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The Geometry of Conventionality
James Owen Weatherall and John Byron Manchak*y

There is a venerable position in the philosophy of space and time that holds that the
geometry of spacetime is conventional, provided one is willing to postulate a “universal
force field.” Here we ask a more focused question, inspired by this literature: in the
context of our best classical theories of space and time, if one understands “force” in the
standard way, can one accommodate different geometries by postulating a new force
field? We argue that the answer depends on one’s theory. In Newtonian gravitation the
answer is yes; in relativity theory, it is no.

There is a long history of debate in the philosophy of natural science
concerning the epistemology of physical geometry. One venerable—if now
unfashionable—position in this literature has held that the geometry of
space and time is a matter of convention—that is, that geometrical facts are
so radically underdetermined by possible empirical tests that we are free to
postulate any geometry we like in our physical theories. Such a view, in
various guises, has been defended by Poincaré ð1905Þ, Schlick ð1920Þ,
Carnap ð1922, 1966Þ, Reichenbach ð1958Þ, and Grünbaum ð1963, 1968Þ,
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among others.1 All of these authors present the same basic argument. We
may, by some process or other, come to believe that we have discovered
some facts about the geometry of space and time. But alas, we could always,
by postulating some heretofore unknown force or interaction, construct
another physical theory, postulating different facts about the geometry of
space and time, that is in principle empirically indistinguishable from the
first.2

Of course, at some abstract level of description, a thesis like this is
irrefutable. But at that same level of abstractness, as has often been ob-
served, it is also uninteresting. We can be conventionalists about geometry,
perhaps, but in the same way that we could be conventionalists about any-
thing. In this article we will take up a more focused question, inspired by
the conventionality of geometry literature but closer to the ground floor of
spacetime physics. The question is this. If one understands “force” in the
standard way in the context of our best classical ði.e., nonquantumÞ theories
of space and time, can one accommodate different choices of geometry by
postulating some sort of “universal force field”? Surprisingly, the answer
depends on the theory. In Newtonian gravitation, we will argue, there is
a sense in which geometry is conventional, in precisely this way. But we
will state and prove a no-go result to the effect that no analogous proposal
can work in relativity theory. The upshot is that there is an interesting
and perhaps tenable sense in which geometry is conventional in classical
spacetimes, but in the relativistic setting the conventionalist’s position
seems comparatively less appealing.3

The strategy from here will be as follows. We will begin by discussing
“forces” and “force fields” in Newtonian gravitation and relativity theory.
We will then turn to an influential and unusually explicit version of the
argument described above, due to Reichenbach ð1958Þ.4 Although the vi-
1. For a classic overview of conventionalism about geometry, see Sklar ð1974Þ.
2. This is not to say that there are no significant differences between these authors ðthere
areÞ or that the argument we describe above is the only one they offer ðit is notÞ. To give
an example, Grünbaum ð1963, 1968Þ argues that since spacetime points are dense, there
can be no intrinsic facts about “how many” of them lie between two points, and thus
metrical facts cannot be intrinsic. But this will not be the occasion for a detailed discus-
sion of these authors’ views or their arguments for them. As will presently become clear,
our purpose is to ask and answer a related question that we take to be of interest inde-
pendently of the details of its relation to these historical debates.

3. Of course, there are many reasons why one might be skeptical about claims con-
cerning the conventionality of geometry, aside from the character of the force law. ðSee
Sklar ½1974� for a detailed discussion.Þ Our point here is to clarify just how a conven-
tionality thesis would go if one were serious about postulating a universal force field in
any recognizable sense.

4. Reichenbach presents this proposal in the context of an argument for the conven
tionality of space, not spacetime ðReichenbach 1958, 33 n. 1Þ. That said, as we read him
he took the ðmetricalÞ geometry of spacetime in relativity theory to be conventional as
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ability of Reichenbach’s recipe for constructing “universal force fields” is
often taken for granted in the literature, we will present an example here that
we take to show that the field Reichenbach defines cannot be interpreted as
a force field in any standard sense.5 We will then use the failure—for much
simpler reasons—of an analogous proposal in the context of Newtonian
gravitation to motivate a different approach to constructing universal force
fields. As we will argue, this alternative approach works in the Newtonian
context but does not work in relativity theory. We will conclude with some
remarks on the significance of these results and a discussion of one option
left open to the would-be conventionalist in relativity theory.

In what follows, the argument will turn on how one should understand
terms such as “force” and “force field.” So we will now describe how we
use these terms here.6 By “force” we mean some physical quantity acting on
a massive body ðor, for present purposes, a massive point particleÞ. In both
general relativity and Newtonian gravitation, forces are represented by
vectors at a point.7 We assume that the total force acting on a particle at a
well, and so one might reasonably think his strategy for constructing a universal force
field was meant to generalize to the spacetime context. In what follows, we will take this
attribution for granted. But whether this is a just reading of Reichenbach does not much
matter for our purposes, since versions of this ðmisÞreading appear to be endorsed, at
least implicitly, in several classic sources, such as Sklar ð1974Þ, Glymour ð1977Þ, Fried-
man ð1983Þ, Malament ð1986Þ, and Norton ð1994Þ. Indeed, even Carnap ð1958, viiÞ, in
the preface to the English translation of Reichenbach’s Philosophy of Space and Time,
takes for granted that Reichenbach’s construction applies to the geometry of relativity
theory—that is, to spacetime geometry. So, Reichenbach’s intentions notwithstanding,
it is of some interest that the construction does not work.

5. Regarding whether Reichenbach’s “universal force” should really be conceived as a
force, it is interesting to note that Carnap ð1966, 169Þ proposes the expression “universal
effect” instead of “universal force”; that Grünbaum ð1968, 36Þ and Salmon ð1979, 25Þ
both argue that Reichenbach’s universal force construction is “metaphorical” ðthough
what it is a metaphor for is somewhat unclearÞ; and Sklar ð1974, 99Þ describes the ter-
minology of universal forces as “misleading” ðthough he explicitly says universal forces
should deflect particles from inertial motionÞ. But for reasons described in n. 4 we are
setting aside the historical question of just what Reichenbach intended and focusing on
the specific question we have posed above. Our claim here with regard to Reichenbach is
only that his proposal does not provide an affirmative answer to our question. That said,
we take our question to be the one of interest: if conventionalism requires not a new kind
of force as we ordinarily understand it, but rather some other new kind of entity, pre-
sumably that dampens the appeal of the position.

6. What follows should not be construed as a full account or explication of either
“force” or “force field.” Instead, our aim is to explain how we are using the terms below.
That said, we believe that any reasonable account of “force” or “force field” in a New-
tonian or relativistic framework would need to agree on at least this much, and so when
we refer to forces/force fields “in the standard sense,” we have in mind forces or force
fields that have the character we describe here.

7. Here and throughout, we are taking for granted that our theories are formulated on
a manifold. More precisely, we take a model of relativity theory to be a relativistic space-
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point ðcomputed by taking the vector sum of all of the individual forces
acting at that pointÞ must be proportional to the acceleration of the particle
at that point, as in F 5 ma, which holds in both theories. We understand
forces to give rise to acceleration, and so we expect the total force at a point
to vanish just in case the acceleration vanishes. Since the acceleration of a
curve at a point, as determined relative to some derivative operator, must
satisfy certain properties, it follows that the vector representing total force
must also satisfy certain properties. In particular, in relativity theory, the
acceleration of a curve at a point is always orthogonal to the tangent vector
of the curve at that point, and thus the total force on a particle at a point
must always be orthogonal to the tangent vector of the particle’s worldline
at that point.8 Similarly, in Newtonian gravitation, the acceleration of a
timelike curve must always be spacelike, and so the total force on a parti-
cle at a point must be spacelike as well.9

A “force field,” meanwhile, is a field on spacetime that may give rise to
forces on particles/bodies at a given point, where the force produced by a
given force field may depend on factors such as the charge or velocity of a
body.10 We understand force fields to generate forces on bodies, and so there
8. To see this, note that given a curve with unit tangent vector ya, the acceleration o
the curve is given by ynrny

a. One can immediately confirm that yaðynrny
aÞ5 ð1=2Þ

ynrnðyayaÞ5 0, where the last equality follows because ya has constant length along the
curve.

9. A vector ya at a point in a classical spacetime is timelike if yata ≠ 0; otherwise it is
spacelike. The required result thus follows by observing that given a curve with uni
tangent vector ya, taðynrny

aÞ5 ynrnðyataÞ5 0, again because ya has constant ðtempo
ralÞ length along the curve. Note that one cannot say simply “orthogonal” ðas in the
relativistic caseÞ because in general, the classical metrics do not provide an unambig
uous inner product between timelike and spacelike vectors.

10. Note that there is a possible ambiguity here between a “force field” in the presen
sense, which may be represented by a tensor field and which gives rise to forces on
particles at each point of spacetime, and a vector field that directly assigns a force to
each point of spacetime. We will always use the term in the former, more general sense

time, which is an ordered pair ðM, gabÞ, where M is a smooth, connected, paracompact
Hausdorff 4-manifold and gab is a smooth Lorentzian metric. A model of Newton
ian gravitation, meanwhile, is a classical spacetime, which is an ordered quadruple ðM; tab
hab;rÞ, where M is again a smooth, connected, paracompact, Hausdorff 4-manifold, ta
and hab are smooth fields with signatures ð1, 0, 0, 0Þ and ð0, 1, 1, 1Þ, respectively, which
together satisfy tabhbc 5 0, and r is a smooth derivative operator satisfying the compati
bility conditions ratbc 5 0 and rahbc 5 0. The fields tab and hab may be interpreted as a
ðdegenerateÞ “temporal metric” and a ðdegenerateÞ “spatial metric,” respectively. Note tha
the signature of tab guarantees that locally we can always find a field ta such that tab 5 tatb
In the special case where this field can be smoothly extended to a global field with the
stated property, we call the spacetime temporally orientable. In what follows, we will limi
attention to temporally orientable spacetimes and replace tab with ta. For background
including details of the “abstract index” notation used here, see Malament ð2012; for both
varieties of spacetimeÞ or Wald ð1984; for relativistic spacetimesÞ.
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can be a force associated with a given force field at a point just in case the
force field is nonvanishing at that point. ðThe converse need not hold: a
force field may be nonvanishing at a point and yet give rise to forces for
only some particles at that point.Þ A canonical example of a force field is
the electromagnetic field in relativity theory. Fix a relativistic spacetime
ðM, gabÞ. Then the electromagnetic field is represented by the Faraday
tensor, which is an antisymmetric rank 2 tensor field Fab on M. Given a
particle of charge q, the force experienced by the particle at a point p of its
worldline is given by qFa

by
b, where ya is the unit tangent vector to the

particle’s worldline at p. Note that since Fab is antisymmetric, this force is
always orthogonal to the worldline of the particle, because Faby

ayb 5 0. In
analogy with this case, we will focus attention on force fields represented
by rank 2 ðor lowerÞ tensor fields.11

We can now turn to Reichenbach’s proposal.12 Suppose that the geometry
of spacetime is given by a model of general relativity, ðM, gabÞ. Reichen-
bach claimed that one could equally well represent spacetime by any other
ðconformally equivalentÞ model,13 ðM; ~gabÞ, so long as one was willing to
postulate a universal force field Gab, defined by gab 5 ~gab 1 Gab.14 Various
commentators have had the intuition that this universal force field is
“funny”—that is, that it is not a “force field” in any standard sense.15 And
indeed, given the background on forces we have just presented, one can
immediately identify some confusing features of Reichenbach’s proposal.
11. It bears mentioning that in general one can understand the other so-called funda-
mental forces as acting on particles via a force field represented in just this way, although
we are not limiting attention to force fields that correspond to known forces.

12. The caveats of n. 4 notwithstanding.

13. Two metrics gab and ~gab are said to be conformally equivalent if there is some non-
vanishing scalar field Q such that ~gab 5 Q2gab. Two spacetime metrics are conformally
equivalent just in case they agree on causal structure, i.e., they agree with regard to
which vectors at a point are timelike or null. Reichenbach did not insist on conformal
equivalence when he originally stated his conventionality thesis, but, as Malament
ð1986Þ observes, given that Reichenbach argued elsewhere that the causal structure of
spacetime was nonconventional, to make his views consistent it seems one needs to
insist that metric structure is conventional only up to a conformal transformation. Note,
though, that requiring conformal equivalence only strengthens our results. If the con-
ventionalist cannot accommodate conformally equivalent metrics, then a fortiori one
cannot accommodate arbitrary metrics; conversely, if Reichenbach’s proposal fails even
in the special case of conformally equivalent metrics, then it fails in the case of ðar-
guablyÞ greatest interest.
14. A careful reader of Reichenbach ð1958, 33 n. 1Þ might notice that he actually
characterizes this field Gab as a potential. This makes the proposal even more puzzling,
and so we ignore it for now. For more on this thought, however, see n. 26.

15. We get the expression “funny force” from Malament ð1986Þ, although it may pre-
date him.
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For one, Reichenbach does not give a prescription for how the force field
he defines gives rise to forces on particles or bodies. That is, he gives no
relationship between the value of his field Gab at a point and a vector
quantity, except to say that the force field is “universal,” which we take to
mean that the relationship between the force field and the force experi-
enced by a particle at a point does not depend on features of the particle
such as its charge or species. One might imagine that the relationship is
assumed to be analogous to that between other force fields represented by
a rank 2 tensor field, such as the electromagnetic field, and their associ-
ated forces at a point. But this does not work. Given Reichenbach’s def-
inition, it is immediate that Gab must be symmetric, and thus the vector
Ga

by
b can be orthogonal to ya at a point p for all timelike vectors ya at p—

that is, for all vectors tangent to possible worldlines of massive particles
through p—only if Gab vanishes at p. These considerations should give one
pause about the viability of the proposal. But they also make its full eval-
uation difficult, since it is not clear just how Reichenbach’s force is meant
to work.

That said, there is a way to see that Reichenbach’s universal force field is
problematic even without an account of how it relates to the force on a par-
ticle. Consider the following example. Let ðM; habÞ be Minkowski space-
time and let r be the Levi-Civita derivative operator compatible with hab.

16

Choose a coordinate system t, x, y, z such that hab 5ratrbt 2raxrbx2
rayrby2razrbz. Now consider a second spacetime ðM ; ~gabÞ, where ~gab 5
Q2hab for Qðt; x; y; zÞ5 x2 1 1=2, and let ~r be the Levi-Civita derivative
operator compatible with ~gab. Then ~ya 5 Q21ðy=ytÞa is a smooth timelike
vector field on M with unit length relative to ~gab. Let g be the maximal in-
tegral curve of ~ya through the point ð0; 1= ffiffiffi

2
p

; 0; 0Þ. The acceleration of this
curve, relative to ~r, is ~yn ~rn

~ya 5 2
ffiffiffi
2

p ðy=yxÞa for all points on g½I �. Mean-
while, g is a geodesic ðup to reparameterizationÞ of r, the Levi-Civita deriv-
ative operator compatible with gab ðsee fig. 1Þ. According to Reichenbach, it
would seem to be a matter of convention whether ð1Þ g½I � is the worldline
of a free massive point particle in ðM; habÞ or ð2Þ g½I � is the worldline of
a massive point particle in ðM; ~gabÞ, accelerating due to the universal force
field Gab 5 hab 2 ~gab. But now observe: along g½I �, the conformal factor Q
is equal to 1—which means that along g½I �, gab 5 ~gab and thusGab 5 0. And
so, if one adopts option 2 above, one is committed to the view that the uni-
versal force field can accelerate particles even where Gab vanishes.

This example shows that Gab cannot be a force field in the standard sense
ði.e., as described aboveÞ, since a force field cannot vanish if the force it is
meant to give rise to is nonvanishing ðor, equivalently, the acceleration
16. Minkowski spacetime is the relativistic spacetime ðM; habÞ where M is R4 and
ðM; habÞ is flat and geodesically complete.
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Figure 1. Image of the maximal integral curve g ðdepicted by the vertical lineÞ
passing through the point ð0; 1= ffiffiffi

2
p

; 0; 0Þ. According to ~r, the acceleration of this
curve is 2

ffiffiffi
2

p ðy=yxÞa at every point ðdepicted by the arrowsÞ even though the “force
field” Gab vanishes along the curve. Of course, g can be reparameterized to be a
geodesic according to the flat derivative operator r.
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associated with that force is nonvanishingÞ. It appears to follow that, what-
ever else may be the case about the conventionality of geometry in relativity
theory, the universal force field Reichenbach defines is unacceptable.

The example is especially striking because, as we will presently argue
there is a natural sense in which classical spacetimes do support a kind of
conventionalism about geometry, although the construction is quite dif-
ferent from what Reichenbach describes. To motivate our approach, we wil
begin by considering ðan analog ofÞ Reichenbach’s trade-off equation in
classical spacetimes. Suppose the geometry of spacetime is given by a
classical spacetime ðM; ta; hab; rÞ. Direct analogy with Reichenbach’s
trade-off equation would have us consider classical metrics ~ta and ~hab and
universal force fields Fa and G

ab satisfying ta5~ta 1 Fa and hab 5 ~hab 1 Gab

We might want to assume that Gab must be symmetric, since ~hab is assumed
to be a classical spatial metric. And as in the relativistic case, we migh
insist that these new metrics preserve causal structure—which here would
mean that the compatibility condition ~ta~hab 5 0 must be met, and that si-
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multaneity relations between points must be preserved by the transforma-
tion, which means that ta~hab 5 0 and ~tahab 5 0. Together, these imply that
GabFb 5 0.

Given these trade-off equations, a version of Reichenbach’s proposal
might go as follows: the metrics ðta, habÞ are merely conventional since we
could always use ð~ta; ~habÞ instead, so long as we also postulate universal
forces Fa and Gab. One could perhaps investigate this proposal to see how
changes in the classical metrics affect the associated families of compatible
derivative operators, or even just to understand what the degrees of free-
dom are.17 But there is an immediate sense in which this proposal is ill
formed. The issue is that the metrical structure of a classical spacetime
does not have a close relationship to the acceleration of curves or to the
motion of bodies. Acceleration is determined relative to a choice of de-
rivative operator, and in general there are infinitely many derivative op-
erators compatible with any pair of classical metrics. All of these give rise
to different standards of acceleration. And so it is not clear that the fields
Fa and Gab bear any relation to the acceleration of a body. As in the rel-
ativistic example given above, this counts against interpreting them as
force fields at all.

These considerations suggest that Reichenbach’s force field does not do
any better in Newtonian gravitation than it does in general relativity. But it
also points in the direction of a different route to conventionalism about
classical spacetime geometry. The proposal above failed because acceler-
ation is determined relative to a choice of derivative operator, not classical
metrics. Could it be that the choice of derivative operator in a classical
spacetime is a matter of convention, so long as the choice is appropriately
accommodated by some sort of universal force field? We claim that the
answer is yes.

Proposition 1.—Fix a classical spacetime ðM; ta; hab;rÞ and consider
17. O
tion.

0 Publ
an arbitrary torsion-free derivative operator on M, ~r, which we assume to
be compatible with ta and hab. Then there exists a unique antisymmetric
field Gab such that given any timelike curve g with unit tangent vector
field ya, ynrny

a 5 0 if and only if yn ~rny
a 5 Ga

ny
n, where Ga

ny
n 5 ham

Gmny
n.
Proof.—If such a field exists, then it is necessarily unique, since the

defining relation determines its action on all vectors ðbecause the space of
vectors at a point is spanned by the timelike vectorsÞ. So it suffices to
prove existence. Since ~r is compatible with ta and hab, it follows from
ne might understand Friedman ð1983Þ to have made some remarks in this direc-
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proposition 4.1.3 of Malament ð2012Þ that the Ca
bc field relating it to r

must be of the form Ca
bc 5 2hantðbkcÞn, for some antisymmetric field kab.

18

Pick some timelike geodesic g of r, and suppose that ya is its unit tan-
gent vector field. Then the acceleration relative to ~r is given by yn ~rn

ya 5 ynrny
a 2 Ca

nmy
nym5 22hartðnkmÞry

nym522harkmry
m. So we can take

Gab 5 2kab and we have existence. QED
This proposition means that one is free to choose any derivative opera-
tor one likes ðcompatible with the fixed classical metricsÞ and, by postu-
lating a universal force field, one can recover all of the allowed trajectories
of either a model of standard Newtonian gravitation or a model of geom-
etrized Newtonian gravitation. Thus, since the derivative operator deter-
mines both the collection of geodesics—that is, nonaccelerating curves—
and the curvature of spacetime, there is a sense in which both acceleration
and curvature are conventional in classical spacetimes. Most important, the
field Gab makes good geometrical sense as a force field. Like the Faraday
tensor, the field defined in proposition 1 is an antisymmetric, rank 2 tensor
field; moreover, this field is related to the acceleration of a body in pre-
cisely the same way that the Faraday tensor is ðexcept that all particles
have the same “charge”Þ, which means that the force generated by the field
Gab on a particle at some point is always spacelike at that point. Thus Gab

as defined in proposition 1 is not a “funny” force field at all.19

It is interesting to note that from this perspective, geometrized Newto-
nian gravitation and standard Newtonian gravitation are just special cases
of a much more general phenomenon. Specifically, one can always choose
the derivative operator associated with a classical spacetime in such a way
that the curvature satisfies the geometrized Poisson equation and the al-
lowed trajectories of bodies are geodesics ðyielding geometrized Newto-
nian gravitationÞ, or one can choose the derivative operator so that the
curvature vanishes—and when one makes this second choice, if other back-
ground geometrical constraints are met, the force field takes on the partic-
ularly simple form Gab 5 2r½aftb�, for some scalar field f that satisfies
Poisson’s equation ðyielding standard Newtonian gravitationÞ. These are
he notation of Ca
bc fields used here is explained in Malament ð2012, chap. 1.7Þ and

ð1984, chap. 3Þ. Briefly, fix a derivative operatorr on a smooth manifoldM. Then
ther derivative operator ~r can be written as ~r5 ðr; Ca

bcÞ, where Ca
bc is a smooth,

etric ðin the lower indicesÞ tensor field that allows one to express the action of ~r on
bitrary tensor field in terms of the action of r on that field.

f course, we have not provided any field equationðsÞ for Gab, and so some readers
t object that they cannot evaluate whether Gab is “funny” or not. At the very least,
nalogy with the Faraday tensor is limited, since one cannot expect Gab to satisfy
ell’s equations. This is a fair objection to the specific claim we make here—though
lies equally well to other such proposals, including Reichenbach’s.

80 Published online by Cambridge University Press

https://doi.org/10.1086/675680


242 JAMES OWEN WEATHERALL AND JOHN BYRON MANCHAK

https://doi.org/10.1086/67568
nontrivial facts, but they arguably indicate that some choices of derivative
operator are more convenient to work with than others ðbecause the as-
sociated Gab fields take simple formsÞ, and not that these choices are ca-
nonical.20

Now let us return to relativity theory. We have seen that in classical
spacetimes, there is a trade-off between choice of derivative operator and a
not-so-funny universal force field that does yield a kind of conventionality
of geometry. Does a similar result hold in relativity? The analogous pro-
posal would go as follows. Fix a relativistic spacetime ðM, gabÞ, and letr be
the Levi-Civita derivative operator associated with gab. Now consider an-
other torsion-free derivative operator ~r.21 We know that ~r cannot be com-
patible with gab, but we can insist that causal structure is preserved, and so
we can require that there is some metric ~gab 5 Q2gab such that ~r is com-
patible with ~gab.22 The question we want to ask is this. Is there some rank
2 tensor field Gab such that, given a curve g, g is a geodesic ðup to re-
parameterizationÞ relative to r just in case its acceleration relative to ~r
is given by Ga

n
~yn, where ~ya is the tangent field to g with unit length relative

to ~gab? The answer is no, as can be seen from the following proposition.

Proposition 2.—Let ðM, gabÞ be a relativistic spacetime, let ~gab 5 Q2gab be
20. T
deriv
Newt
eratu
gener
itatio
on to
ter co
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tween
½2013
ferred
ent c
quest

21. A
deriv

22. A
this s
most

23. I
propo
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0 Publ
a metric conformally equivalent to gab, and let r and ~r be the Levi-Civita
derivative operators compatible with gab and ~gab, respectively. Suppose Q
is nonconstant.23 Then there is no tensor field Gab such that an arbitrary
here is certainly more to say here regarding what, if anything, makes the classes of
ative operators associated with standard Newtonian gravitation and geometrized
onian gravitation “special,” in light of proposition 1. Several arguments in the lit-
re might be taken to apply. For instance, although he does not show anything as
al as proposition 1, Glymour ð1977Þ has observed that one can think of the grav-
nal force in Newtonian gravitation as a Reichenbachian universal force. He goes
resist conventionalism by arguing that geometrized Newtonian gravitation is bet-
nfirmed, since it is empirically equivalent to Newtonian gravitation ðwith the funny
Þ, but postulates strictly less. ðFor an alternative perspective on the relationship be-
Newtonian gravitation and geometrized Newtonian gravitation, see Weatherall
�.Þ A second argument for why geometrized Newtonian gravitation should be pre-
to standard Newtonian gravitation—one that can likely be extended to the pres-

ontext—has recently been offered by Knox ð2013Þ. But we will not address this
ion further in the present article.

n interesting question that we do not address here is whether the torsion of the
ative operator can be seen as conventional.

gain, this restriction strengthens the result. If the proposal does not work even in
pecial case, it cannot work in general; moreover, the special case is arguably the
interesting.

f Q were constant, then the force field Gab 5 0 would meet the requirements of the
sition. But metrics related by a constant conformal factor are usually taken to be
cally equivalent, since they differ only by an overall choice of units.
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t

t

t
t

,
,

curve g is a geodesic relative to r if and only if its acceleration relative to
~r is given by Ga

n
~yn, where ~yn is the tangent field to g with unit length

relative to ~gab.

Proof.—Since gab and ~gab are conformally equivalent, their associated
derivative operators are related by ~r5 ðr; Ca

bcÞ, where Ca
bc5 21=ð2Q2Þ

d
a
brcQ

2 1 d
a
crbQ

2 2 gbcgarrrQ
2

� �
. Moreover, given any smooth timelike

curve g, if ya is the tangent field to g with unit length relative to gab

then ~ya 5 Q21ya is the tangent field to g with unit length relative to ~gab. A
brief calculation reveals that if g is a geodesic relative to r, then the
acceleration of g relative to ~r is given by ~yn ~rn

~ya 5 ~ynrn
~ya 2 Ca

nm
~yn~ym 5

Q23 yaynrnQ2 garrrQð Þ. Now suppose that a tensor field Gab as described
in the proposition existed. It would have to satisfy Q21~ganGnmy

m 5 Q23

yaynrnQ2 garrrQð Þ for every unit ðrelative to gabÞ vector field ya tangen
to a geodesic ðrelative to rÞ. Note in particular that Gab must be well de-
fined as a tensor at each point, and so this relation must hold for all uni
timelike vectors at any point p, since any vector at a point can be extended
to be the tangent field of a geodesic passing through that point. Pick a
point p where raQ is nonvanishing ðwhich must exist, since we assume
Q is nonconstantÞ, and consider an arbitrary pair of distinct, cooriented
unit ðrelative to gabÞ timelike vectors at that point, ma and ha. Note tha
there always exists some number a such that za 5 aðma 1 haÞ is also a uni
timelike vector. Then it follows that

~ganGnmz
m 5

1

Q2 zaznrnQ2 garrrQð Þ

5
1

Q2 ½a2 mamn 1 mahn 1 hamn 1 hahnð ÞrnQ2 garrrQ�:

But since Gab is a linear map, we also have

~ganGnmz
m 5 a~ganGnmm

m 1 a~ganGnmh
m

5
a

Q2 mamnrnQ2 garrrQð Þ1 a

Q2 hahnrnQ2 garrrQð Þ:

These two expressions must be equal, which, with some rearrangement of
terms, implies that

ð2a2 1ÞgarrrQ5 a ð12 aÞðmamn 1 hahnÞ2 2ahðamnÞ� �rnQ:

But this expression yields a contradiction, since the left-hand side is a
vector with fixed orientation, independent of the choice of ma and ha

whereas the orientation of the right-hand side will vary with ma and ha

which were arbitrary. Thus Gab cannot be a tensor at p. QED
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So it would seem that we do not have the same freedom to choose between
derivative operators in general relativity that we have in classical space-
times—at least not if we want the universal force field to be represented by
a rank 2 tensor field.

One might think there is a certain tension between proposition 1 and
proposition 2. To put the point starkly, proposition 2 could be immediately
generalized to semi-Riemannian manifolds with metrics of any signature.
It shows that, in the most general setting, the relationship between two
derivative operators compatible with conformally equivalent metrics can
never be captured by a rank 2 tensor. And yet, proposition 1 appears to show
that in the case of classical spacetimes, two derivative operators compatible
with the same metrics ðwhich are trivially conformally equivalentÞ can be
captured by an antisymmetric rank 2 tensor. It is this freedom that allows
us to accommodate different choices of derivative operator by postulating
a universal force field with relatively natural properties. But why does this
not yield a contradiction—that is, why is proposition 1 not a counterexam-
ple to proposition 2 ðsuitably generalizedÞ?

The answer highlights an essential difference between relativistic and
classical spacetime geometry. Although proposition 2 could be generalized
to nondegenerate metrics of any signature, it cannot be generalized to de-
generate metrics of the sort encountered in classical spacetime theory. In-
deed, this is precisely the content of proposition 1. The important difference
is that in relativity theory, the fundamental theorem of Riemannian geom-
etry holds: given a metric, there is a unique torsion-free derivative operator
compatible with that metric. Thus if one wants to adopt a different choice of
derivative operator, one must also use a different spacetime metric. And
varying the spacetime metric puts new constraints on what derivative op-
erators may be chosen. In the case of a degenerate metrical structure, as in
classical spacetimes, none of this applies. A given pair of classical metrics
may be compatible with a continuum of derivative operators. A different
way of putting this point is that insofar as the metric in relativity theory is
determined by certain canonical ðidealizedÞ experimental tests involving,
say, the trajectories of test particles and light rays, then the derivative op-
erator and curvature of spacetime are also so determined. But in classical
spacetimes, even if one could stipulate the metric structure through em-
pirical tests, the derivative operator and curvature of spacetime would still
be undetermined.24

We take the results here to settle the question posed at the beginning of
the article. But as we emphasized there, the considerations we have raised
24. Note that this freedom was precisely what motivated us to look to derivative op-
erators as a source of conventionality in the context of classical spacetimes in the first
place.
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do not refute conventionalism. For instance, one might argue that the senses
of “force” and “force field” that we described above, which play an im-
portant role in our discussion, are too limiting, and that there is some gen-
eralized notion of force field that could save conventionalism. An especially
promising option would be to argue that a force field need not be repre-
sented by a rank 2 tensor field.25 And indeed, given a relativistic spacetime
ðM, gabÞ, a conformally equivalent metric ~gab, and their respective derivative
operators, r and ~r, there is always some tensor field such that we can get a
“funny force field” trade-off. Specifically, a curve g will be a geodesic
relative to r just in case its acceleration relative to ~r is ~yn ~rn

~ya 5 Ga
nm
~yn~ym,

where ~ya is the unit ðrelative to ~gabÞ vector field tangent to g, and
Ga

bc 5 2Q21~gan~gc½n ~rb�Q.26 That the field Ga
bc exists should be no surprise—it

merely reflects the fact that the action of one derivative operator can always
be expressed in terms of any other derivative operator and a rank three
tensor.27 This Ga

bc field presents a more compelling force field than the one
25. This option may even be compatible with our description of force fields above,
although much more would need to be said about how such a field would give rise to
forces and what properties it would have.

26. In n. 14, we observed that Reichenbach characterizes the field he defines ðwhat we
call “Gab”Þ as a “potential.” We ignored this above but will comment on it now. Ex-
panding on our treatment of forces and force fields above, one might add that force
fields—such as the electromagnetic field or the Newtonian gravitational field—can
sometimes be represented as the exterior derivative of some lower-rank field. This lower
rank field is the “potential” field. Given that Reichenbach calls the field Gab a potential,
and we have just shown that a higher rank field Ga

bc may be used to represent a kind of
universal force in certain cases, is it possible that we have recovered Reichenbach’s
proposal after all? One might first note that the exterior derivative may only be applied
to differential forms, which are antisymmetric; Gab, recall, is symmetric ðand the anti-
symmetrized derivative of a symmetric field always vanishesÞ. So the direct route fails.
But one can write Ga

bc in terms of a derivative of Gab: specifically, one can confirm
thatGa

bc5 ~ganr½nGb�c 5 Q2~gan ~r½nGb�c, wherer is the derivative operator compatible with
gab and ~r is the derivative operator compatible with ~gab. So is Reichenbach triumphant
in the end? Sure, if one is willing to call Ga

bc a “force” and Gab a “potential,” where the
relationship is given by either of the expressions just stated. But we have now wandered
very far from the standard usages of these terms, and so the remarks in the final
paragraph of this essay apply.

27. It is worth observing that the force on any particular particle arising from the force
field Ga

bc can be written in a highly suggestive—but, we believe, misleading—form, as
follows. Suppose one has a particle whose worldline’s unit ðrelative to ~gabÞ tangent field
is ~ya. Then the acceleration ðrelative to ~rÞ that particle would experience can be written
~yn ~rn

~ya 5 Ga
mn
~ym~yn52~ham ~rmf, where f5 lnQ is a scalar field and ~hab 5 ~gab 2 ~ya~yb is

the tensor field that projects onto the vector subspace orthogonal ðrelative to ~gabÞ to ~ya. In
this form, it would seem that the force experienced by any particle is just the gradient
of a scalar field, much as in Newtonian gravitational theory. But this is a misleading
characterization of the situation because the orthogonal projection will vary depending
on the 4-velocity of a particle, and so the force law is not merely the gradient of a scalar
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Reichenbach defines, for instance, sinceGa
bc will always be proportional ðin

a generalized senseÞ to the acceleration of a body, just as one should expect.
In particular, it will vanish precisely when the acceleration of the body does,
which as we have seen is not the case for Reichenbach’s force field.

Ultimately, though, the attractiveness of a conventionalist thesis turns
on how much one needs to postulate in order to accommodate alternative
conventions. In some sense, one can be a conventionalist about anything, if
one is willing to postulate enough—an evil demon, say. The considerations
we have raised here should be understood in this light. From the perspective
of the broader literature on the conventionality of geometry, what we have
done here is to clarify the relative costs associated with conventionalism
in two theories. We have shown that in the Newtonian context, one does
not need to postulate very much to support a kind of conventionalism about
spacetime geometry: one can accommodate any torsion-free derivative op-
erator compatible with the classical metrics so long as one is willing to pos-
tulate a force field that acts in many ways like familiar force fields, such as
the electromagnetic field. Of course, one may still resist conventionalism
about classical spacetime geometry by arguing that even this is too much.
But whatever else is the case, it seems that the costs of accepting conven-
tionalism about geometry in relativity theory are higher still. As we have
shown, Reichenbach’s proposal requires a very strange sense of “force/
force field”; meanwhile, if one wants to maintain the standard notion of
“force field,” then the universal force field one needs to postulate cannot be
represented by a rank 2 tensor field. So one must posit something com-
paratively exotic to accommodate alternative geometries in relativity the-
ory—which, it seems to us, makes this view less appealing.
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Erratum

James Owen Weatherall and John Byron Manchak’s “The Geometry of
Conventionality” ðin vol. 81, no. 2, April 2014Þ contains typesetting errors
in several mathematical terms that should have had staggered indices. In
particular, the following corrections are needed, beginning on page 238.
The corrected article will be republished both online and in print.
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ty Press
Corrected Equation
Page 238, start of tenth line
 Ga
by

b
 Ga
by

b

Page 240, final two equations in
proposition 1
 Both instances of Ga

ny
n
 Ga

ny
n

Pages 240–41, final line on p. 240
and first line on p. 241 of proof
of proposition 1
 Both instances of Ca

bc
 Ca
bc
Page 241, penultimate line of
proof of proposition 1
 Ca

nmy
nym
 Ca

nmy
nym
Page 241 n. 18
 All instances of Ca
bc
 Ca

bc
Page 242, penultimate line before
proposition 2
 Ga

n
~yn
 Ga

n
~yn
Page 243, first line
 Ga
n
~yn
 Ga

n
~yn
Page 243, fourth line
 Both instances of Ca
bc
 Ca

bc
Page 243, fifth line
 dab
 dab

Page 243, fifth line
 dac
 dac

Page 243, ninth line
 Ca

nm
 Ca
nm
Page 245, line 10
 Ga
nm
 Ga

nm
Page 245, line 12
 Ga
bc
 Ga

bc
Page 245 nn. 26 and 27
 All instances of Ga
bc
 Ga

bc
Page 245 n. 27
 Ga
mn
 Ga

mn
Page 245, last line before
start of footnotes
 Ga

bc
 Ga
bc
Page 246, line 1
 Ga
bc
 Ga

bc
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