xp̄+∂y[µ̄∂yū− (ρv)′u′], (4.11)

ρu∂xH̄ + ρv∂yH̄ = ∂y[ūµ̄∂yū− (ρv)′H′ − q̄y]. (4.12)

By using the relation

H = Hg + (1− rg)u
2/2, (4.13)

equation (4.12) can be rearranged as (see appendix B)

ρu∂x(H̄g)+ ρv∂y(H̄g)= ∂y[µ̄∂y(H̄g)− (ρv)′H′g] + f (rg), (4.14)

where f (rg) contains all the rest of the terms. For the GRA to be a solution, (4.14)
should have been written in the following similar form:

ρu∂x(H̄g)+ ρv∂y(H̄g)=−Uw∂xp̄+ ∂y[µ̄∂y(H̄g)− (ρv)′(H′g + Cpφ′)], (4.15)
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which is equivalent to

f (rg)=−Uw∂xp̄− Cp∂y(ρv)
′φ′. (4.16)

Equation (4.16) can be proved by applying the GRA relations (4.3), (4.4) and (4.6), as
shown in detail in appendix B.

Thus, we are able to derive, in a self-consistent way, similar forms of the Reynolds-
averaged momentum and energy equations for the CWTF. The similarity between
(4.11) and (4.15) admits the solution expressed by the GRA relations. Note that the
similarity between the turbulent terms in (4.11) and (4.15) is different from what is
usually written: an additional φ′ is included in (4.15). We prefer Guarini et al.’s (2000)
viewpoint that (4.4) enables elimination of the turbulent terms to solve (4.3). In
other words, (4.4) implies (4.3). Another note is that the CWTF treated above is
not restricted to specific Prandtl number, wall temperature and streamwise pressure
gradient (provided that the quasi-one-dimensional flow approximation is satisfied), so
the GRA solution is rather general.

5. GRA relationship between mean temperature and mean velocity
Now we study the GRA relationship between mean temperature and mean velocity.

Equation (4.9) can be integrated if Pre is a known function of T̄ and ū. By calculating
the derivative of (4.9) at the wall (with respect to ū), we find that Pre equals one at
the wall independent of flow conditions (see also (5.5)). Furthermore, for rg to be a
finite number at the wall, T̄ is a quadratic function of ū in the wall vicinity owing
to (4.6), formally agreeing with the Crocco–Busemann relation and Walz’s equation.
Consequently, it is tempting to adopt the simplest model for Pre and assume

Pre = 1 (5.1)

across the boundary layer and invariant to flow conditions. We assess (5.1) by using
the DNS of Pirozzoli & Bernardini (2011) and our DNS for CTBLs. Because φ′ in the
definition of Pre is unknown yet, Pre can only be inversely calculated by using (4.9).
As shown in figure 1(a), Pre is within 1.0 ± 0.1 in most of the CTBLs without a mild
dependence on M, Re and wall temperature condition. There are clear deviations above
∼0.85δ, which approximates the lower edge of the entrainment/intermittent region
(Zhang et al. 2012). Since the flow there is not fully turbulent, this deviation is not
unexpected. Fortunately, because the mean velocity profile is quite constant in the
entrainment/intermittent region, the deviation of Pre from unity has a negligible effect
on the relationship between the mean temperature and the mean velocity integrated
through (4.9) under the assumption (5.1). In the very near-wall region of cooled
CTBLs, Pre diverges and has a sign transition near the location where the mean
temperature peaks, so that Pre significantly deviates from unity there. The divergence
is because the locations of (ρv)′T ′ = 0 and ∂T̄/∂y = 0 are slightly different. Although
the DNS show that Pre varies a lot near the wall, as will be shown we can smooth this
divergent Pre with (5.1) without noticeably affecting the mean temperature–velocity
relationship integrated through (4.9).

An important issue with the testing of the assumption Pre = 1 in diabatic CTBLs is
to reveal the thickness of the zone influenced by wall cooling: it is a real test when
this thickness is large enough to be comparable to the boundary layer thickness. To
do this, we define the thickness of the zone influenced by wall cooling/heating as
δT̂ : |T̄δT̂−adiabatic − T̄δT̂−diabatic|/(T̄w−adiabatic − T̄∞) = 1 %, where T̄δT̂−adiabatic is the mean
temperature at δT̂ for an adiabatic flow; δT̂ is a measure of the thickness of the
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FIGURE 1. (Colour online) Profiles of (a) Pre, (b) Prt and (c) Prt for fully developed
CTBLs at different Mach numbers, Reynolds numbers and under different wall temperature
conditions.

zone where the adiabatic mean temperature profile is noticeably reduced to a diabatic
mean temperature profile by wall cooling. Thus, we can measure that δT̂ is 1.056δ
for the case CTBLM4.50Θ0.00. Therefore, the assumption Pre = 1 is assessed to be
independent of wall temperatures.

In figures 1(b) and 1(c), the profiles of Prt and Prt are plotted for comparison with
those of Pre; Prt is different from Prt only in the outer regions of CTBLs at large
Mach numbers, which we will address later on. Prt varies in the range of 0.6 ∼ 0.9,
in accordance with the previous studies (Pirozzoli et al. 2004; Duan et al. 2011).
Because Prt ≈ Prt = Pre(1+ ε)≈ 1+ ε, the discrepancy between Prt and one is due to
ε(= (ρv)′φ′/(ρv)′T ′) being both negative and non-negligible in the bulk region. In the
adiabatic flow, especially, ε = −(ρv)′T ′rg

/(ρv)′T ′ so that Prt ≈ 1 − ((ρv)′T ′rg
/(ρv)′T ′).

Therefore, we conclude that the mean fields of temperature and streamwise velocity
are determined universally by a unity turbulent Prandtl number, which is Pre

(figure 1a). In contrast, the classical turbulent Prandtl number Prt is systematically
changed from unity by the residue temperature φ′ that is the deviation from the ‘exact’
analogy relation of the fluctuation fields. In this regard, we reveal that the mean
fields are more stable to flow conditions, whereas Prt is a complex function of flow
parameters such as Pr,Re, pressure gradient, surface roughness, wall blowing and
suction, etc. (Kays 1994). Finally, for the same reason as that of Pre, a divergence is
observed in the near-wall profile of Prt, found also in Duan (2011).
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With the assumption (5.1), (4.9) can be integrated analytically to give the GRA
relationship between mean temperature and mean velocity:

T̄

T̄δ
= T̄w

T̄δ
+
(

ūδ
T̄δ

∂T̄

∂ ū

∣∣∣∣
w

)(
ū

ūδ

)
+
(

T̄δ − T̄w

T̄δ
− ūδ

T̄δ

∂T̄

∂ ū

∣∣∣∣
w

)(
ū

ūδ

)2

, (5.2)

whose derivative with respect to ū gives

∂T̄

∂ ū
= ∂T̄

∂ ū

∣∣∣∣
w

−
(

T̄w − T̄δ
ū2
δ/2

+ 2
ūδ

∂T̄

∂ ū

∣∣∣∣
w

)
ū. (5.3)

Combining (5.3) and (4.6) with the assumption Pre = 1, we obtain an analytical
expression for rg:

rg = T̄w − T̄δ
ū2
δ/(2Cp)

+ 2Cp

ūδ

∂T̄

∂ ū

∣∣∣∣
w

= T̄w − T̄δ
ū2
δ/(2Cp)

− 2Pr

ūδ

q̄yw

τ̄w
, (5.4)

which is constant across the shear region. This is not surprising because, according to
(4.3) and (4.4), Pre can be rewritten as

Pre = (ρv)′u′

(ρv)′(T ′ + φ′)
∂T̄/∂y

∂ ū/∂y
= 1− ū2

2(Uw − rgū)

∂rg

∂ ū
, (5.5)

which shows that the assumption Pre = 1 is equivalent to assuming rg = const.
Equation (5.4) further reveals that rg consists of two parts: (T̄w − T̄δ)/(ū2

δ/(2Cp)) and
(2Cp/ūδ)(∂T̄/∂ ū)|w (or −(2Pr/ūδ)(q̄yw/τ̄w)). Similar to the recovery factor r defined
for an adiabatic wall, the first part can be understood as a nominal recovery factor for
a diabatic wall. The second part denotes the contribution to rg from the non-zero heat
flux at the wall. For an adiabatic wall, rg naturally reduces to the adiabatic recovery
factor r.

By using the definition T̄rg = T̄δ + rgū2
δ/(2Cp), (5.2) can be rewritten as

T̄

T̄δ
= T̄w

T̄δ
+ T̄rg − T̄w

T̄δ

ū

ūδ
+ T̄δ − T̄rg

T̄δ

(
ū

ūδ

)2

, (5.6)

which has the same quadratic form as the Crocco–Busemann relation and Walz’s
equation except that the GRA relation adopts the general recovery factor rg. For an
adiabatic flow, (5.6) reduces to Walz’s equation.

Figure 2 compares the Crocco–Busemann relation, Walz’s equation and the GRA
relation with DNS of CTBLs. Walz’s equation shows an improvement over the
Crocco–Busemann relation, but deviates visibly from DNS when the wall becomes
colder. A maximum discrepancy of ∼10 % can be observed at about ū = 50% ūδ for
Walz’s equation at M = 4.5 and Θ = 0, which is similar to Duan & Martı́n’s (2011)
DNS of a supersonic CTBL at M = 5.0 and Tw = Tδ (i.e. Θ = 0). In contrast, the GRA
relation displays a good collapse with the DNS across the boundary layer, independent
of the wall temperature conditions. Similar collapse of the GRA relation with DNS
can be found in CCFs and CPFs, as shown in figure 3, which reveals that the GRA
relation applies also to fully developed internal flows.

For adiabatic CTBLs, it is known that the mean total temperature has a small
overshoot in the outer portion of the boundary layer due to energy conservation (White
2006), which is not accounted for in Walz’s equation. Since Walz’s equation is a
special case of the GRA, this issue of overshoot and energy conservation is relevant to
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FIGURE 2. (Colour online) Comparison of DNS of CTBLs with the theoretical relationships
of Crocco–Busemann, Walz, and the GRA.

0.9

0.8

0.7

0.6

0.5

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.81.00

1.0

0.4

1.00

(a) (b)

FIGURE 3. Comparison of DNS (symbols, for details see table 1) with the theoretical
relationship of GRA (equation (5.6), line) for (a) CCFs and (b) CPFs; δ denotes channel/pipe
centre.

the GRA, which we address now. The open circles in figure 4 show the DNS profile
of T̄t with an overshoot in the outer portion of the boundary layer and a deficiency
near the wall. For the adiabatic CTBL at M = 2.25, the overshoot of T̄t is less than
1 % and the deficiency is ∼5.6 % at the wall. The deficiency at the wall will increase
to ∼13 % at M = 4.50 and 15 % at M = 6.0, according to our DNS. The solid line
in figure 4 plots T̄t predicted by the GRA under the adiabatic wall condition (i.e.
Walz’s equation), showing no overshoot. However, (5.6) describes well the near-wall
deficiency, hence can be regarded as a good approximation to the DNS. Similarly in
figure 4, the profiles of the relative deviation of T̄ry from its free-stream value are
plotted as the open squares for the DNS and the dashed vertical line for the GRA
relation (5.6). Again, we find that the GRA relation (5.6) is a good approximation
to the DNS, with an error less than 1.5 % across the entire boundary layer. We also
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FIGURE 4. Profiles of the relative deviations of T̄t and T̄ry from their free-stream values
for CTBLM2.25Θ0.99 with symbols showing DNS and lines predicted by the GRA
relation (4.9).

find that, compared with T̄t, T̄ry is indeed more constant as depicted by (3.23), and
importantly, this constancy is independent of Mach number.

On the other hand, one can reproduce the overshoot of T̄t through integrating the
GRA differential equation (4.9) and setting Pre = 1 for y 6 0.88δ and Pre ≡ Pre(DNS)
for y > 0.88δ (the dash-dot line in figure 4). That is to say, the deviation of Pre

from unity in the intermittent layer is systematic, and physically related to the energy
conservation in the boundary layer.

To apply (5.6), we need to know both the wall temperature and the ratio of the wall
heat flux to the wall shear stress to calculate rg (see (5.4)). Since the wall temperature
and the wall heat flux are interdependent, it is feasible to make a simplification. To do
this, we recall the well-known Reynolds analogy factor s defined as

s≡ 2Ch

Cf
= q̄ywūδ
τ̄wCp(T̄w − T̄r)

, (5.7)

where Cf ≡ τ̄w/(ρ̄δū2
δ/2) is the skin friction coefficient and Ch ≡ q̄yw/(ρ̄δūδCp(T̄w − T̄r))

is the heat transfer coefficient, i.e. the Stanton number. Using s, rg can be rewritten as
(see appendix C)

rg = r[sPr + (1− sPr)Θ]. (5.8)

Note that under the adiabatic wall condition, Θ = 1 and thus rg = r.
Combining (5.6) with (5.8), the GRA relationship for the mean quantities can be

rearranged to (see appendix D)

T̄

T̄δ
= T̄w

T̄δ
+ T̄r − T̄w

T̄δ
f

(
ū

ūδ

)
+ T̄δ − T̄r

T̄δ

(
ū

ūδ

)2

, (5.9)
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FIGURE 5. (Colour online) (a) Profiles of T̄∗ry versus ū/ūδ (for details of the cases see table 1);
(b) the relative errors of the GRA relation (equations (5.12) and (5.10)) and Walz’s equation.

where

f

(
ū

ūδ

)
= (1− sPr)

(
ū

ūδ

)2

+ sPr

(
ū

ūδ

)
. (5.10)

Equations (5.9) and (5.10) are consistent with Duan and Martı́n’s empirical relation
(equations (3.25) and (3.24)). Therefore, we give a theoretical derivation of Duan and
Martı́n’s formula which identifies their empirical constant α to be

α = sPr. (5.11)

Equation (5.11) implies that sPr in (5.8) is a constant for at least a number of CWTFs,
so that rg can be estimated by using the wall temperature only.

Using Duan and Martı́n’s definition for T̄∗ry, the GRA relation (5.9) can be rewritten
as

T̄∗ry = f

(
ū

ūδ

)
. (5.12)

Figure 5(a) displays the collapse of T̄∗ry from our and others’ DNS (Huang et al.
1995; Ghosh et al. 2010; Duan 2011). The DNS include CPF, CCFs, and CTBLs
that have Mach numbers covering the range of M = 1.26 ∼ 9.4, Reynolds numbers
of Reτ = 220 ∼ 2100 and diabatic parameters of Θ = 0.6 ∼ −1.01. Duan’s DNS also
consider the effects of high enthalpy and surface catalysis. Therefore, the data collapse
in figure 5(a) reveals that sPr is approximately a constant for a number of flow
cases. It also reveals that the mean relationship of the GRA (equations (5.6) or (5.9))
applies to different T̄w, Re, M, surface catalysis conditions, enthalpy conditions, and
flow systems. A simple data fitting shows that sPr = 0.80 ± 0.03, covering Duan and
Martı́n’s fitting constant of α = 0.8259.

The quality of the data collapse in figure 5(a) can further be quantified by
plotting the relative deviations between the DNS data and the GRA relation, i.e.
[T̄∗ry(DNS) − T̄∗ry(theory)]/T̄∗ry(DNS). As shown in figure 5(b), the deviations are in the
range of about ±3.5 %. In comparison, Walz’s equation displays a systematic deviation
in the shear region. Near the wall, the relative errors of Walz’s equation are as large as
−25 %. This systematic deviation is corrected by the GRA relation.

We also deduce from the data collapse in figure 5(a) that s≈ 1.14 (sPr ≈ 0.80 when
r = 0.9) for air flows (Duan et al.’s empirical constant α = 0.8259 gives s = 1.18).
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This is consistent with Chi and Spalding’s suggestion of s = 1.16 (sPr ≈ 0.81 when
r = 0.89 as taken in Chi & Spalding (1966)) that applies to diabatic flows at moderate
M. In the literature, the Reynolds analogy factor s has been found to vary between 1.0
and 1.2 without a clear trend with T̄w (or qyw), Re, M, surface catalysis and enthalpy
condition (Bradshaw 1977; Duan 2011). Other factors such as the surface roughness
and the turbulence intensity of the incoming flow also affect the value of s (Sons
2005). Not counting the errors due to the difficulties in measuring s, the behaviour of
s displays a complexity that needs further studies. However, as revealed by its name,
s itself denotes a first level of Reynolds analogy and should be a quantity not very
sensitive to the related variables. This constant s leads to great simplicity in applying
the mean relationship of the GRA. For the flow case CTBLM4.5Θ0.93, the error in
calculating the mean temperature by assuming sPr = 0.80 is less than 1.5 % compared
with the DNS. In a few exceptions where s varies significantly, e.g. the CTBLs with
a pressure gradient, Duan and Martı́n’s empirical constant should be replaced by sPr
with s taking the measured value. In this regard, the GRA defines the scope of where
Duan and Martı́n’s empirical relation can be applied.

There are a few more points that are worth addressing. Duan & Martı́n (2011) have
observed that the mean temperature–velocity relationship is influenced by both the
enthalpy condition and the surface catalysis. Now, under the GRA, this influence acts
solely by changing the wall temperature (thus rg). This can be tested by further studies.
In addition, the collapse in figure 5(a) can only be realized by setting r = 0.9 for
CPFs and CCFs, which reveals that CPFs and CCFs share the same adiabatic recovery
factor as that of the adiabatic CTBLs. This is non-trivial because there is no theoretical
prediction of this value to our knowledge and it is difficult to measure it through
experiments, or DNS that employs a streamwise homogeneity scheme. Finally, we note
that the GRA relation (equations (5.12) and (5.10)) suggests a method for measuring
the Reynolds analogy factor s through the profiles of mean temperature and mean
velocity. The method does not need to measure the skin friction and the wall heat flux,
or even the mean profiles of temperature and velocity very near the wall, all of which
are challenging to measure.

6. GRA relationships for the fluctuating temperature and the fluctuating
velocity

The relationship between the fluctuating temperature T ′ and the fluctuating velocity
u′ has been derived and shown by (4.10), where φ′ should be modelled. A convenient
model for φ′ is φ′ = ((ρv)′φ′/(ρv)′u′)u′, so that (4.10) is reduced to

T ′ = 1

Prt

∂T̄

∂ ū
u′. (6.1)

Equation (6.1) means that T ′ and u′ are strongly correlated, which, unfortunately, has
been invalidated (Guarini et al. 2000; Maeder et al. 2001; Duan 2011). Therefore,
(6.1) is generally not true in the instantaneous fields of CWTFs. However, using DNS
data, we can prove that the r.m.s. of T ′ and u′ are approximately related by the
coefficient (1/Prt)(∂T̄/∂ ū) as (6.1) suggests:

√
T ′2 =

∣∣∣∣ 1

Prt

∂T̄

∂ ū

∣∣∣∣√u′2 =± (ρv)
′T ′

(ρv)′u′

√
u′2, (6.2)
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FIGURE 6. (Colour online) Comparisons between the DNS of CTBLs and the theoretical
relations of (a) SRA, and (b) modified HSRA derived by the GRA. HSRA is plotted in the

inset.

or equivalently √
T ′2/T̄

(γ − 1)M2
√

u′2/ū
= 1

|Prt(∂T̄t/∂T̄ − 1)| . (6.3)

In (6.2), the plus sign applies to the flow region where the wall-normal gradients of
the mean temperature and the mean velocity have the same sign, whereas the minus
sign applies to the opposite situation. The different signs are a result of the crucial
vortex dynamics in wall-bounded turbulence (Duan, Beekman & Martı́n 2010). For
the CCFs and CPFs, the low-temperature region is generally located near the wall.
The ejections of the low-speed/low-temperature fluid and the sweeps of the high-
speed/high-temperature fluid result in the same sign for the correlations (ρv)′T ′ and
(ρv)′u′ (see (6.2)). The opposite situation happens in, for example, adiabatic CTBLs,
where the high-temperature region is located near the wall, so that (ρv)′T ′ becomes
positive whereas (ρv)′u′ remains negative.

Equation (6.2) expresses the analogy between the normalized rates of the turbulent
heat and momentum transfers as pointed out by Guarini et al. (2000). Applying
the approximations of (ρv)′T ′ ≈ ρ̄v′T ′ and (ρv)′u′ ≈ ρ̄v′u′, (6.3) is equivalent to
Rv′u′ ≈ ±Rv′T ′ , which reveals that the turbulence-induced wall-normal transfer of
heat closely resembles that of momentum. In other words, the temperature field
resembles a passive scalar field, consistent with Morkovin’s viewpoint (Morkovin
1962). Rv′u′ ≈ ±Rv′T ′ has been validated by many studies and is the basis of HSRA
(Guarini et al. 2000).

Equation (6.3) is equivalent to (6.2) and has the same form as that of HSRA
((1.2) with a = Prt) except that (6.3) takes a slightly different definition for the
turbulent Prandtl number. We call (6.3) a modified HSRA. Figure 6 compares SRA
(3.13), HSRA and the modified HSRA with the DNS of CTBLs at different M, Reτ
and Θ . To visualize clearly, figure 6 plots the ratio of the left-hand sides of SRA,
HSRA and the modified HSRA to their right-hand sides, following the convention.
Figure 6(b) shows that the modified HSRA is in good agreement with the DNS across
the boundary layer except near the wall. In contrast, SRA is valid below ∼0.7δ and
only for quasi-adiabatic flows, and an increased and significant deviation from the
DNS is observed in CTBLs over cooled walls (figure 6a). Such a behaviour for the
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FIGURE 7. (Colour online) The wall-normal profiles of (a) v̄ρ ′T ′/ρv′T ′ and v̄ρ ′u′/ρv′u′ for
CTBLM6.00Θ0.92; (b) Prt/Prt in CTBLs at different M and Θ .

SRA has been observed in the previous studies (Duan et al. 2010; Duan & Martı́n
2011). HSRA is plotted in the inset of figure 6(b). As observed by many researchers
(Guarini et al. 2000; Duan 2011; Pirozzoli & Bernardini 2011), HSRA agrees with the
DNS data much better than the SRA. However, comparison between HSRA and the
modified HSRA shows that, in the outer portion of the boundary layers of adiabatic
M = 4.5 and M = 6.0 flows, the modified HSRA exhibits a clear improvement over
HSRA. The differences between the modified HSRA and HSRA are ∼10 % and 20 %
at the boundary edge for CTBLM4.50Θ0.93 and CTBLM6.00Θ0.92, respectively.

Here we discuss the reason behind the improvement of the modified HSRA. Since
Prt = Prt(1 + vρ ′u′/ρv′u′)/(1 + vρ ′T ′/ρv′T ′), the difference between Prt and Prt lies
in the difference between the ratios of v̄ρ ′T ′/ρv′T ′ and v̄ρ ′u′/ρv′u′, which takes place
only in a CTBL. Figure 7(a) shows the profiles of v̄ρ ′T ′/ρv′T ′ and v̄ρ ′u′/ρv′u′ in the
DNS case CTBLM6.00Θ0.92. The effect of non-zero v̄ and ρ ′ on the wall-normal
heat flux is more than 30 % of ρv′T ′ at the boundary layer edge, whereas this effect
on the Reynolds stress is only 18 % of ρv′u′. Such a difference reflects notably on
the turbulent Prandtl numbers. Figure 7(b) shows that there is a clear difference
between Prt and Prt and this difference increases with increasing Mach number and
wall-normal coordinate. Hence, the improvement of the modified HSRA over HSRA
in the outer portion of the boundary layer is systematic and substantial at high Mach
numbers. A reason for this improvement is that, in the validation of the GRA (see
§ 4.2), we find that the use of (ρv)′X′ (instead of ρv′X′) captures more quantities
which are significant near the edge of the boundary layers. This is because (ρv)′, the
wall-normal movement of a fluid mass, is responsible for the turbulent transfer of
heat and momentum. More studies are necessary to assess if the improvement of the
modified HSRA is meaningful, especially for hypersonic CTBLs.

The success of the SRA for the quasi-adiabatic CTBLs in figure 6(a) can be
explained by using (6.3), whose right-hand side can be rewritten as

1

−Prt(∂T̄t/∂T̄ − 1)
=− 1

Prt

Cp

ū

∂T̄

∂ ū
= 1

Prt

(
rg − Cp

ū

∂T̄

∂ ū

∣∣∣∣
w

)
, (6.4)

where the assumption Pre = 1 is applied. For a quasi-adiabatic CTBL, the right-hand
side of (6.4) is r/Prt . Since r and Prt are quantitatively close to each other in
measurements and DNS (which may not be accidental), r/Prt ≈ 1 and the SRA
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works approximately as displayed by the Θ ≈ 1 cases in figure 6(a). This answers
the question of why (3.13) of the SRA is satisfied under the incorrect assumption
of negligible total temperature fluctuations, as raised in § 3.1 and by several other
researchers (Gaviglio 1987; Guarini et al. 2000). For cooled-wall CTBLs, however,
the deviation from unity caused by the local modification of (Cp/ū)(∂T̄/∂ ū)|w and the
global change of rg becomes more and more significant with the increase of heat flux
at the wall, resulting in the failure of the SRA.

One may equally ask the question of why (6.2) and (6.3) are satisfied when (6.1) is
not true in the instantaneous fields of general CWTFs. We propose an explanation for
this. Equation (4.10) can be rewritten as

T ′ + φ′ = 1+ ε
Prt

∂T̄

∂ ū
u′, (6.5)

whose mean square is

T ′2 + φ′2 + 2T ′φ′ =
(

1

Prt

∂T̄

∂ ū

)2

u′2 + (2ε + ε2)

(
1

Prt

∂T̄

∂ ū

)2

u′2. (6.6)

Then (6.2) is satisfied provided that

φ′2 + 2T ′φ′ = (2ε + ε2)T ′2 ≈ (Prt
2 − 1)T ′2. (6.7)

Equation (6.7) can be seen as the reason for the validity of the modified HSRA, or
HSRA that has originally been proposed in a phenomenological way (Gaviglio 1987).
The reason underlying (6.7) is not clear to us at present.

In quasi-adiabatic flows, φ′ ≈−T ′rg, so (6.7) becomes

T ′2rg − 2T ′T ′rg
T ′2

≈ Prt
2 − 1. (6.8)

Guarini et al. (2000) pointed out that the success of the SRA equation (3.13) for
adiabatic flows was a consequence of (T ′2t − 2T ′T ′t )/T ′2 = 0, instead of T ′2t = 0. We
are able to clarify that this also is a rough approximation by comparing with (6.8).
Figure 8 shows that T ′2rg − 2T ′T ′rg is smaller than T ′2 but not negligible (∼20 %T ′2), and

it is correctly approximated by (Prt
2 − 1)T ′2 in most of the shear region. In contrast,

T ′2t − 2T ′T ′t = 0 is only roughly satisfied (∼15 %T ′2), similar to Guarini et al.’s (2000)
plot of an adiabatic CTBL at M = 2.5.

The correlation coefficient Ru′T ′ is another topic in the Reynolds analogy theories. A
linear relationship between T ′ and u′, such as that of the SRA and (6.1), inevitably
results in a unity |Ru′T ′ | that disagrees with experiments and DNS (Gaviglio 1987;
Smith & Smits 1993; Guarini et al. 2000; Maeder et al. 2001; Pirozzoli et al. 2004;
Duan 2011). By using the GRA, the behaviour of Ru′T ′ with respect to the wall-
normal coordinate and the wall temperature condition can be understood more clearly.
Combination of (6.5) and the assumption Pre = 1 yields

T ′ + φ′ = ∂T̄

∂ ū
u′. (6.9)

In adiabatic flows, T ′ and φ′ (i.e. −T ′rg) are quantitatively comparable but φ′ is
not necessarily strongly correlated with u′ (due to (4.4)), so T ′ and u′ cannot be
strongly correlated. In the literature, |Ru′T ′ | in quasi-adiabatic flows is found to
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FIGURE 8. (Colour online) Comparison of the terms: T ′2/T2; T ′2rg/T2; (T ′2rg − 2T ′T ′rg)/T2;

(T ′2t − 2T ′T ′t )/T2 and (Prt
2 − 1)T ′2/T2. The DNS data are for CTBLM4.5Θ0.93.

be approximately 0.6 ∼ 0.9, significantly deviating from unity (Guarini et al. 2000;
Maeder et al. 2001; Pirozzoli et al. 2004; Duan et al. 2011). In diabatic flows, Ru′T ′ is
affected by the sign and the modulus of ∂T̄/∂ ū: Ru′T ′ and ∂T̄/∂ ū share the same sign
and the discrepancy between |Ru′T ′ | and unity is inversely related to the magnitude of
∂T̄/∂ ū (see (6.9)). Therefore, we could deduce that, in the outer portion of a cooled
CTBL, Ru′T ′ is quasi-constant and increases from −1 with decreasing Θ (figure 9).
The latter is because ∂T̄/∂ ū = (∂T̄/∂ ū)|w − (rgū/Cp) (see (5.3)): the magnitude of
|∂T̄/∂ ū| becomes smaller as a result of the larger positive (∂T̄/∂ ū)|w and the smaller
positive rg. The quite constant distribution of Ru′T ′ is because ū varies only a little in
the outer portion of the boundary layer. In the near-wall region of a cooled CTBL, T̄
would reach maximum near the location where Ru′T ′ has a sign transition (Duan et al.
2010), and most variation of Ru′T ′ happens there (figure 9). We could make similar
a deduction for the profiles of Ru′T ′ in heated CTBLs, or in CCFs and CPFs under
arbitrary wall temperature conditions. Figure 9 confirms our argument which suggests
that a linear relationship between T ′ and u′, such as (6.1), is only possibly closely
satisfied in the shear regions of CTBLs on over-heated or CPFs/CCFs on over-cooled
walls. For a flow having an extreme in the T̄ profile, such as cooled CTBLs in

the near-wall region, one has
√
φ′2 =

√
T ′2 near the extremal point according to

(6.5). Consequently, (6.2) would not be satisfied. This explains why (6.3) significantly
deviates from the DNS in the near-wall region of the cooled wall CTBLs (figure 6b).

7. Discussion
7.1. The approximations and assumptions in the GRA

In the derivation of the GRA, we have adopted several approximations that limit the
application of the GRA. The chief approximation is that of quasi-one-dimensional flow.
It is well accepted in canonical wall-bounded turbulent flows, but it also sets a strong
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FIGURE 9. (Colour online) Variation of the correlation coefficient Ru′T ′ with the diabatic
parameter Θ for CTBLs and CCFs.

requirement that prohibits an incautious application of the GRA in CWTFs that have
separation or transversal flow, very strong acceleration/deceleration, large temperature
gradient along the wall, very rough surface, intense interactions with an impinging
shock, or a protruding object, or a flow that impinges on or leaves the wall, etc.

We have made a key assumption that Pre = 1 in the shear region of a
CWTF, independent of Pr, wall temperature, streamwise pressure gradient, etc. This
assumption leads to a uniform profile for the general recovery factor, and a quadratic
formula between the mean temperature and the mean velocity that applies quite well
to different flow systems under general diabatic wall conditions. However, as is shown,
Pre = 1 is only approximate in real turbulence (figure 1a) and cannot describe the
overshoot of the mean total temperature near the edge of an adiabatic CTBL (figure 4).
More studies are necessary to assess if Pre = 1 is still valid at other Re (especially
low Re) and M (especially high M), strong pressure gradient, Pr significantly smaller
than unity (where the turbulent Prandtl number may be much larger than unity, see
Kays 1994), and with large surface roughness, wall blowing and suction, free-stream
turbulence, etc.

To derive the GRA relationship for the fluctuation fields, a convenient model for
the residual temperature φ′ has been introduced. Since no non-trivial relation could
exist for the instantaneous fluctuations, we turn to seeking the reason for the validity
of the modified HSRA. Equation (6.7) is identified to be this relation satisfied by the
fluctuation fields which relates the residue temperature φ′ and the static temperature
fluctuation T ′ with the turbulent Prandtl number Prt. For quasi-adiabatic flows, (6.7)
improves the argument of Guarini et al. (2000) to explain the success of the SRA (i.e.
(3.13)). Although (6.7) can be validated by the current DNS, the mechanism behind it
remains unknown.

To simplify the application of the GRA, we have also employed the observation
of Duan & Martı́n (2011) to assume that sPr is almost constant for a large number

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

62
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.620


Generalized Reynolds analogy for compressible wall-bounded turbulent flows 415

of CWTFs. Although it greatly simplifies the application of the GRA with a good
accuracy, more studies should be conducted, especially on the Reynolds analogy factor
s whose behaviour remains unclear (Sons 2005).

Perhaps the most important assumption in the GRA is as that of the SRA: (4.3) and
(4.4) are solutions to the Reynolds-averaged momentum and energy equations, which
can be written in a similar form for general CWTFs. Guarini et al. (2000) preferred
not to identify them as solutions, but the assumption (4.4) implies the relation
(4.3). Then a question arises: Why does the GRA hold universally in the CWTFs?
The GRA relationships for the fluctuating temperature and velocity reveal that the
temperature field closely resembles a passive scalar field, consistent with Morkovin’s
hypothesis (Morkovin 1962). Therefore, the universality of the GRA actually reflects
the common turbulence mechanisms in wall-bounded turbulent flows. Specifically, the
essential dynamics of the large-scale coherent structures in the bulk of wall-bounded
turbulent flows are similar, without being significantly influenced by compressibility,
wall temperature condition, pressure gradient, or flow situation far away from the wall
(which differentiates CCF/CPF from CTBL) (Morkovin 1962; Duan 2011). Since the
turbulent transport of momentum and heat is dominated similarly by vortical structures,
universal analogy solutions for the velocity and temperature fields are reasonable, first
the instantaneous analogy of (4.4) due to the turbulent eddies, and then the mean-field
analogy of (4.3). We could thus speculate that, when the acoustic component of the
fluctuating motion plays an important role, such as in highly compressible mixing
layers and possibly in CTBLs at very high Mach numbers, the basis of the GRA might
not hold. This requires further investigations.

7.2. Several key parameters emerging in the GRA

One of GRA’s successes stems from the introduction of the general recovery factor rg.
As revealed by (5.8), rg includes the effects of the Prandtl number, wall temperature,
the adiabatic recovery factor, and the Reynolds recovery factor that encompasses
more complex effects such as those of pressure gradient and surface roughness (Sons
2005). Therefore, rg is a significant generalization of the adiabatic recovery factor
r. A uniform profile for rg is an adequate approximation since it gives a rather
simple relation between the mean temperature and the mean velocity, with a minimal
modification to the Crocco–Busemann relation and Walz’s equation but at a higher
accuracy and applied to a wider range of flows. For a specific flow, rg is approximately
uniquely determined by the diabatic parameter Θ , which makes the application of the
GRA very simple: only the wall temperature is involved.

The diabatic parameter Θ in (5.8) is a dimensionless parameter for characterizing
the wall temperature effects in diabatic CWTFs. In these flows, three control
parameters are generally involved: M, Re, and a dimensionless wall temperature
that, we argue, has not been well defined up to now. To study the M-effect, one
has to compare flows with different M at the same Re and the same dimensionless
wall temperature, whose definitions are not trivial owing to the nonlinear coupling
between the different physical mechanisms they represent. Some studies have used
Tw/Tδ or Tw/Tf (where Tf is a reference temperature) to define the dimensionless
wall temperature (Duan et al. 2010). Note that Θ in (5.8) is the unique parameter
to determine rg, and hence the mean temperature–velocity relationship in flows under
different wall temperature conditions. Therefore, Θ is a well-founded dimensionless
parameter that can be applied to study, for example, the M-effects of diabatic
compressible wall-bounded turbulence. This requires further study.
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The effective turbulent Prandtl number Pre is another key parameter emerging in
the GRA. As shown by (4.9), it is Pre that determines the relationship between
the mean temperature and the mean velocity. Pre is a modification to the turbulent
Prandtl number Prt: the effect of the residual temperature φ′ is included additionally.
Since φ̄′ is zero, (ρv)′φ′ represents a background energy flux that is non-negligible
in CWTFs. As revealed by the assumption Pre = 1, this background results in a
systematic deviation of Prt from unity, important information for turbulence models
ending up with the idea of eddy viscosity and eddy heat conductivity (Dong & Zhou
2010). The assumption Pre = 1, as has been discussed, needs further study to reveal its
mechanism and envelope in the parameter space.

8. Conclusions
Here we have proposed a generalized Reynolds analogy for compressible wall-

bounded turbulent flows, and validated the theory by DNS of CTBLs, CCFs and CPFs
over diabatic walls. The GRA is obtained by a formal generalization of the SRA, in
which we introduce a general recovery factor that accounts for the effects of Pr, wall
temperature, pressure gradient, etc. Also, we discard the ‘strong’ Reynolds analogy
assumption by introducing the residual temperature φ′, which remedies the fatal flaw
of the SRA. By doing this, we are able to prove that the GRA that consists of (4.3),
(4.4) and (4.6) is a solution to the Reynolds-averaged momentum and energy equations
for CWTFs.

The GRA leads to new relationships between temperature and velocity. We clarify
that it is the effective Prandtl number Pre that connects the mean temperature and the
mean velocity. This Pre is very close to unity across the shear region and insensitive
to the flow conditions. By assuming Pre = 1, we derive the mean relationship of the
GRA, which is a close approximation to the real turbulence and has a similar quadratic
form to the Crocco–Busemann relation and Walz’s equation except that the general
recovery factor rg is applied. Factor rg is found to be constant in the shear region
under the assumption Pre = 1. We reveal that rg depends on the adiabatic recovery
factor, Prandtl number, Reynolds analogy factor, and the diabatic parameter that is
introduced by us and shown to be a key dimensionless temperature. Thus we are
able to derive Duan and Martı́n’s empirical relation that applies to a number of flow
conditions (M, Re, wall temperature, enthalpy condition, surface catalysis, etc.). We
further elucidate that Duan and Martı́n’s empirical constant is actually the product
of Prandtl number and the Reynolds analogy factor, which suggests a method for
measuring the Reynolds analogy factor by using the mean profiles of temperature and
velocity. By using DNS of CTBLs, CCFs and CPFs under different wall temperature
conditions, we validate the mean temperature–velocity relationship of the GRA. The
GRA relation agrees with the DNS very well. In comparison, Walz’s equation shows a
10 % over-estimation of the mean temperature in cooled CTBLs.

We derive from the GRA the HSRA that has been proposed phenomenologically and
validated by numerous studies. The reason for the validity of HSRA is identified. A
slight modification to HSRA is also shown to improve it. Using the GRA, the variation
of the correlation coefficient Ru′T ′ with respect to wall temperature and wall-normal
coordinate is explained. The deviation of the turbulent Prandtl number from unity is
shown to be systematic and related to the residual temperature φ′.

The GRA proposed herein unveils a systematic similarity in the complex nonlinear
coupling between the thermal and velocity fields of general CWTFs, and paves the
way to predicting the mean fields of compressible wall-bounded turbulence with
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information on the corresponding incompressible flow. Also, as discussed, many issues
left unresolved about the GRA require further investigations.
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Appendix A
Expanding (3.2) and (3.3) with (3.1) gives

ρu∂xū+ ρv∂yū=−∂xp̄+ ∂y[(τxy − (ρv)′u′)] + ∂x[τxx − (ρu)′u′], (A 1)

ρu∂xH̄ + ρv∂yH̄ = ∂x(uτxx)+ ∂x(vτxy)+ ∂y(uτxy)+ ∂y(vτyy)

− ∂x(ρu)′H′ − ∂y(ρv)
′H′ − ∂x(q̄x)− ∂y(q̄y). (A 2)

Neglecting the small terms including ∂y(vτyy), ∂x(τxx), ∂x(uτxx), ∂x(vτxy), ∂x(ρu)′u′,
∂x(ρu)′H′ and ∂x(q̄x), (A 1) and (A 2) can be simplified with the aid of the
approximations uf ≈ ūf̄ and (3.4) to give (4.11) and (4.12), respectively.

Appendix B
First, we give the following relations:

H̄ = H̄g + (1− rg)ū
2/2, (B 1)

ūµ̄∂yū= µ̄∂y(H̄g)− µ̄∂yh̄+ µ̄∂y[(1− rg)ū
2/2], (B 2)

(ρv)′H′ = (ρv)′H′g + (1− rg)ū(ρv)
′u′, (B 3)

(ρv)′h′ = (Uw − rgū)(ρv)′u′ − Cp(ρv)
′φ′, (B 4)

(µ̄ū2/2)∂y(rg)= (Uw − rgū)[τ̄ + (ρv)′u′] + Prq̄y. (B 5)

The total stress τ̄ in (B 5) is defined as τ̄ ≡ µ̄∂yū − (ρv)′u′. Equations (B 1)–(B 3)
come from definition, (B 4) comes from (4.4) and (B 5) is a result of multiplying the
derivative (with respect to y) of (4.3) by µ̄. The substitution of (B 1)–(B 3) into (4.12)
gives (4.14), in which

f (rg)= ρu∂x[(rg − 1)ū2/2] + ρv∂y[(rg − 1)ū2/2]
− ∂y[(rg − 1)ūτ̄ + (µ̄ū2/2)∂y(rg)+ (1− Pr)q̄y]. (B 6)

Multiplying the momentum equation (4.11) by Uw − ū, one has

ρu∂x[Uwū− ū2/2] + ρv∂y[Uwū− ū2/2] = −(Uw − ū)∂xp̄+ (Uw − ū)∂yτ̄ . (B 7)

Replacing Uwū with H̄g − H̄w (see (4.3)) in the left-hand side of (B 7) yields

ρu∂xh̄+ ρv∂yh̄+ ρu∂x[(rg − 1)ū2/2] + ρv∂y[(rg − 1)ū2/2]
= −(Uw − ū)∂xp̄+ (Uw − ū)∂yτ̄ . (B 8)
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Subtracting ū times (4.11) from (4.12), a further arrangement of (B 4) gives

ρu∂xh̄+ ρv∂yh̄=−∂y[(Uw − rgū)(ρv)′u′ − Cp(ρv)
′φ′ + qy] + ū∂xp̄+ τ̄ ∂yū. (B 9)

Substituting (B 9) into (B 8) gives

ρu∂x[(rg − 1)ū2/2] + ρv∂y[(rg − 1)ū2/2] = ∂y[(Uw − rgū)(ρv)′u′ − Cp(ρv)
′φ′ + qy]

− (Uw − ū)∂xp̄+Uw∂yτ̄ − ∂y(ūτ̄ )− ū∂xp̄.
(B 10)

Substituting (B 10) and (B 5) into (B 6), a calculation yields f (rg) = −Uw∂xp̄ −
Cp∂y(ρv)

′φ′, the constraint required to guarantee the similarity between the momentum
and energy equations in § 4.2.

Appendix C
With (5.4), rg can be further written as

rg = T̄r − T̄δ
ū2
δ/(2Cp)

(
T̄w − T̄δ
T̄r − T̄δ

+ ūδ
T̄r − T̄δ

∂T̄

∂ ū

∣∣∣∣
w

)
= r

(
T̄w − T̄δ
T̄r − T̄δ

+ T̄r − T̄w

T̄r − T̄δ

ūδ
T̄r − T̄w

∂T̄

∂ ū

∣∣∣∣
w

)
. (C 1)

Because (ūδ/(T̄r− T̄w))(∂T̄/∂ ū)|w = sPr, (T̄r− T̄w)/(T̄r− T̄δ)= 1− ((T̄w− T̄δ)/(T̄r− T̄δ))
and (T̄w − T̄δ)/(T̄r − T̄δ)=Θ , one has

rg = r[Θ + (1−Θ)sPr] = r[sPr + (1− sPr)Θ]. (C 2)

Appendix D
According to the definitions of T̄rg and T̄r, one has

T̄rg = T̄r + (rg/r − 1)(rū2
δ/(2Cp))

= T̄r + (sPr − 1)(1−Θ)(T̄r − T̄δ)= T̄r + (sPr − 1)(T̄r − T̄w). (D 1)

Substituting (D 1) into (5.6), one has

T̄

T̄δ
= T̄w

T̄δ
+ T̄r − T̄w + (sPr − 1)(T̄r − T̄w)

T̄δ

ū

ūδ

+ T̄δ − T̄r − (sPr − 1)(T̄r − T̄w)

T̄δ

(
ū

ūδ

)2

. (D 2)

Rearranging (D 2) gives

T̄

T̄δ
= T̄w

T̄δ
+ T̄r − T̄w

T̄δ

[
(1− sPr)

(
ū

ūδ

)2

+ sPr
ū

ūδ

]
+ T̄δ − T̄r

T̄δ

(
ū

ūδ

)2

, (D 3)

which is (5.9).
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