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Abstract. We study the dynamics of towers defined by fixed points of renormalization for

Feigenbaum polynomials in the complex plane with varying order ℓ of the critical point. It

is known that the measure of the Julia set of the Feigenbaum polynomial is positive if and

only if almost every point tends to 0 under the dynamics of the tower for corresponding ℓ.

That in turn depends on the sign of a quantity called the drift. We prove the existence and

key properties of absolutely continuous invariant measures for tower dynamics as well as

their convergence when ℓ tends to ∞. We also prove the convergence of the drifts to a finite

limit, which can be expressed purely in terms of the limiting tower, which corresponds to

a Feigenbaum map with a flat critical point.
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1. Introduction

Our main object of interest will be the Feigenbaum functions, which are the solutions of

the Feigenbaum–Coullet–Tresser fixed point equation [3, 7, 8]:

τH 2(x) = H(τx). (1)

H is assumed to be a smooth unimodal map on some interval, which contains 0 with the

critical point of order ℓ and normalized (following [5, 10]) so that the critical value is at

0 and its image at 1. It is well known (and very non-trivial, see e.g. [10] for a historical

account) that for each ℓ even and positive a unique solution (Hℓ, τℓ) exists and has the

formHℓ(x) = Eℓ(x)
ℓ whereEℓ is a real-analytic mapping with strictly negative derivative

on [0, 1] and with a unique zero x0,ℓ (so that x0,ℓ is the critical point of Hℓ of order ℓ).

Furthermore, by [6, 10], Eℓ extends to a univalent map (denoted again by Eℓ) from some

Jordan domain�ℓ onto a slit complex plane (see §2.1 for details). This implies in particular

that Hℓ has a polynomial-like extension onto some disk D(0, R), R > 1 with a single

critical point of order ℓ. Let Jℓ be the Julia set of this polynomial-like mapping.
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For every ℓ even and positive the tower map (cf. [16]) T̂ℓ : C → C is defined

almost everywhere as follows. Introduce the fundamental annulus Aℓ = �ℓ \ τ−1
ℓ �ℓ

(geometrically, this is indeed an annulus domain, for every finite ℓ). For every n ∈ Z and

every z ∈ τnℓ Aℓ, let

T̂ℓ(z) = τnℓHℓτ
−n
ℓ (z).

Note that T̂ℓ(z) = H 2n

ℓ (z) for n ≥ 0 and z ∈ τ−n
ℓ Aℓ. By [5, 10], the quadruple

(Hℓ, τℓ, �ℓ, x0,ℓ), as ℓ → ∞, has a well-defined non-trivial limit (H∞, τ∞, �∞, x0,∞) so

that the limit tower T̂∞ : C → C and A∞ := �∞ \ τ−1
∞ �∞ are defined as well.

The main results of the present paper are summarized in the following Theorems 1

and 2.

THEOREM 1. For any ℓ ∈ 2N or ℓ = ∞, there exists a unique measure µℓ supported on

Aℓ, which satisfies the following conditions (1) and (2).

(1) µℓ is absolutely continuous with respect to the Lebesgue measure on the plane and

µℓ(Aℓ) = 1 and with a density that is real-analytic and positive on Aℓ.

(2) µ̂ℓ defined by µ̂ℓ(S) = µℓ(τ
n
ℓ S) for every Borel set S ⊂ τ−n

ℓ Aℓ and every n ∈ Z is

a σ -finite measure on C, which is invariant under T̂ℓ : C → C.

Define the level function m̂ : C → Z and the map Tℓ : Aℓ → Aℓ so that m̂(z) = n for

z ∈ τ−n
ℓ Aℓ and Tℓ = τ

m̂◦Hℓ
ℓ Hℓ. Then Theorem 1 means that µℓ is invariant under Tℓ.

Let 0 < ℓ < ∞ be any even number. Since Tℓ isµℓ-ergodic and m̂ ◦Hℓ is integrable, by

the Birkhoff ergodic theorem, for Lebesgue almost every z ∈ C the following limit (called

‘drift’) exists:

ϑ(ℓ) := lim
N→∞

1

N
m̂(T̂ Nℓ (z)) = lim

N→∞
1

N

N−1
∑

i=0

m̂ ◦Hℓ(T iℓ (y)) =
∫

Aℓ

m̂ ◦Hℓ(x) dµℓ(x),

where y = τ kℓ z ∈ Aℓ, for an appropriate k ∈ Z. It follows from here, similar to [15], that

the Lebesgue measure of the Julia set Jℓ is positive if and only if ϑ(ℓ) > 0.

We are interested in the behavior of ϑ(ℓ) as ℓ tends to infinity.

THEOREM 2.

(1) The sequence of measures {µℓ}ℓ∈2N tends strongly to µ∞, i.e. the corresponding

densities converge in L1(C, Leb2); moreover their convergence is analytic on some

disk that contains the critical point of Hℓ for all ℓ large enough.

(2) The sequence of drifts {ϑ(ℓ)}ℓ∈2N converges to a finite number (the limit drift)

ϑ(∞) = − 1

log τ∞
lim
r→0

∫

A∞\B(x0,∞,r)

log
|H∞(z)|

|z| dµ∞(z). (2)

Note that this integral exists only in the Cauchy sense given above and is undefined on

A∞, see [10].

The present paper is a sequel of [10, 11, 13, 14] and particularly [15]. The problem of

[15] and the present paper can be tracked down to [2, 17], see [15] for discussions. In [15],

a formula for the limit drift, which is similar to equation (2) is proved in a class of smooth
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covering circle maps. The proof (in the present paper) for the class of Feigenbaum maps

follows similar lines, but is substantially more technical.

Reference [15] was a ground for a computer-assistant evaluation of the limit drift in the

class of circle covers. The result shows that the limit drift in this class is negative, which

implies in particular that those maps of the circle with high enough criticalities do not have

a wild attractor.

In a recent paper [4], the authors present a computer-assisted proof that the area of J2 is

zero. The case of ℓ = 2 represents the opposite end of the range of possibilities compared

with our interest in ℓ that tend to ∞.

2. The Feigenbaum function

2.1. Review of known properties. We consider the Feigenbaum–Coullet–Tresser fixed

point equation with the critical point of order ℓ even and positive, set at some point x0,ℓ ∈
(0, 1) and normalized so that the critical value is at 0 and its image at 1. The equation

has the form of equation (1) and H is assumed to be unimodal on some interval, which

contains 0 with Feigenbaum topological type.

It is well known that for each ℓ a unique solution (Hℓ, τℓ) exists. We will now describe

it following [10].

Hℓ is a holomorphic map defined on a domain �ℓ, which is a bounded topological disk

symmetric with respect to the real line and mapping into C. �ℓ can be split into two disks

by an arc wℓ, which is tangent at x0,ℓ to the line {z : Re z = x0,ℓ} and mapped by Hℓ into

the real line. One can further observe that the image of wℓ is the positive half-line for ℓ

divisible by 4 and the negative half-line otherwise.

The right connected component of �ℓ \ wℓ will be denoted by �+,ℓ and the left one by

�−,ℓ. We will also write H±,ℓ for Hℓ restricted to �±,ℓ.

2.1.1. Convergence as ℓ → ∞. When ℓ → ∞ triples (Hℓ, τℓ, x0,ℓ) converge to a limit

(H∞, τ∞, x0,∞) where τ∞ > 1, x0,∞ ∈ (0, 1) and Hℓ converge to H∞ uniformly at least

on the interval [0, 1]. Mapping H∞ is unimodal with the critical point at x0,∞ and

(H∞, τ∞) satisfy the Feigenbaum equation (1).

Furthermore, H∞ has a holomorphic continuation, which is similar to Hℓ. Namely, its

domain is �∞, which is symmetric with respect to R and is the union of two bounded

disks �±,∞ with closures intersecting exactly at {x0,∞}. We then define restrictions H±,∞
to the corresponding �±,∞.

2.1.2. Holomorphic continuation. These mappings can then be described by the follow-

ing statement.

Fact 2.1. For every ℓ even and positive, the mappingHℓ only takes the value 0 at the critical

point x0,ℓ while the image of H∞ avoids 0 at all. Subsequently, one can consider a pair of

univalent mappings φ±,ℓ, real and thus uniquely determined by the condition

exp
(

φ±,ℓ

)

= τ−2
ℓ H±,ℓ

https://doi.org/10.1017/etds.2020.53 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.53


Limit drift for complex Feigenbaum mappings 2431

for ℓ, which is even or infinite. Then each φ±,ℓ maps the corresponding �±,ℓ onto the set

Πℓ :=
{

z ∈ C : |Im z| < ℓπ

2

}

\ [0, +∞)

and is univalent.

We can now formulate the convergence of mappings as ℓ → ∞.

Fact 2.2. As ℓ tends to ∞ mappings (φ±,ℓ)
−1 converge to (φ±,∞)−1 uniformly on compact

subsets of Π∞ := C \ [0, +∞).

For ℓ finite we will also consider an analytic continuation of mappings φ±,ℓ, which is

described next.

Fact 2.3. Transformations φ±,ℓ for ℓ finite each have two univalent analytic continuations,

one with domain equal to�ℓ ∩ H+ and another one to�ℓ ∩ H− with ranges {z ∈ C : 0 <

Im z < ℓπ} and {z ∈ C : 0 < Im z < ℓπ}, respectively.

2.1.3. Geometric properties of �±,ℓ. Below we state a couple of properties that will be

used.

Fact 2.4. For any ℓ positive and even or infinite:

• �ℓ ∩ R = [yℓ, τℓx0,ℓ] where yℓ < 0 and Hℓ(τ
−1yℓ) = τℓx0,ℓ;

• �ℓ \ τℓ�−,ℓ = {τℓ · x0,ℓ};
• �ℓ ⊂ D(0, τℓ) .

2.1.4. Associated mapping.

Definition 2.1. For any ℓ positive and even or infinite, define the associated mapping

Gℓ(z) = Hℓ(τ
−1
ℓ z),

where z ∈ τℓ�ℓ. We also define the principal inverse branch G−1
ℓ , which is defined on

C \ {x ∈ R : x /∈ [0, τ 2
ℓ ]} and fixes x0,ℓ.

We list key properties of the associated mapping.

Fact 2.5.

• Gℓ has a fixed point at x0,ℓ, which is attracting for ℓ finite and neutral for ℓ = ∞.

• The range of the principal inverse branch G−1
ℓ is contained in τℓ�−,ℓ.

• G−1
ℓ (�+,ℓ) = �−,ℓ,

G−1
ℓ (�−,ℓ \ (−∞, 0]) = �+,ℓ.

• τ−1
ℓ Hℓ = HℓGℓ on �ℓ.

2.1.5. Coverings.

Fact 2.6. A holomorphic mapping ψ : U → V , where U and V are domains on C, is a

covering if and only if for every v ∈ V , every simply connected domain W, which contains
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v and is compactly contained in V and every u : ψ(u) = v, there exists a univalent inverse

branch of ψ defined on W, which sends v to u.

2.2. Analytic continuations.

Definition 2.2. For k : 0 ≤ k ≤ ∞ and 0 < ℓ ≤ ∞, let us define

Πk
ℓ :=

{

z ∈ C : |Im z| < ℓπ

2

}

\ ({2j log τℓ : j = 0, . . . , k − 1} ∪ [2k log τℓ, +∞)).

Thus Π0
ℓ = Πℓ in the notation of Fact 2.1, while

Π∞
ℓ =

{

z ∈ C : |Im z| < ℓπ

2

}

\ {2j log τ : j = 0, 1, . . .}.

PROPOSITION 1. For every k ≥ 0 and every ℓ positive and even or infinite, there exist

domains �̂k±,ℓ where �̂0
±,ℓ = �±,ℓ, respectively. Furthermore φ±,ℓ continue analytically

to the corresponding �̂k±,ℓ with non-vanishing derivative and the claims below hold:

• �̂k+,ℓ and �̂k−,ℓ are disjoint;

• for k > 0,

�̂k+,ℓ = G−1
ℓ (�̂k−1

−,ℓ )

for ℓ finite and

�̂k+,∞ = G−1
∞ (�̂k−1

−,∞) ∩ τ∞�−,∞

for ℓ = ∞, while for k ≥ 0 one also has

�̂k−,ℓ = G−1
ℓ (�̂k+,ℓ)

for all ℓ, where G−1
ℓ is the principal inverse branch, cf. Definition 2.1;

• φ±,ℓ : �̂k±,ℓ \ φ−1
±,ℓ({j log τ 2

ℓ : 0 ≤ j < k}) → Πk
ℓ

is a covering.

Proof. The proof will naturally proceed by induction with respect to k. For k = 0 all claims

are known, in particular the second one follows from Fact 2.5 and the third from Fact 2.1.

In an inductive step from k − 1 to k, �̂k±,ℓ are already defined by the second claim. The

first one is easy, since each of following inclusions implies the next one by the second

claim:

z ∈ �̂k+,ℓ ∩ �̂k−,ℓ,

Gℓ(z) ∈ �̂k−1
−,ℓ ∩ �̂k+,ℓ,

G2
ℓ(z) ∈ �̂k−1

+,ℓ ∩ �̂k−1
−,ℓ ,

obviously. Thus, we need to prove the third claim.

Let us begin with a lemma.
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LEMMA 2.1. For ℓ finite and even,

Gℓ : τ�ℓ \ ({τℓx0,ℓ} ∪G−1
ℓ ([τℓ, ∞))) → C \ ({0} ∪ [τℓ, ∞))

is a covering. For ℓ = ∞, the corresponding claim is that

G∞ : τ∞�−,∞ → C \ ({0} ∪ [τ 2
∞, +∞))

is a covering.

Proof. Let us deal with the case of ℓ finite. Since Gℓ = Hℓτ
−1
ℓ , Gℓ can be viewed as

composed of two branches one defined on τℓ�−,ℓ and the other on τℓ�+,ℓ, which match

analytically on the common boundary τℓwℓ. By Fact 2.1, log Gℓ is a univalent mapping

of its domain with τℓx0,ℓ removed onto C with infinitely many slits of the form {x + iy :

y = 2πk, k ∈ Z, x ≥ Xk} where Xk is log τℓ or 2 log τℓ depending on which branch of

Gℓ acts. A projection by exp then yields the claim.

A similar reasoning works for ℓ = ∞ except that G already maps τ∞�−,∞ univalently

onto C \ [τ 2
∞, +∞). �

Mapping φ+,ℓ. Since �̂k−1
−,ℓ ∩ R ⊂ (−∞, x0,ℓ),

Gℓ : �̂k+,ℓ = G−1
ℓ (�̂k−1

−,ℓ ) → �̂k−1
−,ℓ \ {0}

is a covering. Since φ−,ℓ(0) = log τ−2
ℓ , it follows that

Gℓ : �̂k+,ℓ \ (φ−,ℓ ◦Gℓ)−1({log τ−2
ℓ }) → �̂k−1

−,ℓ \ φ−1
−,ℓ({log τ−2

ℓ )})

is a covering as well. Furthermore,

φ−,ℓ : �̂k−1
−,ℓ \ φ−1

−,ℓ({log τ
2j
ℓ : j = −1, . . . , k − 2}) → Πk−1

ℓ \ {log τ−2
ℓ }

= Πk
ℓ − 2 log τℓ

is also a covering by the hypothesis of induction.

To prove that their composition is also a covering, take z ∈ U ⊂ Πk
ℓ − 2 log τℓ and

recall Fact 2.6. The every inverse branch defined of φ−,ℓ defined on U into �̂k−1
−,ℓ has a

range that is a disk in �̂k−1
−,ℓ \ φ−1

−,ℓ({log τ−2
ℓ }), which therefore avoids 0. Since Gℓ is a

covering of �̂k−1
−,ℓ \ {0}, for every such disk one can find an inverse branch of Gℓ. Hence,

φ−,ℓ ◦Gℓ : �̂k+,ℓ \ (φ−,ℓ ◦Gℓ)−1({log τ
2j
ℓ : j = −1, . . . , k − 2}) → Πk

ℓ − 2 log τℓ

is a covering. By the functional equation

φ+,ℓ = φ−,ℓ ◦Gℓ + 2 log τℓ,

which completes the proof of the third claim for φ+,ℓ.

Mapping φ−,ℓ. The associated map Gℓ maps �̂k−,ℓ univalently onto �̂k+,ℓ so that

φ+,ℓ ◦Gℓ : �̂k−,ℓ \ G−1
ℓ (φ−1

+,ℓ({log τ
2j
ℓ : j = 0, . . . , k − 1})) → Πk

ℓ
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is clearly a covering. By the functional equation

φ−,ℓ = φ+,ℓ ◦Gℓ,

which concludes the proof of Proposition 1. �

Let us state the main result about the analytic continuation of φ±,ℓ.

THEOREM 3. For every ℓ positive and even or infinite there exist domains �̂±,ℓ, disjoint,

simply connected and symmetric with respect to R. The following inclusions hold:

�−,ℓ ⊂�̂−,ℓ ⊂ τℓ�−,ℓ,

�+,ℓ ⊂�̂+,ℓ ⊂ τℓ�ℓ,

�̂±,∞ ⊂ τ∞�−,∞.

Furthermore, φ±,ℓ continue analytically to �̂±,ℓ, respectively, with non-zero derivative

and mappings

φ±,ℓ : �̂±,ℓ \ φ−1
±,ℓ({log τ

2j
ℓ : j = 0, 1, . . .}) → Π∞

ℓ

are coverings, cf. Definition 2.2.

Proof. From the second claim of Proposition 1 one easily concludes each of the sequences

(�̂k±,ℓ)
∞
k=0 is a non-decreasing sequence of simply connected domain, symmetric with

respect to R and contained in the appropriate component of the domain of Gℓ. If we set

�̂±,ℓ :=
∞
⋃

k=0

�̂k±,ℓ

then the only claim of Theorem 3, which is not obvious, concerns the maps being

coverings.

We will use the criterion of Fact 2.6. Fix z ∈ Π∞
ℓ and let U be its simply connected

neighborhood compactly contained in Π∞
ℓ and hence bounded. The U ⊂ Π

k0

ℓ for some

finite k0. Then pick a preimage u of z, which is also contained in some �̂
k1

±,ℓ with k1 finite.

Then by Proposition 1 there is an inverse branch of φ−1
±,ℓ : U → �̂

max(k0,k1)
±,ℓ . Its range

obviously avoids the set φ−1
±,ℓ({log τ

2j
ℓ : j = 0, 1, . . .}). So, the condition of Fact 2.6 is

satisfied. �

2.3. Special considerations for ℓ finite. We will write for 0 ≤ k ≤ ∞ P kℓ := C \ ({τ 2j
ℓ :

0 ≤ j < k} ∪ [τ 2k
ℓ , +∞)).

2.3.1. Coverings and slits. From Theorem 3 we derive the following corollary.

COROLLARY 2.1. For σ = ± mappings exp(φσ ,∞) : �̂σ ,∞ \ (φσ ,∞)−1({τ 2j
∞ : j =

0, 1, . . .}) → P∞
∞ are coverings and their domains are contained in τ∞�−,∞.

Proof. The mappings are seen to be coverings by Theorem 3 using the criterion of Fact 2.6.

The inclusion of domains also follows from Theorem 3. �
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However, an analogous statement for finite ℓ instead of ∞ would be false for two

reasons. First, the inclusion of domains would fail since �̂+,ℓ extends to the right of τℓx0,ℓ

and secondly exp is not a covering of the plane by a vertical strip. We will now address

these difficulties one by one.

2.3.2. Restricting the domain of H+,ℓ.

LEMMA 2.2. Suppose that S is either (−∞, 0] or [0, +∞). Suppose u0 ∈ �+,ℓ is mapped

into

5 := {z ∈ Π∞
ℓ \ S : |Im z| < π}

by φ+,ℓ. Then there is a covering of 5 by the analytic continuation of φ+,ℓ restricted to a

domain, which is contained in �̂+,ℓ \ [τℓx0,ℓ, ∞) and contains u0.

Proof. Recall that φ+,ℓ = φ−,ℓ ◦Gℓ + 2 log τℓ. Then Gℓ maps �̂+,ℓ ∩ R = (x0, τ 2
ℓ x0)

into (0, τℓ). Subsequently, (0, τℓ) is transformed by φ−,ℓ + 2 log τℓ, inasmuch as it fits

into its domain, into (−∞, 0). Hence, when S = (−∞, 0] the domain of the covering

does not intersect R and the claim follows.

When S = [0, +∞), the 5 = {z ∈ C : |Im z| < π} \ [0, +∞) is simply connected

and the covering is univalent. Clearly, φ+,ℓ(u0) can be connected to any point x in the

negative half-line by a path inside 5, which is otherwise disjoint from R. The lifting of

this path by φ+,ℓ avoids ∂�ℓ except for the endpoint, which is the preimage of x by the

covering. Then this preimage must be in the closure of �ℓ, which avoids (τℓx0, +∞).

Neither is τℓx0,ℓ possible as the preimage, since it goes to −∞ by φ+,ℓ. �

2.3.3. Covering slit domains by τ−n
ℓ H±,ℓ. Now we will address the second difficulty.

PROPOSITION 2. Suppose that ℓ > 0 is even or infinite. Let V be any one of V +, V −, V ◦

where

V − :=C \ ({τ 2j
ℓ : j = 1, . . .} ∪ (−∞, 1]),

V + :=C \ [0, +∞),

V ◦ :=C \ ([1, +∞) ∪ (−∞, 0]).

Let σ = ±, u0 ∈ �σ ,ℓ and suppose exp(φσ ,ℓ(u0)) ∈ V .

Then there is a domain U , u0 ∈ U such that exp φσ ,ℓ : U → V is a covering. U is

contained in:

• �̂−,ℓ ∪�+,ℓ \ [x0,ℓ, +∞) when σ = −;

• �̂+,ℓ ∪�−,ℓ \ ((−∞, x0,ℓ] ∪ [τℓx0,ℓ, +∞)) when σ = +;

• C \ R provided that |Imφσ ,ℓ(u0)| ≥ π .

Proof. If |Imφσ ,ℓ(u0)| ≥ π , then φσ ,ℓ(u0) belongs to a horizontal strip of width 2π , which

is mapped by exp univalently onto V + or C \ (−∞, 0], which contains both V −, V ◦. U is

the preimage of the strip by φσ ,ℓ, which may require the use of the extension from Fact 2.3.

Accordingly, U ⊂ �ℓ ∩ H±. This implies the inclusions postulated by Proposition 2 and

the covering in this case is just a univalent map.
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A similar case is V = V + since here again φσ ,ℓ(u0) is contained in a horizontal strip,

which is mapped onto V + by exp and U is constructed in the same way.

The remaining case is when |Imφσ ,ℓ(u0)| < π and V = V −, V ◦, which implies V ⊂
C \ (−∞, 0]. Then V is equivalent by log to a subset of5 := {z ∈ Π∞

ℓ : |Im z| < π} and

U is chosen as a subset ofU ′, whereU ′ covers5 by φσ ,ℓ. By Theorem 3 such a covering by

φσ ,ℓ exists with U ′ ⊂ �̂σ ,ℓ. Moreover, by Lemma 2.2, U ′ does not intersect [τℓx0,ℓ, +∞).

�

2.4. Convergence estimates. Fact 2.2 states almost uniform convergence of mappings

φ−1
±,ℓ. That is not good enough for our purposes. The goal is the following statement.

PROPOSITION 3. Mappings φ−1
±,ℓ converge to φ−1

±,∞ uniformly, i.e.

lim
ℓ→∞

sup

{

|φ−1
±,ℓ(ζ )− φ−1

±,∞(ζ )| : |Im ζ | < ℓπ

2
, ζ /∈ [0, +∞)

}

= 0.

Additionally,

lim
|ζ |→∞

φ−1
±,∞(ζ ) = x0,∞.

The proof will be achieved in a sequence of lemmas.

LEMMA 2.3. There exists R0 > 0 such that for every 0 < r ≤ R0 there are ε(r) > 0 and

ℓ(r) < ∞ such that for every ℓ ≥ ℓ(r) even and every z ∈ B(x0,∞, R0) \ B(x0,∞, r) the

estimate |G2
ℓ(z)− z| ≥ ε(r) holds.

Proof. For ℓ sufficiently large and z in a neighborhood of x0,∞ we can represent

G2
ℓ(z)− z = a0,ℓ + a1,ℓζ + a2,ℓζ

2 + a3,ℓζ
3 + g4,ℓ(ζ )ζ

4, (3)

where ζ := z− x0,∞, a0,ℓ, a1,ℓ, a2,ℓ all tend to 0 as ℓ → ∞, limℓ→∞ a3,ℓ = a3,∞ < 0 and

g4,ℓ(ζ ) are a sequence of analytic functions convergent in a neighborhood of 0 to g4,∞, see

Theorem 2 in [10].

Then R0 is chosen so that C(x0,∞, R0) fits inside the required neighborhoods and

|a3,∞| > 3R0 sup{|g4,∞(ζ ) : |ζ | ≤ R0}. For ℓ large enough,

|a3,ℓ| > 2R0sup{|g4,ℓ(ζ )| : |ζ | ≤ R0}.

This implies that

|a3,ℓζ
3 + g4,ℓ(ζ )ζ

4| > 1
2
|a3,ℓ|r3

for ζ ∈ C(0, r), r ≤ R0. Set ε(r) = (r3/4)|a3,∞|. The proof is finished by choosing ℓ(r)

so that, for all ℓ ≥ ℓ(r),

|a0,ℓ| + |a1,ℓ|R0 + |a2,ℓ|R2
0 <

ε(r)

2
,

|a3,ℓ|
|a3,∞| >

3

4
.

�
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LEMMA 2.4. For all R0, ǫ > 0, there exist L(ǫ), ℓ(ǫ) < ∞, such that

for all ℓ : ℓ(ǫ) ≤ ℓ ≤ ∞, for all ζ : |Im ζ | < ℓπ

2
, dist (ζ , [0, +∞)) > L(ǫ),

we have |G2
ℓ ◦ φ−1

±,ℓ(ζ )− φ−1
±,ℓ(ζ )| < ǫ.

Proof. If 0 ≤ Im ζ < ℓπ/2, then for any M if ℓ is sufficiently large and finite and the

distance from ζ to the slit [0, ∞) is sufficiently large as well, then points ζ and ζ − log τ 2
ℓ

can be surrounded by an annulus with modulus M in at least one of the domains
{

ξ ∈ C \ [0, +∞) : |Im ξ | < ℓπ

2

}

or

{ξ ∈ C \ [0, +∞) : 0 < Im ξ < ℓπ}.
(4)

When ℓ = ∞ the same is true and the first type domain, which is C \ [0, +∞), suffices.

The first type domains are mapped by φ−1
±,ℓ univalently on �±,ℓ by Fact 2.1 and those of

the second type to �ℓ ∩ H+ by Fact 2.3. Also, G2
ℓ ◦ φ−1

±,ℓ(ζ ) = φ−1
±,ℓ(ζ − log τ 2

ℓ ). Any of

those domains has a diameter bounded independently of ℓ by Fact 2.4. Hence, the distance

between G2
ℓ ◦ φ−1

±,ℓ(ζ ) and φ−1
±,ℓ(ζ ) is less than ǫ if M ≥ M(ǫ). �

LEMMA 2.5. For all r > 0, there exist L(r), ℓ(r) < ∞, such that

for all ℓ ≥ ℓ(r), for all ζ : |Im ζ | < ℓπ

2
, dist(ζ , [0, +∞)) > L(r),

we have |φ−1
±,ℓ(ζ )− x0,∞| ≤ r .

Proof. Fix R0 from Lemma 2.3 and take any r : r ∈ (0, R0). From Lemma 2.3 we then

get ε(r) and set ǫ := ε(r)/2 in Lemma 2.4. The bound ℓ(r) can now be fixed so that

for ℓ ≥ ℓ(r) both lemmas apply and |x0,ℓ − x0,∞| < r/2. Set also L(r) := L(ǫ) given by

Lemma 2.4.

For any ℓ ≥ ℓ(r) we consider the set

Sℓ :=
{

ζ ∈ C : |Im ζ | < ℓπ

2
, dist (ζ , [0, +∞)) > L(ǫ), |φ−1

±,ℓ(ζ )− x0,∞| ≤ r

}

.

Sℓ is obviously closed in {ζ ∈ C : |Im ζ | < ℓπ/2, dist(ζ , [0, +∞)) > L(ǫ)} and also

non-empty since limx→∞ φ−1
±,ℓ(x) = x0,ℓ. The proof is finished once we have shown that

Sℓ is also open. If ζ is a non-interior point, we must have |φ−1
±,ℓ(ζ )− x0,∞| = r . Then

by Lemma 2.3 we get |G2
ℓ ◦ φ−1

±,ℓ(ζ )− φ−1
±,ℓ(ζ )| ≥ ε(r) > ǫ. But by Lemma 2.4, |G2

ℓ ◦
φ−1

±,ℓ(ζ )− φ−1
±,ℓ(ζ )| ≥ ε(r) < ǫ for all ζ ∈ Sℓ. Hence, there are no non-interior points. �

LEMMA 2.6. For any L, ǫ > 0 define the set

V (L, ǫ) := {ζ ∈ C : Re ζ ≤ L, |Im ζ | < π , dist (ζ , [0, ∞)) ≥ ǫ}.

Then the family (φ−,ℓ)ℓ, ℓ positive and even or infinite, is equicontinuous on V (L, ǫ) and

converges uniformly to φ−1
−,∞.

Proof. Let us begin by proving that for each ℓ, φ−1
−,ℓ is uniformly continuous on

V (L, ǫ). That is clear on the set V (L′, L, ǫ) := {ζ ∈ V (L, ǫ) : Re ζ ≥ L′} for any L′ by
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compactness and in particular since φ−1
−,ℓ extends through each line {ζ : Im ζ = ±π} by

Fact 2.3. It remains to see that

lim
Re ζ→−∞

φ−1
−,ℓ(ζ ) = x0,ℓ. (5)

This is the case when ζ is real and any other sequence of points remains in a bounded

hyperbolic distance from R in an extended domain − 1
2
π ≤ Im ζ ≤ 3

2
π or its symmetric

image.

Now equicontinuity will follow if we show uniform convergence. That again is clear

on V (L′, L, ǫ) for any L′ by Fact 2.2. On the set V (L, ǫ) \ V (L′, L, ǫ) we conclude

from Lemma 2.5 that for any r > 0 there is L′(r) sufficiently close to ∞ and ℓ(r)

that φ−1
−,ℓ(V (L, ǫ) \ V (L′(r), L, ǫ)) ⊂ D(x0,∞, r) for all ℓ ≥ ℓ0(r). Uniform convergence

follows. �

Recall the principal inverse branch G−1
ℓ , cf. Definition 2.1.

LEMMA 2.7. For any L, ǫ > 0 define the set

W(L, ǫ) := {z ∈ C : |z| ≤ L, dist (z, [τ∞, ∞)) ≥ ǫ} \ (−∞, 0].

Then for some ℓ0 the sequence (G−1
ℓ )∞ℓ=ℓ0

is equicontinuous and converges to G−1
∞

uniformly on W(L, ǫ).

Proof. The basis of the proof is the representation

G−1
ℓ (z) = τℓφ

−1
−,ℓ(log(z)− log τ 2

ℓ ), (6)

where the principal branch of the log is used. Then uniform convergence follows from the

representation (6) and Lemma 2.6.

It remains to show uniform continuity of G−1
ℓ for each ℓ. Here ℓ0 should be chosen so

that for ℓ ≥ ℓ0 the difference |log τ 2
∞ − log τ 2

ℓ | is less than ǫ/2. Then uniform continuity

also follows from Lemma 2.6 on a set where log(z) is uniformly continuous, which is

outside ofD(0, η), η > 0. Additionally, by formula (5) G−1
ℓ can be extended continuously

to 0 by setting G−1
ℓ (0) := x0,ℓ and uniform continuity follows. �

LEMMA 2.8. There exist ℓ0 and L0, ǫ0 > 0 such that for every L, ǫ > 0 and ℓ ≥ ℓ0 the

distance from the set G−1
ℓ (W(L, ǫ)) to [τ∞, ∞) is at least ǫ0 and the set is contained in

{ζ ∈ C : Re ζ < L0}.

Proof. We begin by observing that

G−1
ℓ (W(L, ǫ)) ⊂ τℓ�−,ℓ.

For ℓ = ∞, τ∞�−,∞ is compactly contained in C \ [τ∞, +∞) and hence the distance

from the claim of this Lemma is positive and is bounded from the right. By uniform

convergence from Lemma 2.7 this situation persists for all ℓ sufficiently large. �
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COROLLARY 2.2. There exist ℓ0, L0 < ∞ and ǫ0 > 0 such that for every L ≥ L0, ǫ :

0 < ǫ ≤ ǫ0 and k ∈ Z : k > 0 the family (G−k
ℓ )ℓ≥ℓ0

is equicontinuous and uniformly

convergent in W(L, ǫ).

Proof. This follows from an inductive use of Lemma 2.7 once we pick L0, ǫ0 as in

Lemma 2.8. �

2.4.1. Wedge lemma. For every ℓ even, positive, and finite there is a repelling orbit of

period 2 under Gℓ, which consists of points x+,ℓ ∈ H+ and x−,ℓ ∈ H−. When ℓ → ∞
points x±,ℓ tend to x0,∞.

The key observation is that there are two inverse branches of G2
ℓ, which will be written

as G−2
±,ℓ and transform H± into itself, respectively. Then x±,ℓ are fixed points of the

corresponding G−2
±,ℓ, which attract H±.

The lemma below is stated for the upper half-plane without loss of generality.

LEMMA 2.9. Suppose that z0 ∈ H+ and 0 < η ≤ Im z0. Furthermore, assume that 1
3
π <

arg(z0 − x0,∞) < 2
3
π . For every η > 0 there is ℓ(η) < ∞ such that whenever ℓ(η) ≤ ℓ <

∞, then the forward orbit of z0 under G−2
+,ℓ is contained in D(x0,ℓ, eIm z0).

Proof. We choose ℓ(η) so that for every ℓ ≥ ℓ(η) the stunted wedge {z ∈ H+ : Im z ≥
η, 1

3
π < arg(z− x0,∞) < 2

3
π} is contained in the wedge W := {z ∈ H+ : 1

4
π < arg(z−

x+,ℓ) <
3
4
π}.

Then for any z0 ∈ W the hyperbolic distance in H+ from z0 to x+,ℓ is less than

log(Im z0/Im x+,ℓ)+ 2. It is not expanded by the action G−2
+,ℓ. Given a hyperbolic distance

the maximum Euclidean distance is obtained when the real parts coincide, which yields

the estimate of the lemma. �

A consequence of the wedge lemma is the following estimate.

LEMMA 2.10. For every r , H > 0 there exists K(r , H) and ℓ(r , H) such that for every

ℓ ≥ ℓ(r , H) we get

φ−1
±,ℓ ({ζ ∈ C : |Im ζ | ≤ H , Re ζ > K(r , H)}) ⊂ D(x0,∞, r).

Proof. Since for ℓ = ∞ the mapping φ−1
±,∞ is a Fatou coordinate, it maps every horizontal

half-ray

{ζ ∈ C : Im ζ = H , Re ζ > 0}

to a curve convergent to x0,∞ and tangent to the repelling direction. Hence, given r , H for

someK(r , H) the set {ζ ∈ C : |Im ζ | ≤ H , Re ζ > K(r , H)− 2 log τ 2
∞} is mapped into

{z ∈ C : |z− x0,∞| < r/10, arg
(

−(z− x0,∞)2
)

< π/10}. Now choose an integer k(r)

so that

(k(r)− 1) log τ 2
∞ ∈ (K(r , H)− 2 log τ 2

∞, K(r , H)). (7)
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On the other hand, for any ℓ consider

W(r , H , ℓ) := φ−1
±,ℓ({ζ ∈ C : |Im ζ | ≤ H , (k(r)− 1) log τ 2

ℓ ≤ Re ζ ≤ k(r) log τ 2
ℓ })

= G
−2(k(r)+1)
ℓ ◦ φ−1

±,ℓ({ζ ∈ C : |Im ζ | ≤ H , −2 log τ 2
ℓ ≤ Re ζ ≤ − log τ 2

ℓ }).

By Corollary 2.2, for all ℓ sufficiently large

W(r , H , ℓ) ⊂
{

z ∈ C : |z− x0,∞| < r

3
, arg(−(z− x0,∞)

2) <
π

3

}

.

Then by Lemma 2.9 all subsequent images ofW(r , H , ℓ) by iterates of G−1
ℓ are contained

in D(x0,∞, r). But that means the entire set

φ−1
±,ℓ({ζ ∈ C : |Im ζ | ≤ H , (k(r)− 1) log τ 2

ℓ ≤ Re ζ }) ⊂ D(x0,∞, r).

Recalling expression (7), we get the claim. �

LEMMA 2.11. For every r > 0 there is K(r) and ℓ(r) so that for any ℓ ≥ ℓ(r) and ζ :

|ζ | > K(r), |Im ζ | < ℓπ/2, ζ /∈ [0, +∞) we get φ−1
±,ℓ(ζ ) ∈ D(x0,∞, r).

Proof. Let us begin with Lemma 2.5, which implies the claim for ζ : |Im ζ | <
ℓπ/2, dist(ζ , [0, +∞)) > L(r).

Then invoke Lemma 2.10 with H := L(r) to conclude that the claim also holds on

the infinite half-strip {ζ ∈ C : |Im ζ | ≤ L(r), Re ζ > K(r , L(r))}. What remains is a

bounded set. �

Proof of Proposition 3. The limit at ∞ for φ−1
±,∞ follows from Lemma 2.11. It remains

to check uniform convergence. Fix r > 0 By Lemma 2.11, for |ζ | > K(r/2 we get

φ−1
±ℓ (ζ ) ∈ D(x0,∞, r/2) for all ℓ large enough and hence |φ−1

±,ℓ(ζ )− φ−1
±,∞(ζ )| < r . The

remaining bounded set after shifting by some multiple of log τ 2
∞ is compactly contained

in C \ [0, +∞). Hence uniform convergence follows from Fact 2.1 and Corollary 2.2. �

2.4.2. Diameter of wℓ. Recall the arc wℓ, which for finite ℓ separates �+,ℓ from �−,ℓ.

wℓ ∩ H+ is invariant under G−2
+,ℓ.

LEMMA 2.12. For every ǫ > 0 there is ℓ(ǫ) such for any ℓ ≥ ℓ(ǫ), even and finite, and any

z ∈ wℓ ∩ H+ the hyperbolic diameter in H+ of the subarc of w between z and G2
ℓ(z) is

bounded by ǫ.

Proof. Let w(z) denote the segment of wℓ between z and G2
ℓ(z). Then its hyperbolic

diameter is bounded by the hyperbolic diameter of w(G2n
ℓ (z)) for any n positive by

Schwarz’ lemma. On the other hand, wℓ is a preimage of a line by an analytic mapping,

and hence a smooth curve at x0,ℓ tangent to the vertical line x0,ℓ + ιR. It develops that the

limit of the hyperbolic diameter of w(G2n(x)) as n → ∞ is −2 log G′
ℓ(x0,ℓ), which tends

to 0 as ℓ → ∞. �

LEMMA 2.13. The following holds:

lim
ℓ→∞

diam(wℓ) = 0.
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Proof. It is enough to prove the claim for wℓ ∩ H+. Fix r > 0 and suppose that for ℓ

arbitrary large wℓ ∩ H+ intersects C(x0,∞, r) at z0. Then by Lemma 2.3 for ℓ ≥ ℓ(r) the

Euclidean diameter of the subarc of wℓ between z0 and G2
ℓ(z0) is at least ε(r). But by

Lemma 2.12 the hyperbolic diameter of the same arc tends to 0 as ℓ → ∞, which yields a

contradiction. �

3. Dynamics near an almost parabolic point

3.1. Elementary estimates.

3.1.1. Double wedge in �ℓ. Start with the following fact.

Fact 3.1. For any δ > 0 there is r(δ) > 0 such that the double wedge

{x0,∞ + ζ : |ζ | < r(δ), |arg ζ 2| < π − δ}

is contained in �∞.

We will now work to obtain a similar estimate for finite ℓ, uniform in ℓ.

Definition 3.1. For δ > 0 and 0 < r < R and s ∈ {+, −, 0} we will write

Ws(δ, r , R) := {xs,∞ + ζ : r < |ζ | < R, |arg ζ 2| < π − δ}.

LEMMA 3.1. For every δ > 0 and s ∈ {+, −, 0} there is r(δ) > 0 and, additionally, for

every r1 > 0 there is ℓ(δ, r1) < ∞ such that

for all ℓ ≥ ℓ(δ, r1), Ws(δ, r1, r(δ)) ⊂ �ℓ ,

cf. Definition 3.1.

Proof. By Fact 3.1 for every r1 > 0 and r(δ) taken from that fact the set W0(δ, r1, r(δ)) is

compactly contained in �∞. Moreover, for some ǫ(r1, δ) > 0,
⋃

z∈W0(δ,r1,r(δ))

D (z, ǫ(r1, δ))

remains compactly contained in �∞. By Fact 2.2, for ℓ large enough, the mappings

φ−1
±,ℓ ◦ φ±,∞ send C(z, ǫ(r1, δ)) to a Jordan curve, which surrounds z. By the argument

principle, z also has a preimage φ−1
±,ℓ(z). The claim for s = ± follows since limℓ→∞ |x0,ℓ −

xs,ℓ| = 0. �

3.2. Main theorem.

Definition 3.2. For an analytic function g, z, which can be forever iterated by g and σ > 0

define

P(g, z, σ) :=
∞
∑

k=0

|Dgk(z)|σ .

We now state a general theorem whose hypotheses are satisfied by functions Gℓ we

considered so far. In particular, the geometric condition of �ℓ follows from Lemma 3.1.
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Recall that a mapping g symmetric about R and defined in C doubly slit along the real

axis is in the Epstein class if its derivative does not vanish in R and has an inverse branch

defined on H+ which maps into H+ or H−.

THEOREM 4. Suppose that (Gℓ) is a sequence of mappings, which are all defined by

C \ ((−∞, X1] ∪ [X2, +∞)), X1 < X2, which are holomorphic, symmetric about R, and

in the Epstein class. Next, for some sequence (x0,ℓ) of points contained in (X1, X2) and

convergent to x0,∞ ∈ (X1, X2), there is a representation

Gℓ(z+ x0,ℓ)− x0,ℓ =
∞
∑

k=1

αk,ℓz
k,

where for all ℓ α1,ℓ ∈ (−1, 0) and limℓ→∞ α1,ℓ = −1. Suppose finally that Gℓ converge

almost uniformly in their domain.

For every ℓ, let �ℓ be a domain, which is fully invariant under Gℓ, and assume further

that

there exists δ0 >
π

2
, there exists R0 > 0, for all r > 0, there exists ℓ0(r) < ∞,

for all ℓ≥ℓ0(r), {x0,∞ + z : r < |z| < R0, |arg −z2| < δ0} ⊂ �ℓ.

Then, for some R1 > 0, every ℓ and σ > 4
3
,

∫

D(x0,∞,R1)\�ℓ
P(G−2

ℓ , x + ιy, σ) dxdy

is uniformly bounded for all ℓ, where G−2
ℓ is the inverse branch of G2

ℓ, which fixes x0,ℓ.

From these hypotheses for every ℓ we get a repelling periodic orbit of period 2, {x±,ℓ}
under Gℓ.

The next lemma is stated H+ without loss of generality, since by symmetry the

analogous statement holds in the lower half-plane.

LEMMA 3.2. For some δ < π/4 there is r0 > 0 such that for every r : 0 < r < r0 there

exists ℓ(r) < ∞ so that the following claim holds.

If u ∈ H+ ∩D(x+,ℓ, r/2) and u /∈ �ℓ, then for some positive n and all ℓ ≥ ℓ(r),

G2n
ℓ (u) ∈

{

x+,ℓ + ιz ∈ H+ :
r

2
< |z| < r , |arg z| < δ

}

.

Proof. Initially choose ℓ(r) so large that |x0,ℓ − x+,ℓ| < r/2 for all ℓ ≥ ℓ(r). Additionally,

when r is small enough and ℓ large, then G2
ℓ(D(x+,ℓ, r/2) ∩ H+) ⊂ H+.

Consider the orbit of u under G2
ℓ. First we show that for some n it must leave

D(x+,ℓ, 2r/3). Suppose not. Since G2
ℓ expands the hyperbolic metric of H+, the

orbit must eventually leave every compact neighborhood of x+,ℓ. It follows that

limn→∞ ImG2n
ℓ (u) = 0. By choosing r small, we can make sure that [x0,ℓ − r , x0,ℓ + r] ⊂

�ℓ for all ℓ. Thus, G2n
ℓ (u) ∈ �ℓ which contradicts the hypothesis of Theorem 4 by which

�ℓ ∩ H+ is completely invariant under G2
ℓ.
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Now we see that for some n ≥ 0 we have

|G2n
ℓ (u)− x+,ℓ| ≤ r

2
,

but |G2(n+1)
ℓ (u)− x+,ℓ| >

r

2
.

Since Gℓ → G∞ uniformly on compact neighborhoods of x0,∞ and the derivative is 1 at

that point, by choosing r small and ℓ large, we can have

∣

∣

∣

∣

∣

G2n
ℓ (u)− x+,ℓ

G
2(n+1)
ℓ (u)− x+,ℓ

∣

∣

∣

∣

∣

>
1

2
.

Hence

G2(n+1)(u) ∈
{

z ∈ H+ :
r

2
< |z− x+,ℓ| < r

}

\�ℓ.

The condition on the argument follows from the geometric hypothesis of Theorem 4 . The

possibility of arg z being close to π can be ruled out when ℓ is made sufficiently large so

that |x0,ℓ − x+,ℓ| becomes small compared to r. �

3.3. Generalized Fatou coordinate. Let us write

G−2
ℓ (x0,ℓ + z)− x0,ℓ =

∞
∑

k=1

ak,ℓz
k .

For a2,ℓ the condition of dominant convergence is satisfied and so it can be removed by

a change of coordinate, which for all ℓ belongs to a compact family of diffeomorphisms

of a fixed neighborhood of x0,∞, see [17, proof of Theorem 7.2]. With a slight abuse of

notation we internalize this change of coordinate simply assuming a2,ℓ = 0.

Next, we write a1,ℓ = 1 + ρℓ/4 where ρℓ > 0. We also know that limℓ→∞ a3,ℓ =
a3,∞ > 0. Now x+,ℓ = x0,ℓ + ι

√

ρℓ/4a3,ℓE(ℓ), where we shall write E(ℓ) := exp
(

O(
√
ρℓ)
)

.

Consider the development of G−2
ℓ at x+,ℓ:

Ŵℓ(z) := ι−1(G−2
ℓ (x+,ℓ + ιz)− x+,ℓ) =

∞
∑

k=1

âk,ℓz
k ,

where

â1,ℓ =
(

1 − ρℓ

2
E(ℓ)

)

,

â2,ℓ = − 3

2

√
a3,ℓρℓE(ℓ),

â3,ℓ = − a3,ℓE(ℓ).

(8)

Observe two features of Ŵℓ that make its analysis non-standard. First, the quadratic term

cannot be removed or neglected as ℓ → ∞, i.e. no dominant convergence in the sense

of [17].
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3.3.1. Definition of the generalized Fatou coordinate.

Definition 3.3. Define ζℓ : C → Ĉ \ {0} by

ζℓ(z) = 1

2Aℓz2
,

where Aℓ = −â3,ℓ/â1,ℓ + 3â2
2,ℓ/â

2
1,ℓ = a3,ℓE(ℓ).

Let us introduce a variable ζ on the Riemann surface of the function ζℓ, which means

that ζ−1
ℓ is well defined as well as γℓ(ξ) := ζℓ ◦ Ŵℓ(1/ξ

√
2Aℓ), where the principal branch

of the root is applicable since arg Aℓ is close to 0. Then

ζℓ ◦ Ŵℓ ◦ ζ−1
ℓ (ζ ) =

(

γℓ ◦ √)
(ζ ).

We get the representation

ζℓ(Ŵℓ(z)) = γℓ(
√

ζ ) := â−2
1,ℓ ζ + 1 +

√

9

2
ρℓE(ℓ)

√

ζ +O(|ζ |−1/2). (9)

Observe that
√
ζ is correctly defined by substituting

√

ζ = 1

ζ−1
ℓ (ζ )

√
2Aℓ

. (10)

In particular, for Re z > 0 one should choose the principal branch of
√
ζ . When the

principal branch of
√
ζ is used, we will talk of the principal branch γℓ.

LEMMA 3.3. There exist constants ℓ0 < ∞, R0, K1, K2, K3 such that for any z : |z| ≥ R0

and ℓ ≥ ℓ0,
∣

∣

∣

∣

∣

γℓ(
√

ζ )− ζ − ρℓζ −
√

9

2
ρℓζ − 1

∣

∣

∣

∣

∣

≤ K1ρ
3/2
ℓ |ζ | +K2ρℓ

√

|ζ | +K3|ζ |−1/2.

Proof. From formula (9) the linear term in γℓ(
√
ζ )− ζ is (â−2

1,ℓ − 1)ζ = ρℓζ +O(ρ
3/2
ℓ )ζ ,

which gives rise to the term of order |ζ | in the claim of the lemma.

The root term in formula (9) is
√

9

2
ρℓE(ℓ)

√

ζ =
√

9

2
ρℓ
√

ζ +O(ρℓ
√

|ζ |)

and the O(|ζ |−1/2) term is directly copied. �

3.4. Dynamics in the ζ coordinate. Although the goal of Theorem 4 is an estimate

uniform in ℓ, the description of the dynamics will be split into cases depending on ℓ:

the mid-range case of ζ = O(ρ−1
ℓ ), which generally reminiscent of a parabolic point and

the far-range for larger ζ where the true nature of the fixed point at x+,ℓ becomes evident.

LEMMA 3.4. For any δ : 0 < δ < π/2 and Q ≥ 1 there are r(δ) and ℓ0(δ, Q) such

that for every ℓ ≥ ℓ0(δ, Q) if ζ : r(δ) < Re ζ < Qρ−1
ℓ , |arg ζ | < δ, then Re γℓ(

√
ζ ) >

Re ζ + 1
2

and |arg γℓ(
√
ζ )| < δ.
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Proof. According to Lemma 3.3

γℓ(
√

ζ )− ζ = ρℓζ +
√

9ρℓ

2
ζ + 1 + corrections.

Both the linear and root terms are helping the estimate of the lemma, by increasing

the real part of the expression and bringing its argument closer to 0. So we ignore them.

What is left is 1 and the corrections. We make each of them less than δ/30. For the K3

term this requires making ζ sufficiently large depending on δ. The next term is bounded by

K2

√
Qρ

1/2
ℓ and requires ℓ large enough depending on δ, Q and the first term is estimated

similarly.

Thus,

γℓ(
√

ζ )− ζ = 1 + E(δ)+ terms of Re > 0 and |arg| < δ

with |E(δ)| < δ/10. The claim of the lemma follows. �

LEMMA 3.5. With the same notation as in the previous lemma, for every δ > 0 there are

r(δ) > 0, L(Q) < ∞ such that if r(δ) < Re ζ , |arg ζ | < δ and for every j = 0, . . . , k,

Re (γℓ ◦ √
)j (ζ ) < Qρ−1

ℓ , then

for all ℓ ≥ ℓ0(δ, Q), |Dζ (γℓ ◦ √
)k(ζ )| < L(Q).

Proof. We choose r(δ) at least as large as in Lemma 3.4 and as a consequence of

Lemma 3.3 and Cauchy’s estimates we get

|log(Dζγℓ(
√

ζ ))| ≤ K1ρℓ +K2ρℓ|ζ |−1/2 +K3|ζ |−3/2

for |ζ |, ℓ greater than some constants.

By Lemma 3.3, ‖γ jℓ (
√
ζ )‖ ≥ r(δ)+ j/2. If r(δ) > 1, this leads to the following

estimate:

|log(Dkζγℓ(
√

ζ ))| ≤ K1kρℓ +K2ρℓ
√
k + 2K3

∞
∑

j=1

j−3/2.

At the same time, since Re γ kℓ (ζ ) < Qρ−1
ℓ , k < 2Qρ−1

ℓ , which yields the claim of the

lemma. �

3.4.1. Far-range dynamics. Here |ζ | ≥ Qρ−1
ℓ .

LEMMA 3.6. For every η > 0 there is Q(η) : 1 < Q(η) < ∞ and ℓ0(η) such that for

every ℓ ≥ ℓ0(η) and ζ : |ζ | ≥ Q(η)ρ−1
ℓ :

• |γℓ(
√
ζ )| ≥ |ζ |(1 + ρℓ)

1−η ;

• |Dζγℓ(
√
ζ )| ≤ (1 + ρℓ)

1+η.

Proof. From Lemma 3.3 we conclude that for |ζ | ≥ Qρ−1
ℓ , ℓ ≥ ℓ0,

∣

∣

∣

∣

∣

γℓ
(√
ζ
)

ζ + ρℓζ

∣

∣

∣

∣

∣

≥ 1 −Q−1ρℓ − ρℓ

√

9

2Q
−KQ−1/2ρ

3/2
ℓ = 1 −K(ℓ, Q)ρℓ,
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where for all ℓ0 limQ→∞ sup{K(ℓ, Q) : ℓ ≥ ℓ0} = 0. For ρℓ small enough and

K(ℓ, Q) ≤ 1 this leads to
∣

∣

∣

∣

∣

γℓ
(√
ζ
)

ζ + ρℓζ

∣

∣

∣

∣

∣

≥ (1 + ρℓ)
−2K(ℓ,Q)

and it suffices to choose Q(η) so that sup {K(ℓ, Q(η)) : ℓ ≥ ℓ0} < η/2 in order to obtain

the first claim.

For the second claim, we similarly get from Lemma 3.3 that

|Dζγℓ(
√

ζ )| ≤ 1 + ρℓ + ρℓ

√

9

2Q
+K1ρ

3/2
ℓ

for ℓ and Q suitably bounded below. Similar to the previous case the right side can be

bounded above by (1 + ρℓ)
1+2K ′(ℓ,Q) and the second claim follows. �

3.4.2. Joint estimates. We will now write general estimates on the absolute value and

derivative along the orbits in the ζ coordinate, i.e. compositions of functions γℓ ◦ √
.

LEMMA 3.7. For every δ : 0 < δ < π/2 there is r0(δ) > 0 and for every η > 0

there are ℓ0(δ, η), L(η), Q(η) > 1 such that for all ℓ ≥ ℓ0(δ, η) for all ζ ∈ C : |ζ | >
r0, |arg ζ | < δ there exists k(ζ , ℓ) Re (γℓ ◦ √

)k(ζ ,ℓ)(ζ ) ≥ Q(η)ρ−1
ℓ :

• for all 0 ≤ k ≤ k(ζ , ℓ), Re (γℓ ◦ √
)k(ζ ) ≥ Re ζ + k/2;

• for all k ≥ 0, |(γℓ ◦ √
)k(ζ )| ≥ (Re (γℓ ◦ √

)min(k,k(ζ ,ℓ))(ζ ))(1 + ρℓ)
max(k−k(ζ ,ℓ),0)(1−η);

• for all k ≥ 0, |Dζ (γℓ ◦ √
)k(ζ )| ≤ L(η)(1 + ρℓ)

max(k−k(ζ ,ℓ),0)(1+η) .

Proof. By Lemma 3.4 when ζ is chosen in the specified set, it will move inside the

same set by at least 1
2

to the right by each iterate of (γℓ ◦ √
), which then must be

the principal branch. Q(η) is chosen by Lemma 3.6. The key point is the choice of

k(ζ , ℓ) where the smallest k for which Re (γℓ ◦ √
)k(ζ ) ≥ Q(η)ρ−1

ℓ . Until that point the

dynamics is controlled by Lemma 3.4 and the estimate of Lemma 3.5 on the derivative,

while afterwards the dynamics becomes complicated, but simple estimates of Lemma 3.6

hold. �

Now we draw conclusions for iterates of G−2
ℓ .

LEMMA 3.8. For every δ : 0 < δ < 1
4
π there is r0(δ) > 0 and for every η > 0 and r :

0 < r < r0 there are ℓ0(δ, η), L(η, r) such that

for all ℓ ≥ ℓ0(δ, η), for all z ∈ {z ∈ C : r < |z− x+,ℓ| < r0, |arg ι−1(z− x+,ℓ)| < δ}
there exists k(z, ℓ),

• for all 0 ≤ k ≤ k(z, ℓ), |DzG−2k
ℓ (z)| ≤ L(η, r)(1 + k/2)−3/2,

• for all k ≥ k(z, ℓ), |DzG−2k
ℓ (z)| ≤ L(η, r)ρ

3/2
ℓ (1 + ρℓ)

(− 1
2
+3η) max(k−k(z,ℓ),0)

.

Proof. This is a consequence of Lemma 3.7 and the change of coordinate ζ := ζℓ(z), cf.

Definition 3.3. The derivative of that change of coordinate is bounded above in terms of

r and the derivative of the inverse change is bounded above by a constant times |ζ |−3/2.
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The bound on the argument δ doubles by the generalized Fatou coordinate, and hence

different values in the hypotheses of the lemmas. Now the claim follows directly from

Lemma 3.7, except that by taking r0(δ) small enough we guarantee Re ζ ≥ 1. �

3.5. Estimates of the Poincaré series. Define a domain W(r , δ) := {x+,ℓ + ιz ∈ C \
�ℓ : r/2 < |z| < r , |arg z| < δ} where δ < π/4.

For z ∈ W(r , δ0), where δ0 comes from the hypothesis of Theorem 4, define

P̂ (z, σ) :=
∞
∑

k=1

k
∑

j=1

|DG
−2j
ℓ (z)|2−σ |DG−2k

ℓ (z)|σ . (11)

LEMMA 3.9. For some r0 > 0 and 0 < δ < π/4, any 0 < r < r0 and every ℓ ≥ ℓ0(r),
∫

D(x0,∞,r/4)\�ℓ
P(G−2

ℓ , x + ιy, σ) dxdy ≤ 2

∫

W(r ,δ)

P̂ (x + ιy, σ) dxdy.

Proof. Constants r0 and δ are chosen from Lemma 3.2, which asserts that W(r , δ) is a

fundamental domain such that every orbit, which starts in H+ ∩D(x+,ℓ, r/2) \�ℓ, passes

through it under the forward iteration by G2
ℓ. For ℓ sufficiently large depending on r,

D(x0,∞, r/4) ⊂ D(x+,ℓ, r/2). Taking into account the symmetry about R, the claim of

the lemma is reduced to
∫

D(x+,ℓ,r/2)∩H+\�ℓ
P(G−2

ℓ , x + ιy, σ) dxdy ≤
∫

W(r ,δ)

P̂ (x + ιy, σ) dxdy. (12)

By the fundamental domain property
∫

D(x+,ℓ,r/2)∩H+\�ℓ
P(G−2

ℓ , x + ιy, σ) dxdy

≤
∫

W(r ,δ)

∞
∑

j=1

P(G−2
ℓ , G

−2j
ℓ (x + ιy), σ)|DzG−2j

ℓ (x + ιy)|2 dxdy.

Representing the Poincaré series from the definition, we evaluate the sum under the second

integral:
∞
∑

j=1

P(G−2
ℓ , G

−2j
ℓ (x + ιy), σ)|DzG−2j

ℓ (x + ιy)|2

=
∞
∑

j=1

∞
∑

p=0

|DzG−2p
ℓ (G

−2j
ℓ (x + ιy))|σ |DzG−2j

ℓ (x + ιy)|2

=
∞
∑

j=1

∞
∑

k=j
|DzG−2k

ℓ (x + ιy)|σ |DzG−2j
ℓ (x + ιy)|2−σ

with k := j + p and estimate (12) follows by interchanging the order of summation. �

Proof of Theorem 4. The proof will follow from Lemmas 3.8 and 3.9. We begin by setting

the parameters, starting with δ of Lemma 3.9. Given that, we choose 2r in Lemma 3.8 then

r0(δ) as well as r0 of Lemma 3.9.
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Now η is fixed so that 3η < 1
2
, and thus η := 1

8
will do. Then all the bounds

ℓ0(δ, η), L(η, r) of Lemma 3.8 become constants and will be written simply as ℓ0, Q, L.

Only the dependence of ℓ through k(z, ℓ) and ρℓ remains.

By Lemma 3.8 for all z ∈ W(r , δ), ℓ ≥ ℓ0 and k ≥ 0, DzG
−2k
ℓ (z) are uniformly

bounded above. Then, by inspecting the formula of Definition 3.2 for g := G−2
ℓ we see

that increasing σ increases the sum of the Poincaré series at most by a uniform constant

for any z ∈ W(r , δ). Hence, without loss of generality we can restrict our considerations

to 4
3
< σ < 2.

Then

P̂ (z, σ) ≤ K

∞
∑

k=1

k|DzG−2k
ℓ (z)|σ .

First we estimate the sum for k ≤ k(z, ℓ):

k(z,ℓ)
∑

k=1

k|DzG−2k
ℓ (z)|σ ≤ Lσ

∞
∑

k=1

k

(

1 + k

2

)−3σ/2

≤ K

∞
∑

k=1

k1−3σ/2 ≤ K(σ)

for σ > 4
3
.

Now we deal with

∑

k>k(z,ℓ)

k|DzG−2k
ℓ (z)|σ ≤ Lσρ

3σ/2
ℓ

∞
∑

k=0

k (1 + ρℓ)
−kσ/8

using the estimate of Lemma 3.8 with η = 1
8

. Since 2 > σ > 4
3
, ρ

3σ/2
ℓ ≤ ρ2+σ ′

ℓ where

σ ′ := 3
2
σ − 2 > 0, while Lσ is just another constant L′. For ρℓ sufficiently small,

(1 + ρℓ)
−σ/8 ≤ 1 − σρℓ

9
.

Hence, for all ℓ sufficiently large,

∑

k>k(z,ℓ)

k|DzG−2k
ℓ (z)|σ ≤ L′ρ2+σ ′

ℓ

∞
∑

k=0

k
(

1 − σρℓ

9

)k

= L′ρ2+σ ′
ℓ

(

1 − σρℓ

9

)

(

9

σρℓ

)2

≤
81L′ρσ

′
ℓ

σ 2
,

which tends to 0 as ℓ → ∞.

So, P̂ (z, σ) is uniformly bounded for all z ∈ W(r , , δ) and ℓ large enough. For such ℓ

Theorem 4 follows from Lemma 3.9.

For each of the remaining finitely many ℓ the point x+,ℓ is a hyperbolic attractor for

G−2
ℓ , so the Poincaré series is integrable as well. �

4. Induced maps

4.1. Induced mapping Tℓ.

Definition 4.1. For every ℓ finite and even or infinite, consider the fundamental annulus

Aℓ := �ℓ \ τ−1
ℓ �ℓ. We further define fundamental half-annuli A±,ℓ := Aℓ ∩ H±.
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For ℓ = ∞, the fundamental annulus is not in fact a topological annulus since it is

pinched at x0. However fundamental half-annuli are always topological disks by Fact 2.4.

Definition 4.2. For any z ∈ Aℓ define Tℓ(z) = τn(z)Hℓ(z) where n(z) is chosen so that

Tℓ(z) ∈ A+,ℓ ∪ A−,ℓ. The domain of Tℓ is the set of all z ∈ Aℓ for which such n(z) exists.

From the definition of the fundamental annulus at most one such n(z) exists for each z.

Moreover, it can always by found if the condition is relaxed to Tℓ(z) ∈ Aℓ. Hence, Tℓ is

defined on �ℓ except for a countable union of analytic arcs.

4.1.1. Branches of Tℓ. SinceA±,ℓ is simply connected and avoids the singularities ofHℓ,

which are all on R, the mapping τ−n
ℓ Hℓ has univalent inverse branches whose ranges for

all n cover the domain of Tℓ. Thus, the domain of Tℓ is a countable union of topological

disks. The restriction of Tℓ to any connected component of its domain will be called a

branch of Tℓ. Any branch z := zσ ,s,n,p,ℓ can be uniquely determined by its:

• side σ , which can be + or − depending on whether the domain of z is in �+,ℓ or

�−,ℓ;

• sign s, which can be + or − depending on whether the domain of z lies in the upper

or lower half-plane;

• level n defined by z = τnℓ exp(φσ ,ℓ) where σ is the side of the branch; and

• height p. To determine the height map the domain of z by φσ ,ℓ. Since the range of z

that is equal to exp(φσ ,ℓ) rescaled by a power of τℓ avoids R, φσ ,ℓ(Dm z) is contained

in a horizontal strip {z ∈ C : pπ < Im z < (p + 1)π} if the sign s = +, or {z ∈ C :

(−p − 1)π < Im z < −pπ} if s = −.

So, the range of zσ ,s,n,p,ℓ is A+,ℓ if and only if s(−1)p = 1, since the statement holds

true for p = 0 and s = + and then flips each time s changes or p changes by 1.

Definition 4.3. A branch is called inner if its height is positive.

LEMMA 4.1. Tℓ has no branches of side −, height 0 and level greater than 1.

Proof. Level greater than 1 means that the image of the domain of the branch by Hℓ is

inside �ℓ. Also, the range of any branch avoids R by definition. Height 0 means that the

domain of such a branch touches the boundary of �ℓ ∩ Hs , where s is the sign of the

branch. However, the set ∂
(

�ℓ ∩ Hs

)

\ R is sent by H− to (τ 2
ℓ , +∞), which is disjoint

from �ℓ and so the domain of each of those branches is adjacent to R and actually to

(−∞, x0,ℓ) since the side is −.

Since Gℓ maps �ℓ univalently onto �ℓ \ (−∞, 0], it makes sense to consider

G−1
ℓ ◦Hℓ = τℓH

−1
ℓ ◦Hℓ, H−1

ℓ is the inverse branch, which sends �ℓ ∩ (0, +∞) into

(−∞, x0,ℓ). It follows that it cancels with Hℓ on the domain of the branch, which is

therefore contained in τ−1
ℓ �ℓ, excluded from Aℓ by Definition 4.1. �

4.1.2. Generic branches. So far we consider the mapping Tℓ and its branches, which all

depend of ℓ. However, since a branch is uniquely defined by its symbol (σ , s, n, p) we
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can also talk of T as ‘generic mapping’ independent of ℓ and consider its generic branches

defined by their symbols. The only limitation is on the height p ≤ ℓ/2.

4.2. Extensibility of compositions of branches.

Definition 4.4. Define for any s ∈ Z and ℓ positive and even or infinite:

Zℓ := [0, τ−1
ℓ ] ∪ {1, τℓ} ∪ [τ 2

ℓ , +∞),

Z+,ℓ(s) := [0, +∞),

Z−,ℓ(s) := Zℓ ∪ (−∞, τ sℓ ],

Z◦,small,ℓ(s) := (−∞, 0] ∪ [τ sℓ , +∞),

Z◦,ℓ(s) := Zℓ ∪ Z◦,small,ℓ(s).

LEMMA 4.2. Consider any composition of branches in the form

ξ := zσk ,sk ,nk ,pk ,ℓ ◦ · · · ◦ zσ1,s1,n1,p1,ℓ.

Then, there exists s ∈ Z such that for every m ∈ {+, −, ◦} and every ŝ ∈ Z there exists

m̂ ∈ {+, −, ◦} and the mapping ξ continues analytically to a covering of the set Vm
ℓ (s) :=

C \ Zm,ℓ(s) defined on a domain, which is contained in:

• �̂−,ℓ ∪�+,ℓ \
(

[x0,ℓ, +∞) ∪ Zm̂,ℓ(ŝ)
)

when σ1 = −; or

• �̂+,ℓ ∪�−,ℓ \
(

(−∞, x0,ℓ] ∪ [τℓx0,ℓ, +∞) ∪ Zm̂,ℓ(ŝ)
)

when σ1 = +.

Furthermore, if the final symbol in the composition (σk , sk , nk , pk) = (+, ±, 2, 0), then

the claim can be strengthened for m = ◦ by saying that ξ continues analytically to a

covering of the set V ◦
large,ℓ(s) := C \ Z◦,small,ℓ(s).

Proof. The proof will proceed by induction with respect to k.

Verification for k = 1. We begin by representing the branch as τnℓ exp(φσ1,ℓ) and

observing that Vm
ℓ (n) ⊂ τnℓ V

m in the notation of Proposition 2. Also, V ◦
large,ℓ(n) = τnℓ V

◦.

Hence, the claim of that the proposition holds regarding the existence of a covering and

inclusions of its domain. What is left to do is checking that the domain is disjoint from

Zm̂,ℓ(ŝ).

Inner branches. We set s := n. Since the branch is inner, |Imφσ1,ℓ| > π on its domain

and hence the domain of the extension from Proposition 2 is disjoint from the real line,

which contains any Zm̂,ℓ(ŝ).

Branches of height 0 and side −. By Lemma 4.1 they have positive level, which means

n ≤ 1. We set s := n in this case, too. Then, by Proposition 2 there is a covering defined

on some domain contained in �̂−,ℓ ∪�+,ℓ \ [x0,ℓ, +∞). We need to choose m̂ so that

this domain is disjoint from Zm,ℓ(ŝ). The appropriate choice here is m̂, +, since then

Zm,ℓ(ŝ) ∈ [0, +∞), The possible intersection of [0, +∞) with the domain of covering

is at most [0, x0,ℓ) whose image under τ sℓ exp(φ−,ℓ) is (0, τ s−2
ℓ ] ⊂ Zℓ. This is always

contained in Zℓ.
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Branches of height 0 and side +. First, let us assume that ŝ 6= 0. In this case we also

specify s := n and choose

m̂ =
{

− if ŝ < 0,

◦ if ŝ > 0.

By this choice,

Zm̂,ℓ(ŝ) ∩ (x0,ℓ, τℓx0,ℓ) = {1}

and so 1 is the only possible point of Zm̂,ℓ(ŝ) in the domain of the covering. However,

τ sℓ exp φ+,ℓ(1) = τn−2
ℓ ∈ Zℓ. So, 1 is mapped by the branch outside of C \ Zm,ℓ(s) and

the domain of the covering is disjoint from Zm̂,ℓ(ŝ).

So from now on ŝ = 0. The analysis is further split depending on n.

• n ≤ 1. In this case, set s := n and m̂ := −. Then Z−,ℓ(0) ∩ (x0,ℓ, τℓx0,ℓ) = (x0,ℓ, 1].

The image of this under the branch is contained (0, τ−1
ℓ ] ⊂ Zℓ and hence disjoint from

the domain of the covering from Proposition 2.

• n ≥ 4. We also set s := n and now m̂ := ◦. This leads to Z◦,ℓ(0) ∩ (x0,ℓ, τℓx0,ℓ) =
[1, τℓx0,ℓ) being excluded from the domain of the covering by the claim of the lemma.

Indeed, this set is mapped by the branch to [τn−2
ℓ , τnℓ ) ⊂ Zℓ.

• n = 2. In that case we will set s := 0. It is still true that Zm,ℓ(0) ⊃ C \ τ 2
ℓ V

m when

m = +, ◦, but not when m = −. Instead,

Z−,ℓ(0) = (−∞, 1] ∪ {τℓ} ∪ [τ 2
ℓ , +∞) ⊃ (−∞, 0] ∪ [τ 2

ℓ , +∞) = C \ τ 2
ℓ V

◦.

Hence, Proposition 2 is applicable again and a covering of Vm
ℓ (0) exists by an exten-

sion of branch to a domain whose intersection with R is contained in (x0,ℓ, τℓx0,ℓ). We

must set m̂ := − if m = − and m̂ := ◦ otherwise. Then

Z−,ℓ(0) ∩ (x0,ℓ, τℓx0,ℓ) = (x0,ℓ, 1],

Z◦,ℓ(0) ∩ (x0,ℓ, τℓx0,ℓ) = [1, τℓx0,ℓ),
(13)

which are mapped by the branch to (0, 1] ⊂ Z−,ℓ(0) or [1, τ 2
ℓ ) ⊂ Z◦,small,ℓ(0) ⊂

Z◦,ℓ(0) ⊂ Z+,ℓ(0), respectively. The additional claim of Lemma 4.2 concerns these

types of branches. Indeed, we observe that V ◦
large,ℓ(0) ⊂ τ 2

ℓ V
◦ and the inclusion for

the image of Z◦,ℓ(0) by the branch has already been observed.

• n = 3. In this case s := 1 and as in the previous case one checks that Zm,ℓ(1) ⊃
C \ τ 3

ℓ V
m when m = +, ◦ and Z−,ℓ(1) ⊃ C \ τ 3

ℓ V
◦. We pick m̂ = − if m = − and

◦ otherwise, as in the preceding case, which leads to inclusions (13). Then the branch

maps (x0,ℓ, 1] to (0, τℓ] ⊂ Z−,ℓ(1) and [1, τℓx0,ℓ) to [τℓ, τ
3
ℓ ) ⊂ Z◦,ℓ(1) ⊂ Z+,ℓ(1),

respectively.

The inductive step. We decompose ξ = ξ ′ ◦ z. By the inductive claim applied to ξ ′,
C \ Zm,ℓ(s) is covered by an extension of ξ ′ restricted to a domain, which then itself is

covered by an extension of z. This yields a covering by Fact 2.6 whose domain is contained

in the domain of the extension of z. �

Let us conclude with a technical observation.
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LEMMA 4.3. For any s ∈ Z each of the setsZ+,ℓ(0), Z◦,ℓ(0), Z−,ℓ(0) ∪ [τℓ, +∞) contains

Zm,ℓ(s) for some m, where m is generally different for each of the three cases.

Proof. Certainly Z+,ℓ(0) ⊃ Z+,ℓ(s) for any s since this domain is independent of s. When

s < 0, Z−,ℓ(s) = (−∞, τ−1
ℓ ] ∪ {1, τℓ} ∪ [τ 2

ℓ , +∞), cf. Definition 4.4. This is contained

in both Z◦,ℓ(0) and Z−,ℓ(0). When s = 0 the statement is obvious. For s > 0 we get

Z◦,ℓ(0) ⊃ Z◦,ℓ(s) as well as Z−,ℓ(0) ∪ [τℓ, +∞) ⊃ Z◦,ℓ(s). �

4.2.1. Univalent extensibility. While Lemma 4.2 provides a general statement that was

suitable for a proof by induction, the goal of a dynamicist is to work with univalent

extensions. We will proceed to derive them.

Definition 4.5. For 0 ≤ θ0, θ1 ≤ π define the domain

Ṽ (θ0, θ1)

:= C \ ([0, τ−1
ℓ ] ∪ [τℓ, +∞) ∪ {r exp(−ιθ0) : r ≥ 0} ∪ {1 + r exp(−ιθ1) : r ≥ 0}).

By definition, V (θ0, θ1) is the connected component of Ṽ (θ0, θ1), which contains H+.

PROPOSITION 4. Let ξ be any composition of branches of Tℓ with the range equal to A+,ℓ,

without loss of generality. Suppose that the domain ξ is contained�σ1,ℓ, σ1 = +, −. Then,

for any 0 ≤ θ0, θ1 ≤ π the branch ξ has an analytic continuation that maps univalently

onto V (θ0, θ1) and the domain of the extension satisfies the inclusion from the claim of

Lemma 4.2.

Proof. As a consequence of Lemma 4.2 and Lemma 4.3, ξ has three different covering

extensions: ξ+ with the range C \ Z+,ℓ(0), ξ◦ with the range C \ Z◦,ℓ(0), and ξ− to the

range C \
(

Z−,ℓ(0) ∪ [τℓ, +∞)
)

. The domains of those extensions satisfy the inclusions

from the claim of Lemma 4.2. Since each of the ranges is a simply connected domain, each

covering reduces to a univalent map. They all coincide on the preimage of H+.

Now V (θ0, θ1) \ H+ splits into three connected components: V−(θ0, θ1), which con-

tains the interval (1, τℓ), V◦(θ0, θ1) containing (τ−1
ℓ , 1), and V+(θ0, θ1), which contains

(−∞, 0). Define the domain of the desired extension as the union of ξ−1(H+) and

ξ−1
m

(

Vm(θ0, θ1)
)

. Since all three extensions coincide on the preimage of H+ and map

the remaining parts of the domain into disjoint sets, the extension of ξ on this domain

is analytic and one to one. It is also proper, since each of the three extensions was a

homeomorphism, and thus univalent. �

This concludes the proof of Proposition 4.

4.3. Uniform tightness. In this section we consider a generic mapping S induced by the

generic mapping T.

Definition 4.6. A generic mapping S induced by T is a collection of finite sequences of

symbols (σj , sj , nj , pj )
r
j=1. Given ℓ ≤ ∞ the induced mapping Sℓ is obtained first by

defining the return time rS,ℓ(z) as the length r of the longest sequence in S, which observes
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the limitation 0 ≤ pj ≤ ℓ/2 and such that the composition

zσr ,sr ,nr ,pr ◦ · · · ◦ zσ1,s1,n1,p1

is applicable at z. Then one obtains the induced mapping Sℓ : Sℓ(z) := T rS,ℓ(z)(z).

For example, T itself is the collection of all possible sequences (σ , s, n, p) of length 1

and the empty collection determines the identity map.

Definition 4.7. A generic induced mapping S will be called uniformly tight if for every

ǫ > 0 there is ℓ0(ǫ) and finite set of generic branches Z(S, ǫ) of S such that if we define

ωℓ(Z) :=
⋃

z∈Z(S,ǫ) Dm(zℓ), then for all ℓ ≥ ℓ0(ǫ),

∫

�ℓ\ωℓ(Z)
rS,ℓ(x + ιy) dxdy < ǫ.

4.3.1. A fact about convergence in measure.

Fact 4.1. Suppose that (Wn), n = 1, . . . , ∞ are bounded open sets and W n → W∞ in

the Hausdorff topology. If |∂W∞| = 0, then

lim
n→∞

|(W∞ \Wn) ∪ (W n \W∞)| = 0.

Proof. Consider an open neighborhood with arbitrarily small measure that contains ∂W∞.

�

LEMMA 4.4. The following holds:

lim
ℓ→∞

∫

‖χ�±,ℓ
− χ�±,∞‖ dLeb2 = 0

and likewise if z := zσk ,sk ,nk ,pk ◦ · · · ◦ zσ1,s1,n1,p1
, then

lim
ℓ→∞

∫

∣

∣χDm(zℓ) − χDm(z∞)
∣

∣ dLeb2 = 0.

Proof. By Proposition 3 we observe that the closures of the sets under consideration

converge in the Hausdorff topology and the claim follows from Fact 4.1. �

COROLLARY 4.1. For any generic induced mapping S and for every ǫ > 0 there is ℓ0(ǫ)

and finite set of generic branches Z(S, ǫ) of S such that, for every ℓ ≥ ℓ0,

∑

z/∈Z(S,ǫ)

|Dm(zℓ)| < ǫ.

Proof. This is an easy consequence of Lemma 4.4. �

4.3.2. Uniform tightness under composition.

Definition 4.8. We recall that a univalent mapping ϕ : U → V has distortion bounded by

Q onto Z ⊂ V provided that sup{log |Dϕ(z1)/Dϕ(z2)| : z1, z2 ∈ ϕ−1(Z)} ≤ Q.
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The next lemma immediately generalizes by induction to any finite composition of

uniformly tight mappings.

By the domain of an induced map we understand the set where its return time is positive.

LEMMA 4.5. Suppose S1, S2 are generic mappings induced by T and for every ℓ ≥ ℓ0 the

image of every branch of S1,ℓ contains the domain of S2,ℓ; moreover there is Q such that

the distortion of every branch of S1,ℓ, for every ℓ ≥ ℓ0 is bounded by Q.

Then, if S1, S2 are uniformly tight, so is S2 ◦ S1.

Proof. Fix an ǫ > 0. Let µ denote the Lebesgue measure of the domain of S2. The hypoth-

esis of uniformly bounded distortion implies that S1 transports the Lebesgue measure with

a Jacobian uniformly bounded above by K0 exp(Q) and below by K0 exp(−Q), where

K0 > 0 is a constant. By the uniform tightness of S2 and Corollary 4.1 given any ǫ1, ǫ2 > 0

we find a finite set Z2 of branches of S2 such that for all ℓ sufficiently large

∑

z/∈Z2

|Dm(zℓ)| < Q−1µǫ1,

∫

�ℓ\
⋃

z∈Z2
Dm(zℓ)

rS2,ℓ(x + ιy) dxdy < Q−1µǫ2.

Now for every branch zℓ of S1,ℓ the preimages of the domains of branches not in Z2

occupies at most Qǫ1-part of Dm(z). We get the estimate

∫

Dm(zℓ)\z−1
ℓ (

⋃

w∈Z2
Dm(wℓ))

rS2◦S1,ℓ(x + ιy) dxdy ≤ (ǫ1rS1,ℓ(Dm(zℓ))+ ǫ2) |Dm(zℓ)|.

Summing up over all branches of zℓ of S1 we arrive at

∫

�ℓ\
⋃

w∈Z2
Dm(wℓ◦zℓ)

rS2◦S1,ℓ(x + ιy) dxdy ≤ ǫ1

∫

�ℓ

rS1,ℓ(x + ιy) dxdy + ǫ2 |�ℓ| .

Uniform tightness of S1 implies that
∫

�ℓ
rS1,ℓ(x + ιy) dx dy is uniformly bounded for

all ℓ large enough. Hence, ǫ1 and ǫ2 can be chosen so that

for all ℓ ≥ ℓ0,

∫

�ℓ\
⋃

w∈Z2
Dm(wℓ◦zℓ)

rS2◦S1,ℓ(x + ιy) dxdy <
ǫ

2
. (14)

Now use the uniform tightness of S1 to find a finite set Z1 of its branches such that

∑

z/∈Z1

|Dm(zℓ)| < ǫ3,

∫

�ℓ\
⋃

z∈Z1
Dm(z)

rS1,ℓ(x + ιy) dxdy <
ǫ

4
.

(15)

Since Z2 is a finite set, the return time of all its branches is bounded by R2 < ∞. Hence,

for any branch z /∈ Z1, we estimate

∫

Dm(zℓ)\z−1
ℓ (

⋃

w∈Z2
Dm(wℓ))

rS2◦S1,ℓ(x + ιy) dxdy ≤ (rS1,ℓ(Dm(zℓ))+ R2) |Dm(zℓ)|,
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which after summing up over all z /∈ Z1 leads to
∫

⋃

z/∈Z1
Dm(zℓ)\

⋃

w∈Z2,z/∈Z1
Dm(wℓ◦zℓ)

rS2◦S1,ℓ(x + ιy) dxdy

≤
∫

⋃

z/∈Z1
Dm(z)

rS1,ℓ(x + ιy) dxdy + R2

∑

z/∈Z1

|Dm(zℓ)| ≤ ǫ

4
+ R2ǫ3

where the final estimates come from inequalities (15). We now take ǫ3 so small thatR2ǫ3 <

ǫ/4 and together with estimate (14) we obtain
∫

�ℓ\
⋃

w∈Z2,z∈Z1
Dm(wℓ◦zℓ)

rS2◦S1,ℓ(x + ιy) dxdy < ǫ.
�

4.4. Post-singular branches. The singular value of many branches, which is contained

in the fundamental annulus, is 1. That singular value is adjacent to the domains of two

branches z+,±,2,0,ℓ for all ℓ. These branches will be described as post-singular and will

require special attention if we want to induce a uniformly hyperbolic map.

Post-singular branches both have the form τℓHℓ. One quickly sees that this is conjugated

to the multiplication by τℓ by Hℓ:

H−1
ℓ τℓH

2
ℓ = H−1

ℓ τℓHℓGℓτℓ = H−1
ℓ Hℓτℓ = τℓ,

where H−1
ℓ is the inverse branch defined on C \ ((−∞, 0] ∪ τ 2

ℓ , +∞)).

Define exit time at Esing,ℓ(z) as the smallest non-negative number of iterates of τℓHℓ

needed to map z outside the union of domains of the post-singular branches.

LEMMA 4.6. There exists a constant K such that for some ℓ0, all ℓ ≥ ℓ0 and all z ∈ C,

Esing,ℓ(z) ≤ K log max

(

1

|z− 1| , 2

)

.

Proof. For ℓ large enough H−1
ℓ maps �+,ℓ for ℓ into D(0, R0), for a fixed R0, and with

uniformly bounded distortion. Then the exit time is bounded as follows:

Esing,ℓ(z) ≤
log(R0/|H−1

ℓ (z)|)
log τℓ

.

Since |H−1
ℓ (z)| > K1|z− 1| with K1 > 0 because of the bounded distortion, the estimate

of the lemma follows. �

Definition 4.9. Define the generic post-singularly refined map Tsing as consisting of

sequences (cf. Definition 4.6), which begin with any symbol other than (+, ±, 2, 0) and

followed by any, possibly empty, sequence consisting of the two post-singular symbols

(+, ±, 2, 0).

Dynamically, Tsing is T restricted to the complement of the domains of the post-singular

branches followed by the first exit map from the union of the domains of the post-singular

branches.

Our main goal will be the following.
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PROPOSITION 5. Mapping Tsing is uniformly tight, cf. Definition 4.7.

For convenience, in the proof we will use

Dsing(ℓ) := Dm(z+,+,2,0,ℓ) ∪ Dm(z+,−,2,0,ℓ),

i.e. the union of the domains of the post-singular branches.

4.4.1. Reduction to pointy branches. A natural way to approach the proof is by using

Lemma 4.5. Here S2,ℓ is the first exit map from Dsing(ℓ). S2 is uniformly tight by

Lemma 4.6, however S1 cannot be made T, since not all branches of Tℓ map onto

Dsing(ℓ) = Dm(S2,ℓ) with distortion uniformly bounded for large ℓ.

Since exp(φ±,ℓ) extend to coverings of C \ ({0} ∪ {τ 2n
ℓ : n = 0, 1, . . .}) by Theorem 3,

all branches of odd level can be continued univalently to map onto �+,ℓ. The same

can be said of all branches of positive level or non-zero height. Thus, if in T one

eliminates all symbols except for (±, ±, −2k, 0) : k = 0, 1, . . . such a map S1,ℓ for every

ℓ large enough will map onto Dsing(ℓ) with uniformly bounded distortion and S2 ◦ S1 is

uniformly tight by Lemma 4.6. For the proof of Proposition 5 it will suffice to demonstrate

that S2 ◦ S′
1 is uniformly tight where S′

1 consists of sequences of length 1 of ‘pointy’

symbols (±, ±, −2k, 0) : k = 0, 1, . . . . The use of the adjective ‘pointy’ is based on

the fact that the domains of those branches for any ℓ are exactly those that touch the

cusps in the boundary of �ℓ. Those cusps are critical points, or essential singularities

in the case of ℓ = ∞, of analytic continuations of those branches for which 1 is the

critical, respectively asymptotic, value. Since the limiting singularities are flat, the uniform

integrability Esing,ℓ ◦ S′
1,ℓ is far from obvious and will require estimates.

4.4.2. A uniform estimate with respect to ℓ. Let us write

Q(λ, ℓ) := {z ∈ �−,ℓ : Reφ−,ℓ(z) < −λ, |Imφ−,ℓ(z)| < π}.

LEMMA 4.7. There exists ℓ0 < ∞ such that

lim
λ0→∞

sup
ℓ≥ℓ0

∫

Q(λ0,ℓ)

Reφ−,ℓ(z) dLeb2(z) = 0.

Proof. The problem of uniformity with respect to ℓ here is different from the situation

treated in the proof of Theorem 4. It is described in the literature as ‘dominant conver-

gence’, see [17, Theorems 8.1–8.3]. The result in our notation can be stated as follows.

Fact 4.2. For every K > 1 there exist λ(K) > 0 and ℓ0(K) < ∞ such that the map-

ping 1/φ−,ℓ(z) on the set {z ∈ �−,ℓ : Reφ−,ℓ(z) < −λ(K)} for all ℓ ≥ ℓ0 takes form

1/φ−,ℓ(z) = ϒℓ(2Cℓz
2) where Cℓ = −D3Gℓ(x0, ℓ) > 0 and ϒℓ is a K-quasi-conformal

mapping of Ĉ fixing 0, 1, ∞.

This will now be used to estimate the Lebesgue measure of Q(λ, ℓ) for λ > λ(K).

The image Iλ of the set {u ∈ C : −2λ < Re u < −λ, −π < Im u < π} by the complex

inversion is easily seen to have measure bounded above by K1λ
−3. Consider now the set

ϒ−1
ℓ (Iλ).
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Since ϒℓ belongs to a compact family of quasi-conformal mappings the constant in the

change of area theorem of Bojarski, see [9, Theorem 5.2], is uniform and the measure of

that set is bounded above by K1λ
− 5

2 for all ℓ ≥ ℓ0(K) provided that K > 1 was chosen

close enough to 1. Additionally, by the Hölder continuity of quasi-conformal mappings in

the usual sense, that set is disjoint from D(0, K3λ
− 5

4 ).

Next, we take a preimage of the same set by the mapping y = 2Cℓz
2 observing that Cℓ

is bounded below by C∞/2 > 0 for all ℓ large enough.

The Jacobian of the inverse mapping is equal to 1/8Cℓ|y|, which is bounded above by

K4λ
5
4 . This leads to

|Q(λ, ℓ) \ Q(2λ, ℓ)| ≤ K6λ
− 5

4

for all ℓ ≥ ℓ0, which by summing up a geometric progression leads to

|Q(λ, ℓ)| ≤ 2K6λ
− 5

4 . (16)

Let us write qℓ(λ) =
∣

∣Q(λ, ℓ)
∣

∣. Then the integral in the claim of the lemma can be

written as
∫

Q(λ0,ℓ)

Reφ−,ℓ(z) dLeb2(z) =
∫ ∞

λ0

λ dqℓ(λ) = λqℓ(λ)|∞λ0
−
∫ ∞

λ0

qℓ(λ) dλ = O(λ
− 1

4

0 )

independently of ℓ ≥ ℓ0 by estimate (16). �

4.4.3. The primary pair of pointy branches. In this fragment we consider the generic

induced map S2 ◦ z+,±,0,0. It consists of sequences of symbols that begin with (+, ±, 0, 0)

and are followed by a sequence of post-singular symbols (+, ±, 2, 0) of any positive finite

length. For any ℓ,

z+,±,0,0,ℓ = τ−1
ℓ H+,ℓ = H−,ℓ ◦Gℓ = H−,ℓ ◦H−,ℓ ◦ τ−1

ℓ . (17)

LEMMA 4.8. The generic mapping S2 ◦ z+,±,0,0 is uniformly tight.

Proof. The final action by H−,ℓ in the representation (17) with the image Dsing(ℓ) has

distortion uniformly bounded in terms of ℓ. Taking into account Lemma 4.6 we conclude

that Esing,ℓ ◦ z+,±,0,0(z) ≤ K1 max(−Reφ−,ℓ(τ
−1
ℓ z), 1). Also, since the part of the border

�+,ℓ adjacent to τℓx0,ℓ consists of preimages of segments in the positive half-line, we have

|Imφ−,ℓ(τ
−1
ℓ z)| < π for all z ∈ Dm z+,±,0,0,ℓ.

By Lemma 4.7, for some ℓ0 < ∞ any ǫ > 0 there exists r(ǫ) > 0 and all for all ℓ ≥ ℓ0,
∫

Dm z+,±,0,0,ℓ

(Esing,ℓ · χ|z−1|<r(ǫ)) ◦ z+,±,0,0,ℓ(z) dLeb2(z) < ǫ.

By Lemma 4.6 there is an upper limit K2, independent of ℓ sufficiently large, on Esing,ℓ

for branches not contained in D(1, r(ǫ)) and since only two post-singular symbols are

allowed that translates to a number of branches bounded depending on ǫ for all such ℓ. �

Proof of Proposition 5. All remaining pointy branches have the form τ−n
ℓ H for n > 1

and hence are in the form z+,±,0,0,ℓ ◦Gn−1
ℓ . Since Gℓ maps as a covering of C \ ({0} ∪

[τ 2
ℓ , +∞)) and its post-singular set under iteration on τℓ�−,ℓ is contained in [0, 1], the
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mapping by iterates of Gℓ onto Dm z+,±,0,0,ℓ has distortion uniformly bounded indepen-

dently of ℓ sufficiently large. Thus, for any particular pointy branch its composition with

S2 is uniformly tight by Lemma 4.5. On the other hand, the closures of domains of pointy

branches for ℓ = ∞ converge to {x0,∞} in Hausdorff topology so for ℓ ≥ ℓ(ǫ) only a fixed

number are not contained in D(x0,∞, ǫ) and hence their joint measure is bounded by πǫ2.

As a corollary to Lemma 4.8 the integral
∫

Dm z=,±,0,0.ℓ
Esing,ℓ ◦ z+,±,0,0.ℓ(z) dLeb2(z) ≤ K1

for all ℓ sufficiently large. Consequently, on the domain of any pointy branch the integral of

the return time of Tsing is bounded by K2 times the measure of that domain of the branch.

Hence, all pointy branches except for finitely many can carry an arbitrarily small integral

of the return time. �

4.5. Parabolic branches. Another pair of branches that cause problems are parabolic

branches with symbols (−, ±, 1, 0). They have the form τ−1
ℓ Hℓ, which is just Gℓ

conjugated by τℓ and has a period 2 point τ−1
ℓ x±,ℓ, which is on the boundary of the domain

of such a branch. Hence the name, since when ℓ → ∞ this period 2 orbit bifurcates into a

parabolic fixed point x0,∞.

We will proceed to get rid of them by inducing, much in the way we dealt with the

post-singular branches, except that now Tsing rather than T is our starting point.

Define Dpar(ℓ), ℓ ≤ ∞ as the union of the domains of two parabolic branches. Next,

the exit time Epar,ℓ(z) as the smallest non-negative number of iterates of τ−1
ℓ H−,ℓ needed

to take z outside Dsing(ℓ).

Definition 4.10. Define the generic parabolically refined map Tpar as consisting of

sequences of Tsing, cf. Definition 4.9, which begins with any symbol other than a parabolic

one (−, ±, 1, 0) and is followed by any, possibly empty, sequence consisting of the two

parabolic symbols (−, ±, 1, 0).

Our goal is to prove the following.

PROPOSITION 6. Mapping Tpar is uniformly tight, cf. Definition 4.7.

The proof begins by noting that S2 := Spar is the first exit map from the parabolic

branches, given by all non-empty sequences of parabolic symbols (−, ±, 1, 0) and S1 is

Tsing restricted by excluding sequences with initial parabolic symbols as in Definition 4.10.

Since after such an exclusion the distortion of the map is uniformly bounded, then we are

in the position to use Lemma 4.5.

The bounded distortion follows from the additional claim of Lemma 4.2 by which the

branches of Tsing(ℓ) extend univalently onto V ◦
large,ℓ(0), which compactly contains Dpar(ℓ)

and the nesting is uniform for large ℓ by Proposition 3.

Hence, Proposition 6 is reduced to the uniform tightness of Spar.

4.5.1. Connection with Theorem 4. That theorem will be our main tool, since after

conjugation by τℓ the pair of parabolic branches becomes Gℓ and τℓDpar(ℓ) is contained

in the complement of �ℓ.

For N natural define Dpar(±, N , ℓ) := {z ∈ Dpar(ℓ) ∩ H± : Epar,ℓ(z) ≥ N}.
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LEMMA 4.9. For any r > 0 there are ℓ(r), N(r) < ∞ such that for every ℓ ≥ ℓ(r) the

inclusion Dpar(±, N(r), ℓ) ⊂ D(x0,∞τ−1
∞ , r) holds.

Proof. If not, then by taking convergent subsequences we construct a point z0 whose

complete forward orbit by G∞ is contained in a bounded set and avoids a wedge {x0,∞ +
ζ : |arg ζ 2| < π/4, 0 < |ζ | < R} with some R > 0. This is not consistent with the action

of G∞ in a half-plane under which every bounded orbit tends to x0,∞ tangentially to the

real line. �

Denote by G1,ℓ = τ−1
ℓ Gℓτℓ and write G−1

1,ℓ for its principal inverse branch, cf.

Definition 2.1. Now estimate, for any n ≥ 1,
∫

Dpar(+,n,ℓ)∪Dpar(−,n,ℓ)

Epar,ℓ(z) dLeb2(z)

= (n− 1)(|Dpar(+, n, ℓ)| + |Dpar(−, n, ℓ)|)

+
∞
∑

k=0

(|Dpar(+, n+ k, ℓ)| + |Dpar(−, n+ k, ℓ)|)

= (n− 1)(|Dpar(+, n, ℓ)| + |Dpar(−, n, ℓ)|)

+
∞
∑

k=0

|G−2k
1,ℓ (Dpar(+, n, ℓ) ∪Dpar(+, n+ 1, ℓ))|

+
∞
∑

k=0

|G−2k
1,ℓ (Dpar(−, n, ℓ) ∪Dpar(−, n+ 1, ℓ))|

≤ (n− 1)(|Dpar(+, n, ℓ)| + |Dpar(−, n, ℓ)|)

+ 2

∞
∑

k=0

|G−2k
1,ℓ (Dpar(+, n, ℓ))| + 2

∞
∑

k=0

|G−2k
1,ℓ (Dpar(−, n, ℓ))|

=
∑

s=+,−

[

(n− 1)|Dpar(s, n, ℓ)| + 2

∫

Dpar(s,n,ℓ)

P(G−2
1,ℓ , z, 2) dLeb2(z)

]

(18)

introducing the Poincaré series, cf. Definition 3.2. By symmetry, we will fix s = + in the

final estimate of equation (18) and show that the quantity tends to 0 as n → ∞.

LEMMA 4.10. Suppose that 0 < n′ < n and n− n′ is even. Then, for any ℓ,

n− n′ + 2

2
|Dpar(+, n, ℓ)| ≤

∫

Dpar(+,n′,ℓ)
P(G−2

1,ℓ , z, 2) dLeb2(z).

Proof. By the change of variable formula

|Dpar(+, n, ℓ)| =
∫

Dpar(+,n,ℓ)\Dpar(+,n+2,ℓ)

P(G−2
1,ℓ , z, 2) dLeb2(z).

For the same reason, for k > 0,
∫

Dpar(+,n−2k,ℓ)\Dpar(+,n−2k+2,ℓ)

P(G−2
1,ℓ , z, 2) dLeb2(z)
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≥
∫

Dpar(+,n,ℓ)\Dpar(+,n+2,ℓ)

P(G−2
1,ℓ , z, 2) dLeb2(z)

and Lemma 4.10 follows. �

COROLLARY 4.2. For n ≥ 2,

(n− 1)|Dpar(+, n, ℓ)| ≤ 5

∫

Dpar(+,⌊n/2⌋,ℓ)

P(G−2
1,ℓ , z, 2) dLeb2(z).

The main estimate is given by the next lemma.

LEMMA 4.11. We have

lim
n→∞

sup

{

∫

Dpar(+,n,ℓ)

P(G−2
1,ℓ , z, 2) dLeb2(z) : ℓ = 2, 4, . . . , ∞

}

= 0.

Proof. Let σ be either 2 or 2 − δ for some 0 < δ < 2
3
. Using Lemma 4.9 fix N to use

Theorem 4 and assert that for all ℓ,
∫

Dpar(+,N ,ℓ)

P(G−2
1,ℓ , z, σ) dLeb2(z) ≤ K1. (19)

For ℓ ≥ ℓ0 all sets Dpar(+, N , ℓ) are contained in a compact subset of H+. Since G−2
1,ℓ

for ℓ ≤ ∞ is a contraction in the Poincaré metric of H+ with the limit x+,ℓ, by taking

convergent subsequences we get that limn→∞ dn = 0, where

dn := inf{|DzG−2n
1,ℓ (z)| : z ∈ Dpar(+, N , ℓ), ℓ = 2, 4, . . . , ∞}.

For n ≥ N and of the same parity and every ℓ, we get
∫

Dpar(+,n,ℓ)

P(G−2
1,ℓ , z, 2) =

∑

k≥(n−N)/2

∫

Dpar(+,N ,ℓ)

|DzG−2k
1,ℓ (z)|

2 dLeb2(z).

On the other hand, for δ : 0 < δ < 2
3
, cf. estimate (19),

K1 ≥
∫

Dpar(+,N ,ℓ)

P(G−2
1,ℓ , z, 2 − δ)

≥
∑

k≥0

∫

Dpar(+,N ,ℓ)

|DzG−2k
1,ℓ (z)|

2−δ dLeb2(z)|

≥ sup

{

d−δ
m : m ≥ n−N

2

} ∫

Dpar(+,N ,ℓ)

|DzG−2k
1,ℓ (z)|

2 dLeb2(z).

Since dm → 0, Lemma 4.11 follows. �

4.5.2. Conclusion of the proof of Proposition 6. By formula (18), Corollary 4.2 and

Lemma 4.11

lim
n→∞

sup

{

∫

Dpar(+,n,ℓ)∪Dpar(−,n,ℓ)

Epar,ℓ(z) dLeb2(z) : ℓ = 2, 4, . . . , ∞
}

= 0.
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There are only 2n−1 ways to compose parabolic branches with return time less than n.

Uniform tightness thus follows.

4.6. Outer branches. Mappings Tpar(ℓ) already have uniformly bounded distortion by

Lemma 4.2, since for any branch and s it is possible to choose m so that its domain is

uniformly nested in Vm
ℓ (s). However, we would like to have a uniform expanding Markov

structure. Such a structure is suggested by Proposition 4 since any composition of branches

can be extended univalently to map onto a slit plane C \ (−∞, τ−1
ℓ ] ∪ [1, +∞)).

Let us choose a finite set B of branches T that contains symbols (+, ±, 2, 0) and

(−, ±, 1, 0), which correspond to post-singular and parabolic branches discussed before.

Definition 4.11. Define the generic hyperbolic induced mapping Thyp(B) as consisting of

sequences that begin with any symbol not in B and are followed by any, possibly empty,

sequence consisting of exclusively of symbols from B.

For any ℓ, the domain of Thyp(B)ℓ is the subset of Aℓ with domains of the branches

from B removed.

Let Vhyp be a bounded Jordan domain with smooth boundary chosen so that x0,∞ ∈ Vhyp

and

Vhyp ⊂ C \ (−∞, τ−1
ℓ ] ∪ [1, +∞))

for all ℓ ≥ ℓ(Vhyp), where ℓ(Vhyp) < ∞.

THEOREM 5. Fix any domain Vhyp as specified above. Also choose a finite set of branches

B that contains post-singular and parabolic branches. Then the following properties hold.

• Thyp(B) is uniformly tight, cf. Definition 4.7.

• For every ℓ ≥ ℓ(Vhyp) any composition of branches of Thyp(ℓ) extends univalently onto

C \ ((−∞, τ−1
ℓ ] ∪ [1, +∞)).

• There exist a compact set Fhyp ⊂ Vhyp, a particular choice of B and ℓ0 < ∞ such that

for every ℓ ≥ ℓ0 and every branch z ∈ Thyp(B), the inclusion z−1
ℓ (Vhyp) ⊂ Fhyp holds,

where z−1
ℓ should be taken in the sense of the univalent extension of z postulated by

the previous claim.

4.6.1. Uniform tightness of exit maps. Recall that for any generic branch z the first exit

map from z consists of sequences that repeat the symbol of z an arbitrary number of times.

LEMMA 4.12. If z is not post-singular or parabolic, then the first exit map from z is

uniformly tight.

Proof. For any ℓ let the block mean the union of domains of zℓ and the adjacent branch of

the same side, sign and level and height greater by 1. Use Proposition 4 to verify that zℓ
maps with distortion that is bounded independently of z and ℓ onto the block. Indeed, in

the proposition choose θ0 = θ1 = ±π/2 with the sign depending on the sign of z. Then by

Proposition 3 the distance from the block to the slits is uniformly bounded away from 0.
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But then the measure of the set of points, which do not exit by the nth iterate of zℓ,

shrinks uniformly exponentially with n and uniform tightness follows. �

Proof of the first claim of Theorem 5. One can construct Thyp(B) by successively inducing

on branches one by one. That is, we set T (0) = Tpar and then T (n+ 1) is the first exit map

from the next branch followed by T (n). Each of those maps is uniformly tight by Lemma

4.12 and Lemma 4.5 and since the set B was assumed finite, that includes Thyp(B). �

Proof of the second claim of Theorem 5. This follows immediately from Proposition 4

taken with θ0 = π , θ1 = 0. �

Proof of the third claim of Theorem 5. Vhyp has a finite hyperbolic diameter in C \
((−∞, τ−1

ℓ ] ∪ [1, +∞)) and therefore z−1(Vhyp) has bounded hyperbolic diameter in the

appropriate extension domain �̂ℓ \ (−∞, x0,ℓ] or �̂ℓ \ [x0,ℓ, +∞), cf. Lemma 4.2. Note

that x0,ℓ is on the boundary of that domain and hence Euclidean diameters of z−1(Vhyp)

tend to 0 as a uniform function of the distance from Dm(z)ℓ to x0,ℓ. �

By Proposition 3 for any r > 0 the domains of all branches of Tℓ except for finitely

many are contained in D(x0,∞, r) for all ℓ ≥ ℓ(r). By what was just observed, the same

holds for perhaps larger sets z−1
ℓ (Vhyp). We choose r so small that D(x0,∞, r) ⊂ Vhyp and

set Fhyp := D(x0,∞, r).

As B we pick precisely the finite set of branches z characterized by the condition

there exists ℓ ≥ ℓ(r) z−1
ℓ (Vhyp) 6⊂ F . Then ℓ0 := max(ℓ(Vhyp), ℓ(r)).

5. Invariant densities

5.0.2. Choice of the domain. We fix some Vhyp in Theorem 5, which implies a choice

of B. To unclutter notation, we will write Thyp for Thyp(B) and Thyp(ℓ) for the instance of

Thyp for a particular ℓ.

5.0.3. The Perron–Frobenius operator. For all ℓ sufficiently large the Perron–Frobenius

operator can be defined on L1(Dm(Thyp(ℓ)), Leb2, R) by

(Pℓg)(u) =
∑

z∈Thyp

|Dz−1
ℓ (u)|2g(z−1

ℓ (u)),

where we identified a generic induced map Thyp(ℓ) with the set of its branches. The term

density will be used for a non-negative function with integral 1.

Fact 5.1. The operator Pℓ is stochastically stable meaning that there is an invariant density

g∞
ℓ and for any other density g ∈ L1(Dm(Thyp(ℓ)), Leb2, R), limn→∞ ‖Pn

ℓg − g∞
ℓ ‖1 = 0

holds. Additionally, if γ ∈ L1(Dm(Thyp(ℓ)), Leb2, R) is a fixed point of Pℓ, then γ =
cg∞
ℓ , c ∈ R.

Our goal will be to show that densities g∞
ℓ are real-analytic and converge analytically

to g∞
∞ when ℓ → ∞.
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5.1. The transfer operator.

Definition 5.1. Let X denote the space of complex-valued holomorphic functions of two

variables defined on Vhyp × Vhyp, continuous to the closure, and real on the diagonal:

for all z ∈ Vhyp, for all f ∈ X, f (z, z) ∈ R.

Endow X with the sup-norm.

Then X is a Banach space over R.

Definition 5.2. The transfer operator Pℓ : X → X is defined by

Pℓf (z, w) =
∑

z∈Thyp(ℓ)

Dz−1(z)Dz−1(w)f (z−1(z), z−1(w)),

where univalent extensions of branches onto Vhyp are used, cf. Theorem 5.

It is not immediately clear that the transfer operator is continuous or even well defined.

Observe that, at least formally, when w = z, then

Pℓf (z, z) =
∑

z∈Thyp(ℓ)

Dz−1(z)Dz−1(z)f (z−1(z), z−1(z))

=
∑

z∈Thyp(ℓ)

Dz−1(z)Dz−1(z)f (z−1(z), z−1(z)),

which means that acting on the diagonal γ (z) := f (z, z)|z∈Dm(Thyp(ℓ)) the transfer operator

reduces to the Perron–Frobenius operator Pℓγ .

To establish basic properties of the transfer operator introduce branch operators for a

generic branch z,

Pz,ℓf (z, w) = Dz−1
ℓ (z)Dz−1

ℓ (w)f (z−1
ℓ (z), z−1

ℓ (w)). (20)

Because of uniformly bounded distortion, cf. Theorem 5, we get an estimate

‖Pz,ℓ‖ ≤ Knorm |Dm(zℓ)| (21)

for all ℓ.

LEMMA 5.1. For every generic branch z of Thyp and ℓ ≥ ℓ(z), the branch operator Pz,ℓ is

compact.

Proof. Let Xz,ℓ mean the space of functions f ∈ X restricted to the domain of z−1
ℓ (Vhyp),

still with the sup-norm. Then, by formula (20), operator Pz,ℓ can be represented as the

composition of a continuous operator on Xz,ℓ and the restriction operator from X to Xz,ℓ.

Since z−1
ℓ (Vhyp) is a compact subset of Vhyp by the last claim of Theorem 5, the restriction

operator is compact by Cauchy’s integral formula and Ascoli–Arzela’s theorem. �
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LEMMA 5.2. For some ℓ0 < ∞ and every ℓ ≥ ℓ0 the series in 5.2 converges in operator

norm and Pℓ is a compact operator. Furthermore,

sup{‖Pnℓ‖ : n ≥ 0, ℓ ≥ ℓ0} < ∞.

Proof. The series satisfies Cauchy’s condition in operator norm by estimate (21). The

compactness of the limit then follows from Lemma 5.1.

As to the additional claim, observe that for any n > 1 operator P
n
ℓ is given by a

formula analogous to Definition 5.2 except that the summation extends over z ∈ T nhyp. Since

estimate (21) is only based on bounded distortion, it extends to branches of T nhyp. �

LEMMA 5.3. We have

lim
ℓ→∞

‖Pℓ − P∞‖ = 0.

Proof. Observe first that for every generic branch z branch operators Pz,ℓ converge in

operator norm to Pz,∞, cf. Proposition 3. By the uniform tightness of Thyp and estimate

(21) for every ǫ > 0 there is a finite set of branches B(ǫ) such that for every ℓ sufficiently

large

∥

∥

∥

∥

(

∑

z∈B
Pz,ℓ

)

− Pℓ

∥

∥

∥

∥

< ǫ.

The claim of the lemma now follows by a 3ǫ argument. �

5.1.1. Fixed points of transfer operators. Let us consider the DX, which consists of

all f ∈ X such that γf (z) := f (z, z)|z∈Dm(Thyp(ℓ)) is a density when restricted to z ∈
Dm(Thyp(ℓ)).

We use the following identity principle for two complex variables

Fact 5.2. Suppose that U is a domain in C and F : U × U → C is holomorphic. If

F(z, z) = 0 for all z in an open subset of U, then F vanishes identically.

This fact is a particular case of [1, Theorem 7, p. 36].

PROPOSITION 7. For every ℓ large enough Pℓ has a unique fixed point f∞
ℓ ∈ DX.

Additionally, f∞
ℓ (z, z) = g∞

ℓ , cf. Fact 5.1. Moreover,

lim
ℓ→∞

∥

∥f∞
ℓ − f∞

∞
∥

∥

X
= 0.

Proof. Let f ∈ DX. By Fact 5.1 functions P
n
ℓγf converge to g∞

ℓ in L1(Dm(Thyp(ℓ))).

By the compactness and uniform bound of Lemma 5.2, sequence P
n
ℓf is contained in a

compact subset of X. Take any two convergent subsequences P
np
ℓ f . Since their limits are

the same on the diagonal (z, z) : z ∈ Dm(Thyp(ℓ)) they are the same in Vhyp × Vhyp by

Fact 5.2. Hence, the entire sequence P
n
ℓf converges to a fixed point f∞

ℓ of Pℓ. Since the

transfer operator preserves DX, then f∞
ℓ ∈ DX. The same argument based on the identity

principle shows that the limit is independent of f and hence unique for each ℓ. Since the
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initial f can be constant on Vhyp, it also follows that the set {f∞
ℓ : ℓ ≥ ℓ0} is bounded by

some K1.

It remains to show the convergence of f∞
ℓ to f∞

∞ . Since P∞ is compact, the set

{P∞f∞
ℓ : ℓ ≥ ℓ0} is pre-compact in X. Observe that

lim
ℓ→∞

∥

∥P∞f
∞
ℓ − f∞

ℓ

∥

∥

X
≤ lim
ℓ→∞

‖P∞ − Pℓ‖ K1 = 0

by Lemma 5.3.

Let f̂∞ be the limit for any convergent subsequence ℓp of P∞f∞
ℓ . Then, by what has

just been observed, f̂∞ = limp→∞ f∞
ℓp

. Then for any p,

P∞f̂
∞ − f̂∞ = P∞(f̂

∞ − f∞
ℓp
)+ (P∞ − Pℓp )f

∞
ℓp

+ (f∞
ℓp

− f̂∞).

Since every term on the right-hand side tends to 0 as p → ∞, f̂∞ is a fixed point of P∞
and f̂∞ = f∞

∞ by the uniqueness of the fixed point.

Proposition 7 has been proved. �

5.2. Invariant measures for original mappings Tℓ. The general construction for passing

from invariant measures for induced maps Thyp(ℓ) to measures for Tℓ is well known. Let

rThyp
(z) denote the return time for branch z of Thyp, i.e. the number of iterates of T, which

compose to z.

If µhyp,ℓ is an invariant measure for Thyp(ℓ), which is piecewise equal to T
j

ℓ , then

µℓ :=
∑

z∈Thyp

rThyp
(z)−1
∑

j=0

(T
j

ℓ| Dm(zℓ)
)∗µhyp,ℓ

is immediately seen to be invariant under the push-forward by Tℓ.

We will work in the spaces Lp := Lp(C, Leb2, R).

Definition 5.3. Given a set B of branches of Thyp the propagation operator

P̂B,ℓ : L∞ → L1

is defined by

P̂B,ℓg(u) =
∑

z∈B

rThyp
(z)−1
∑

j=0

|DT −j
ℓ (u)|2(g · χDm(zℓ))(T

−j
ℓ (u)).

When B is not specified, it is assumed to be the set of all branches of Thyp.

The convergence of this sum will be addressed later.

Define simple propagation operators

P̂z,j ,ℓg(u) := |DT −j
ℓ (u)|2(g · χDm(zℓ))(T

−j
ℓ (u)), (22)

where z is any branch of Thyp and 0 ≤ j < rThyp
(z).
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LEMMA 5.4. For any branch z of Thyp, 0 ≤ j < r(z) and ℓ sufficiently large,

lim
ℓ→∞

P̂z,j ,ℓg
∞
ℓ = P̂z,j ,ℓg

∞
∞

in L1, cf. Fact 5.1.

Proof. By Proposition 7 densities g∞
ℓ (u) extend to real analytic functions

ĝℓ(u) := f∞
ℓ (u, u),

which converge uniformly on Vhyp. Replacing g∞
ℓ with ĝℓ in the claim of the lemma does

not change its meaning, since the characteristic functions of Dm(zℓ) force the restriction

to appropriate domains. In connection with formula (22) write

|DT −j
ℓ |2(ĝℓ · χDm(zℓ)) ◦ T −j

ℓ − |DT −j
∞ |2(ĝ∞ · χDm(z∞)) ◦ T −j

∞

= (|DT −j
ℓ |2ĝℓ ◦ T −j

ℓ − |DT −j
∞ |2|ĝ∞ ◦ T −j

∞ )χ
T

−j
∞ (Dm(z∞))

+ (χDm(zℓ) ◦ T −j
ℓ − χDm(z∞) ◦ T −j

ℓ )ĝℓ ◦ T −j
ℓ |DT −j

ℓ |2.

To see that the first term goes to 0 in L1, observe ĝℓ, T
−j
ℓ → ĝ∞, T

−j
∞ uniformly on

compact subsets of Vhyp. Next, zℓ maps onto
⋃

h/∈B Dm(hℓ), cf. Theorem 5. For any fixed

h, χDm(hℓ◦zℓ) converges to χDm(h∞◦z∞) in L1 by Lemma 4.12. Then the sums over all h

also converge by the dominated convergence theorem.

After changing variables by T
−j
ℓ , we estimate the L1-norm of the second term as

follows:

‖(χDm(zℓ) ◦ T −j
ℓ − χDm(z∞) ◦ T −j

ℓ )ĝℓ ◦ T −j
ℓ |DT −j

ℓ |2‖1

= ‖(χDm(zℓ) − χDm(z∞))ĝℓ‖1.

Since ĝℓ are uniformly bounded, cf. Proposition 7, the second term goes to 0 as ℓ → ∞
by Fact 4.1. �

THEOREM 6. Mappings Tℓ have invariant densities γℓ ∈ L1(Leb2), each supported on the

corresponding Dm(Tℓ). The convergence limℓ→∞ ‖γℓ − γ∞‖1 = 0.

Additionally, for some Ranalytic > 0 and all ℓ sufficiently large γℓ extend to holomorphic

functions of two complex variables on

D(x0,∞, Ranalytic)×D(x0,∞, Ranalytic),

which converge uniformly on this set.

Here is the proof.

5.2.1. Proof of L1 convergence. Densities γℓ are given by γℓ := P̂ℓg
∞
ℓ . We will now

address the convergence of the propagation operator.

All inverse branches in formula (22) have uniformly bounded distortion since they map

into the domains of branches of Thyp(ℓ), which are all contained in Fhyp. So, for some

Kpropag independent of z, ℓ, j ,

‖P̂z,j ,ℓ‖1 ≤ Kpropag‖χDm(zℓ)‖1.
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If we sum this up over all j : 0 ≤ j < rThyp
(z) we get a factor rThyp

(z) and if we further

sum up over all branches z in some set B, then since the domains are disjoint, we get

‖P̂B,ℓ‖1 ≤ Kpropag

∫

⋃

z∈B Dm(zℓ)

rThyp,ℓ(u) dLeb2(u).

Let ǫ > 0 be arbitrary. By uniform tightness in Theorem 5, cf. Definition 4.7, there is a

set of branches B(ǫ) including all but finitely many branches of Thyp such that

‖P̂B(ǫ),ℓ‖1 ≤ Kpropagǫ (23)

uniformly for all ℓ ≥ ℓ(ǫ). Then we estimate

lim sup
ℓ→∞

‖P̂ℓg
∞
ℓ − P̂∞g

∞
∞‖1

≤ lim sup
ℓ→∞

∥

∥

∥

∥

∥

∥

∑

z/∈B(ǫ)

r(z)−1
∑

j=0

(P̂z,j ,ℓg
∞
ℓ − P̂z,j ,∞g

∞
∞)

∥

∥

∥

∥

∥

∥

1

+ lim sup
ℓ→∞

‖P̂B(ǫ),ℓg
∞
ℓ − P̂∞g

∞
∞‖1

≤ 0 +Kpropagǫ(‖g∞
ℓ ‖∞ + ‖g∞

∞‖∞),

where in the final estimate we used Lemma 5.4 and inequality (23). Since ǫ was arbitrary

and ‖g∞
ℓ ‖∞ are uniformly bounded, cf. Proposition 7, it follows that

lim
ℓ→∞

‖P̂ℓg
∞
ℓ − P̂∞g

∞
∞‖1 = 0,

which is the first claim of Theorem 6.

To prove that claim about Ranalytic start with the observation that Thyp(B) is the

first return map to union of the domains of branches not in B. Then the formula of

Definition 5.3 implies that γℓ = g∞
ℓ on the domain of such branches, since the only

possibility to get something other than 0 for u ∈ Dm
(

xℓ : x /∈ B
)

is when z = x and

j = 0. On the other hand, the set B was finite and disjoint from D(x0,ℓ, Ranalytic) for

some Ranalytic > 0. Then the γℓ = g∞
ℓ continue analytically to f∞

ℓ and the second claim

of Theorem 6 follows from Proposition 7.

5.3. Geometric properties of the boundary of �ℓ. Recall the arc wℓ that joins x±,ℓ to

x0,ℓ and is invariant under Gℓ. Define Ĥ±,ℓ := H± \ wℓ. We can also take Ĥ±,∞ = Ĥ±.

Then Ĥ±,ℓ are swapped by the action of the principal inverse branch G−1
ℓ :

G−1
ℓ (Ĥσ ,ℓ) ⊂ Ĥ−σ ,ℓ, σ = ±.

5.3.1. Fundamental segments in the border of �ℓ. Recall the point yℓ := G−1
ℓ (τℓx0,ℓ).

The first segment of the boundary of�+,ℓ is composed of two arcs in the formG−1
±,ℓ[yℓ, 0)

where G−1
±,ℓ denotes the inverse branch that maps C \ [0, +∞) into H± while sending

(yℓ, 0) into the border of �+,ℓ. Then the rest of the boundary consists of images of these

two arcs by G−n
ℓ for n > 0.
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Definition 5.4. We will call all arcs in the form G−n
ℓ (G−1

±,ℓ[yℓ, 0)), n = 0, 1, . . . , funda-

mental segments of ∂�ℓ of order n.

LEMMA 5.5. There exists finite constants Karc, ℓ0 and for every n ≥ 0 and ℓ0 ≤ ℓ ≤ ∞ if

u is a fundamental segment of the boundary of �ℓ with endpoints u1 and u2, then

diam(u) ≤ Karc|u1 − u2|.

Proof. For ℓ = ∞ arc of orders 2 and 3 is compactly contained in Ĥ∞. This persists for

large ℓ by Proposition 3 and Lemma 2.12. For those arcs the estimate holds. Arcs of larger

orders are obtained by taking inverse branches G−1
ℓ with uniformly bounded distortion. �

LEMMA 5.6. There are a constant K5.6 and an integer ℓ5.6 with the following property.

Let ℓ ≥ ℓ5.6 and v belong to a fundamental segment of order n with endpoints u1, u2 in

the boundary of �σ1,ℓ ∩ Hσ2
, where σ1, σ2 = ±. Then there is v̂ ∈ ∂�−σ1,ℓ ∩ Hσ2

, which

belongs to a fundamental segment of order n+ 1 and

|v̂ − v| ≤ K5.6|u1 − u2|.

Proof. Without loss of generality, n ≥ 2 and let v0 = Gn−2
ℓ (v). By Proposition 3 for ℓ

sufficiently large the fundamental segment of order 2, which contains v0, and a point

v̂0, which belongs to the fundamental segment of order 3, can be enclosed in a disk of

fixed hyperbolic diameter in Ĥ(−1)nσ2
. This configuration is then mapped by G−n+2

ℓ with

bounded distortion, which yields the claim of the lemma. �

5.3.2. Action of G−2
ℓ near fixed points.

LEMMA 5.7. Choose ℓ and consider point u+ x0,ℓ in the boundary of �ℓ. Then, for every

ǫ > 0 and integer k, possibly negative, there is r(ǫ, k) > 0 and for every r : 0 < r ≤
r(ǫ, k) there is ℓ(r , ǫ, k) < ∞ so that for every ℓ(r , ǫ, k) ≤ ℓ ≤ ∞ the estimate

|G−2k
ℓ (u+ x0,ℓ)− x0,ℓ − u(1 + ka|u|2)| < ǫ|u|3

holds wherever r ≤ |u| ≤ r(ǫ, k), where

a := − 1
3
SG∞(x0,∞) = 1

6
D3G−2

∞ (x0,∞) > 0.

Proof. We will first consider the case of k = ±1. We have the expansion

G−2k
ℓ (x0,ℓ + u)− x0,ℓ = u+ kau3 + ψℓ,k(u)+ u4Oℓ(1),

where |Oℓ(1)| is bounded for all 0 < |u| < r0 and ℓ ≥ ℓ0 while limℓ→∞ ψℓ,k(u) = 0 for

all 0 < |u| < r0.

Since u+ x0,,∞ is in the boundary of�ℓ, by Lemma 3.1 for any η > 0 there is r(η) > 0

and if r < |u| < r(δ) as well as ℓ ≥ ℓ̂(η, r), then |arg u2 − π | < η. Consequently,

|u2 + |u|2| < 2 sin
η

2
|u|2 < η (24)

when η is small enough.
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Thus,

|G∓2
ℓ (u+ x0,ℓ)− x0,ℓ − u(1 ± a|u|2)| ≤ η|u|3 + |ψℓ,k(u)| + |u|4|Oℓ(1)|.

This leads to fixing r(ǫ, k) so that for |u| ≤ r(ǫ, k) the last term is less than ǫ/4|u|3 and

in addition to r(ǫ, k) ≤ r(ǫ/4) in the previous estimate. Then,

|G∓2
ℓ (u+ x0,ℓ)− x0,ℓ − u(1 ± a|u|2)| ≤ ǫ

2
|u|3 + |ψℓ,k(u)|.

Now as soon as r has been specified in the claim of the lemma and |u| > r , |ψℓ,k(u)|
can be made less than ǫ/4|u|3 by choosing ℓ(r , ǫ, k) suitably large. Additionally, we need

ℓ(r , ǫ, k) ≥ ℓ̂(ǫ/4, r), which was needed to secure estimate (24).

The general case follows by induction with respect to k. To fix attention, we will describe

the inductive step for k > 0. Let uk = G−2k
ℓ (u+ x0,∞)− x0,∞. Then

|G−2
ℓ (uk − x0,ℓ)− x0,ℓ − uk(1 + a|uk|2)| < ǫ1|uk|3. (25)

By the inductive step

|uk − u(1 + ka|u|2)| < ǫ2|u|3.

In particular, uk and u differ only by O
(

|u|3
)

and uk|uk|2 = u|u|2 +O
(

|u|5
)

. Further-

more,

|uk(1 + a|uk|2)− u(1 + (k + 1)a|u|2)|
= |uk(1 + a|uk|2)− auk|uk|2 − ku(1 + ka|u|2)+O(|u|5)| ≤ ǫ2|u|3.

From formula (25), we get

|G−2
ℓ (uk + x0,ℓ)− x0,ℓ − u(1 + (k + 1)a|u|2)| ≤ ǫ1|uk|3 + ǫ2|u|2 +O(|u|5).

Given ǫ > 0, if we take ǫ1 = ǫ2 = ǫ/3 and u small enough, we get the claim. �

LEMMA 5.8. Consider a fundamental segment u in the boundary of �ℓ with endpoints

v and G−2
ℓ (v). Let r > 0. There are constants K5.8 and ℓ(r) such that if ℓ ≥ ℓ(r) and u

intersects C(x0,ℓ, r), then |v − G−2
ℓ (v)| < K5.8r

3.

Proof. In Lemma 5.7 set ǫ = a and k = 1. Let ρ := |v − x0,ℓ|. To use Lemma 5.7 we need

to have ρ suitably small. This is true provided that the order of u is sufficiently large and ℓ

is large as well, by Proposition 3. The estimate of the lemma can be easily met for finitely

many orders based on the same proposition.

Then for ℓ ≥ ℓ(ρ) Lemma 5.7 implies that

|v − G−2
ℓ (v)| ≤ aρ3. (26)

By Lemma 5.5

ρ(1 − aKarcρ
2) ≤ r ≤ ρ(1 + aKarcρ

2).

Again, for ρ <
√

1/2aKarc, this reduces to r/2 ≤ ρ ≤ 2r . Hence, we can replace the

condition ℓ ≥ ℓ(ρ) with ℓ ≥ ℓ(r/2) and rewrite estimate (26) as

|v − G−2
ℓ (v)| ≤ 8ar3. �
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5.3.3. Sections of ∂�ℓ by circles. Fix σ1, σ2 = ± and r > 0. Then we will write

Xσ1,σ2,ℓ(r) := {v ∈ ∂�σ1,ℓ ∩ Hσ2
: |v − x0,ℓ| = r}.

LEMMA 5.9. There exist r5.9 > 0 and an integer constant N5.9 < ∞ with the following

property. For every r : 0 < r < r5.9 there is ℓ(r) < ∞ and if ℓ(r) ≤ ℓ ≤ ∞, σ1, σ2 =
±, then Xσ1,σ2,ℓ(r) is contained in some N5.9 consecutive fundamental segments in the

boundary of �σ1,ℓ ∩ Hσ2
.

Proof. Let v0 be the point of Xσ1,σ2,ℓ(r), which is furthest from xσ2,ℓ in the ordering of the

arc. Suppose that k0 is an integer chosen so that the fundamental segment, which contains

G
−2k0

ℓ (v0), also intersects Xσ1,σ2,ℓ(r) and contains its point v1, which is closest to xσ2,ℓ in

the ordering of the arc.

Use Lemma 5.7 with u = v + 0 − x0,∞ and ǫ := a. For r sufficiently small and ℓ large

depending on r , k0, we obtain

|G−2k0

ℓ (v0)− x0,ℓ| ≤ r(1 − (k0 − 2)ar2).

Then the diameter of the fundamental segment, which contains G
−2k0

ℓ (v0), is at least

(k0 − 2)ar3. On other hand, the diameter of any fundamental segment, which intersects

C(x0,ℓ, r) for ℓ ≥ ℓ(r), is bounded by K 5.8Karcr
3 in view of Lemmas 5.8 and 5.5. Then

k0 ≤ a−1K 5.8Karc + 2 and N5.9 is that bound increased by 1. �

Results on sections are summarized by the following proposition.

PROPOSITION 8. There exist R8 > 0, Q8 < ∞ and an integer constant M8 with the

following property. For every r : 0 < r < R8 there is ℓ(r) < ∞ and if ℓ ≥ ℓ(r), then the

set Xσ ,ℓ(r) = X+,σ ,ℓ(r) ∪X−,σ ,ℓ(r) is:

• covered by fundamental segments in ∂�ℓ ∩ Hσ with orders that vary by no more

than M8;

• contained in a Euclidean disk of radius Q8r
3.

Proof. Let v ∈ X−,σ ,ℓ(r) for definiteness belong to a fundamental segment of order n. By

Lemma 5.6 we find v̂ in a fundamental segment of order n+ 1 in ∂�+,ℓ with

|v − v̂| ≤ K5.8K5.6r
3

provided that ℓ ≥ ℓ(r) by Lemma 5.8.

Again, by making r small we can ensure that |v̂ − x0,ℓ| > r/2. Then we use Lemma 5.10

with ǫ = a. What we get is that when k > (K5.8K5.6/2a)+ 1, then |Gk
ℓ(v̂)− x0,ℓ| > r

while |G−k
ℓ (v̂)− x0,ℓ| < r provided r is small enough depending on k and ℓ is large enough

depending on k, r . In any case, a fundamental segment in ∂�+,ℓ with order between n− k

and n+ k + 2 intersects C(x0,ℓ, r). In other words, X+,σ ,ℓ(r) intersects a fundamental

segment whose order differs from n by no more than k + 2.

Now the first claim of Proposition 8 follows from Lemma 5.9.
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The second claim is derived by Lemma 5.8, since Xσ ,ℓ(r) can be connected by a

bounded number of fundamental segments and the interval from v to v̂. �

5.4. König’s coordinate. For ℓ < ∞ point x+,ℓ is an attracting point for G−2
ℓ and the

basin of attraction contains the entire H+.

Definition 5.5. The König coordinate kℓ,± is a univalent map from H± into C given by

k±,ℓ(u) = lim
n→∞

[(DG2
ℓ(x±,ℓ))

n(G−2n
ℓ (u)− x±,ℓ)].

It is worth noting that since x±,ℓ form a cycle under Gℓ, we get

DG2
ℓ(x±,ℓ) = DGℓ(x+,ℓ)DGℓ(x−,ℓ) = |DGℓ(x±,ℓ)|2

since DGℓ(x+,ℓ) = DGℓ(x−,ℓ).

We get the functional equation for u ∈ H±,

k∓,ℓ ◦ G−1
ℓ (u) =

(

DGℓ(x±,ℓ)
)−1

k±,ℓ(u).

Our interest is in the behavior of König’s coordinate in D(x0,∞, Ranalytic) \�ℓ. Recall

the arc wℓ that joins x±,ℓ to x0,ℓ and is the common boundary component of �±,ℓ and

invariant under Gℓ. It is convenient to restrict the domain of k±,ℓ to H± \ wℓ and then we

take the logarithm log k±,ℓ, which will map into some horizontal strip of with 2π .

Set

tℓ := log |DGℓ(x±,ℓ)|2

log τ 2
ℓ

. (27)

Then functions ψℓ = log Hℓ, t
−1
ℓ log k±,ℓ satisfy the same functional equation

ψℓ ◦ G−2
ℓ (u) = ψℓ(u)− log τ 2

ℓ . (28)

5.4.1. Repelling Fatou coordinate. When ℓ = ∞ the König coordinate is replaced with

the exponential of the repelling Fatou coordinate denoted by k±,∞. The functional equation

is log k±,∞G−2
∞ = 1 + log k±,∞. In that case we put

ψ∞ := − log τ 2
∞ log k±,∞

and equation (28) will be satisfied. We will speak a generalized König coordinate to include

this case.

5.4.2. Estimates of the variation of the generalized König coordinate. We will write

d±,ℓ for the hyperbolic metric of Ĥ±,ℓ.

LEMMA 5.10. For every R > 0 there are ℓ5.10 < ∞ and K5.10(R) < ∞ for which the

following statement holds true for every ℓ ≥ ℓ5.10.

Fix a fundamental segment in the boundary of �ℓ ∩ H± and denote its endpoints by

u1, u2. Let 1 be a disk ,which contains that fundamental segment and whose hyperbolic

diameter is less than R · d±,ℓ(u1, u2).
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Then, whenever z1, z2 ∈ 1,

t−1
ℓ |log k±,ℓ(z1)− log k±,ℓ(z2)| < K5.10(R).

Proof. ℓ5.10 should be chosen so that for every ℓ ≥ ℓ5.10 the hyperbolic diameter of the

fundamental arcs of order 2, 3 in the boundary of �ℓ is bounded by some K. Then the

same bound holds for all orders, since G−2
ℓ is a hyperbolic contraction.

Thus, the hyperbolic diameter of 1 is bounded by KR and so the distortion of log k±,ℓ

is bounded on1 in terms of R. Let u1 and u2 be the endpoints of the fundamental segment.

Then,

|log k±,ℓ(z1)− log k±,ℓ(z2)| ≤ K1(R)| log k±,ℓ(u1)− log k±,ℓ(u2)| = K1(R)tℓ log τ 2
ℓ

where the last equality follows from formula (27). �

5.4.3. The filler map. k±,ℓ is defined up to a multiplicative constant. Let us choose it so

that t−1
ℓ log k±,ℓ and log Hℓ are equal at an endpoint of the arc of order 2 in the boundary

of �ℓ. Then we get the following.

COROLLARY 5.1. There exists K5.1 such that every ℓ ≥ ℓ5.10 at every point u in the

boundary of �ℓ,

|t−1
ℓ log k±,ℓ(u)− log Hℓ(u)| ≤ K5.1.

This follows from Lemma 5.10 since it is enough to establish the estimate u in arcs of

order 2 and 3.

LEMMA 5.11. There are R5.11 > 0 and K5.11 and for every r : 0 < r ≤ R5.11 one can

choose ℓ5.11(r) < ∞ with the following property.

For every ℓ : ℓ5.11(r) ≤ ℓ ≤ ∞ there is an arc that contains the set Xσ ,ℓ(r), σ = ±, cf.

Proposition 8, so that for every two points on this arc t−1
ℓ log kσ ,ℓ differ by no more than

K5.11.

Proof. By Proposition 8 the convex hull ofXσ ,ℓ(r) on the circleC(x0,ℓ, r) is contained in a

Euclidean disk 1̂ of radius 2Q8r
3. On the other hand, if u ∈ Xσ ,ℓ(r) then |u− G−2

ℓ (u)| ≥
(a/2)r3 provided that r is sufficiently small and ℓ large enough depending on r—just refer

to Lemma 5.7 with ǫ = a/2. Additionally, the distance from u to R is bigger than r/2

under the same conditions on r , ℓ.

Hence, t−1
ℓ log kσ ,ℓ maps 1̂ with uniformly bounded distortion and the claim follows as

in Lemma 5.10. �

5.5. The drift integral. Let us recall the fundamental annulus Aℓ, cf. Definition 4.1. The

drift integral is

ϑ(ℓ) = − 1

log τℓ
Re

∫

Aℓ

log
Hℓ(u)

u
γℓ(u) dLeb2(u),

cf. in [15] Lemma 3.2, Definition 4.1.
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The function log(Hℓ(u)/u) is bounded inAℓ except in neighborhoods of x0,ℓ. Its growth

there can be controlled by the functional equation Hℓ ◦Gℓ = τ−2
ℓ Hℓ. This shows that for

ℓ finite the magnitude of that function exceeds M on sets, which are exponentially small in

M and hence the drift integral is well defined. For ℓ = ∞ this argument breaks down and

the drift integral has an undefined value, see in [14], Proposition 3.5. Our goal is to prove

the following result.

THEOREM 7. There exists a finite limit

lim
ℓ→∞

ϑ(ℓ) = − 1

log τ∞
lim
r→0+

Re

∫

A∞\D(x0,∞,r)

log
H∞(u)

u
γ∞(u) dLeb2(u).

For all ℓ ≥ ℓ(r) the complement of D(x0,∞, r) meets the domains of only finitely

many branches of Tℓ. For that reason log(Hℓ(u)/u) · χAℓ\D(x0,∞,r) are bounded uniformly

with respect to ℓ and converge to log(H∞(u)/u) pointwise. By the Lebesgue dominated

convergence theorem and Theorem 6,

lim
ℓ→∞

− 1

log τℓ
Re

∫

Aℓ\D(x0,∞,r)

log
Hℓ(u)

u
γℓ(u) dLeb2(u)

= − 1

log τ∞

∫

A∞\D(x0,∞,r)

log
H∞(u)

u
γ∞(u) dLeb2(u). (29)

5.5.1. Stokes’ formula. We can assume r < Ranalytic, cf. Theorem 6, and hence all γℓ

are analytic.

Definition 5.6. Let ψℓ(u) satisfy

∂uψℓ(u) = γℓ(u), (30)

normalized so that the linear part at x0,∞ is γℓ(x0,∞)u− x0,∞.

Stokes’ formula is
∫

D
F(u)γℓ(u) dLeb2(u) = (1/2i)

∫

∂D
F(u)ψℓ(u) du for F holo-

morphic in D and continuous to the closure.

Definition 5.7. For every ℓ including ∞ define8ℓ on some fixed neighborhood of x0,∞ by

8ℓ(z) :=







log
Hℓ(z)

z
if z ∈ �ℓ,

t−1
ℓ log k±,ℓ(z)− log z if z /∈ �ℓ.

Then, let us also define

2ℓ(r) := Re

[

ι

2

(

∫

C(x0,∞,r)

8ℓ(u)ψℓ(u) du

+
∫

∂�ℓ∩D(x0,ℓ,r)

(

log
Hℓ(u)

u
−8ℓ(u)

)

ψℓ(u) du

)]

.

(31)

For ℓ < ∞ we claim that

2ℓ(r) = −
∫

D(x0,∞,r)

Re8ℓ(u)γℓ(u) dLeb2(u). (32)
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Observe first that the singularities of 8ℓ and log Hℓ at xσ ,ℓ, σ = +, −, 0 are logarithmic

and therefore integrable. Then take into account that 8ℓ is discontinuous and hence

Stokes’ formula has to be used separately on �ℓ ∩D(x0,∞, r) and D(x0,∞, r) \�ℓ. The

boundaries of those sets can be complicated, but add up to C(x0,∞, r) and subtract along

∂�ℓ ∩D(x0,∞, r), which corresponds to the second term in formula (31).

For ℓ = ∞ the convergence of 2∞ is not clear and will be shown later. Assuming it

holds, in all cases including ℓ = ∞, we get for 0 < ρ < r ,

2ℓ(r)−2ℓ(ρ) =
∫

{u: ρ<|u−x0,∞|<r}
Re8ℓ(u)γℓ(u) dLeb2(u). (33)

PROPOSITION 9. For every ǫ > 0 there is r(ǫ) > 0 and for every 0 < r ≤ r(ǫ) there is

ℓ9(r) < ∞ such that

for all ℓ ℓ9(r) ≤ ℓ ≤ ∞ H⇒ |2ℓ (r)| < ǫ.

This includes the claim that 2∞(r) is convergent.

The proof of this proposition will require some preparatory estimates.

5.5.2. Estimates on circles.

LEMMA 5.12. For every r > 0 there is ℓ(r) < ∞ so that for all ℓ(r) ≤ ℓ ≤ ∞ and u :

|u− x0,∞| = r ,

∣

∣ψℓ(u)− γℓ(x0,∞)u− x0,∞
∣

∣ ≤ Oψ (r
2),

where Oψ (r) is independent of ℓ and lim supr→0+ r−2Oψ (r
2) < ∞.

Proof. Change variables to z := u− x0,∞. By Definition 5.6 ψℓ(z) = γℓ(x0,∞)z+
ψ1,ℓ(z) where the linear part of ψ1,ℓ vanishes at z = 0. By the analytic convergence

claim of Theorem 6, it means that |ψ1,ℓ(z)| ≤ K1|z|2 for all ℓ sufficiently large and z in a

fixed neighborhood of 0. Hence, |ψℓ(z)− γℓ(x0,∞)z| ≤ K1|z|2. �

LEMMA 5.13. There exist a function oFatou(r
−2) : limr→0+ r2oFatou(r) = 0 and a positive

constant CFatou such that

for all uǫ > 0 there exists r(ǫ) > 0, for all 0 < r < r(ǫ) there exists ℓ(r) < ∞,

for all ℓ(r) ≤ ℓ ≤ ∞ we have

log Hℓ(u) = − CFatou

(u− x0,∞)2
+ oFatou(r

−2)

for u : |u− x0,∞| = r , −π + ǫ < arg(u− x0,∞)2 < π − ǫ. In particular, it holds for u

in �ℓ.

Proof. For ℓ = ∞ recall Fact 3.1 by which the arc of values of u in the claim of the Lemma

is a compact subset of�∞. Then the claim of the lemma follows from the form of the Fatou
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coordinate, with CFatou = −3 log τ 2
∞/D

3G∞(x0,ℓ). For ℓ finite, write

log Hℓ(u) = log H∞(φ
−1
±,∞ ◦ φ±,ℓ(u)).

When r has been fixed, the composition in parentheses goes to the identity uniformly

on a neighborhood of the arc u : |u− x0,∞| = r , −π + ǫ < arg(u− x0,∞)2 < π − ǫ by

Proposition 3. Hence, by choosing ℓ(r) large enough we can make |H∞(u)−Hℓ(u)|
smaller than some o(r−2). �

LEMMA 5.14. For some Karc < ∞ and every r > 0 there is ℓ(r) < ∞ such that for all

ℓ : ℓ(r) ≤ ℓ ≤ ∞ and u ∈ �ℓ ∩ C(x0,∞, r) the estimate | log Hℓ(u)| ≤ Karcr
−2 holds.

Proof. Under φ−1
±,∞ vertical lines are mapped to arcs, which tend to x0,∞ with tangents

at angle π/4 with the real line. Hence, for L1 large enough and positive, the preimage

of L1 + ιR is in the domain of the repelling Fatou coordinate of G∞. Its image by the

repelling Fatou coordinate is contained in some right half-plane Re z > L2, L2 > 0. For

n > 0 the image of L1 + n log τ 2
∞ is contained in Re z > L2 + n. From the asymptotics

of the repelling Fatou coordinate, the preimage of L1 + n log τ∞ by H∞ is contained

in D(x0,∞, Kn−2). Hence the desired estimate for ℓ = ∞ follows on the set φ−1
±,∞({u :

Re u > L1 + log τ 2
∞}). For ℓ large enough it is then derived from Proposition 3. On the

other hand, when Re u is bounded, for ℓ sufficiently large the preimage by φ±,ℓ is contained

in the wedge |arg(u− x0,∞)2| < 3
4
π and Lemma 5.13 applies with a stronger claim. �

LEMMA 5.15. For some K5.15 < ∞ and every r > 0 there is ℓ5.15(r) < ∞ such that for

all ℓ : ℓ5.15(r) ≤ ℓ ≤ ∞ and u ∈ C(x0,∞, r) the estimate | log 8ℓ(u)| ≤ K5.15r
−2 holds.

Proof. The term log u from Definition 5.15 is bounded and can be ignored. Now in view

of Lemma 5.14 the estimate needs to be established for u outside of �ℓ. But then the

difference between t−1
ℓ k±,ℓ(u) and log Hℓ(u) at a point of X±,ℓ(r), cf. Proposition 8, is

uniformly bounded by Lemma 5.11 and Corollary 5.1. �

LEMMA 5.16. In the setting of Proposition 9, for every ǫ > 0, 0 < r ≤ r(ǫ) and ℓ ≥ ℓ(r),

∣

∣

∣

∣

∣

Re

[

ι

2

∫

C(x0,∞,r)

8ℓ(u)ψℓ(u) du

]∣

∣

∣

∣

∣

<
ǫ

2
.

Proof. We pick an η > 0 having in mind the statement of Lemma 5.13 and then split the

arc C(x0,∞, r) into the sum of arcs C±, which are contained in the sector u : |u− x0,∞| =
r , −π + ǫ < arg(u− x0,∞)2 < π − ǫ and in �ℓ and c± which is the rest. The angular

measure of c± does not exceed η. If we take into account that |ψℓ(u)| ≤ K1|u− x0,∞| by

Lemma 5.12 and combine with the estimate of Lemma 5.15, both holding when ℓ ≥ ℓ(r),

then for such ℓ,

∣

∣

∣

∣

∫

c±
8ℓ(u)ψℓ(u) du

∣

∣

∣

∣

≤ K1η. (34)

We want to have K1η(ǫ) = ǫ/6, which sets a value η(ǫ).
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Now we pass to estimating the integral along C±. We will rely on Lemma 5.13, which

requires r < r(η(ǫ)) := r(ǫ).

Then, by Lemma 5.13,
∣

∣

∣

∣

Re

[

ι

∫

C±
log Hℓ(u)ψℓ(u) du

]∣

∣

∣

∣

=
∣

∣

∣

∣

Re

[

ι

∫

C±
γℓ(x0,∞)CFatou

z

z2
dz

]∣

∣

∣

∣

+ CFatour
−1Oψ (r

2)+K2r
2oFatou(r

−2). (35)

The residual terms in estimate (35) tend to 0 as r → 0+ and by r(ǫ) sufficiently small, we

can ensure that they add up to less than ǫ/3. The main term is evaluated directly

Re

[

ι

∫

C±

z

z2
dz

]

= 2Re

[

1

2ι
exp(−2ιθ)|θ2

θ1

]

, (36)

where z = r exp(ιθ). θ1 and θ2 are in the form ±(π/2 − η/2). Inserting ±π/2 for θ1, θ2

results in a purely real difference and hence zero contribution to the real part of the

main integral. What remains has absolute value bounded by η. So, this time by possibly

decreasing η we get less than ǫ/6. This, together with estimates (34) and (35), yields the

claim of the lemma. �

5.5.3. Length of the boundary arcs. Let us write w(σ , s, ℓ) for ∂�σ ,ℓ ∩ Hs where σ , s

can be any combination of +, −. For r > |x+,ℓ − x0,ℓ| we will write wr(σ , s, ℓ) for the

smallest connected subarc of w(σ , s, ℓ), which touches xs,ℓ and contains w(σ , s, ℓ) ∩
D(x0,ℓ, r).

LEMMA 5.17. For every ε > 0 there exist ℓ(ε) < ∞ and r(ε) > 0 so that for

every ℓ ≥ ℓ(ε) and σ , s = ±, we get r(ε) > |x±,ℓ − x0,ℓ| and the Euclidean length

|wr(ε)(σ , s, ℓ)| < ε.

Proof. We start by observing that the length of the basic arc G−1
±,ℓ[yℓ, 0) is uniformly

bounded for all ℓ sufficiently large. That arc is the preimage under φσ ,ℓ of the horizontal ray

x + ιπ : −∞ < x < log |yℓ|. For ℓ = ∞ it is an analytic arc of finite length. As ℓ → ∞
φ−1
σ ,ℓ converge uniformly to φ−1

σ ,∞ together with the derivatives, by Cauchy estimates.

Then w(σ , s, ℓ) is formed by taking images under the inverse map G−1
ℓ . These map-

pings all have uniformly bounded distortion for ℓ large enough and hence we can estimate

the length by taking the sum of absolute values of the derivatives DzG
−n
ℓ (G−1

±,ℓ(yℓ)).

The requisite estimates are provided by Lemma 3.8. Point z in the lemma will be

chosen as

z(σ , s, ℓ) := G
−n(σ ,s)
ℓ (G−1

s′,ℓ(yℓ)), (37)

where s′ = ± and is equal to s if and only if n(σ , s) is even. This will do for n(σ , s) and

ℓ large enough, since z needs to be close enough to xs,ℓ and then the condition on the

argument of z− xs,ℓ is also satisfied by Lemma 3.1.

Then Lemma 3.8 specifies k(z(σ , s, ℓ), ℓ), which will be written as k(σ , s, ℓ). First

look at the estimate for |DzG−1
ℓ (z(σ , s, ℓ))| for k ≥ k(σ , s, ℓ). Recall that limℓ→∞ ρℓ =
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0. Take η = 1
4

while r in Lemma 3.8 can be fixed since z(σ , s, ℓ) is given by formula (37).

For ρℓ small enough, (1 + ρℓ)
− 1

8 < 1 − ρℓ/7 and hence the sum of those derivatives is

bounded by 9L
√
ρℓ, which can be made arbitrarily small by taking ℓ large enough.

For k̂ < k(σ , s, ℓ) the sum of the derivatives of iterates between k̂ and k(σ , s, ℓ) is

bounded byL′/
√

k̂. It remains to show that as r → 0 in the statement of the present lemma,

G−2k
ℓ z(σ , s, ℓ) ⊂ D(x0,ℓ, r) implies k ≥ k̂(r) and k̂(r) can be made as large as needed

by making r small. This is indeed so, since the hyperbolic distance between z(σ , s, ℓ)

and G−2
ℓ (z(σ , s, ℓ)) is fixed and then shrunk by iterates. Finally, the condition r(ε) >

|x0,∞ − x±,ℓ| can be satisfied by again specifying ℓ(ε) sufficiently large. �

Proof of Proposition 9. In view of Lemma 5.16 it remains to estimate

∫

∂�ℓ∩D(x0,∞,r)

(

log
Hℓ(u)

u
−8ℓ(u)

)

du.

The integrand is uniformly bounded for all ℓ sufficiently large by Corollary 5.1. The length

of ∂�ℓ ∩D(x0,∞, r) can be made arbitrarily small for all ℓ large enough including ∞ by

Lemma 5.17 by making r small. Proposition 9 has been established. �

5.5.4. Integral of 8ℓ outside of Aℓ.

PROPOSITION 10. For every ǫ > 0 there is r(ǫ) > 0 and for every 0 < r ≤ r(ǫ) there is

ℓ10(r) < ∞ such that

for all ℓ, ℓ9(r) ≤ ℓ ≤ ∞ H⇒
∣

∣

∣

∣

∣

∫

D(x0,∞,r)\Aℓ
|Re8ℓ(u)| γℓ(u) dLeb2(u)

∣

∣

∣

∣

∣

< ǫ.

Proof. For the complement of �ℓ. Let W±,ℓ := H± \�ℓ. For r small and ℓ large given r,

D(x0,∞, r) \ Aℓ contains two sets

W±,ℓ(r) := D(x∞,0, r) ∩W±,ℓ.

We will prove the estimate of Proposition 10 first for these sets.

Let us consider the case of ℓ = ∞ first. Under the repelling Fatou coordinate W±,∞ is

a strip of bounded horizontal width. Thus the measure of Wk = {u ∈ W±,∞(r) : k − 1 ≤
|t−1

∞ k±,∞(u)| ≤ k} is O(k−3). Thus,

∣

∣

∣

∣

∣

∫

W±,∞(r)
8∞(u)γ∞(u) dLeb2(u)

∣

∣

∣

∣

∣

≤ K
∑

k≥k(r)
k−2,

where k(r) is the smallest k for whichWk is non-empty. Since limr→0+ k(r) = ∞ this can

be made less than ǫ/2 by taking r(ǫ) small.

For ℓ finite we observe first that since log Hℓ is real on ∂�ℓ, then by Corollary 5.1, the

imaginary part of t−1
ℓ log k±,ℓ is bounded on ∂�ℓ, as well as on the arc of C(x0,∞, r),

which joins the components of ∂�ℓ by Lemma 5.11. By the maximum principle for

harmonic functions the imaginary part is thus bounded on W±,ℓ(r) for ℓ large enough

depending on r.
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The real part, on the other hand, by the functional equation is just the exit time from

W±,ℓ(r) under Gℓ up to constants. In the notation of §4.5,

|Re t−1
ℓ log k±,ℓ(u)| ≤ K2Epar,ℓ(τ

−1
ℓ u)+K3.

The integral of this over u ∈ W±,ℓ(r) : |t−1
ℓ Re k±,ℓ(u)| ≥ k(r) tends to 0 with k(r) →

∞ by Proposition 6 and since limr→0+ k(r) = ∞ as in the case of ℓ = ∞, the proof is

finished.

For τ−1
ℓ �ℓ. The rest of D(x0,∞, r) \ Aℓ is the set τ−1

ℓ �+,ℓ ∩D(x0,∞, r). log Hℓ is

defined in this sector. This time we will write wℓ(r) := τ−1
ℓ �+,ℓ ∩D(x0,∞, r).

The imaginary part of log Hℓ is bounded by π on wℓ(r) and the integral of the real part

of log Hℓ = log τ 2
ℓ + φ−,ℓ over the set

Q(λ, ℓ) := {u ∈ �−,ℓ : ReHℓ(u) < λ, |ImHℓ(u)| < π}

tend to 0 uniformly with respect to ℓ, cf. Lemma 4.7. Since for every λ there is r(λ) > 0

such that for all ℓ wℓ(r(λ)) ⊂ Q(λ, ℓ), the integral can be made arbitrarily small for all ℓ

by making r small enough.

Proposition 10 has been proved. �

Proof of Theorem 7. Convergence of the right-hand side. From formula (33) and Proposi-

tions 9,10 in the case of ℓ = ∞ we conclude that for every ǫ > 0 there is r∞(ǫ) > 0 such

that whenever 0 < ρ < r < r∞(ǫ), then
∣

∣

∣

∣

∣

∫

{u: ρ<|u−x0,∞|<r}∩A∞
Re
H∞(u)

u
γ∞(u) dLeb2(u)

∣

∣

∣

∣

∣

< ǫ.

Hence, the limit of right-hand side of the formula in Theorem 7 exists and will be

denoted with ϑ∞.

Convergence for finite ℓ. For finite ℓ, the same Propositions and formula (32) it follows

that for every ǫ > 0 there are r(ǫ) > 0, then for every 0 < r ≤ r(ǫ) there is ℓ(r) such that

for all ℓ ≥ ℓ(r),
∣

∣

∣

∣

∣

ϑℓ + 1

log τℓ

∫

Aℓ\D(x0,∞,r)

Re
Hℓ(u)

u
γℓ(u) dLeb2(u)

∣

∣

∣

∣

∣

< ǫ. (38)

The link between finite and infinite ℓ. Now take ρ : r(ǫ) ≥ ρ > 0 such that
∣

∣

∣

∣

∣

ϑ∞ + 1

log τ∞

∫

A∞\D(x0,∞,ρ)

Re
H∞(u)

u
γ∞(u) dLeb2(u)

∣

∣

∣

∣

∣

< ǫ. (39)

By estimate (29) there is ℓ̂(ρ) < ∞ such that if ℓ ≥ ℓ̂(ρ), then
∣

∣

∣

∣

∣

− 1

log τℓ

∫

Aℓ\D(x0,∞,ρ)

Re
Hℓ(u)

u
γℓ(u) dLeb2(u)

+ 1

log τ∞

∫

A∞\D(x0,∞,ρ)

Re
H∞(u)

u
γ∞(u) dLeb2(u)

∣

∣

∣

∣

∣

< ǫ.
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When ℓ ≥ max(ℓ(ρ), ℓ̂(ρ)), from the estimate above and (38) we conclude that
∣

∣

∣

∣

∣

ϑℓ + 1

log τ∞

∫

A∞\D(x0,∞,ρ)

Re
H∞(u)

u
γ∞(u) dLeb2(u)

∣

∣

∣

∣

∣

< 2ǫ.

When (39) is taken into account, we get |ϑℓ − ϑ∞| < 3ǫ which ends the proof. �

5.6. Main theorems. Theorem 1 follows from the first claim of Theorem 6. The

convergence claim in Theorem 2 follows from the convergence in Theorem 6 and the drift

formula from Theorem 7.
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