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We study the small data global well-posedness and time-decay rates of solutions to
the Cauchy problem for three-dimensional compressible Navier–Stokes–Allen–Cahn
equations via a refined pure energy method. In particular, the optimal decay rates of
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1. Introduction

A fluid-mechanical theory for two-phase mixtures of fluids faces a well-known
mathematical difficulty: the movement of the interfaces is naturally amenable
to a Lagrangian description, while the bulk fluid flow is usually considered in
the Eulerian framework [10]. Recently, the phase-field methods, or sometimes
called the diffuse interface approaches, has been introduced to overcome this diffi-
culty by postulating the existence of a ‘diffuse’ interface spread over a possibly
narrow region covering the ‘real’ sharp interface boundary. Now, these models
become one of the major tools to study a variety of interfacial phenomena. As
the underlying physical problem still conceptually consists of sharp interfaces, the
dynamics of the phase variable remains to a considerable extent purely fictitious
[10]. Typically, different variants of Allen–Cahn, Cahn–Hilliard or other types of
dynamics were used to describe the models, see previous studies [1, 14, 20, 21] for
example.

One of the well-known diffuse interface model for two-phase flow is the coupled
Navier–Stokes/Allen–Cahn system. In this model, the interfaces between the phases
are assumed to be of ‘diffuse’ nature, that is, sharp interfaces are replaced by narrow
transition layers. These regions are located by a phase field variable χ governed by
the Allen–Cahn equation, while the dynamics are described by the Navier–Stokes
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equations. In [2], Blesgen proposed this model and developed a thermodynami-
cally and mechanically consistent set of partial differential equations extending the
Navier–Stokes equations to a compressible binary Allen–Cahn mixture. As Bles-
gen [2] has pointed out before, the Navier–Stokes–Allen–Cahn model can be seen
as a first step towards incorporating transport mechanism into the description of
phase-formation processes.

During the past few years, many authors studied the properties of solutions for
the incompressible Navier–Stokes system with matched density. For example, Favre
and Schimperna [9] considered the existence of weak solution in three-dimensional
(3D) and well-posedness of strong solution in two-dimensional (2D), Xu et al. [29]
studied the existence of axisymmetric solutions, Zhao et al. [31] studied the vanish-
ing viscosity limit, Gal and Grasselli [11, 12] considered the asymptotic behaviour
and attractors. For the system based on the incompressible Navier–Stokes sys-
tem with different densities, Li et al. [18, 19] studied the local well-posedness and
blow-up criterion of strong solutions. Moreover, by using an energetic variational
approach, Jiang et al. [15] derived a different model of Navier–Stokes–Allen–Cahn,
then proved the existence of weak solutions in 3D, the well-posedness of
strong solutions in 2D, and studied the long-time behaviour of the strong
solutions.

As far as we know, there are also some classical results are available for the
initial-boundary value problem of compressible Navier–Stokes–Allen–Cahn sys-
tem. In [10], for the initial-boundary value problem of 3D compressible model,
by using Faedo–Galerkin approximation, Feireisl et al. proved the existence of
global-in-time weak solutions without any restriction on the size of initial data
for the exponent of pressure γ > 6. This result was extended to γ > 2 in Chen
et al. [4]. Moreover, supposed that the boundary conditions of the model are
of mixed type (Neumann–Dirichlet) and may be nonhomogeneous, the density is
Hölder continuous for instance, Kotschote [17] established the local well-posedness
of solutions for sufficiently smooth data, in a general C2 bounded domain of
R

n (n � 1). Ding et al. [5, 6] proved the existence and uniqueness of global
classical solution, the existence of weak solutions and the existence of unique
global strong solution of the initial-boundary value problem of one-dimensional
(1D) compressible Navier–Stokes–Allen–Cahn systems for the initial data with-
out vacuum states. Recently, Zhu and his authors [22, 30] paid their attention
to the large time behaviour of solutions for the Cauchy problem and inflow
problem of 1D compressible Navier–Stokes–Allen–Cahn equations, respectively.
In [22], Luo, Yin and Zhu proved that the solutions to the Cauchy problem
of 1D compressible Navier–Stokes/Allen–Cahn system tend time-asymptotically
to the rarefaction wave, where the strength of the rarefaction wave is not
required to be small. In addition, for the inflow problem of 1D compressible
Navier–Stokes/Allen–Cahn system, Yin and Zhu [30] analysed the large-time
behaviour of the solution, proved the existence of the stationary solution and the
asymptotic stability of the nonlinear wave. However, to our knowledge, there’s no
result on the Cauchy problem for the 3D compressible Navier–Stokes–Allen–Cahn
system.
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In this paper, we consider the Cauchy problem of 3D compressible
Navier–Stokes–Allen–Cahn equations [2, 17, 28]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + ∇ · (ρu) = 0,
∂t(ρu) + ∇ · (ρu⊗ u) + ∇p− μΔu− (μ+ λ)∇divu

= −�∇ ·
(
∇χ⊗∇χ = −|∇χ|2

2
I3

)
,

∂t(ρχ) + div(ρχu) = −ω,
ρω = −�Δχ+ ρ

∂Φ(ρ, χ)
∂χ

,

(ρ, u, χ)|t=0 = (ρ0, u0, χ0),

(1.1)

where ρ denotes the total fluid density, u implies the mean velocity of the fluid
mixture, χ is the concentration of one selected constituent and the pressure p = p(ρ)
is a smooth function in a neighbourhood of 1 with p′(1) = 1, respectively. Moreover,
ω is the chemical potential and I3 denotes a 3 × 3 identity matrix. μ and λ are two
viscosity coefficients, which satisfy

μ > 0, 2μ+ 3λ � 0.

The specific free energy f(ρ, χ) can be defined as

Φ(ρ, χ) =
ργ−1

γ − 1
+

1
�

(
χ4

4
− χ2

2

)
, (1.2)

where γ > 1 is the adiabatic constant and the constant
√
� denotes the thickness of

the interfacial region. In this paper, we take

ρ
∂Φ(ρ, χ)
∂χ

=
ρ

�
(χ3 − χ).

For simplicity, we let � ≡ 1 throughout the rest of this paper.

Notation 1.1. In the following, we use Hk(R3 (k ∈ R) to denote the usual Sobolev
spaces with norm ‖ · ‖Hs and Lp(R3), 1 � p � ∞ to denote the usual Lp spaces with
norm ‖ · ‖Lp . We also introduce the homogeneous negative index Sobolev space
Ḣ−s(R3):

Ḣ−s(R3) := {f ∈ L2(R3) : ‖|ξ|−sf̂(ξ)‖L2 <∞}
endowed with the norm ‖f‖Ḣ−s := ‖|ξ|−sf̂(ξ)‖L2 . The symbol ∇l with an integer
l � 0 stands for the usual spatial derivatives of order l. For instance, define

∇lz = {∂α
x zi||α| = l, i = 1, 2, 3}, z = (z1, z2, z3).

If l < 0 or l is not a positive integer, ∇l stands for Λl defined by

Λsf(x) =
∫

R3
|ξ|sf̂(ξ) e2πix·ξ dξ, (1.3)

where f̂ is the Fourier transform of f (see [13]). Moreover, we use the notation
A � B to mean that A � cB for a universal constant c > 0 that only depends on
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the parameters coming from the problem and the indexes N and s coming from the
regularity on the data.

For this system, we first show the local well-posedness in the following lemma.

Lemma 1.1. Let the initial data(�0, u0, χ0) ∈ H3(R3) ×H3(R3) ×H4(R3). Then
there exit positive constants ν0 > 0 and T > 0 depending only on ‖(�0, u0,
χ0,∇χ0)‖H3 such that the system (1.4) has a unique solution

(�, u, χ,∇χ) ∈ L∞(0, T ;H3), (u, χ,∇χ) ∈ L2(0, T ;H4),

satisfying

‖(�, u, χ,∇χ)(t)‖H3 ,

(
ν0

∫ t

0

‖∇(u, χ,∇χ)(τ)‖2
H3 dτ

)1/2

� C(‖(�0, u0, χ0,∇χ0)‖H3), ∀t ∈ [0, T ].

Lemma 1.1 can be proved by using the Banach fixed point theorem. One will
sketch the proof in the second part of § 2.

Next, denote � = ρ− 1, rewrite (1.1) in the perturbation form as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�t + divu = −�divu− u · ∇�,
ut − μΔu− (μ+ λ)∇divu+ ∇�

= −u · ∇u− h(�)(μΔu+ (μ+ λ)∇divu)

−g(�)∇�− φ(�)div
(
∇χ⊗∇χ− |∇χ|2

2
I3

)
,

χt − Δχ = −u · ∇χ− ϕ(�)Δχ− φ(�)(χ3 − χ),
(�, u, χ)|t=0 = (�0, u0, χ0) = (ρ0 − 1, u0, χ0),

(1.4)

where

h(�) =
�

�+ 1
, g(�) =

p′(�+ 1)
�+ 1

− 1, φ(�) =
1

�+ 1
, ϕ(�) =

�(�+ 2)
(�+ 1)2

,

The main purpose of this paper is to study the small initial data global well-
posedness and optimal decay estimates of strong solutions for system (1.1) in the
whole space R

3. We use a general energy method, Kato–Ponce inequality and the
Gagliardo–Nirenberg interpolation techniques to obtain the global well-posedness
and the optimal time-decay rates of the solution to system (1.1) when the initial
data are sufficiently small.

Next, one state the global well-posedness and decay estimates of solutions for
system (1.4):
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Theorem 1.1. Let N � 3, assume that (�0, u0, χ0) ∈ HN (R3) ×HN (R3) ×
HN+1(R3), and there exists a constant δ0 > 0 such that if

‖�0‖H3 + ‖u0‖H3 + ‖χ0‖H3 + ‖∇χ0‖H3 � δ0, (1.5)

then there exists a unique global solution (�, u, χ) satisfying that for all t � 0,

‖�(t)‖2
HN + ‖u(t)‖2

HN + ‖χ‖2
HN + ‖∇χ‖2

HN

+
∫ t

0

(‖∇u(s)‖2
HN + ‖χ‖2

HN + ‖∇χ‖2
HN ) ds

� C(‖�0‖2
HN + ‖u0‖2

HN + ‖χ0‖2
HN + ‖∇χ0‖2

HN ). (1.6)

If further, (�, u0, χ0,∇χ0) ∈ Ḣ−s(R3) for some s ∈ [0, 3
2 ), then for all t � 0,

‖Λ−s�(t)‖2
L2 + ‖Λ−su(t)‖2

L2 + ‖Λ−sχ(t)‖2
L2 + ‖Λ−s∇χ(t)‖2

L2 � C, (1.7)

and

‖∇l�(t)‖HN−l + ‖∇lu(t)‖HN−l + ‖∇lχ(t)‖HN−l

+ ‖∇l+1χ(t)‖HN−l � C(1 + t)−(l+1)/2, for l = 0, 1, . . . , N − 1. (1.8)

Note that the Hardy–Littlewood-Sobolev theorem implies that for p ∈ (1, 2],
Lp(R3) ⊂ Ḣ−s(R3) with s = 3( 1

p − 1
2 ) ∈ [0, 3

2 ). Then, on the basis of theorem 1.1,
we easily obtain the following corollary of the optimal decay estimates.

Corollary 1.1. Under the assumptions of theorem 1.1, if we replace the Ḣ−s(R3)
assumption by

(�, u0, χ0,∇χ0) ∈ Lp(R3), 1 < p � 2,

then the following decay estimate holds:

‖∇l�(t)‖HN−l + ‖∇lu(t)‖HN−l + ‖∇lχ(t)‖HN−l + ‖∇l+1χ(t)‖HN−l

� C(1 + t)−[3/2(1/p−1/2)+l/2], for l = 0, 1, . . . , N − 1. (1.9)

Remark 1.1. The compressible Hall-magnetohydrodynamics system [7] has the
following form:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρt + div(ρu) = 0,
(ρu)t + div(ρu⊗ u) + ∇p− μΔu− (λ+ μ)∇divu = (∇× b) × b,

bt + ∇× (b× u) + ∇×
(

(∇× b) × b

ρ

)
= Δb,

div b = 0,
(ρ, u, b)|t=0 = (ρ0, u0, b0),

(1.10)

where ρ is the density of the fluid, u is the fluid velocity field and b is the magnetic
field. In [7], the authors considered the local well-posedness, small initial data global
well-posedness and large time behaviour of strong solutions for system (1.10). It
is worth pointing out that the structures of systems (1.1) and (1.10) are different.
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Especially, the principle part of (1.10)3 is a linear term −Δb, however, it is a
nonlinear function −(�/ρ)Δχ in (1.1)3. One can’t use the tools of the dissipative
equation with linear principle part to study the properties of this equation. Here,
we borrow a linear term from the right-hand side of (1.1)3, rewrite this equation as
a second-order PDE

χt − Δχ = −u · ∇χ− ϕ(�)Δχ− φ(�)(χ3 − χ), (1.11)

where � = ρ− 1, φ(�) = 1/(�+ 1) and ϕ(�) = (�(�+ 2))/((�+ 1)2). It is worth
pointing out that there exists a linear principle part −Δχ in (1.11). Then, by
using the pure energy method, one can obtain suitable energy estimates. Moreover,
the right-hand term of system (1.1)2 is different from system (1.10)2. One can use
the usual Sobolev embedding inequality, Kato–Ponce inequality together with the
Gagliardo–Nirenberg interpolation techniques to deal with this term.

Remark 1.2. There are some classical results on the initial-boundary value prob-
lem of compressible Navier–Stokes–Allen–Cahn equations in bounded domains,
for example [3, 5, 6, 8, 17, 24] and references therein. However, only a few
results related to the Cauchy problem. In terms of well-posedness of compressible
Navier–Stokes–Allen–Cahn equations on bounded domains, the known construc-
tions make use of some compactness properties in an essential manner, and more
specifically of the compact Sobolev embeddings. However, if we consider the equa-
tions in the whole space, such properties are no longer valid, it is more difficult
to obtain suitable a priori estimates to develop a general theory of well-posedness.
In this paper, we adopt the Gagliardo–Nirenberg inequality in R

3 (lemma 2.2),
negative Sobolev norm estimates and pure energy method, overcome this difficulty,
obtain the global well-posedness and the decay rate of higher-order derivatives of
strong solutions. We remark that since the decay estimate is same as the heat
equation, it is optimal.

The structure of this paper is organized as follows. In § 2, we introduce some
preliminary results and give a brief proof on the local well-posedness. Section 3 is
devoted to establish some refined energy estimates for the solution. In § 4, we derive
the evolution of the negative Sobolev norms of the solution. Finally, the proof of
theorem 1.1 is postponed in § 5.

2. Preliminaries

2.1. Useful inequalities

In this section, we introduce some helpful results in R
3.

First of all, the following Kato–Ponce inequality is of great importance in our
paper.

Lemma 2.1 [16]. Let 1 < p <∞, s > 0. There exists a positive constant C such
that

‖∇s(fg)‖Lp � C(‖f‖Lp1 ‖∇sg‖Lp2 + ‖∇sf‖Lq1 ‖g‖Lq2 , (2.1)

where p2, q2 ∈ (1,∞) satisfying 1
p = 1

p1
+ 1

p2
= 1

q1
+ 1

q2
.
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The following Gagliardo–Nirenberg inequality in R
3 was proved in [23].

Lemma 2.2 [23]. Let 0 � m,α � l, then we have

‖∇αf‖Lp � ‖∇mf‖1−θ
Lq ‖∇lf‖θ

Lr , (2.2)

where θ ∈ [0, 1] and α satisfies

α

3
− 1
p

=
(
m

3
− 1
q

)
(1 − θ) +

(
l

3
− 1
r

)
θ. (2.3)

Here, when p = ∞, we require that 0 < θ < 1.

We recall the following commutator estimate:

Lemma 2.3 [26]. Let m � 1 be an integer and define the commutator

[∇m, f ]g = ∇m(fg) − f∇mg. (2.4)

Then, the following inequality holds:

‖[∇m, f ]g‖Lp � ‖∇f‖Lp1 ‖∇m−1g‖Lp2 + ‖∇mf‖Lp3 ‖g‖Lp4 , (2.5)

where p, p2, p3 ∈ (1,∞) and 1
p = 1

p1
+ 1

p2
= 1

p3
+ 1

p4
.

Wang [26], Wei, Li and Yao [27] introduced the following result:

Lemma 2.4. Suppose that ‖�‖L∞ � 1 and p > 1. Let f(�) be a smooth function of
� with bounded derivatives of any order, then for any integer n � 1, the following
inequality holds:

‖∇m(f(�))‖Lp � ‖∇m�‖Lp . (2.6)

We also introduce the Hardy–Littlewood–Sobolev theorem, which implies the
following Lp type inequality.

Lemma 2.5 [13, 25]. Let 0 � s < 3
2 , 1 < p � 2 and 1

2 + s
3 = 1

p , then

‖f‖Ḣ−s � ‖f‖Lp . (2.7)

The special Sobolev interpolation lemma will be used in the proof of theorem 1.1.

Lemma 2.6 [25, 26]. Let s, k � 0 and l � 0, then

‖∇lf‖L2 � ‖∇l+kf‖1−θ
L2 ‖f‖θ

Ḣ−s , with θ =
k

l + k + s
. (2.8)
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2.2. Local well-posedness

In the following, we give a brief proof of lemma 1.1 on the local well-posedness of
system (1.1), which is similar to the arguments in [7]. For completeness, we outline
the proof here.

First, consider the following system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + ∇ · (ρũ) = 0,
∂t(ρu) + ∇ · (ρũ⊗ u) + ∇p = μΔu+ (μ+ λ)∇divu

− �∇ ·
(
∇χ⊗∇χ− |∇χ|2

2
I3

)
,

∂t(ρχ) + div(ρχũ) = −ω,
ρω = −�Δχ+

ρ

�
[(χ̃)2 − 1]χ,

(ρ, u, χ)|t=0 = (ρ0, u0, χ0),

(2.9)

where (ũ, ϕ̃) ∈ R∗
T are known functions with (ũ, ϕ̃)(x, 0) = (u0, ϕ0) and

R∗
T =

{
v ∈ H3| sup

0�t�T
‖v‖2

H3 +
∫ T

0

‖∇v‖2
H3 ds � R

}
,

where R > 1 and T > 0 will be decided later.
Note that (2.9)1 is linear with regular ũ. The existence and uniqueness are well-

known and we also have

0 < ρ � ρ, ‖ρ(x, t)‖H3 + ‖ρt‖H2 � C exp
(
C

∫ t

0

‖∇ũ‖H2 ds
)
.

Then, if T is suitably small, we can obtain the estimates for ρ. Next, taking advan-
tage of the estimate for ρ and the classical theory of linear parabolic system, one
can get the existence and uniqueness of (u, ϕ,∇ϕ) by (2.9)2–(2.9)4.

Define a fixed point map F : (ũ, ϕ̃, ∇̃ϕ) ∈ R∗
T ×R∗

T ×R∗
T → (u, ϕ,∇ϕ). We will

prove that the map F mapping R∗
T ×R∗

T ×R∗
T into itself for suitable constant R

and small time T and F is a contraction mapping on R∗
T ×R∗

T ×R∗
T . Thus, F has

a unique fixed point in R∗
T ×R∗

T ×R∗
T and prove the local well-posedness result.

First, in order to prove F mapping R∗
T ×R∗

T ×R∗
T into itself, one need to

establish some a priori estimates on (u, ϕ,∇ϕ). In fact, simple calculations show
that

‖(u, ϕ,∇ϕ)‖L∞(0,T ;H3) + ‖(ut, ϕt,∇ϕt)‖L∞(0,T ;H1)

+ ‖(u, ϕ,∇ϕ)‖L2(0,T ;H4) + ‖(ut, ϕt,∇ϕt)‖L2(0,T ;H2) � C,

for sufficiently small T ∈ (0, 1], and thus F maps R∗
T ×R∗

T ×R∗
T into R∗

T ×R∗
T ×

R∗
T .
Second, in order to show F is contracted in the sense of weaker norm, one suppose

that (ρi, ui, ϕi, ) (i = 1, 2) are the solutions to system (2.9) corresponding to (ũi, ϕ̃i).
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Denote

ρ := ρ1 − ρ2, u := u1 − u2, ϕ := ϕ1 − ϕ2,

ω := ω1 − ω2, ũ := ũ1 − ũ2, ϕ̃ := ϕ̃1 − ϕ̃2.

We obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + ∇ · (ρũ1) = −∇ · (ρ2ũ),
ρ1∂tu+ ρ1ũ1 · ∇u+ ∇(p(ρ1) − p(ρ2)) − μΔu− (λ+ μ)∇∇ · u

= −ρ∂tu2 − (ρ1ũ− ρ2ũ2) · ∇u2 − �∇ ·
(
∇χ1 ⊗∇χ1 − |∇χ1|2

2
I3

)
p+ �∇ ·

(
∇χ2 ⊗∇χ2 − |∇χ2|2

2
I3

)
,

ρ1∂tχ+ ρ∂tχ2 + ∇ · (ρχ1ũ1 + ρ2χũ1 + ρ2χ2ũ) = −ω,
ρ1ω + ρω2 = −�Δχ+

1
�
ρ(χ̃1 + 1)(χ̃1 − 1)χ1 +

1
�
ρ2(χ̃+ 1)(χ̃1 − 1)χ1

p+
1
�
ρ2(χ̃2 + 1)(χ̃− 1)χ1 +

1
�
ρ2(χ̃2 + 1)(χ̃2 − 1)χ2.

(2.10)

Testing (2.10)1, (2.10)2 by ρ, u, testing (2.10)3 by ϕ and Δϕ respectively, after
simple calculations, one obtains

‖F (ũ1, ϕ̃1, ∇̃ϕ1) − F (ũ2, ϕ̃2, ∇̃ϕ2)‖L2(0,T ;H1)

� θ‖(ũ1 − ũ2, ϕ̃1 − ϕ̃2,∇ϕ̃1 −∇ϕ̃2‖L2(0,T ;H1),

where θ ∈ (0, 1) is a constant and T ∈ (0, 1] is a small time. The above inequality
implies that F is contracted in the sense of weaker norm.

Next, by using Banach fixed point theorem, we complete the proof of lemma 1.1.

3. Energy estimates

In this section, we derive the a priori energy estimates for system (1.4). Suppose
that there exists a small positive constant δ > 0 such that√

E3
0 (t) = ‖�(t)‖H3 + ‖u(t)‖H3 + ‖χ(t)‖H3 + ‖∇χ(t)‖H3 � δ, (3.1)

which, together with Sobolev’s inequality, yields directly

1
2

� �+ 1 � 2.

Simple calculations show that

|h(�)|, |g(�)|| � C|�|, (3.2)

and

|φ(l)(�)|, |ϕ(l)(�)|, |h(k)(�)|, |g(k)(�)| � C for any l � 0, k � 1. (3.3)

Next, we establish the following energy estimates including �, u and χ themselves.
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Lemma 3.1. If
√
E3
0 (t) � δ, then for k = 0, 1, . . . , N − 1, we have

d
dt

(‖∇k�‖2
L2 + ‖∇ku‖2

L2 + ‖∇kχ‖2
L2 + ‖∇k∇χ‖2

L2)

+ C(‖∇k+1u‖2
L2 + ‖∇k+1χ‖2

L2 + ‖∇k+1∇χ‖2
L2)

� (δ + δ3)(‖∇k+1�‖2
L2 + ‖∇k+1u‖2

L2 + ‖∇k+1χ‖2
L2 + ‖∇k+1∇χ‖2

L2). (3.4)

Proof. Taking k-th spatial derivatives to (1.1)1, (1.1)2 and (1.1)3, k + 1th spatial
derivatives to (1.1)3, multiplying the resulting identities by ∇k�, ∇ku, ∇kχ and
∇k+1χ respectively, summing up and then integrating over R

3, we derive that

1
2

d
dt

∫
R3

(|∇k�|2 + |∇ku|2 + |∇kχ|2 + |∇k+1χ|2) dx

+
∫

R3
(|∇k+1u|2 + |∇k+1χ|2 + |∇k+2χ|2) dx

=
∫

R3

[
∇k(−�divu− u · ∇�) · ∇k�

−∇k

[
u · ∇u+ h(�)(μΔu+ (μ+ λ)∇divu)

+ g(�)∇�+ φ(�)div
(
∇χ⊗∇χ− |∇χ|2

2
I3

)]
· ∇ku

+∇k
(−u · ∇χ− ϕ(�)Δχ− φ(�)(χ3 − χ)

) · ∇kχ

+∇k+1
(−u · ∇χ− ϕ(�)Δχ− φ(�)(χ3 − χ)

) · ∇k+1χ

]
dx

=
12∑

i=1

Ii. (3.5)

The right-hand side terms of (3.5) will be estimated one by one in the following. The
main idea is that we will carefully interpolate the spatial derivatives between the
higher-order derivatives and the lower-order derivatives to bound these nonlinear
terms by the right-hand side of (3.4). First, for I1, by using Kato–Ponce inequality
(lemma 2.1), Gagliardo–Nirenberg inequality (lemma 2.2) and Sobolev embedding
theorem, we can estimate as

I1 � ‖∇k�‖L6‖∇k(�∇ · u)‖L6/5 � ‖∇k�‖L6(‖∇k�‖L3‖∇u‖L2 + ‖�‖L3‖∇k+1u‖L2)

� ‖∇k+1�‖L2

(
‖∇k+1�‖k/(k+1/2)

L2 ‖Λ1/2�‖(1/2)/(k+1/2)
L2 ‖

× Λ1/2u‖k/(k+1/2)
L2 ‖∇k+1u‖(1/2)/(k+1/2)

L2 +‖Λ1/2�‖L2‖∇k+1u‖L2

)
� (‖Λ1/2�‖L2 + ‖Λ1/2u‖L2)(‖∇k+1�‖L2 + ‖∇k+1u‖L2)

� δ(‖∇k+1�‖L2 + ‖∇k+1u‖L2). (3.6)
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Similarly, by using Kato–Ponce inequality (lemma 2.1), Gagliardo–Nirenberg
inequality (lemma 2.2) and Sobolev embedding theorem again, we estimate the
terms I2 and I3 as

I2 � ‖∇k�‖L6‖∇k(u · ∇�)‖L6/5 � ‖∇k�‖L6(‖∇ku‖L3‖∇�‖L2 + ‖u‖L3‖∇k+1�‖L2)

� ‖∇k+1�‖L2

(
‖∇k+1u‖k/(k+1/2)

L2 ‖Λ1/2u‖(1/2)/(k+1/2)
L2 ‖

× Λ1/2�‖k/(k+1/2)
L2 ‖∇k+1�‖(1/2)/(k+1/2)

L2 + ‖Λ1/2u‖L2‖∇k+1�‖L2

)
� (‖Λ1/2�‖L2 + ‖Λ1/2u‖L2)(‖∇k+1�‖L2 + ‖∇k+1u‖L2)

� δ(‖∇k+1�‖L2 + ‖∇k+1u‖L2), (3.7)

and

I3 � ‖∇ku‖L6‖∇k(u · ∇u)‖L6/5 � ‖∇ku‖L6(‖∇ku‖L3‖∇u‖L2 + ‖u‖L3‖∇k+1u‖L2)

� ‖∇k+1u‖L2

(
‖∇k+1u‖k/(k+1/2)

L2 ‖Λ1/2u‖(1/2)/(k+1/2)
L2 ‖

× Λ1/2u‖k/(k+1/2)
L2 ‖∇k+1u‖(1/2)/(k+1/2)

L2 + ‖Λ1/2u‖L2‖∇k+1u‖L2

)
� ‖Λ1/2u‖L2‖∇k+1u‖L2 � δ‖∇k+1u‖L2 . (3.8)

Next, for the term I4, we do the approximation to simplify the presentations by

I4 = −
∫

R3
∇k[h(�)(νΔu+ η∇divu)] · ∇ku dx ≈ −

∫
R3

∇k[h(�)∇2u] · ∇ku dx.

(3.9)

If k = 0, on the basis of the fact (3.2), Hölder’s together with Sobolev embedding
theorem, we deduce that

I4 ≈ −
∫

R3
h(�)∇2u · u dx � ‖∇h(�)‖L2‖∇u‖L3‖u‖L6 + ‖�‖L∞‖∇u‖L2‖∇u‖L2

� (‖∇u‖L3 + ‖�‖L∞)(‖∇�‖2
L2 + ‖∇u‖2

L2)

� (‖Λ3/2u‖L2 + ‖∇�‖1/2
L2 ‖Δ�‖1/2

L2 )(‖∇�‖2
L2 + ‖∇u‖2

L2)

� δ(‖∇�‖2
L2 + ‖∇u‖2

L2). (3.10)

If k = 1, by the fact (3.2), integrating by parts, one obtains

I4 ≈ −
∫

R3
∇[h(�)∇2u] · ∇u dx ≈

∫
R3
h(�)|∇2u|2 dx

� ‖h(�)‖L∞‖∇2u‖2
L2 � ‖∇�‖1/2

L2 ‖Δ�‖1/2
L2 ‖∇2u‖2

L2 � δ‖∇2u‖2
L2 . (3.11)
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If k � 2, by using Hölder’s inequality, lemmas 2.1 and 2.4 and Sobolev embedding
theorem, we deduce that

I4 � ‖∇k+1u‖L2‖∇k−1[h(�)∇2u]‖L2

� ‖∇k+1u‖L2(‖∇k�‖L2‖Λ5/2u‖L2 + ‖∇�‖1/2
L2 ‖Δ�‖1/2

L2 ‖∇k+1u‖L2)

� ‖∇k+1u‖L2

(
‖∇k+1�‖(k−3/2)/(k−1/2)

L2 ‖Λ3/2�‖1/(k−1/2)
L2 ‖∇k+1u‖1/(k−1/2)

L2 ‖

× Λ3/2u‖(k−3/2)/(k−1/2)
L2 + ‖∇�‖1/2

L2 ‖Δ�‖1/2
L2 ‖∇k+1u‖L2

)
� (‖Λ3/2�‖L2 + ‖Λ3/2u‖L2 + ‖∇�‖L2 + ‖Δ�‖L2)(‖∇k+1u‖2

L2 + ‖∇k+1�‖2
L2)

� δ(‖∇k+1u‖2
L2 + ‖∇k+1�‖2

L2). (3.12)

Moreover, applying lemma 2.4, Hölder’s inequality, the Kato–Ponce inequality
(lemma 2.1) together with Sobolev embedding theorem, the term I5 can be bounded
as

I5 = −
∫

R3
∇k(g(�)∇�) · ∇ku dx � ‖∇ku‖L3‖∇k(g(�)∇�)‖L3/2

� ‖∇ku‖L3(‖∇kg(�)‖L6‖∇�‖L2 + ‖g(�)‖L6‖∇k+1�‖L2)

�
(
‖∇k+1u‖k/(k+1/2)

L2 ‖Λ1/2u‖(1/2)/(k+1/2)
L2

)
×
(
‖∇k+1�‖L2‖Λ1/2�‖k/(k+1/2)

L2 ‖∇k+1�‖(1/2)/(k+1/2)
L2

)
� (‖Λ1/2�‖L2 + ‖Λ1/2u‖L2)(‖∇k+1�‖2

L2 + ‖∇k+1u‖2
L2)

� δ(‖∇k+1�‖2
L2 + ‖∇k+1u‖2

L2). (3.13)

For the term I6, since |φ(�)| � C, by using lemmas 2.4 and 2.1 and Sobolev
embedding theorem, we have

I6 � ‖∇ku‖L6

∥∥∥∥∇k

[
φ(�)div

(
∇χ⊗∇χ− |∇χ|2

2
I3

)]∥∥∥∥
L6/5

� ‖∇k+1u‖L2‖φ(�)‖L∞

∥∥∥∥∇kdiv
(
∇χ⊗∇χ− |∇χ|2

2
I3

)∥∥∥∥
L6/5

+ ‖∇k+1u‖L2‖∇kφ(�)‖L6

∥∥∥∥div
(
∇χ⊗∇χ− |∇χ|2

2
I3

)∥∥∥∥
L3/2

� ‖∇k+1u‖L2‖∇χ‖L3‖∇k+1∇χ‖L2 + ‖∇k+1u‖L2‖∇k�‖L6‖∇χ‖L3‖∇2χ‖L3

� δ2(‖∇k+1u‖2
L2 + ‖∇k+1χ‖2

L2 + ‖∇k+1�‖2
L2). (3.14)

Using Kato–Ponce inequality (lemma 2.1), Gagliardo–Nirenberg inequality
(lemma 2.2) and Sobolev embedding theorem, we can estimate I7 as

I7 = −
∫

R3
∇k(u∇ · χ) · ∇kχdx

� ‖∇kχ‖L6‖∇k(u∇ · χ)‖L6/5
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� ‖∇kχ‖L6(‖∇ku‖L3‖∇χ‖L2 + ‖u‖L3‖∇k+1χ‖L2)

� ‖∇k+1χ‖L2

(
‖∇k+1u‖k/(k+1/2)

L2 ‖Λ1/2u‖(1/2)/(k+1/2)
L2 ‖

× Λ1/2χ‖k/(k+1/2)
L2 ‖∇k+1χ‖(1/2)/(k+1/2)

L2 + ‖Λ1/2u‖L2‖∇k+1χ‖L2

)
� (‖Λ1/2u‖L2 + ‖Λ1/2χ‖L2)(‖∇k+1χ‖L2 + ‖∇k+1u‖L2)

� δ(‖∇k+1χ‖L2 + ‖∇k+1u‖L2). (3.15)

For I8, if k = 0, Hölder’s inequality and Sobolev embedding theorem imply

I8 ≈ −
∫

R3
ϕ(�) · ∇2χ · χdx

� ‖∇ϕ(�)‖L2‖∇χ‖L3‖χ‖L6 + ‖�‖L6‖∇χ‖L∞‖∇χ‖L2

� δ(‖∇�‖2
L2 + ‖∇χ‖2

L2). (3.16)

On the other hand, if k � 1, employing the Leibniz formula and Hölder’s inequality,
we arrive at

I8 = −
∫

R3
∇k−1[ϕ(�)∇2χ] · ∇k+1χdx

= −
k−1∑
l=0

Cl
k−1

∫
R3

∇k−1−lϕ(�) · ∇l∇2χ · ∇k+1χdx

�
[k/2]−1∑

l=0

Cl
k−1‖∇l+2χ‖L3‖∇k−l−1ϕ(�)‖L6‖∇k+1χ‖L2

+
k−2∑

l=[k/2]

Cl
k−1‖∇l+2χ‖L6‖∇k−1−lϕ(�)‖L3‖∇k+1χ‖L2

+
∫

R3
|ϕ(�)||∇k+1χ|2dx︸ ︷︷ ︸

l=k−1

. (3.17)

Gagliardo–Nirenberg’s inequality (lemma 2.2) implies that

[k/2]−1∑
l=0

Cl
k−1‖∇l+2χ‖L3‖∇k−l−1ϕ(�)‖L6‖∇k+1χ‖L2

�
[k/2]−1∑

l=0

‖∇αχ‖1−((l+1)/(k+1))
L2 ‖∇k+1χ‖(l+1)/(k+1)

L2 ‖�‖(l+1)/(k+1)
L2 ‖

× ∇k+1�‖1−((l+1)/(k+1))
L2 ‖∇k+1u‖L2

� δ(‖∇k+1�‖2
L2 + ‖∇k+1χ‖2

L2), (3.18)
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where α satisfies

l + 2
3

− 1
3

=
(
α

3
− 1

2

)(
1 − l + 1

k + 1

)
+
(
k + 1

3
− 1

2

)
l + 1
k + 1

,

that is

α =
3k + 3
2k − 2l

∈
(

3
2
, 3
)
.

Moreover, also by Gagliardo–Nirenberg’s inequality (lemma 2.2), we derive that

k−2∑
l=[k/2]

Cl
k−1‖∇l+2χ‖L6‖∇k−1−lϕ(�)‖L3‖∇k+1χ‖L2

�
k−2∑

l=[k/2]

‖χ‖1−((l+3)/(k+1))
L2 ‖∇k+1χ‖(l+3)/(k+1)

L2 ‖∇α�‖(l+3)/(k+1)
L2 ‖

× ∇k+1�‖1−((l+3)/(k+1))
L2 ‖∇k+1χ‖L2

� δ(‖∇k+1�‖2
L2 + ‖∇k+1χ‖2

L2), (3.19)

where α satisfies

k − 1 − l

3
− 1

3
=
(
α

3
− 1

2

)
l + 3
k + 1

+
(
k + 1

3
− 1

2

)(
1 − l + 3

k + 1

)
,

that is

α =
3k + 3
2l + 6

∈
[
3
2
, 3
)
.

For the last term of the right-hand side of (3.17), we have∫
R3

|ϕ(�)||∇k+1χ|2 dx � ‖ϕ(�)‖L∞‖∇k+1χ‖2
L2 � δ‖∇k+1χ‖2

L2 . (3.20)

Combining (3.16)–(3.20) together, we easily obtain

I8 � δ(‖∇k+1�‖2
L2 + ‖∇k+1χ‖2

L2). (3.21)

Note that I9 satisfies

I9 = −
∫

R3
∇k[φ(�)(χ3 − χ)] · ∇kχdx

�
(‖∇k[φ(�)χ3]‖L6/5 + ‖∇k[φ(�)χ]‖L6/5

) ‖∇kχ‖L6

� (‖φ(�)‖L3‖∇kχ3‖L2 + ‖χ2‖L6‖χ‖L2‖∇kφ(�)‖L6

+ ‖∇k[φ(�)χ]‖L6/5)‖∇k+1χ‖L2

� (I91 + I92 + I93)‖∇k+1χ‖L2 , (3.22)
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where we have used Hölder’s inequality and Kato–Ponce inequality (lemma 2.1) in
(3.22). Next, we first estimate I91–I92 term by term:

I91 � ‖�‖L3‖χ‖2
L6‖∇kχ‖L6

� ‖Λ1/2�‖L2‖∇χ‖2
L2‖∇k+1χ‖L2 � δ3‖∇k+1χ‖L2 , (3.23)

and

I92 � ‖�‖L∞‖χ‖L6‖χ‖L2‖∇k�‖L6

� ‖∇�‖1/2
L2 ‖∇2�‖1/2

L2 ‖∇χ‖L2‖χ‖L2‖∇k+1�‖L2

� δ3‖∇k+1�‖L2 . (3.24)

Since φ(�) = 1/(�+ 1), we obtain ζ(�) :=
√
φ(�) = 1/

√
(�+ 1). It is easy to see

that ζ(�) is a smooth function of � with bounded derivatives of any order. Hence,
lemma 2.4 holds for ζ(�). By using Sobolev embedding theorem and Kato–Ponce
inequality, we have

I93 = ‖∇k[φ(�)χ]‖L6/5 = ‖∇k[ζ(�)ζ(�)χ]‖L6/5

� ‖ζ(�)‖L2‖ζ(�)‖L6‖∇kχ‖L6 + ‖χ‖L2‖ζ(�)‖L6‖∇kζ(�)‖L6

� ‖�‖L2‖∇�‖L2‖∇k+1χ‖L2 + ‖χ‖L2‖∇�‖L2‖∇k+1�‖L2

� δ2(‖∇k+1�‖L2 + ‖∇k+1χ‖L2). (3.25)

Combining (3.23)–(3.25) together, we derive that

I9 �
(
δ3 + δ

)
(‖∇k+1�‖2

L2 + ‖∇k+1χ‖2
L2 + ‖∇k+2χ‖2

L2). (3.26)

The term I10 satisfies

I10 = −
∫

R3
∇k+1[u · ∇χ] · ∇k+1χdx

� ‖∇k+1χ‖L6‖∇k+1[u · ∇χ]‖L6/5

� ‖∇k+1χ‖L6(‖∇k+1u‖L2‖∇χ‖L3 + ‖u‖L3‖∇k+1∇χ‖L2)

� (‖∇χ‖L3 + ‖u‖L3)(‖∇k+1∇χ‖2
L2 + ‖∇k+1u‖2

L2)

� δ(‖∇k+1∇χ‖2
L2 + ‖∇k+1u‖2

L2), (3.27)

where we have used Kato–Ponce inequality (lemma 2.1) and Sobolev embedding
theorem in (3.27). Similar to (3.27), I11 and I12 can be bounded as

I11 = −
∫

R3
∇k+1[ϕ(�)Δχ] · ∇k+1χdx

� ‖∇k+2χ‖L2‖∇k[ϕ(�)Δχ]‖L2

� ‖∇k+2χ‖L2(‖ϕ(�)‖L∞‖∇kΔχ‖L2 + ‖Δχ‖L3‖∇kϕ(�)‖L6)

� ‖∇k+2χ‖L2(‖∇�‖1/2
L2 ‖∇2�‖1/2

L2 ‖∇k+2χ‖L2 + ‖∇3χ‖1/2
L2 ‖∇2χ‖1/2

L2 ‖∇k+1�‖L2)

� δ(‖∇k+2χ‖2
L2 + ‖∇k+1�‖2

L2), (3.28)

https://doi.org/10.1017/prm.2021.58 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.58


1306 X. Zhao

and

I12 = −
∫

R3
∇k+1[φ(�)(χ3 − χ)] · ∇k+1χdx

� ‖∇k+2χ‖L2(‖∇k[φ(�)χ3]‖L2 + ‖∇k[φ(�)χ]‖L2)

� ‖∇k+2χ‖L2(‖φ(�)‖L∞‖∇kχ3‖L2 + ‖χ3‖L3‖∇kφ(�)‖L6

+ ‖ζ(�)‖L2‖ζ(�)‖L6‖∇kχ‖L6 + ‖χ‖L2‖ζ(�)‖L6‖∇kζ(�)‖L6). (3.29)

It then follows from (3.23) that

‖∇kχ3‖L2 � δ2‖∇k+1χ‖L2 . (3.30)

Adding (3.29) and (3.30) together gives

I12 � ‖∇k+2χ‖L2(‖φ(�)‖L∞δ2‖∇k+2χ‖L2 + (‖χ‖3
L9 + ‖χ‖L3)‖∇k+1�‖L2)

�
(
δ3 + δ

)
(‖∇k+1χ‖2

L2 + ‖∇k+2χ‖2
L2 + ‖∇k+1�‖2

L2). (3.31)

Summing up the estimates for I1–I12, we deduce (3.4), this yields the desired result.
�

We also need to derive the second type of energy estimates excluding �, u and χ
themselves.

Lemma 3.2. If
√

E3
0 (t) � δ. Then, for k = 0, 1, . . . , N − 1, the following inequality

holds:

d
dt

(‖∇k+1�‖2
L2 + ‖∇k+1u‖2

L2 + ‖∇k+1χ‖2
L2 + ‖∇k+1∇χ‖2

L2)

+ C(‖∇k+2u‖2
L2 + ‖∇k+2χ‖2

L2 + ‖∇k+2∇χ‖2
L2)

� (δ3 + δ)(‖∇k+1�‖2
L2 + ‖∇k+2u‖2

L2 + ‖∇k+2χ‖2
L2 + ‖∇k+2∇χ‖2

L2). (3.32)

Proof. Taking k + 1th spatial derivatives to (1.1)1, (1.1)2 and (1.1)3, k + 2th spatial
derivatives to (1.1)3, multiplying the resulting identities by ∇k+1�, ∇k+1u, ∇k+1χ
and ∇k+2χ respectively, summing up and then integrating over R

3 by parts, we
derive that

1
2

d
dt

∫
R3

(|∇k+1�|2 + |∇k+1u|2 + |∇k+1χ|2 + |∇k+2χ|2) dx

+
∫

R3
(|∇k+2u|2 + |∇k+2χ|2 + |∇k+3χ|2) dx

https://doi.org/10.1017/prm.2021.58 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.58


Compressible Navier–Stokes–Allen–Cahn systems 1307

=
∫

R3

[∇k+1(−�divu− u · ∇�) · ∇k+1�

−∇k+1 [u · ∇u+ h(�)(μΔu+ (μ+ λ)∇divu) + g(�)∇�

+φ(�)div
(
∇χ⊗∇χ− |∇χ|2

2
I3

)]
· ∇k+1u

+∇k+1
(−u · ∇χ− ϕ(�)Δχ− φ(�)(χ3 − χ)

) · ∇k+1χ

+∇k+2
(−u · ∇χ− ϕ(�)Δχ− φ(�)(χ3 − χ)

) · ∇k+2χ
]
dx

=
12∑

i=1

Ki. (3.33)

We will estimate the term K1–K11 on the right-hand side of (3.33) one by one.
First, through Hölder’s inequality and lemma 2.1, we arrive at

K1 = −
∫

R3
∇k+1(�divu) · ∇k+1�dx

� ‖∇k+1�‖L2‖∇k+1(�∇ · u)‖L2

� ‖∇k+1�‖L2(‖∇k+1�‖L2‖∇u‖L∞ + ‖�‖L∞‖∇k+2u‖L2)

� (‖∇u‖L∞ + ‖�‖L∞)(‖∇k+1�‖2
L2 + ‖∇k+2u‖2

L2)

� δ(‖∇k+1�‖2
L2 + ‖∇k+2u‖2

L2). (3.34)

Next, for the term J2, we utilize the commutator notation (2.4) to rewrite it, then
integrate by part and use Sobolev’s inequality, obtain the following inequality:

K2 = −
∫

R3
∇k+1(u · ∇�) · ∇k+1�dx

= −
∫

R3
(u · ∇∇k+1�+ [∇k+1, u] · ∇�)∇k+1�dx

= −
∫

R3
u · ∇|∇k+1�|2

2
dx

+ (‖∇u‖L∞‖∇k∇�‖L2 + ‖∇k+1u‖L2‖∇�‖L∞)‖∇k+1�‖L2

=
1
2

∫
R3

∇ · u|∇k+1�|2 dx

+ (‖∇u‖L∞‖∇k∇�‖L2 + ‖∇k+1u‖L2‖∇�‖L∞)‖∇k+1�‖L2

� ‖∇u‖L∞‖∇k+1�‖2
L2 + (‖∇u‖L∞ + ‖∇�‖L∞)‖∇k+1�‖2

L2

� δ‖∇k+1�‖2
L2 . (3.35)

Integrating by parts, applying Hölder’s inequality, Kato–Ponce inequality
(lemma 2.1), Gagliardo–Nirenberg inequality (lemma 2.2) and Sobolev embedding
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theorem, one estimates K3–K8 as

K3 = −
∫

R3
∇k+1(u · ∇u) · ∇k+1u dx

=
∫

R3
∇k(u · ∇u) · ∇k+2u dx

� ‖∇k+2u‖L2‖∇k(u · ∇u)‖L2

� ‖∇k+2u‖L2(‖∇ku‖L6‖∇u‖L3 + ‖u‖L3‖∇k+1u‖L6)

� ‖∇k+2u‖L2

(
‖∇k+2u‖(k−1/2)/(k+1/2)

L2 ‖Λ1/2u‖1/(k+1/2)
L2 ‖

× Λ1/2u‖(k−1/2)/(k+1/2)
L2 ‖∇k+2u‖1/(k+1/2)

L2 + ‖Λ1/2u‖L2‖∇k+2u‖L2

)
� ‖Λ1/2u‖L2‖∇k+2u‖2

L2 � δ‖∇k+2u‖2
L2 , (3.36)

K4 ≈ −
∫

R3
∇k+1[h(�)∇2u] · ∇k+1u dx

≈
∫

R3
∇k[h(�)∇2u] · ∇k+2u dx

� ‖∇k+2u‖L2‖∇k[h(�)∇2u]‖L2

� ‖∇k+2u‖L2(‖∇kh(�)‖L6‖∇2u‖L3 + ‖h(�)‖L∞‖∇k+2u‖L2)

� ‖∇k+2u‖L2(‖∇k+1�‖L2‖∇5/2u‖L2 + ‖∇�‖1/2
L2 ‖Δ�‖1/2

L2 ‖∇k+2u‖L2)

� (‖∇5/2u‖L2 + ‖∇�‖L2 + ‖Δ�‖L2)(‖∇k+2u‖2
L2 + ‖∇k+1�‖2

L2)

� δ(‖∇k+2u‖2
L2 + ‖∇k+1�‖2

L2), (3.37)

K5 = −
∫

R3
∇k+1[g(�)∇�] · ∇k+1u dx

=
∫

R3
∇k[g(�)∇�] · ∇k+2u dx

� ‖∇k+2u‖L2(‖∇kg(�)‖L6‖∇�‖L3 + ‖g(�)‖L∞‖∇k+1�‖L2)

� ‖∇k+2u‖L2(‖∇k+1�‖L2‖Λ3/2�‖L2 + ‖∇�‖1/2
L2 ‖Δ�‖1/2

L2 ‖∇k+1�‖L2)

� (‖Λ3/2�‖L2 + ‖∇�‖L2 + ‖Δ�‖L2)(‖∇k+2u‖2
L2 + ‖∇k+1�‖2

L2‖2
L2)

� δ(‖∇k+2u‖2
L2 + ‖∇k+1�‖2

L2‖2
L2), (3.38)

K6 =
∫

R3
∇k+1

[
φ(�)div

(
∇χ⊗∇χ− |∇χ|2

2
I3

)]
· ∇k+1u dx

� ‖∇k+2u‖L2

∥∥∥∥∇k

[
φ(�)div

(
∇χ⊗∇χ− |∇χ|2

2
I3

)]∥∥∥∥
L2

� ‖∇k+2u‖L2‖φ(�)‖L∞

∥∥∥∥∇kdiv
(
∇χ⊗∇χ− |∇χ|2

2
I3

)∥∥∥∥
L2
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+ ‖∇k+2u‖L2‖∇kφ(�)‖L6

∥∥∥∥div
(
∇χ⊗∇χ− |∇χ|2

2
I3

)∥∥∥∥
L3

� ‖∇k+2u‖L2‖�‖L∞‖∇χ‖L3‖∇k+2χ‖L2 + ‖∇k+2u‖L2‖
× ∇k+1�‖L2‖∇χ‖L6‖∇2χ‖L6

� δ2(‖∇k+2u‖2
L2 + ‖∇k+1χ‖2

L2 + ‖∇k+2�‖2
L2), (3.39)

K7 = −
∫

R3
∇k+1(u · ∇χ) · ∇k+1χdx

� ‖∇k+1χ‖L6‖∇k+1(u · ∇χ)‖L6/5

� ‖∇k+2χ‖L2(‖∇k+1u‖L2‖∇χ‖L3 + ‖u‖L3‖∇k+1∇χ‖L2)

� ‖∇k+2χ‖L2

(
‖∇k+2u‖(k+1/2)/(k+3/2)

L2 ‖Λ1/2u‖1/(k+3/2)
L2 ‖

× ∇k+2χ‖1/(k+3/2)
L2 ‖Λ1/2χ‖(k+1/2)/(k+3/2)

L2 + ‖Λ1/2u‖L2‖∇k+2χ‖L2

)
� (‖Λ1/2χ‖L2 + ‖Λ1/2u‖L2)(‖∇k+1∇χ‖2

L2 + ‖∇k+2u‖2
L2)

� δ(‖∇k+2χ‖2
L2 + ‖∇k+2u‖2

L2), (3.40)

and

K8 = −
∫

R3
∇k+1[ϕ(�)Δχ] · ∇k+1χdx

� ‖∇k+1[ϕ(�)Δχ]‖L6/5‖∇k+1χ‖L6

� (‖ϕ(�)‖L3‖∇k+1Δχ‖L2 + ‖Δχ‖L3‖∇k+1ϕ(�)‖L2)‖∇k+2χ‖L2

� (‖�‖L3‖∇k+3χ‖L2 + ‖∇2χ‖L3‖∇k+1�‖L2)‖∇k+2χ‖L2

� δ(‖∇k+2χ‖2
L2 + ‖∇k+3χ‖2

L2 + ‖∇k+1�‖2
L2). (3.41)

Next, we consider the term K9. Hölder’s inequality implies that

K9 = −
∫

R3
∇k+1[φ(�)(χ3 − χ)] · ∇k+1χdx

� (‖∇k+1[φ(�)χ3]‖L6/5 + ‖∇k+1[ζ(�)ζ(�)χ]‖L6/5)‖∇k+1χ‖L6

=: (K91 +K92)‖∇k+2χ‖L2 . (3.42)

By using Kato–Ponce inequality of lemma 2.1 and Sobolev embedding theorem, we
arrive at

K91 = ‖∇k+1[φ(�)χ3]‖L6/5

� ‖φ(�)‖L3‖∇k+1χ3‖L2 + ‖χ3‖L3‖∇k+1φ(�)‖L2

� ‖φ(�)‖L3‖χ‖2
L6‖∇k+1χ‖L6 + ‖χ‖L∞‖χ‖2

L6‖∇k+1�‖L2

� ‖Λ1/2�‖L2‖∇χ‖2
L2‖∇k+2χ‖L2 + ‖∇χ‖1/2

L2 ‖Δχ‖1/2
L2 ‖∇χ‖2

L2‖∇k+1�‖L2

� δ3(‖∇k+2χ‖L2 + ‖∇k+1�‖L2). (3.43)
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Moreover, the term K92 can be bounded as

K92 = ‖∇k+1[φ(�)χ]‖L6/5 = ‖∇k+1[ζ(�)ζ(�)χ]‖L6/5

� ‖ζ(�)‖L2‖ζ(�)‖L6‖∇k+1χ‖L6 + ‖χ‖L6‖ζ(�)‖L6‖∇k+1ζ(�)‖L2

� ‖�‖L2‖∇�‖L2‖∇k+2χ‖L2 + ‖∇χ‖L2‖∇�‖L2‖∇k+1�‖L2

� δ2(‖∇k+1�‖L2 + ‖∇k+2χ‖L2). (3.44)

Combining (3.43)–(3.44) together, we derive that

K9 �
(
δ3 + δ2

)
(‖∇k+1�‖2

L2 + ‖∇k+2χ‖2
L2). (3.45)

Next, employing Hölder’s inequality, Kato–Ponce inequality of lemma 2.1 and
Sobolev embedding theorem, we estimate the term K10 as

K10 = −
∫

R3
∇k+2[u · ∇χ] · ∇k+2χdx

� ‖∇k+2χ‖L6‖∇k+2(u · ∇χ)‖L6/5

� ‖∇k+2∇χ‖L2(‖∇k+2u‖L2‖∇χ‖L3 + ‖u‖L3‖∇k+2∇χ‖L2)

� (‖Λ3/2χ‖L2 + ‖Λ1/2u‖L2)(‖∇k+2∇χ‖2
L2 + ‖∇k+2u‖2

L2)

� δ(‖∇k+2∇χ‖2
L2 + ‖∇k+2u‖2

L2). (3.46)

Using Hölder’s inequality, Kato–Ponce inequality, Gagliardo–Nirenberg inequality
together with Sobolev embedding theorem again, we have

K11 = −
∫

R3
∇k+2[ϕ(�)Δχ] · ∇k+2χdx

� ‖∇k+3χ‖L2‖∇k+1[ϕ(�)Δχ]‖L2

� ‖∇k+3χ‖L2(‖ϕ(�)‖L∞‖∇k+1Δχ‖L2 + ‖Δχ‖L∞‖∇k+1ϕ(�)‖L2)

� ‖∇k+3χ‖L2(‖∇�‖1/2
L2 ‖∇2�‖1/2

L2 ‖∇k+3χ‖L2

+ ‖∇3χ‖1/2
L2 ‖∇3∇χ‖1/2

L2 ‖∇k+1�‖L2)

� δ(‖∇k+3χ‖2
L2 + ‖∇k+1�‖2

L2), (3.47)

and

K12 = −
∫

R3
∇k+2[φ(�)(χ3 − χ)] · ∇k+2χdx

� ‖∇k+3χ‖L2(‖∇k+1[φ(�)χ3]‖L2 + ‖∇k+1[ζ(�)ζ(�)χ]‖L2)
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� ‖∇k+3χ‖L2(‖φ(�)‖L∞‖χ‖2
L6‖∇k+1χ‖L6 + ‖χ‖L∞‖∇k+1φ(�)‖L2

+ ‖ζ(�)‖2
L6‖∇k+1χ‖L6 + ‖ζ(�)‖L∞‖χ‖L∞‖∇k+1ζ(�)‖L2)

� ‖∇k+3χ‖L2(‖∇�‖1/2
L2 ‖Δ�‖1/2

L2 ‖∇χ‖2
L2‖∇k+1χ‖L6

+ ‖∇χ‖1/2
L2 ‖Δχ‖1/2

L2 ‖∇k+1�‖L2 + ‖∇�‖2
L2‖∇k+2χ‖L2

+ ‖∇χ‖1/2
L2 ‖Δχ‖1/2

L2 ‖∇k+1�‖L2)

�
(
δ3 + δ

)
(‖∇k+3χ‖2

L2 + ‖∇k+1�‖2
L2). (3.48)

Summing up the estimates for K1–K12, we deduce (3.32), this yields the desired
result. �

The following lemma provides the dissipation estimate for �.

Lemma 3.3. If
√
E3
0 (t) < δ, then for k = 0, 1, . . . , N − 1, we have

d
dt

∫
R3

∇ku · ∇k+1�dx+ C‖∇k+1�‖2
L2 � ‖∇k+1u‖2

L2 + ‖∇k+2u‖2
L2 + ‖∇k+3χ‖2

L2 .

(3.49)

Proof. Applying ∇k to (1.4)2, multiplying ∇∇k�, integrating over R
3 by parts, it

yields that

∫
R3

|∇k+1�|2 dx � −
∫

R3
∇kut · ∇∇k�dx+ C‖∇k+2u‖L2‖∇k+1�‖L2

+
∥∥∥∥∇k [u · ∇u+ h(�)(μΔu+ (μ+ λ)∇divu) + g(�)∇�

+ψ(�)div
(
∇χ⊗∇χ− |∇χ|2

2
I3

)]∥∥∥∥
L2

‖∇k+1�‖L2 . (3.50)

For the first term of the right-hand side of (3.50), using (1.4)1, integrating by parts
for both the t and x variables, one obtains

−
∫

R3
∇kut · ∇∇k�dx

= − d
dt

∫
R3

∇ku · ∇∇k�dx−
∫

R3
∇kdivu · ∇k�t dx

= − d
dt

∫
R3

∇ku · ∇∇k�dx+ ‖∇kdivu‖2
L2 +

∫
R3

∇kdivu · ∇kdiv(�u) dx.

(3.51)
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Employing Hölder’s inequality, Kato–Ponce inequality and Sobolev embedding
theorem, we obtain

∫
R3

∇kdivu · ∇kdiv(�u) dx

� ‖∇k+1u‖L2(‖∇k+1�‖L2‖u‖L∞ + ‖�‖L∞‖∇k+1u‖L2)

� ‖∇k+1u‖L2(‖∇k+1�‖L2‖∇u‖1/2
L2 ‖Δu‖1/2

L2 + ‖∇�‖1/2
L2 ‖Δ�‖1/2

L2 ‖∇k+1u‖L2)

� (‖∇u‖L2 + ‖Δu‖L2 + ‖∇�‖L2 + ‖Δ�‖L2)(‖∇k+1u‖2
L2 + ‖∇k+1�‖2

L2)

� δ(‖∇k+1u‖2
L2 + ‖∇k+1�‖2

L2). (3.52)

It then follows from (3.51) and (3.52) that

−
∫

R3
∇kut · ∇∇k�dx

� − d
dt

∫
R3

∇ku · ∇∇k�dx+ C(‖∇k+1u‖2
L2 + ‖∇k+2u‖2

L2) + Cδ‖∇k+1�‖2
L2 .

(3.53)

Next, one need to estimate the last term of the right-hand side of (3.50). Note that

‖∇k(u · ∇u)‖L2 � ‖u‖L3‖∇k+1u‖L6 + ‖∇u‖L3‖∇ku‖L6

� (‖Λ1/2u‖L2 + ‖Λ3/2u‖L2)(‖∇k+1u‖L2 + ‖∇k+2u‖L2)

� δ(‖∇k+1u‖L2 + ‖∇k+2u‖L2). (3.54)

We also have

‖∇k[h(�)(μΔu+ (μ+ λ)∇divu)]‖L2

≈ ‖∇k(h(�)∇2u‖L2

� ‖h(�)‖L∞‖∇k+2u‖L2 + ‖∇2u‖L3‖∇kh(�)‖L6

� ‖�‖L∞‖∇k+2u‖L2 + ‖∇2u‖L3‖∇k+1�‖L2

� δ(‖∇k+2u‖L2 + ‖∇k+1�‖L2), (3.55)

and

‖∇k(g(�)∇�)‖L2 � ‖g(�)‖L∞‖∇k+1�‖L2 + ‖∇�‖L3‖∇kg(�)‖L6

� ‖�‖L∞‖∇k+1�‖L2 + ‖∇�‖L3‖∇k+1�‖L2

� δ‖∇k+1�‖L2 . (3.56)
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Moreover, Kato–Ponce inequality of lemma 2.1 and Sobolev inequality of lemma 2.2
imply that∥∥∥∥∇k

[
ψ(�)div

(
∇χ⊗∇χ− |∇χ|2

2
I3

)]∥∥∥∥
L2

� ‖ψ(�)‖L3

∥∥∥∥∇kdiv
(
∇χ⊗∇χ− |∇χ|2

2
I3

)∥∥∥∥
L6

+
∥∥∥∥div

(
∇χ⊗∇χ− |∇χ|2

2
I3

)∥∥∥∥
L3

‖∇kψ(�)‖L6

≈ ‖ψ(�)‖L3‖∇k+1|∇χ|2‖L6 + ‖|∇χ||∇2χ|‖L3‖∇kψ(�)‖L6

� ‖�‖L3‖∇χ‖L∞‖∇k+2∇χ‖L2 + ‖∇χ‖L6‖∇2χ‖L6‖∇k+1�‖L2

� δ3(‖∇k+1�‖L2 + ‖∇k+2∇χ‖L2). (3.57)

Combining (3.54)–(3.57) together, we easily obtain∥∥∥∥∇k

[
u · ∇u+ h(�)(μΔu+ (μ+ λ)∇divu) + g(�)∇�

+ψ(�)div
(
∇χ⊗∇χ− |∇χ|2

2
I3

)]∥∥∥∥
L2

‖∇k+1�‖L2

� (δ3 + δ)(‖∇k+1�‖L2 + ‖∇k+1u‖L2 + ‖∇k+2u‖L2 + ‖∇k+2∇χ‖L2). (3.58)

Plugging the estimates (3.53) and (3.58) into (3.50), by using Cauchy’s inequality
and the smallness of δ, we then complete the proof of lemma 3.3. �

4. Negative Sobolev estimates

In this section, we derive the evolution of the negative Sobolev norms of the solution.

Lemma 4.1. If
√
E3
0 (t) � δ. Then for s ∈ [0, 1

2 ], we have

d
dt

(‖Λ−s�‖2
L2 + ‖Λ−su‖2

L2 + ‖Λ−sχ‖2
L2 + ‖Λ−s∇χ‖2

L2)

+ C(‖∇Λ−su‖2
L2 + ‖∇Λ−sχ‖2

L2 + ‖∇Λ−sχ‖2
L2)

� (‖�‖2
H2 + ‖∇u‖2

H1 + ‖∇χ‖2
H3)(‖Λ−s�‖L2 + ‖Λ−su‖L2

+ ‖Λ−sχ‖L2 + ‖Λ−s∇χ‖L2). (4.1)

Moreover, for s ∈ (1
2 ,

3
2 ), we have

d
dt

(‖Λ−s�‖2
L2 + ‖Λ−su‖2

L2 + ‖Λ−sχ‖2
L2 + ‖Λ−s∇χ‖2

L2)

+ C(‖∇Λ−su‖2
L2 + ‖∇Λ−sχ‖2

L2 + ‖∇Λ−sχ‖2
L2)

�
[
‖(�, u, χ,∇χ)‖s−1/2

L2 (‖�‖H2 + ‖∇u‖H1 + ‖∇χ‖H1 + ‖∇2χ‖H1)5/2−s

+ (‖∇�‖2
H1 + ‖Δχ‖2

L2)
]

× (‖Λ−s�‖L2 + ‖Λ−su‖L2 + ‖Λ−sχ‖L2 + ‖Λ−s∇χ‖L2). (4.2)
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Proof. Applying Λ−s to (1.4)1, (1.42 and (1.4)3, Λ−s∇ to (1.4)3, multiplying the
resulting identities by Λ−s�, Λ−su, Λ−sχ and Λ−s∇χ, respectively, summing up
and then integrating by parts, we deduce that

1
2

d
dt

∫
R3

(|Λ−s�|2 + |Λ−su|2 + |Λ−sχ|2 + |Λ−s∇χ|2) dx

+
∫

R3
(|Λ−s∇u|2 + |Λ−s∇χ|2 + |Λ−s∇2χ|2) dx

=
∫

R3

[
Λ−s(−�divu− u · ∇�) · Λ−s�

−Λ−s

[
u · ∇u+ h(�)(μΔu+ (μ+ λ)∇divu) + g(�)∇�

+φ(�)div
(
∇χ⊗∇χ− |∇χ|2

2
I3

)]
· Λ−su

+ Λ−s
(−u · ∇χ− ϕ(�)Δχ− φ(�)(χ3 − χ)

) · Λ−sχ

+ Λ−s∇ (−u · ∇χ− ϕ(�)Δχ− φ(�)(χ3 − χ)
) · Λ−s∇χ

]
dx

=
12∑

i=1

Ji. (4.3)

The main tool to estimate the nonlinear terms in the right-hand side of (4.3) is
the estimate in lemma 2.5. This forces us to require that s ∈ (0, 3

2 ). If s ∈ (0, 1
2 ], we

easily obtain 1
2 + s

3 < 1 and 3
s � 6. Then, applying lemmas 2.5, 2.2 together with

Hölder’s and Young’s inequalities, it yields that

J1 = −
∫

R3
Λ−s(�∇ · u)Λ−s�dx � ‖Λ−s�‖L2‖Λ−s(�∇ · u)‖L2

� ‖Λ−s�‖L2‖�∇ · u‖L1/(1/2+s/3) � ‖Λ−s�‖L2‖�‖L3/s‖∇u‖L2

� ‖Λ−s�‖L2‖∇�‖1/2+s
L2 ‖∇2�‖1/2−s

L2 ‖∇u‖L2 � (‖∇�‖2
H1 + ‖∇u‖2

L2)‖Λ−s�‖L2 .
(4.4)

Similarly, by using lemmas 2.5 and 2.2 together with Hölder’s and Young’s
inequalities, the term J2-J12 can be bound by

J2 = −
∫

R3
Λ−s(u · ∇�)Λ−s�dx � ‖Λ−s�‖L2‖Λ−s(u · ∇�)‖L2

� ‖Λ−s�‖L2‖u · ∇�‖L1/(1/2+s/3) � ‖Λ−s�‖L2‖u‖L3/s‖∇�‖L2

� ‖Λ−s�‖L2‖∇u‖1/2+s
L2 ‖∇2u‖1/2−s

L2 ‖∇�‖L2

� (‖∇u‖2
H1 + ‖∇�‖2

L2)‖Λ−s�‖L2 , (4.5)
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J3 = −
∫

R3
Λ−s(u · ∇u)Λ−su dx � ‖Λ−su‖L2‖Λ−s(u · ∇u)‖L2

� ‖Λ−su‖L2‖u · ∇u‖L1/(1/2+s/3) � ‖Λ−su‖L2‖u‖L3/s‖∇u‖L2

� ‖Λ−su‖L2‖∇u‖1/2+s
L2 ‖∇2u‖1/2−s

L2 ‖∇u‖L2 � ‖∇u‖2
H1‖Λ−su‖L2 , (4.6)

J4 = −
∫

R3
Λ−s(h(�)(νΔu+ (ν + η)∇divu))Λ−su dx

� ‖Λ−su‖L2‖Λ−s(h(�)(νΔu+ (ν + η)∇divu))‖L2

� ‖Λ−su‖L2‖h(�)(νΔu+ (ν + η)∇divu)‖L1/(1/2+s/3)

� ‖Λ−su‖L2‖h(�)‖L3/s‖Δu‖L2

� ‖Λ−su‖L2‖∇�‖1/2+s
L2 ‖∇2�‖1/2−s

L2 ‖∇2u‖L2

� (‖∇�‖2
H1 + ‖∇2u‖2

L2)‖Λ−su‖L2 , (4.7)

J5 = −
∫

R3
Λ−s(g(�)∇�)Λ−su dx � ‖Λ−su‖L2‖Λ−s(g(�)∇�)‖L2

� ‖Λ−su‖L2‖g(�)∇�‖L1/(1/2+s/3) � ‖Λ−su‖L2‖g(�)‖L3/s‖∇�‖L2

� ‖Λ−su‖L2‖∇�‖1/2+s
L2 ‖∇2�‖1/2−s

L2 ‖∇�‖L2 � ‖∇�‖2
H1‖Λ−su‖L2 , (4.8)

J6 =
∫

R3
Λ−s

[
φ(�)div

(
∇χ⊗∇χ− |∇χ|2

2
I3

)]
· Λ−su dx

� ‖Λ−su‖L2‖Λ−s[φ(�)|∇χ||∇2χ|]‖L2 � ‖Λ−su‖L2‖φ(�)|∇χ||∇2χ|‖L1/(1/2+s/3)

� ‖Λ−su‖L2‖|∇χ||∇2χ|‖L1/(1/2+s/3) � ‖∇χ‖L3/s‖∇2χ‖L2‖Λ−su‖L2

� ‖∇2χ‖1/2−s
L2 ‖∇3χ‖1/2+s

L2 ‖∇2χ‖L2‖Λ−su‖L2

� (‖∇2χ‖2
L2 + ‖∇3χ‖2

L2)‖Λ−su‖L2 , (4.9)

J7 � ‖Λ−sχ‖L2‖Λ−s(u · ∇χ)‖L2 � ‖Λ−sχ‖L2‖u · ∇χ‖L1/(1/2+s/3)

� ‖Λ−sχ‖L2‖u‖
L

3
s
‖∇χ‖L2 � ‖∇u‖1/2−s

L2 ‖∇2u‖1/2+s
L2 ‖∇χ‖L2‖Λ−sχ‖L2

� (‖∇u‖2
L2 + ‖∇2u‖2

L2 + ‖∇χ‖2
L2)‖Λ−sχ‖L2 , (4.10)

J8 =
∫

R3
Λ−s(ϕ(�)Δχ) · Λ−sχdx

� ‖Λ−sχ‖L2‖Λ−s(ϕ(�)Δχ)‖L2 � ‖Λ−sχ‖L2‖ϕ(�)Δχ‖L1/(1/2+s/3)

� ‖Λ−sχ‖L2‖ϕ(�)‖L3/s‖Δχ‖L2 � ‖∇�‖1/2−s
L2 ‖∇2�‖1/2+s

L2 ‖Δχ‖L2‖Λ−sχ‖L2

� (‖∇�‖2
L2 + ‖∇2�‖2

L2 + ‖∇2χ‖2
L2)‖Λ−sχ‖L2 , (4.11)

J9 � ‖Λ−sχ‖L2(‖Λ−s(φ(�)χ3‖L2 + ‖Λ−s(ζ(�)ζ(�)χ‖L2)

� ‖Λ−sχ‖L2

(‖φ(�)χ3‖L1/(1/2+s/3) + ‖ζ(�)ζ(�)χ‖L1/(1/2+s/3)

)
� ‖Λ−sχ‖L2 (‖φ(�)‖L∞‖χ‖L∞‖χ‖L2‖χ‖L3/s + ‖ζ(�)‖L3/s‖ζ(�)‖L∞‖χ‖L2)
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� ‖Λ−sχ‖L2

(
‖∇χ‖1/2

L2 ‖Δχ‖1/2
L2 ‖χ‖L2‖∇χ‖1/2−s

L2 ‖∇2χ‖1/2+s
L2

+ ‖∇�‖1/2−s
L2 ‖∇2�‖1/2+s

L2 ‖∇�‖1/2
L2 ‖Δ�‖1/2

L2 ‖χ‖L2

)
� (δ + 1)(‖∇�‖2

L2 + ‖Δ�‖2
L2 + ‖∇2χ‖2

L2 + ‖∇χ‖2
L2)‖Λ−sχ‖L2 , (4.12)

J10 � ‖Λ−s∇χ‖L2‖Λ−s(∇u · ∇χ+ u · ∇2χ)‖L2

� ‖Λ−s∇χ‖L2(‖∇u · ∇χ‖L1/(1/2+s/3) + ‖u · ∇2χ‖L1/(1/2+s/3))

� ‖Λ−s∇χ‖L2(‖∇χ‖L3/s‖∇u‖L2 + ‖∇2χ‖L2‖u‖L3/s)

� ‖Λ−s∇χ‖L2(‖∇2χ‖1/2+s
L2 ‖∇3χ‖1/2−s

L2 ‖∇u‖L2

+ ‖∇2χ‖L2‖∇u‖1/2+s
L2 ‖∇2u‖1/2−s

L2 )

� ‖Λ−s∇χ‖L2(‖∇2χ‖2
L2 + ‖∇3χ‖2

L2 + ‖∇u‖2
L2 + ‖∇2u‖2

L2), (4.13)

J11 � ‖Λ−s(ϕ(�)∇3χ+ ϕ′(�)∇�∇2χ)‖L2‖Λ−s∇χ‖L2

� (‖ϕ(�)∇3χ‖L1/(1/2+s/3) + ‖ϕ′(�)∇�∇2χ‖L1/(1/2+s/3))‖Λ−s∇χ‖L2

� (‖∇3χ‖L2‖�‖L3/s + ‖∇�‖L2‖∇2χ‖L3/s)‖Λ−s∇χ‖L2

� (‖∇3χ‖L2‖∇�‖1/2+s
L2 ‖∇2�‖1/2−s

L2

+ ‖∇�‖L2‖∇3χ‖1/2+s
L2 ‖∇4χ‖1/2−s

L2 )‖Λ−s∇χ‖L2

� (‖∇3χ‖2
L2 + ‖∇�‖2

L2 + ‖∇2�‖2
L2 + ‖∇4χ‖2

L2)‖Λ−s∇χ‖L2 , (4.14)

and

J12 =
∫

R3
Λ−s[φ′(�)∇�(χ3 − χ) + φ(�)(3χ2 − 1)∇χ] · Λ−s∇χdx

� ‖Λ−s∇χ‖L2

(‖φ′(�)∇�χ3‖L1/(1/2+3/s) + ‖φ′(�)∇�χ‖L1/(1/2+3/s)

+ ‖φ(�)χ2∇χ‖L1/(1/2+s/3) + ‖ζ(�)ζ(�)∇χ‖L1/(1/2+s/3)

)
� ‖Λ−s∇χ‖L2

(
‖χ‖2

L∞‖∇�‖L2‖∇χ‖1/2+s
L2 ‖∇2χ‖1/2−s

L2

+ ‖∇�‖L2‖∇χ‖1/2+s
L2 ‖∇2χ‖1/2−s

L2

+ ‖χ‖2
L∞‖∇�‖1/2+s

L2 ‖∇2�‖1/2−s
L2 ‖∇χ‖L2 + ‖∇�‖1/2+s

L2 ‖∇2�‖1/2−s
L2 ‖∇χ‖L2

)
� (1 + δ2)‖Λ−s∇χ‖L2(|∇�‖2

L2 + ‖∇χ‖2
L2 + ‖∇2χ‖2

L2 + ‖∇2�‖2
L2). (4.15)

Plugging the estimates (4.4)–(4.15) into (4.3), we obtain (4.1).
Next, if s ∈ (1

2 ,
3
2 ), we can estimate J1–J12 in a different way. Since s ∈ ( 1

2 ,
3
2 ),

it is easy to see that 1
2 + s

3 < 1 and 2 < 3
s < 6. Then, lemmas 2.5 and 2.2 implies

that

J1 � ‖Λ−s�‖L2‖Λ−s(�∇ · u)‖L2 � ‖Λ−s�‖L2‖�∇ · u‖L1/(1/2+s/3)

� ‖Λ−s�‖L2‖�‖
L

3
s
‖∇u‖L2 � ‖Λ−s�‖L2‖�‖s−1/2

L2 ‖∇�‖3/2−s
L2 ‖∇u‖L2 . (4.16)
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Similarly, by using lemmas 2.5 and 2.2, the term J2–J12 can be bound by

J2 � ‖Λ−s�‖L2‖Λ−s(u · ∇�)‖L2 � ‖Λ−s�‖L2‖u‖L3/s‖∇�‖L2

� ‖Λ−s�‖L2‖u‖s−1/2
L2 ‖∇u‖3/2−s

L2 ‖∇�‖L2 , (4.17)

J3 � ‖Λ−su‖L2‖Λ−s(u · ∇u)‖L2 � ‖Λ−su‖L2‖u‖L3/s‖∇u‖L2

� ‖Λ−su‖L2‖u‖s−1/2
L2 ‖∇u‖3/2−s

L2 ‖∇u‖L2 , (4.18)

J4 � ‖Λ−su‖L2‖Λ−s(h(�)(νΔu+ (ν + η)∇divu))‖L2

� ‖Λ−su‖L2‖h(�)‖L3/s‖Δu‖L2

� ‖Λ−su‖L2‖�‖s−1/2
L2 ‖∇�‖3/2−s

L2 ‖∇2u‖L2 , (4.19)

J5 � ‖Λ−su‖L2‖Λ−s(g(�)∇�)‖L2 � ‖Λ−su‖L2‖g(�)‖L3/s‖∇�‖L2

� ‖Λ−su‖L2‖�‖s−1/2
L2 ‖∇�‖3/2−s

L2 ‖∇�‖L2 , (4.20)

J6 � ‖Λ−su‖L2‖|∇χ||∇2χ|‖L1/(1/2+s/3) � ‖∇χ‖L3/s‖∇2χ‖L2‖Λ−su‖L2

� ‖∇χ‖s−1/2
L2 ‖∇2χ‖3/2−s

L2 ‖∇2χ‖L2‖Λ−su‖L2 , (4.21)

J7 � ‖Λ−sχ‖L2‖u · ∇χ‖L1/(1/2+s/3) � ‖Λ−sχ‖L2‖u‖L3/s‖∇χ‖L2

� ‖u‖s−1/2
L2 ‖∇u‖3/2−s

L2 ‖∇χ‖L2‖Λ−sχ‖L2 , (4.22)

J8 � ‖Λ−sχ‖L2‖ϕ(�)Δχ‖L1/(1/2+s/3) � ‖Λ−sχ‖L2‖ϕ(�)‖L3/s‖Δχ‖L2

� ‖�‖s−1/2
L2 ‖∇�‖3/2−s

L2 ‖Δχ‖L2‖Λ−sχ‖L2 , (4.23)

J9 � ‖Λ−sχ‖L2‖φ(�)(χ3 − χ)‖L1/(1/2+s/3)

� ‖Λ−sχ‖L2‖φ(�)‖L2(‖χ‖2
L∞ + 1)‖χ‖L3/s

� ‖�‖L2(‖χ‖2
L∞ + 1)‖χ‖s−1/2

L2 ‖∇χ‖3/2−s
L2 ‖Λ−sχ‖L2

� (δ2 + 1)‖�‖L2‖χ‖s−1/2
L2 ‖∇χ‖3/2−s

L2 ‖Λ−sχ‖L2 , (4.24)

J10 � ‖Λ−s∇χ‖L2(‖∇u · ∇χ‖L1/(1/2+s/3) + ‖u · ∇2χ‖L1/(1/2+s/3))

� ‖Λ−s∇χ‖L2(‖∇χ‖L3/s‖∇u‖L2 + ‖∇2χ‖L2‖u‖L3/s)

� ‖Λ−s∇χ‖L2(‖∇χ‖s−1/2
L2 ‖∇2χ‖3/2−s

L2 ‖∇u‖L2

+ ‖∇2χ‖L2‖u‖s−1/2
L2 ‖∇u‖3/2−s

L2 ), (4.25)

J11 � (‖ϕ(�)∇3χ‖L1/(1/2+s/3) + ‖∇�∇2χ‖L1/(1/2+s/3))‖Λ−s∇χ‖L2

� (‖∇3χ‖L2‖�‖L3/s + ‖∇�‖L3/s‖∇2χ‖L2)‖Λ−s∇χ‖L2

� (‖∇3χ‖L2‖�‖s−1/2
L2 ‖∇�‖3/2−s

L2

+ ‖∇2χ‖L2‖∇�‖s−1/2
L2 ‖∇2�‖3/2−s

L2 )‖Λ−s∇χ‖L2 , (4.26)
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and

J12 � ‖Λ−s∇χ‖L2

(‖φ′(�)∇�(χ3 − χ)‖L1/(1/2+3/s) + ‖φ(�)(3χ2 − 1)∇χ‖L1/(1/2+s/3)

)
� ‖Λ−s∇χ‖L2

(‖φ′(�)‖L∞(1 + ‖χ‖2
L∞)‖∇�‖L2‖χ‖L3/s

+ (1 + ‖χ‖2
L∞)‖�‖L3/s‖∇χ‖L2

)
� ‖Λ−s∇χ‖L2

(
(1 + ‖χ‖2

L∞)‖∇�‖L2‖χ‖s−1/2
L2 ‖∇χ‖3/2−s

L2

+ (1 + ‖χ‖2
L∞)‖�‖s−1/2

L2 ‖∇�‖3/2−s
L2 ‖∇χ‖L2

)
� (1 + δ2)‖Λ−s∇χ‖L2

(
‖∇�‖L2‖χ‖s−1/2

L2 ‖∇χ‖3/2−s
L2

+ ‖�‖s−1/2
L2 ‖∇�‖3/2−s

L2 ‖∇χ‖L2

)
. (4.27)

Plugging the estimates (4.16)–(4.27) into (4.3), we obtain (4.2). Hence, the proof
is complete. �

5. Proof of theorem 1.1

We first close the energy estimates at each l-th level in our weaker sense. Suppose
that N � 3 and 0 � l � m− 1 with 1 � m � N . Summing up the estimates (3.4)
from k = l to m− 1, since

√
E3
0 (t) � δ is sufficiently small, we arrive at

d
dt

∑
l�k�m−1

(‖∇k�‖2
L2 + ‖∇ku‖2

L2 + ‖∇kχ‖2
L2 + ‖∇k∇χ‖2

L2)

+ C
∑

l+1�k�m

(‖∇ku‖2
L2 + ‖∇kχ‖2

L2 + ‖∇k+1χ‖2
L2)

� (δ3 + δ)
∑

l+1�k�m

(‖∇k�‖2
L2 + ‖∇ku‖2

L2 + ‖∇kχ‖2
L2 + ‖∇k+1χ‖2

L2

)
. (5.1)

Moreover, let k = m− 1 in the estimates (3.32). Hence

d
dt

(‖∇m�‖2
L2 + ‖∇mu‖2

L2 + ‖∇mχ‖2
L2 + ‖∇m+1χ‖2

L2)

+ C(‖∇m+1u‖2
L2 + ‖∇m+1χ‖2

L2 + ‖∇m+2χ‖2
L2)

� (δ3 + δ)(‖∇m�‖2
L2 + ‖∇m+1u‖2

L2 + ‖∇m+1χ‖2
L2 + ‖∇m+2χ‖2

L2). (5.2)

Combining (5.1) and (5.2) together gives

d
dt

∑
l�k�m

(‖∇k�‖2
L2 + ‖∇ku‖2

L2 + ‖∇kχ‖2
L2 + ‖∇k∇χ‖2

L2)

+ C1

∑
l+1�k�m+1

(‖∇ku‖2
L2 + ‖∇kχ‖2

L2 + ‖∇k+1χ‖2
L2)

� C2(δ3 + δ)
∑

l+1�k�m

‖∇k�‖2
L2 . (5.3)
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Summing up the estimates (3.49) from k = l to m− 1, we obtain

d
dt

∑
l�k�m−1

∫
R3

∇ku · ∇k+1�dx+ C3

∑
l+1�k�m

‖∇k�‖2
L2

� C4

⎛
⎝ ∑

l+1�k�m+1

‖∇ku‖2
L2 +

∑
l+2�k�m+1

‖∇k∇χ‖2
L2

⎞
⎠ . (5.4)

Multiplying (5.4) by C5 ≡ 2C2δ(δ2 + 1)/C3, adding the resulting inequality with
(5.1), since δ > 0 is sufficiently small, we deduce that there exists a positive constant
C6 such that for 0 � l � m− 1,

d
dt

⎧⎨
⎩ ∑

l�k�m

(‖∇k�‖2
L2 + ‖∇ku‖2

L2 + ‖∇kχ‖2
L2 + ‖∇k∇χ‖2

L2)

+C5

∑
l�k�m−1

∫
R3

∇ku · ∇k+1�dx

⎫⎬
⎭

+ C6

⎧⎨
⎩ ∑

l+1�k�m

‖∇k�‖2
L2 +

∑
l+1�k�m+1

(‖∇ku‖2
L2 + ‖∇kχ‖2

L2 + ‖∇k∇χ‖2
L2

⎫⎬
⎭

� 0. (5.5)

Define Em
l (t) to be 1/C6 times the expression under the time derivative in (5.5). It

is easy to see that since δ > 0 is so small, Em
l (t) is equivalent to

‖∇l�‖2
Hm−l + ‖∇lu‖2

Hm−l + ‖∇lχ‖2
Hm−l + ‖∇l∇χ‖2

Hm−l .

Then, (5.5) can be rewritten as that for 0 � l � m− 1,

d
dt

Em
l (t) + ‖∇l�‖2

Hm−l + ‖∇l+1u‖2
Hm−l + ‖∇l+1χ‖2

Hm−l + ‖∇l+1∇χ‖2
Hm−l � 0.

(5.6)

Taking l = 0 and m = 3 in (5.6), integrating directly in time, it yields that

‖�‖2
H3 + ‖u‖2

H3 + ‖χ‖3
H3 + ‖∇χ‖2

H3 � E3
0 (0)

� ‖�0‖2
H3 + ‖u0‖2

H3 + ‖χ0‖3
H3 + ‖∇χ0‖2

H3 . (5.7)

Then, by a standard continuity argument, this closes the a priori estimates (3.1)
if at the initial time we assume that ‖�0‖2

H3 + ‖u0‖2
H3 + ‖χ0‖3

H3 + ‖∇χ0‖2
H3 � δ0

is sufficiently small. This in turn allows us to take l = 0 and m = N in (5.6), and
then integrate it directly in time to obtain (1.6).
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Next, we prove the decay rate of solutions for s ∈ [0, 1
2 ]. Define

E−s(t) = ‖Λ−s�‖2
L2 + ‖Λ−su‖2

L2 + ‖Λ−sχ‖2
L2 + ‖Λ−s∇χ‖2

L2 .

Then, integrating in time (4.1), by the bound (1.6), we derive that

E−s(t) � E−s(0) + C

∫ t

0

(‖�‖2
H2 + ‖∇u‖2

H1 + ‖∇χ‖2
H3)
√
E−s(τ) dτ

� C0

(
1 + sup

0�τ�t

√
E−s(τ)

)
, (5.8)

which implies (1.7) for s ∈ [0, 1
2 ], that is

‖Λ−s�(t)‖2
L2 + ‖Λ−su(t)‖2

L2 + ‖Λ−sχ(t)‖2
L2 + ‖Λ−s∇φ(t)‖2

L2 � C0. (5.9)

Moreover, if l = 1, 2, . . . , N − 1, we may use lemma 2.6 to have

‖∇l+1f‖L2 � C‖Λ−sf‖−(1/(l+s))
L2 ‖∇lf‖1+(1/(l+s)

L2 .

Then, by this facts and (5.9), we get

‖∇l+1(u, χ,∇χ)‖2
L2 � C0(‖∇l(u, χ,∇χ)‖2

L2)1+(1/(k+s). (5.10)

Thus, for 1 = 1, 2, . . . , N − 1,

‖∇l+1(u, χ,∇χ)‖2
HN−l−1 � C0(‖∇l(u, χ,∇χ)‖2

HN−l)1+(1/(l+s).

Thus, we deduce from (5.6) with m = N the following inequality

d
dt

EN
l + C0

(EN
l

)1+(1/(l+s) � 0, for l = 1, 2, . . . , N − 1, (5.11)

which implies

EN
l (t) � C0(1 + t)−l−s, for l = 1, 2, . . . , N − 1. (5.12)

Hence, (1.7) holds.
On the other hand, the arguments for s ∈ [0, 1

2 ] cannot be applied to s ∈ ( 1
2 ,

3
2 ).

However, observing that �0, u0, χ0,∇χ0 ∈ Ḣ−(1/2) hold since Ḣ−s
⋂
L2 ⊂ Ḣ−s′

for
any s′ ∈ [0, s], we can deduce from what we have proved for (1.7)–(1.8) with s = 1

2
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that the following estimate holds for l = 0, 1, . . . , N − 1:

‖∇l�‖2
HN−l + ‖∇lu‖2

HN−l + ‖∇lχ‖2
HN−l + ‖∇l∇χ‖2

HN−l � C0(1 + t)−(1/2)−l.
(5.13)

Therefore, we deduce from (4.2) that for s ∈ (1
2 ,

3
2 ),

E−s(t) � E−s(0) + C

∫ t

0

(‖∇�‖2
H1 + ‖Δχ‖2

L2)
√
E−s(τ) dτ

+ C

∫ t

0

‖(�, u, χ,∇χ)‖s−1/2
L2 (‖�‖H2 + ‖∇u‖H1

+ ‖∇χ‖H1 + ‖∇2χ‖H1)5/2−s
√

E−s(τ) dτ

� C + C sup
0�τ�t

√
E−s(τ) + C

∫ t

0

(1 + τ)−(7/4)−(s/2) dτ sup
τ∈[0,t]

√
E−s(τ)

� 1 + sup
τ∈[0,t]

√
E−s(τ), (5.14)

which implies that (1.7) holds for s ∈ (1
2 ,

3
2 ), i.e.

‖Λ−s�(t)‖2
L2 + ‖Λ−su(t)‖2

L2 + ‖Λ−sχ(t)‖2
L2 + ‖Λ−s∇φ(t)‖2

L2 � C0. (5.15)

Since we have proved (5.15), we may repeat the arguments leading to (1.8) for s ∈
[0, 1

2 ] to prove that they also hold for s ∈ ( 1
2 ,

3
2 ). Therefore, the proof of theorem 1.1

is complete.
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