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BOUNDING TAIL PROBABILITIES IN
DYNAMIC ECONOMIC MODELS

JOHN STACHURSKI
Australian National University

This paper provides conditions for bounding tail probabilities in stochastic economic
models in terms of their transition laws and shock distributions. Particular attention is
given to conditions under which the tails of stationary equilibria have exponential decay.
By way of illustration, the technique is applied to a threshold autoregression model of
exchange rates.
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1. INTRODUCTION

This paper provides bounds on probabilities of tail events in terms of model
primitives. By definition, tail events occur only infrequently, but their impact can
be large. A classic example is fluctuations in asset prices. For example, the stock
market crash on 19 October 1987 saw the Dow Jones Industrial Average drop
by 22% in one day, eliminating nearly US$1 trillion in market capitalization. The
financial crisis that engulfed many Asian economies in the middle of 1997 likewise
led to sharp devaluations in the exchange rates of several Asian currencies, with
far-reaching economic consequences.

Thus, one application of our results is in the modeling of financial variables. As
observed by Mandelbrot (1963), heavy tails are found in many kinds of market
returns data.1 The property of having heavy tails is often associated with “chaotic”
or highly nonlinear behavior in the model that describes motion of the system
[see, for example, Lux (1998) or Pellicer-Lostao and López-Ruiza (2010)]. One
of the contributions of this paper is to show that a large class of highly nonlinear
and discontinuous models in fact generate marginal and stationary distributions
with exponentially decreasing tails. As a result, these models cannot represent
time series that are observed empirically to feature heavy tails.

Another potential application of this research is when the state variable is itself
a distribution. For example, it often happens that in macroeconomic dynamics
one wishes to study a situation where each entity in a given economic model
has a vector of endogenously evolving attributes, such as income, wealth, asset
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holdings, human capital, and wage rate. The state of the economy is given by the
distribution of these attributes across the population. In this case, the size of the
distribution tails provides a measure of dispersion.

Our focus is on the broad class of economic models that can be represented as
time-homogeneous Markov chains, with discrete time parameter and continuous
state spaces. The methodology developed here is based on a generalized “drift
condition.” Our condition complements the more standard affine drift conditions
used extensively in the existing literature to establish stability, stationarity, and
ergodicity of stochastic processes.2 It is the source of the tail bounds derived in
the paper.

Previously, Borovkov (1998, Theorem 3.1) also studied bounds on the tails of the
marginal distributions of Markov chains. His bounds are not directly comparable
with those given here. The main difference is in the conditions on the primitives
used to derive the bounds. Our technique is intended to fit the kind of equilibrium
structure typically available in economic models. For example, in our exchange
rate application, the drift is due to arbitrage, which pushes the rate toward its
purchasing power parity equilibrium.

Section 2 formulates the problem. Section 3 sets out the drift condition and
derives some of its immediate consequences. Section 4 gives a number of appli-
cations that illustrate the method.

2. FORMULATION OF THE PROBLEM

Consider an economic process, the state vector of which takes values in space S,
a Borel subset of Rn. The law of motion is given by

Xt+1 = h(Xt , ξt+1), X0 = x0 ∈ S, {ξt }∞t=0
IID∼ ϕ. (1)

The vectors {Xt } all take values in S; the shocks ξt take values in Z, a Borel
subset of Rk; and h is a measurable function mapping S × Z → S. The shocks
are generated on probability space (�,F ,P), and E is the expectations operator
corresponding to P.3

For topological space T , we letB(T ) denote the Borel sets, andP(T ) denote the
probability measures on (T ,B(T )). The common distribution of ξt is denoted by
ϕ ∈ P(Z), whereas that of Xt is denoted by ψt ∈ P(S). Also, 1B is the indicator
function of B. Thus, for example, E 1B ◦Xt = ψt(B) holds for every B ∈ B(S).

Given elements µ and ν in P(T ), their total variation distance is defined as

‖µ− ν‖T V := sup
B∈B(T )

|µ(B)− ν(B)|.

For {µn}∞n=0 ⊂ P(T ) and µ ∈ P(T ) we say that µn converges to µ if ‖µn −
µ‖T V → 0 as n → ∞. If {Xn}∞n=0 and X are T -valued random variables, we say
that Xn converges to X if the distribution of Xn converges to that of X.4
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We also define stationary distributions and ergodicity. A probabilityψ∗ ∈ P(S)
is called stationary for (1) iff∫ [∫

1{h(x, z) ∈ B}ϕ(dz)
]
ψ∗(dx) = ψ∗(B), ∀B ∈ B(S).

If the current (i.e., time t) distribution is ψ∗, then the left-hand side gives the
probability thatXt+1 ∈ B. Thus, if ψ∗ satisfies this equation, then this probability
is ψ∗(B), which is the same as it is today. Because this holds for all B, we have
ψt = ψt+1 = ψ∗.

The process (1) is called ergodic if it has a unique stationary distribution ψ∗ ∈
P(S), and, in addition, ψt converges to ψ∗ for every x0 ∈ S. It is geometrically
ergodic if, moreover, ‖ψt − ψ∗‖T V = O(ρt ) for some ρ < 1.

3. A DRIFT CONDITION

We begin with a drift condition that can be used to bound the tails of the marginal
distributions ψt , and of the stationary distribution ψ∗ when it exists. To state the
condition, letw : S → R+ be a given measurable function. To the extent thatw(x)
converges rapidly to infinity as ‖x‖ → ∞, bounds on Ew(Xt) restrict the tails
of the distribution ψt . For example, if w(x) = e‖x‖, then Chebyshev’s inequality
yields

P{‖Xt‖ > r} = P{e‖Xt‖ > er} ≤ e−r Ee‖Xt‖ = e−r Ew(Xt). (2)

One implication is that if Ew(Xt) = Ee‖Xt‖ is finite, then we have P{‖Xt‖ > r} =
O(e−r ), and ψt has exponentially decreasing tails.

Taking w : S → R+ as given, we introduce the following condition on w and
the process (1).

Condition 1. There exists an increasing concave function κ : R+ → R+ such
that ∫

w[h(x, z)]ϕ(dz) ≤ κ[w(x)] for all x ∈ S.
This drift condition is a generalization of the standard drift condition used in the
Markov process literature [see, e.g., Meyn and Tweedie (2009)], where κ is an
affine function with slope less than one.

Example 1

Consider a one-sector optimal growth model with savings function σ . Suppose
for simplicity that depreciation is total between periods, and capital stock evolves
according to the rule

kt+1 = h(kt , ξt+1) := σ [f (kt , ξt+1)],

where f is a production function and {ξt } is an IID sequence of productivity shocks
with distribution ϕ. As is conventional, we assume that f is concave and increasing
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in its first argument. Seeking a bound on the first moment, we takew(x) = x. If the
agent cannot borrow, then savings are limited by current income, and σ(x) ≤ x.
In this case, we have∫

w[h(k, z)]ϕ(dz) =
∫
σ [f (k, z)]ϕ(dz) ≤

∫
f (k, z)ϕ(dz).

With the definition κ(x) = ∫
f (x, z)ϕ(dz), this becomes

∫
w[h(k, z)]ϕ(dz) ≤ κ(k) = κ[w(k)].

Because k is arbitrary and κ is concave and increasing, we see that Condition 1 is
satisfied.

Using Condition 1, we can state the following proposition.

PROPOSITION 1. Let {Xt }∞t=0 be the S-valued stochastic process defined by
(1), and let w : S → R+ be given. If Condition 1 holds, then

Ew(Xt) =
∫
wdψt ≤ κt [w(x0)] (t ∈ N).

Here κt is the t th composition of κ with itself.

Proof of Proposition 1. Let {Ft }∞t=0 be the natural filtration for {ξt }∞t=0, and fix
any t ∈ N. By definition,

E [w ◦Xt+1 |Ft ] = E [w ◦ h(Xt , ξt+1) |Ft ].
Because Xt is Ft -measurable and ξt+1 is independent of Ft , we obtain

E [w ◦Xt+1 |Ft ] =
∫
w ◦ h(Xt , z) ϕ(dz).

Applying Condition 1, we then have the bound

E [w ◦Xt+1 |Ft ] ≤ κ ◦ w ◦Xt P-almost surely.

∴ E [w ◦Xt+1] ≤ E [κ ◦ w ◦Xt ].
Using concavity of κ and Jensen’s inequality yields E [w ◦Xt+1] ≤ κ{E [w ◦Xt ]}.
Setting yt := E [w ◦ Xt ], this becomes yt+1 ≤ κ(yt ). Using the fact that κ is
increasing, we can then iterate backward to obtain

E [w ◦Xt ] = yt ≤ κt (y0).

Because y0 = E[w ◦X0] = w(x0), the proof is now done.

Assuming that the process (1) is ergodic and κt converges, we can also obtain
a bound for the stationary distribution of the process.
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PROPOSITION 2. If, in addition to the conditions of Proposition 1,

(a) the process (1) is ergodic with stationary distribution ψ∗,
(b) w is continuous, and
(c) κt [w(x0)] → M as t → ∞, then

∫
wdψ∗ ≤ M.

Proof. Assume the conditions of the proposition. Ergodicity implies conver-
gence of ψt to ψ∗ in total variation. In turn, total variation convergence implies
that, for every bounded measurable h : S → R, we have

∫
hdψt → ∫

hdψ∗. So
let sn be the indicator function of the closed ball of radius n, and let hn := sn · w.
Because w is continuous, and therefore bounded on compact sets, it follows that
hn is bounded on S. Moreover, hn ↑ w pointwise on S. Therefore,∫

wdψ∗ = lim
n

∫
hndψ

∗ (∵ Monotone Convergence Theorem)

= lim
n

lim
t

∫
hndψt (∵ hn is bounded and measurable)

≤ lim
n

lim
t

∫
wdψt ≤ lim

n
lim
t
κ t [w(x0)] = M.

4. ADDITIVE SHOCK MODELS

We now specialize (1) to the common case in which the shock ξt is additive.
Precisely, we assume that the state space S is equal to Rn, that ξt also takes values
in S, and that h(x, z) = g(x) + z, where g : S → S is a measurable function.
Thus,

Xt+1 = g(Xt)+ ξt+1, X0 = x0 ∈ S, {ξt }∞t=0
IID∼ ϕ. (3)

Let Br := {x ∈ S : ‖x‖ ≤ r}, and let {Xt }∞t=0 be the sequence defined by (3).
As before, let ψt be the distribution of Xt . Applying Proposition 1, we now show
that, under a growth condition on g and an exponential bound on the tails of ξt , the
marginal distributions of the process {Xt }∞t=0 have exponentially decreasing tails.

PROPOSITION 3. If

∃ c ∈ R+ and γ ∈ (0, 1) such that, ∀ x ∈ S, ‖g(x)‖ ≤ c + γ ‖x‖, (4)

then, for all t ∈ N and all r > 0, we have

ψt (S \ Br) = P{‖Xt‖ > r} ≤
[
ec

∫
e‖z‖ϕ(dz)

] 1
1−γ
eγ

t‖x0‖−r . (5)
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The growth condition (4) permits g to be discontinuous and highly nonlinear. It
is equivalent to the statement that there exists a hypersphereB ⊂ S = Rn centered
on the origin such that ‖g(x)‖ is bounded for x ∈ B, and on the complement of B
the map g is contracting, in the sense that ∃γ ∈ (0, 1) such that ‖g(x)‖ ≤ γ ‖x‖
for all x ∈ S \ B. Similar restrictions have been used elsewhere in economic
modeling. See, for example, Duffie and Singleton (1993).

Proof of Proposition 3. If
∫
e‖z‖ϕ(dz) = ∞ then the bound is trivial, so sup-

pose instead that this term is finite. We claim that Condition 1 is satisfied for
w(x) := e‖x‖ and

κ(s) := βsγ , where β := ec
∫
e‖z‖ϕ(dz).

(Because γ ∈ (0, 1), this function is concave and increasing.) To verify the claim,
we must prove that

∫
exp(‖g(x)+ z‖)ϕ(dz) ≤ κ(e‖x‖) = βeγ ‖x‖.

By the growth condition (4) we have

‖g(x)+ z‖ ≤ ‖g(x)‖ + ‖z‖ ≤ c + γ ‖x‖ + ‖z‖,

∴
∫

exp(‖g(x)+ z‖)ϕ(dz) ≤ ec
∫
e‖z‖ϕ(dz)eγ ‖x‖ = βeγ ‖x‖,

∴
∫
w[g(x)+ z]ϕ(dz) ≤ κ[w(x)].

Applying Proposition 1 now yields

E e‖Xt‖ = Ew(Xt) ≤ κt [w(x0)] = β
∑t

i=0 γ
i

[w(x0)]
γ t . (6)

Because w(x0) = e‖x0‖ and β
∑t

i=0 γ
i ≤ β1/(1−γ ), we then have

E e‖Xt‖ ≤ β1/(1−γ )eγ
t‖x0‖ =

[
ec

∫
e‖z‖ϕ(dz)

] 1
1−γ
eγ

t‖x0‖.

The bound (5) now follows from (2).

Condition (4) also has stability implications. In particular, if the condition holds
and the shock process is sufficiently mixing, then global stability obtains. These
kinds of results are well known, and the next result provides details. (A full proof
is given in the Appendix.)

THEOREM 1. Let {Xt }∞t=0 be the sequence defined by (3). If (4) holds, E‖ξt‖ <
∞ and, in addition, the distribution ϕ admits a density representation that is
continuous and strictly positive on S, then {Xt }∞t=0 is geometrically ergodic.
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Under the conditions of Theorem 1, the stationary distribution ψ∗ of the state
variable (and the long-run equilibrium of the system) inherits a tail bound similar
to (5).

PROPOSITION 4. Let {Xt }∞t=0 be the sequence defined by (3). If the conditions
of Theorem 1 hold, then ψ∗ satisfies

ψ∗ (S \ Br) ≤
[
ec

∫
e‖z‖ϕ(dz)

] 1
1−γ
e−r (r ≥ 0). (7)

As before, we are using the notation Br := {x ∈ S : ‖x‖ ≤ r}. Note that, in
contrast to (5), this bound does not depend on x0.

Proof of Proposition 4. The proof can be obtained from Proposition 2, but in
this case the result also follows directly from (5). If

∫
e‖z‖ϕ(dz) = ∞ then the

bound is trivial, so let us suppose that this term is finite. Fix r ≥ 0. Using ergodicity
and (5), we have

ψ∗ (S \ Br) = lim
t→∞ψt (S \ Br) ≤

[
ec

∫
e‖z‖ϕ(dz)

] 1
1−γ

lim
t→∞ e

γ t‖x0‖−r .

Because γ ∈ (0, 1), the proof of (7) is done.

5. APPLICATION

As an example, consider the self-exciting threshold autoregression model, which
has found many applications in macroeconomic modeling.5 It has the form

Xt+1 =
K∑
k=1

(AkXt + bk)1{Xt ∈ Bk} + ξt+1, (8)

where (Bk)Kk=1 ⊂ B(S) is a partition of S = Rn, each Ak is an n × n matrix, and
each bk is an n× 1 vector. The structure of the model is such that when the state
is in the region Bk , the state variable follows the regime x �→ Akx + bk . This
structure allows significant nonlinearities.

Without loss of generality, suppose that the first 1, . . . , J elements of the par-
tition (Bk)Kk=1 are unbounded, and the remaining J + 1, . . . , K are bounded. Let
B be the union of the bounded elements BJ+1, . . . , BK . Evidently g is bounded
on bounded sets, so a := supx∈B ‖g(x)‖ is finite. Finally, set b := sup1≤k≤J ‖bk‖,
and ρ := max1≤k≤J ρk , where ρk is the spectral radius of Ak .

PROPOSITION 5. Let {Xt }∞t=0 be defined by (8), with X0 = x0 ∈ S given.
If ρ < 1, and if the distribution of ξt is multivariate normal, then {Xt }∞t=0 is
geometrically ergodic, and the tail bounds (5) and (7) hold when c := a + b and
γ := ρ.
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Proof. We need to show that (4) holds for

c = a + b, γ = ρ, and g(x) =
K∑
k=1

(Akx + bk)1Bk (x).

For x /∈ B we have

‖g(x)‖ =
∥∥∥∥∥

J∑
k=1

(Akx + bk)1Bk (x)

∥∥∥∥∥
≤ sup

1≤k≤J
‖Akx + bk‖ ≤ sup

1≤k≤J
‖Akx‖ + sup

1≤k≤J
‖bk‖ ≤ ρ‖x‖ + b.

On the other hand, for x ∈ B we have ‖g(x)‖ ≤ a by definition. As a result,
whether x ∈ B or x ∈ S \ B, we have

‖g(x)‖ ≤ a + ρ‖x‖ + b = c + γ ‖x‖.
This confirms that (4) holds with c := a + b and γ := ρ. Moreover, be-
cause the distribution of ξt is Gaussian, the conditions of Theorem 1 are clearly
satisfied. This implies both geometric ergodicity and the tail bounds (5) and
(7).

To illustrate this result, consider Taylor’s (2001) study of exchange rate dynam-
ics and purchasing power parity (PPP). He uses a threshold autoregression of the
form

Xt+1 =

⎧⎪⎨
⎪⎩

−θ + π(Xt + θ)+ ξt+1, if Xt < −θ;
Xt + ξt+1, if − θ ≤ Xt ≤ θ;
θ + π(Xt − θ)+ ξt+1, if Xt > θ.

(9)

Here X represents the proportional deviation of the real exchange rate from PPP.
The idea of the model is that trade frictions result in a “band of inaction,” given
here by [−θ, θ ]. In this band, transaction costs imply that no arbitrage is possible.
Outside [−θ, θ ] there is drift back toward the band, assuming that π ∈ [0, 1). The
shock sequence {ξt } is taken to be IID and N(0, σ 2).

Using the notation preceding Proposition 5, we can set B = [−θ, θ ], whence
a = supx∈B |g(x)| = θ , and

b = sup{|(1 − π)θ |, |(−π + 1)θ |} = (1 − π)θ,

so that c = a + b = (2 − π)θ . Also, ρ is the slope coefficient π . Applying these
constants to Proposition 5 gives the equilibrium bound

ψ∗ (S \ Br) ≤
[
e(2−π)θ

∫
e‖z‖ϕ(dz)

] 1
1−π
e−r , (10)

where ψ∗ is the stationary distribution associated with (9).
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NOTES

1. For a more recent overview of the literature, see Rachev (2001).
2. See, for example, Meyn and Tweedie (2009) or Borovkov (1998).
3. In time series modeling and macroeconomic dynamics, it is common to deal with models

seemingly more complex than (1). For example, Xt+1 might depend on Xt , . . . , Xt−j for some j , and
the shocks might themselves be correlated of some finite order. However, such models can always be
rewritten in the form of (1) by suitably expanding the number of state variables. As a result, in all of
what follows we concentrate only on models with this simple first-order representation (1).

4. Convergence in total variation is stronger than convergence in distribution in the usual sense.
See, for example, Stokey et al. (1989, Chs. 10, 11).

5. See, for example, Hansen (2001) or Taylor (2001).
6. Consider the two cases y ∈ C and y /∈ C.
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APPENDIX: PROOF OF THEOREM 3

Combining Theorem 15.0.1 and Lemma 15.2.8 in Meyn and Tweedie (2009), the Markov
chain {Xt }∞

t=0 generated on S by (3) is geometrically ergodic whenever it is irreducible;
aperiodic, precompact sets are petite; and there exist a coercive function V : Rn → R+ and
positive constants L and λ such that λ < 1 and

∫
V [g(x)+ z]ϕ(dz) ≤ λV (x)+ L for all x ∈ Rn. (A.1)

[For definitions of irreducibility, aperiodicity, petite sets and coercive functions, see Meyn
and Tweedie (2009, Sects. 4.2.1, 5.4.3, 5.5.2, and 9.4.1, respectively).] A sufficient
condition for a Markov chain to be irreducible and aperiodic is that any set B ∈ B(S)
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of positive Lebesgue measure can be reached in one step from any x ∈ S with positive
probability, which is to say that

∫
1{g(x)+ z ∈ B}ϕ(z)dz =

∫
B−g(x)

ϕ(z)dz > 0.

This is immediate from the assumption that ϕ > 0 almost everywhere.
For a set C ∈ B(S) to be petite it is sufficient that there exists a measurable function

f : S → [0,∞) with
∫
S
f > 0 and

x ∈ C implies ϕ(y − g(x)) ≥ f (y), ∀y ∈ S. (A.2)

Let C be any bounded set, and let δ := infx,y∈C×C ϕ(y − g(x)). If C has positive measure,
and if δ > 0, then we can take f := δ1C , because if x ∈ C then by the definition of δ
we have ϕ(y − g(x)) ≥ f (y) = δ1C(y).6 But δ > 0 must always hold for bounded C,
because if C is bounded then it must be contained in some ball of size L, so that when
(x, y) ∈ C × C we have

‖y − g(x)‖ ≤ ‖y‖ + ‖g(x)‖ ≤ ‖y‖ + c + γ ‖x‖ ≤ c + (1 + γ )L =: M.

Thus δ = infx,y∈C×C ϕ(y − g(x)) ≥ inf‖z‖≤M ϕ(z), which is strictly positive because ϕ is
strictly positive and continuous. We conclude that all bounded sets of positive measure are
petite. Because subsets of petite sets are petite, it follows that all bounded sets are petite.
Because the state space is Rn, the bounded sets and the precompact sets are identical. We
have now shown that all precompact sets are petite.

It remains only to show the existence of a coercive function V : Rn → R+ and positive
constants L and λ such that λ < 1 and (A.1) holds. A function V is coercive if its sublevel
sets are precompact. Because x �→ ‖x‖ has this property, we take V (x) = ‖x‖. In view of
(4), we have ∫

‖g(x)+ z‖ϕ(dz) ≤ ‖g(x)‖ +
∫

‖z‖ϕ(dz)

≤ c + γ ‖x‖ +
∫

‖z‖ϕ(dz) = λ‖x‖ + L,

where λ := γ and L := c + ∫ ‖z‖ϕ(dz). Because γ < 1 by assumption, the proof is now
done. �
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