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1. Introduction

This paper is a continuation of our work [28]. Based on the methods and results

established in [27] and [28], we determine the Galois representations inside the `-adic

cohomology of some quaternionic and related unitary Shimura varieties at ramified places.

The main results generalize the work of Reimann [19, 22] and Kottwitz [12] in this setting

to arbitrary levels at p (6= `), and confirm the expected description of the cohomology

due to Langlands and Kottwitz.

The problem of determining the Galois representations in the cohomology of Shimura

varieties, or somehow equivalently, of computing the Hasse–Weil zeta functions of these

varieties, has been playing a central role in the Langlands program. Langlands and

Kottwitz had given a conjectural description of the Galois representations inside the

cohomology (cf. [9]). Roughly it says that, the Galois representation associated to an

automorphic representation when restricting to a place above p is given by the local

Langlands correspondence for the local reductive group. Many authors have made great

contribution to this field. For the related history we refer to the introductions of [9, 12].
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2 X. Shen

In [27], Scholze and Shin have solved this problem for some compact unitary Shimura

varieties at (ramified) split places such that the related local reductive groups are

products of Weil restriction of GLn . In [28], we have also solved the case of Shimura

varieties which admit p-adic uniformization by finite products of Drinfeld upper half

spaces. There the local reductive groups have some factors as the multiplicative group of

a central division algebra of invariant 1
n . Both [27] and [28] allow the level structures at

p to be arbitrary.

In this paper, we concentrate on another special class of Shimura varieties which are

related to GL2 (more precisely, the inner and outer forms of GL2). These varieties were

already studied previously by Reimann in [19–22] and by Kottwitz [12] (the case n = 2
there). Let D be a quaternion division algebra over a totally real number field F , and D×

be the associated multiplicative group over Q. After fixing some suitable CM extension

K |F , one can associate a unitary group G over Q. For any open compact subgroup

C ⊂ D×(A f ), we have the quaternionic Shimura variety ShD,C , which is projective. Unless

D is totally indefinite, these varieties are not of PEL type. To study their reduction

modulo p and cohomology, in [19, 21] Reimann introduced some PEL Shimura varieties

ShG,C for the unitary group G and some related open compact subgroup C ⊂ G(A f ).

By the theory of connected components of Shimura varieties, the varieties ShD,C can be

considered as open and closed subvarieties of some suitable Galois twists of ShG,C . Let p
be a prime which is unramified in F . When C has the form

C pC p ⊂ D×(Ap
f )× D×(Qp)

with C p maximal, in loc. cit. Reimann defined some integral models of ShG,C by proposing

suitable moduli problems. Then he defined the integral models of ShD,C by using Galois

twists and taking suitable connected components as on generic fibers. By studying the

local structures and reduction modulo p of these models, Reimann can determine the

local semisimple Hasse–Weil zeta function of ShD,C as a local semisimple automorphic

L-function for the above form of C (and also for the case that C p ⊂ D×(Qp) is the Iwahori

subgroup, cf. [22]). His results generalized the previous works of Langlands [13] (in the

case D×Qp
unramified) and Rapoport [15] (in the case D is totally indefinite, p is inert

in F and DQp is a local quaternion algebra). In this paper we would like to generalize

Reimann’s results to arbitrary levels at p as in the works of [27] and [28].

In fact, we can modify the group G a little to get another unitary group G ′ associated

to the CM extension K |F and D. For the related levels C
′

to C (see section 2 for precise

meaning), we have the Shimura varieties ShG ′,C ′ , which are the simple Shimura varieties

studied by Kottwitz in [12] for n = 2. It turns out we can treat this case all together with

the quaternionic case. The key new point is that here we can take arbitrary p, e.g., D
can be ramified at the primes of F above p so that the local reductive group G ′Qp

is not

quasi-split, therefore not included in [12] or [27]. Due to the non-quasi-split assumption

for the reductive groups at p, the set of Kottwitz triples is not enough for parameterizing

the points on these varieties over finite fields, contrary to the unramified case of [10]

and quasi-split case [26]. Here as [16], [19] and [28], we use the original approach of

Kottwitz as in [8] to get suitable combinatorial description of the points over finite fields.

As in [27] and [28], having the description of the set of points of reduction modulo p on
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On the cohomology of some simple Shimura varieties with bad reduction 3

these varieties, the crucial ingredient is to define some suitable test functions at p which

will appear in the trace formula when analyzing the cohomology. There are two cases.

• For the unitary case, these functions are already available: if D is split at a place ν

above p, the factor at ν was defined in [26] (the EL case n = 2); if D is ramified at a

place ν above p, the factor at ν was defined in [28] (for n = 2) which in turn was based

the approach of Scholze [24–26] by deformation spaces of p-divisible groups.

• For the quaternionic case, one needs just to take the Galois twist into consideration

and the method of Scholze applies.

Then as in [28], the next tasks are to prove

• some vanishing results for these test functions so that they admit transfers as functions

on D×(Qp) or G ′(Qp) (cf. [16, Conjecture 5.7] and [17, Conjecture 10.2]),

• and these transfer functions satisfy some suitable character identities as [27,

Conjecture 7.1] (see also [6, Conjectures 6.1.1 and 6.2.3]).

For the proofs, we decompose the test functions as products of factors over the places ν

of F above p and consider each factor. Then the split case follows from the results of [27]

and the ramified case follows from the results of [28]. At this point, we have to make some

assumptions for the cocharacters at these ramified places to put ourselves into the local

situation of cf. [28, § 4], for details. Here, in fact, the first point only concerns ramified

places.

With these results at hand, one can deduce the desired description of the cohomology.

Let G = D× or G ′. Let l 6= p be prime, and ξ be an algebraic Ql -representation of G.

Then by standard method we can associate Ql -local systems Lξ on the Shimura varieties

ShG,C for any open compact subgroup C ⊂ G(A f ). Let E be the local reflex field. We are

interested in the alternating sum of cohomology groups

Hξ =
∑

i

(−1)i lim
−→
C

H i (ShG,C ×Qp,Lξ )

as a virtual representation of G(A f )×WE . The main theorem is as follows. Recall

the cocharacter µ associated to the Shimura data gives rise to a representation rµ :
L(G E ) −→ GL(V ) for a finite dimensional Ql -vector space V (cf. [8, 2.1.2]).

Theorem 1.1. We have an identity

Hξ =
∑
π f

a(π f )π f ⊗ (rµ ◦ϕπp |WE )| − |
−d/2

as virtual G(Zp)×G(Ap
f )×WE -representations. Here π f runs through irreducible

admissible representations of G(A f ), the integer a(π f ) is as in [12, p. 657], ϕπp is the local

Langlands parameter associated to πp, d = dimShG,C is the dimension of the Shimura

varieties ShG,C for any open compact subgroup C ⊂ G(A f ).

In this paper we assume p is unramified in the totally real field F as in the works [19–22].

This assumption will imply that the integral models of our Shimura varieties are flat. We

remark that the general case which allows the ramification of p should be workable as

in [26] by taking flat closure of the generic fibers in the naive integral models.
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4 X. Shen

As a corollary we get the semisimple zeta functions of these Shimura varieties. Our

result generalizes the previous works of Reimann [19, 22] to arbitrary levels at p. Let Ẽ
be the global reflex field and ν be a place of Ẽ above p such that E = Ẽν .

Corollary 1.2. Let the situation be as in the theorem. Let C ⊂ G(A f ) be any sufficiently

small compact open subgroup. Then the semisimple local Hasse–Weil zeta function of

ShG,C at the place ν of Ẽ is given by

ζ ss
ν (ShG,C , s) =

∏
π f

Lss(s− d/2, πp, rµ)
a(π f )dimπC

f .

We briefly describe the content of this article. In § 2, we introduce the quaternionic

and related unitary Shimura varieties to be studied. In § 3, we summarize the results

of Reimann on integral models of quaternionic Shimura varieties ShD,C and the unitary

Shimura varieties ShG,C and their reduction modulo p. We also treat the simple unitary

case ShG ′,C ′ . In § 4, we define some test functions at p following the method of Scholze for

the quaternionic and unitary case and study their key properties. Finally, in § 5, we deduce

the cohomology of these Shimura varieties as expected by Langlands and Kottwitz,

and determine their local semisimple zeta functions as products of local semisimple

automorphic L-functions.

2. Some simple Shimura varieties

In this section we mainly (but not all) follow the notations of [19, § 1]. We also introduce

some related unitary Shimura varieties which are special cases of those studied in [12]

but not included in the works [19–22].

Let D be a quaternion division algebra over a totally real number field F and let Z
be the set of infinite places of F at which D is split. We assume Z is not empty and for

each v ∈ Z, we fix an embedding of R-algebras C ⊂ Dv = D⊗F,v R. Let D× denote the

reductive group over Q associated to D. We get a homomorphism of algebraic groups

over R

hD : S = C× −→
∏
v∈Z

D×v ⊂ (DR)
×

z 7−→ (z|v ∈ Z).

Let X be the conjugacy class of hD which does not depend on the choice of embeddings

C ⊂ Dv. (D×, X) forms a Shimura datum with reflex field

E(D) = Q
(∑
v∈Z

v(x)| x ∈ F
)
⊂ C.

For every open compact subgroup C ⊂ D×(A f ), let ShD,C be the projective Shimura

variety with level C over E(D). Except for the special case that Z = Hom(F,R), i.e.,

D is totally indefinite, these Shimura varieties are not of PEL type. To construct their

integral models and to study the reduction modulo p, we introduce some related Shimura

varieties as follows.
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Fix a totally imaginary quadratic extension K |F with complex conjugation c and

a subset VK of Hom(K ,C) such that its restriction to F induces a bijection VK →

V := Hom(F,R)−Z. For each v ∈ VK , fix an isomorphism Kv ' C. Consider K× as an

algebraic group over Q together with the homomorphism of real algebraic groups

hK : S −→
∏
v∈VK

K×v ⊂ (K ⊗R)×

z 7−→ (z|v ∈ VK ).

For every open compact subgroup C ⊂ K×(A f ) we get a Shimura variety ShK ,C over

the reflex field E(K ) which is a finite extension of E(D). This variety is a finite reduced

scheme with

ShK ,C (Q) = K×(A f )/C K×.

The Galois action of Gal(Q|E(K )) on these varieties is understood by class field theory

and the reciprocity law map

rK : E(K )× −→ K×.

Let B = D⊗F K be the semisimple algebra over K . We choose a positive involution ∗

on B and fix a non-degenerate alternating Q-bilinear form ψ : B× B → Q. Consider the

associated unitary similitude group G over Q consisting of automorphisms of B which

preserve ψ up to an F×-scalar. Then there is an exact sequence for algebraic groups over

Q (cf. [19, § 1])

1 −→ F× −→ D×× K×
τ
−→ G −→ 1.

Here F× −→ D×× K× is the embedding f 7→ ( f, f −1). In particular, the group G is the

Weil restriction of a reductive group defined over F . Under the above exact sequence the

center of G is isomorphic to K×. Let Y be the conjugacy class of

hG = τR ◦ (hD × hK ) : S −→ GR.

Then (G, Y ) defines a Shimura datum with reflex field E(K ). For each open compact

subgroup C ⊂ G(A f ), we have a projective variety ShG,C over E(K ), which is a coarse

moduli space of abelian varieties with some additional structures. For the reader’s

convenience, we review the related moduli problem as follows. To do this, let us first

review a definition of [19]. In the following, for a number field F ′ we denote by OF ′ its

ring of integers. Since the Galois group Gal(Q|E(K )) stabilizes VK and Z, there is a

natural decomposition

OK ⊗Z OE(K ) = O(Z)× O(VK )× O(VK ),

where

O(Z) = {x ∈ OK ⊗Z OE(K )| (ϕ⊗ id)(x) = (ϕ⊗ id)(x) = 0, if ϕ ∈ VK },

O(VK ) = {x ∈ OK ⊗Z OE(K )| (ϕ⊗ id)(x) = 0, if ϕ ∈ Hom(K ,C)−VK },

O(VK ) = {x ∈ OK ⊗Z OE(K )| (ϕ⊗ id)(x) = 0, if ϕ ∈ Hom(K ,C)−VK }.

Then if F is a sheaf of OK ⊗ OE(K )-modules on an OE(K )-scheme S, the above

decomposition induces a corresponding decomposition

F = F(Z)×F(VK )×F(VK ).
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Let L be a CM extension of F which is contained in D. By [19, Definition 2.1], a sheaf of

type (L ,VK ) on an OE(K )-scheme S is a coherent sheaf of OS-modules F together with a

homomorphism

OL ⊗OF OK → EndOSF

such that locally for the flat topology on S we have

• F is a free OL ⊗ZOS-module,

• F(Z) is a free OL ⊗OF O(Z)⊗OE(K ) OS-module,

• F(VK ) = 0.

Now consider the moduli problem MG,C such that for any locally noetherian E(K )-scheme

S, MG,C (S) is the set of isomorphism classes of (A, ι,3, η) where

• A is a projective abelian scheme over S,

• ι : B → End(A)⊗Q is an embedding such that LieA is a sheaf of type (L ,VK ), where

L ⊂ D is a fixed CM extension of F contained in D,

• 3 = λ ◦ ι(F×) ⊂ Hom(A, A∨)⊗Q for a polarization λ of A,

• η is a C-level structure on A.

Then ShG,C is the coarse moduli space for MG,C . In fact, ShG,C represents the étale

sheafification of the functor MG,C (cf. [21, Definition 2.2 and Proposition 2.14]). The

above exact sequence defines a morphism over E(K ) for C1×C2 ⊂ D×(A f )× K×(A f )

mapping to C ⊂ G(A f )

(ShD,C1 × E(K ))×ShK ,C2 −→ ShG,C ,

when C1,C2 vary these morphisms are D×(A f )× K×(A f )-equivariant.

For every open compact subgroup C ⊂ D×(A f ), we define the following notations:

CF = C ∩ F×(A f ),

NC = min{N > 0|(1+ N OF ⊗ Ẑ)× ⊂ CF },

CK = CF (1+ NC OK ⊗ Ẑ)×,
C = τA f (C ×CK ).

Then as in [19, § 1], for any C ⊂ D×(A f ) with NC > 3, we get a Galois covering

(ShD,C × E(K ))×ShK ,CK −→ ShG,C

with Galois group F×(A f )/CF F×. This yields a constant Galois covering with the same

Galois group

(ShD,C × E(K ))× K×(A f )/CK K× −→ MC ,

where the projective variety MC over E(K ) is defined as follows. The above morphism

τ : D×× K×→ G identifies K× with the center of G and CK with a subgroup of C ,

hence defines an action of K×(A f )/CK K× on ShG,C . Let LC denote the finite abelian

extension of E(K ) such that

rK : E(K )×(A f ) −→ K×(A f )
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induces an injection

rK ,C : Gal(LC |E(K )) −→ K×(A f )/CK K×.

Then there is an isomorphism φC of LC -schemes such that the following diagram

MC × LC
φC //

id×σ
��

ShG,C × LC

rK ,C (σ )
−1
×σ

��
MC × LC

φC // ShG,C × LC

commutes for every σ ∈ Gal(LC |E(K )). The existence and uniqueness of MC follows from

descent theory. Let

πC : MC −→ K×(A f )/F×(A f )CK K×

be the projection, then there is a natural isomorphism of E(K )-schemes

ShD,C × E(K ) −→ π−1
C (1) ⊂ MC .

We can define an action of G(A f ) on the varieties MC when C varies. Then the above

isomorphisms are D×(A f )-equivariant with respect to τ . In fact one can interpret MC as

a Shimura variety as follows.

Proposition 2.1. (G, hGh−1
K ) defines a Shimura datum with reflex field E(D), where

hGh−1
K : S −→ G is defined by τR ◦ (hD × hK h−1

K ). Let C ⊂ G(A f ) be the open compact

subgroup as above, and Sht
G,C

be the associated Shimura variety with level C for the

datum (G, hGh−1
K ). Then we have a canonical isomorphism of varieties over E(K )

MC ' Sht
G,C
× E(K ).

Proof. This is clear from our construction and the basic theory of canonical models of

Shimura varieties.

We would like to introduce a further class of related Shimura varieties. These are of

special cases studied by Kottwitz in [12]. Consider the norm map of algebraic groups

over Q

G −→ F×

(g, z) 7−→ Nm(g)zzc,

where Nm : D×→ F× is the reduced norm. We consider Q×(= Gm) ⊂ F×(= ResF |QGm),

and let G ′ ⊂ G be the inverse image of Q× under the above norm map. It is also the

group of B-module automorphisms of B which preserve ψ up to a Q×-scalar. The center

of G ′ is K× ∩G ′. The morphism hG factors through G ′ and defines

hG ′ : S −→ G ′R.

G ′ and the conjugacy class of hG ′ then define a Shimura datum with reflex field E(K ). We

note that since G ′ is associated to a quaternion algebra, it satisfies the Hasse principle

for H1(Q,G ′) (cf. [10, § 7]). For any open compact subgroup C ⊂ G ′(A f ), we have a
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Shimura variety ShG ′,C over E(K ), which is a moduli space of abelian varieties with some

additional structures when C is sufficiently small. For any locally noetherian E(K )-scheme

S, ShG ′,C (S) = {(A, ι, λ, η)}/ ' with (A, ι, η) the same as in the case of ShG,C and λ is

a principal polarization of A. For any open compact subgroup C ⊂ D×(A f ), we have

defined the open compact subgroup C ⊂ G(A f ). Let C
′
= C ∩G ′(A f ), which is an open

compact subgroup of G ′. We have a morphism of varieties over E(K )

ShG ′,C ′ −→ ShG,C .

In fact, the Shimura varieties ShD,C , ShG,C , ShG ′,C ′ have isomorphic geometric irreducible

components, and we can also use ShG ′,C ′ to study the geometry of ShD,C .

3. Integral models and points of reduction modulo p

We define some integral models of the Shimura varieties introduced in last section. Since

our ultimate goal is to study their `-adic cohomology, we describe the points of reduction

modulo p of these varieties. For the Shimura varieties ShD,C and ShG,C , we summarize the

results of [19, §§ 2–7]. We note that the authors of [29] have also studied the geometry

of these Shimura varieties, but there they made some additional assumptions so that

they got smooth integral models. Here we allow arbitrary ramifications, and the integral

models obtained are all normal, projective and flat.

Let p be a prime which is unramified in F . The primes of F above p are denoted by

ν1, . . . , νm . Assume that each νi splits in K as ν̃i , ν̃
c
i . Fix a prime $ of E(K ) above p, and

let E = E(K )$ . By abuse of notation, the base changes of ShD,C , ShG,C , ShG ′,C ′ over E
are still denoted by the same notation. Let OE be the integer ring of E . Throughout

this set, C is of the form C = C pC0
p ⊂ D×(Ap

f )× D×(Qp) with C0
p the maximal open

subgroup of D×(Qp) associated to a maximal order OD ⊂ DQp . We are going to define

some integral models of these varieties over OE and describe their points of reduction

modulo p. We require the conditions (2.6)–(2.9) in [19, § 2] for the choices of L , K ,VK ,

and ψ hold true.

Let us begin by the easy case of ShG ′,C ′ . We assume C p is sufficiently small so that

C and C
′

are sufficiently small (actually the C p such that NC > 3 will be enough).

Corresponding to OD we have a maximal oder OB ⊂ BQp . Then there is a projective

OE -scheme SG ′,C such that for each locally noetherian connected OE -scheme S, SG ′,C ′(S)
is the set of isomorphism classes of objects (A, ι, λ, η) where

• A is a projective abelian scheme over S,

• ι : OB → End(A) is an embedding such that LieA is a sheaf of type (L ,VK ),

• λ is a p-principal polarization of A,

• η is a (C
′
)p-level structure on A.

Since we assume p is unramified in F , the theory of local models tells us that the scheme

SG ′,C is flat over OE (cf. [5, Theorem 4.6.1]). Note the local reductive group has the form

G ′Qp
'

m∏
i=1

B×
ν̃i
×Gm '

m∏
i=1

D×νi
×Gm .
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To define the integral model of ShG,C , one can consider the integral version MG,C of the

moduli problem MG,C . More precisely, for any locally noetherian connected OE -scheme

S, MG,C (S) is the set of isomorphism classes of (A, ι,3, η) where

• A is a projective abelian scheme over S,

• ι : OB → End(A)⊗Z(p) is an embedding such that LieA is a sheaf of type (L ,VK ),

• 3 = λ ◦ ι(F×) ⊂ Hom(A, A∨)⊗Q for a p-principal polarization λ of A,

• η is a C
p
-level structure on A.

By [19, Proposition 2.14], there is a coarse moduli scheme SG,C over OE for the moduli

problem MG,C , which is projective flat. In fact SG,C represents the étale sheafification

of the moduli problem MG,C (cf. [19, Remark 2.17]). It is important for us to note that

there is an action of K×(Qp) on SG,C , which extends the action of K×(Qp) on ShG,C .

This action can be described as follows. An element k ∈ K×(Qp) sends a point (A, ι,3, η)
to (A, ι,3, ηk). The local reductive group has the form

GQp =

m∏
i=1

Gi ,

where for each 1 6 i 6 m the group Gi is defined by the following exact sequence of

reductive groups over Qp

1 −→ F×νi
−→ D×νi

× K×
ν̃i
× K×

ν̃c
i
−→ Gi −→ 1.

In particular, after fixing isomorphisms K×ν̃i
' K×

ν̃i
c ' F×νi

, we can identity Gi with the

group D×νi
× F×νi

. Let Fp be a fixed algebraic closure of the finite field Fp. In [19], Reimann

computed the strict complete local rings Ôx for any Fp-point x of SG,C , and proved the

scheme SG,C is normal.

The reciprocity law rK of the finite Shimura varieties ShK ,CK gives rise to a continuous

homomorphism

rK ,p : E× −→ K×(Qp).

Let kD = rK ,p(p), then it acts on SG,C . This element can be described explicitly as

kD = ((pe1 , 1), . . . , (pem , 1)) ∈ K×(Qp) =

m∏
i=1

(K×ν̃i
× K×

ν̃i
c ) '

m∏
i=1

(F×νi
× F×νi

),

where for 1 6 i 6 m, the integers ei are defined as in [19, Lemma 5.9]. Let Fr ∈ Gal(Qnr
p |E)

denote the Frobenius automorphism and MC the normal projective flat OE -scheme which

is, up to isomorphism, uniquely determined by the existence of an isomorphism φC of

Znr
p -schemes such that the following diagram commutes:

MC ×Znr
p

φC //

id×Fr
��

SG,C ×Znr
p

kD×Fr
��

MC ×Znr
p

φC // SG,C ×Znr
p
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In fact MC and SG,C become isomorphic to each other after a finite unramified

extension Zpd of Zp, as some finite power of kD will act trivially on ShK ,CK and thus

on SG,C . Here Znr
p (respectively Zpd ) is the integer ring of the maximal (respectively

degree d) unramified extension of Qp. When C p varies, there is a continuous action of

K×(Qp)×G(Ap
f ) on the tower MC . And we have natural K×(Qp)×G(Ap

f )-equivariant

isomorphisms of varieties over E

MC × E ' MC × E .

The scheme MC is normal. We have a K×(A f )-equivariant morphism of OE -schemes

πC :MC −→ K×(A f )/F×(A f )CK K×.

We define an integral model of ShD,C by

SD,C := π
−1
C (1) ⊂MC .

When C p varies, we get a tower of normal projective flat OE -schemes SD,C with an action

of D×(Ap
f ). The local reductive group for this case is

D×Qp
=

m∏
i=1

D×νi
.

We want a description of the set of Fp-points on SG,C . In [19, Definition 4.7], there

is a set ID depending on D, which is roughly the set of all isogeny types of the abelian

varieties with additional structures. For each ϕ ∈ ID, there is a reductive group Gϕ over

Q and a set Yϕ together with an automorphism Frϕ : Yϕ → Yϕ such that the subset

SG,C (ϕ) ⊂ SG,C (Fp) consisting of elements of isogeny type ϕ can be written as

Gϕ(Q) \ Yϕ ×G(Ap
f )/C

p
,

with the Frobenius Fr acts via the automorphism Frϕ of Yϕ . In fact, let x0 = (A, ι,3, η) ∈
SG,C (Fp) be a fixed point of isogeny type ϕ. One can take Gϕ = Aut(A, ι,3). Let

N = D(A[p∞])Q be the rational covariant Dieudonné module of the associated p-divisible

group, which is a B-module equipped with a perfect hermitian form. Let F denote the

Frobenius automorphism on N . Then Yϕ is the set of all OB-invariant lattices M ⊂ N
such that pM ⊂ FM ⊂ M , FM/pM is an OL ⊗ OK ⊗Fp-module of type (L ,VK ), and

there exists a perfect paring on M . In other words, Yϕ parameterizes all the Dieudonné

modules with additional structures coming from the points in SG,C (Fp) which are

p-isogenous to x0. After fixing a lattice of the form OB ⊗W (Fp), we can identity Yϕ
with a subset of G(K)/G(OK) where K = W (Fp)Q, and OK = W (Fp). Here G(OK) is

defined by the integral model of G associated to OB . The actions of Gϕ(Q) on Yϕ and

G(Ap
f )/C

p
occurring in the above quotient are defined as follows. There is an element

b = b(ϕ) ∈ G(K) associated to ϕ well defined up to σ -conjugacy, such that the Frobenius

F acts on N as bσ . Here, as usual σ is the Frobenius morphism on G(K). Then we can

define a reductive group Jb over Qp such that

Jb(Qp) = {g ∈ G(K)| (bσ)g = g(bσ)}.
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Then Jb(Qp) acts on Yϕ . We have an embedding

Gϕ(Q) ⊂ Jb(Qp)

which gives the action of Gϕ(Q) on Yϕ . On the other hand, we have an embedding

Gϕ(A
p
f ) ⊂ G(Ap

f ),

together with the natural embedding Gϕ(Q) ⊂ Gϕ(A
p
f ), giving the action of Gϕ(Q) on

G(Ap
f )/C

p
. We have

SG,C (Fp) '
∐
ϕ∈ID

Gϕ(Q) \ Yϕ ×G(Ap
f )/C

p
.

When the level C p varies, the above isomorphism is K×(Qp)×G(Ap
f )-equivariant.

For each ϕ ∈ ID, there is a reductive group Hϕ over Q and a set Xϕ together with an

automorphism Frϕ : Xϕ → Xϕ such that the subset SD,C (ϕ) of ϕ-isogeny type points can

be written as

Hϕ(Q) \ Xϕ × D×(Ap
f )/C p,

with the Frobenius Fr acts via the automorphism Frϕ of Xϕ . For the definition of Hϕ , see

[19, Definition 4.6]. The set Xϕ is defined as

{d ∈ D×(K)|d−1dϕσ(d) ∈ YD}/(OD ⊗W (Fp))
×,

where

• YD is as in [19, Definition 5.1]: it is set of all d ∈ D×(K) such that d−1 is contained in

OD ⊗W (Fp) and for every v ∈ Hom(F,K) ' Hom(F,R),

ordp((v⊗ idK)(Nm(d))) =
{
−1 if v ∈ Z,
0 if v ∈ V.

• dϕ is a fixed choice of element defined by [19, Lemma 5.2].

The set Xϕ can also be defined as a set of some suitable Dieudonné lattices (cf. [19,

Lemma 5.10]). Similar to the above, there exists a reductive group Jb over Qp with

Jb(Qp) acts on Xϕ . The group actions occurring in the quotient are defined through

embeddings Hϕ(Q) ⊂ Jb(Qp) and Hϕ(Q) ⊂ Hϕ(A
p
f ) ⊂ D×(Ap

f ). We have an F×(Qp)×

D×(Ap
f )-equivariant bijection (cf. [19, Theorem 6.6(ii)])

SD,C (Fp) '
∐
ϕ∈ID

Hϕ(Q) \ Xϕ × D×(Ap
f )/C p.

In fact, this is deduced from the description of the set SG,C (Fp) above in the following

way: by Lemma 4.10 of loc. cit., there is an exact sequence of reductive groups over Q

1 −→ F× −→ Hϕ × K× −→ Gϕ −→ 1,

and by [19, Lemma 5.9 ] there is a Gϕ(Qp)-equivariant bijection

Yϕ ' F×(Qp) \ (Xϕ × K×(Qp))/(OK ⊗Zp)
×,
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where an element f ∈ F×(Qp) acts on Xϕ via its natural embedding into Hϕ(Qp) and

on K×(Qp) as multiplication by f −1. The Frobenius Frϕ on the left hand side acts as

Frϕ × k−1
D on the right hand side. Therefore, for each ϕ ∈ ID we can rewrite SG,C (ϕ) as

SG,C (ϕ) ' (Hϕ(Q)× K×) \ (F×(Qp) \ (Xϕ × K×(Qp))/(OK ⊗Zp)
×)×G(Ap

f )/C
p

' F×(A f ) \ ((Hϕ(Q) \ Xϕ × D×(Ap
f )/C p)× K×(A f )/CK K×),

with the Frobenius Frϕ acts via the endomorphism Frϕ × k−1
D of Xϕ × K×(Qp).

Now we describe the set SG ′,C ′(Fp). There is a reductive group Iϕ over Q and a set Zϕ
together with an automorphism Frϕ : Zϕ → Zϕ such that the subset SG ′,C ′(ϕ) of points

of isogeny type of ϕ can be written as

Iϕ(Q) \ Zϕ ×G ′(Ap
f )/(C

′
)p,

with the Frobenius acts via the automorphism Frϕ of Zϕ . The group Iϕ and the set Zϕ
are defined similarly to the case of SG,C . As always, after fixing some suitable basis we

can identify Zϕ with a subset of G ′(K)/G ′(OK). Also, there exists a reductive group

Jb over Qp with Jb(Qp) acts on Zϕ . The group actions occurring in the quotient are

defined through embeddings Iϕ(Q) ⊂ Jb(Qp) and Iϕ(Q) ⊂ Iϕ(A
p
f ) ⊂ G ′(Ap

f ). We have

the description of Fp-points

SG ′,C ′(Fp) '
∐
ϕ∈ID

Iϕ(Q) \ Zϕ ×G ′(Ap
f )/(C

′
)p.

Proposition 3.1. Under the above notations, we have a natural morphism of schemes

over OE
SG ′,C ′ −→ SG,C ,

which induces a map on the sets of Fp-points f : SG ′,C ′(Fp) −→ SG,C (Fp). Under this

map we have equalities for each ϕ ∈ ID

SG ′,C ′(ϕ) = f −1(SG,C (ϕ)).

Moreover, SG ′,C ′ is normal.

Proof. We have the natural morphism of functors SG ′,C ′ −→MG,C , which sends

(A, ι, λ, η) to (A, ι,3, η). Moreover, it induces an embedding of a finite étale quotient

of SG ′,C ′ into MG,C (cf. [19, proof of Proposition 2.14]). Now the statements in the

proposition are clear.

For any ϕ ∈ ID, the sets SG ′,C ′(ϕ), SG,C (ϕ) can be also understood from the point of

view of the associated Rapoport–Zink spaces [18]. Namely, the set Zϕ can be considered

as the set of Fp-points of the Rapoport–Zink space associated to the local PEL data

(cf. [18, 3.18])

(BQp , ∗, V = BQp , ψ, OBQp
,3 = OBQp

, b, {µ}),

where b ∈ G ′(K) is an element up to σ −G ′(OK) conjugacy defined by the p-divisible

group associated to a fixed point x ∈ SG ′,C ′(ϕ), {µ} is the conjugacy class of

Qp-cocharacters of G ′ with field of definition E , defined from the morphism hG ′ in the

Shimura datum. The case for Yϕ is similar (cf. [3]).In fact, the sets Zϕ and Yϕ are examples
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of affine Deligne–Lusztig varieties in our setting, which generally occur in the description

of mod p points of Shimura varieties.

We are more interested in the Shimura varieties ShD,C , ShG ′,C ′ . To compute their `-adic

cohomology, we also need to understand the points on them over finite fields. Fix an

integer j > 1. Let κE be the residue field of E , and set r = j[κE : Fp]. Since we assume

that p is unramified in F , the extension E |Qp is also unramified. We begin by recall the

result of [19] for the case of ShD,C .

Proposition 3.2. There is a bijection

SD,C (Fpr ) '
∐
ϕ∈ID

∐
ε

Hϕ,ε(Q) \ X p(δ)× X p(γ ),

where ε runs over the subset of conjugacy classes of Hϕ(Q)/(F× ∩C) which admit a d0
as in [19, Lemma 7.4] (this implies the following sets X p(δ) 6= ∅), Hϕ,ε is the centralizer

of ε in Hϕ, δ ∈ D×(Qpr ) is the element well defined up to σ -conjugacy such that pδ is

defined from ε by Lemma 7.4 of loc. cit., γ ∈ D×(Ap
f ) is defined from ε by the embedding

Hϕ(A
p
f ) ⊂ D×(Ap

f ), X p(δ) and X p(γ ) are defined as follows

X p(δ) = {x ∈ Xϕ |Fr j
ϕx = εx}

= {d ∈ D×(Qpr )| d−1δσ (d) ∈ YD}/(OD ⊗Zpr )×,

X p(γ ) = {d ∈ D×(Ap
f )| d

−1γ d ∈ C p
}/C p.

Proof. This is included in [19, Proposition 7.7].

The case for the unitary Shimura variety ShG ′,C ′ is similar. Recall that associated to

a point x ∈ SG ′,C ′(Fpr ), we have the c-polarized virtual abelian variety with additional

structures (A, ι, λ). The associated p-divisible group H gives us an element δ ∈ G ′(Qpr ),

well defined up to σ -conjugation by G ′(Zpr ). It satisfies the equality κG ′Qp
(pδ) = µ],

where κG ′Qp
is the Kottwitz map, for its definition and the µ] (see [11]). δ only depends

on the isogeny type of x .

Proposition 3.3. There is a bijection

SG ′,C ′(Fpr ) '
∐
ϕ∈ID

∐
ε

Iϕ,ε(Q) \ Z p(δ)× Z p(γ ),

where ε runs over the set of conjugacy classes of Iϕ(Q)/(Z(Q)∩C
′
) (Z ⊂ G ′ is the center

which can be viewed a subgroup of Iϕ), Iϕ,ε is the centralizer of ε in Iϕ, δ ∈ G ′(Qpr ) is the

element well defined up to σ -conjugacy from ε as explained below, γ ∈ G ′(Ap
f ) is defined

from ε by the embedding Iϕ(A
p
f ) ⊂ G ′(Ap

f ), Z p(δ) and Z p(γ ) are defined as follows (to

define them, one need not know what δ and γ are, only ϕ and ε will suffice for their

definitions)

Z p(δ) = {x ∈ Zϕ |Fr j
ϕx = εx} = {x ∈ Zϕ | (pδσ )r x = εx},

Z p(γ ) = {g ∈ G ′(Ap
f )| g

−1γ g ∈ (C
′
)p
}/(C

′
)p.

When identifying Zϕ ⊂ G ′(K)/G ′(OK), we have Z p(δ) ⊂ G ′(Qpr )/G ′(Zpr ).
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Proof. By [14, Lemma 5.3] or the method of [8, 1.4], this proposition follows from the

description of SG ′,C ′(Fp) and the following facts for sufficiently small C
′

(which were

assumed implicitly in [16, § 4]):

(1) if ε ∈ Iϕ(Q) fixes a point of Zϕ ×G ′(Ap
f )/(C

′
)p, then ε ∈ Z(Q)∩C

′
;

(2) Iϕ(Q)der
∩ Z(Q)∩C

′
= {1}.

Indeed, [13, proof of Lemma 3.6] works here, since one only uses the property that Iϕ(R)
is compact modulo center and the assumptions in the above conditions. See also [14,

Lemma 5.5]. Note for the unitary group G ′, Z(Q) is discrete in Z(A f ). Hence for C
′

sufficiently small we have Z(Q)∩C
′
= {1}. We can and we will take C p sufficiently small

such that both the above two points and Z(Q)∩C
′
= {1} hold true.

Now we explain the δ associated to ε. Let SG ′,C ′(ϕ, ε) be the term Iϕ,ε(Q) \ Z p(δ)×

Z p(γ ), which we assume non-empty. Then any point x in this set will give a δ as in

the paragraph before this proposition. As SG ′,C ′(ϕ, ε) is the set of isogeny class of the

abelian variety with additional structures (A, ι, λ), when x varies in this set, δ moves in

its σ -conjugacy class. For those ε ∈ Iϕ(Q) such that SG ′,C ′(ϕ, ε) = ∅, we just throw them

away.

Actually, in § 5, we use some slightly stronger versions of the above Propositions 3.2

and 3.3, in the sense that we consider the fixed points sets of the Frobenius composed

with a prime to p Hecke correspondence. Then Kottwitz’s method in [8] still works. There

will be only slightly modifications for the sets X p(γ ) and Z p(γ ) above (cf. the proof of

Proposition 5.1).

4. Test functions at p

We want to introduce some test functions at p which will appear in the trace formula for

the related group actions on the cohomology of Shimura varieties. We follow the method

of Scholze as in [26]. Let the notations be as in the last section. We consider the unitary

Shimura varieties first.

Recall the local reductive group

G ′Qp
'

m∏
i=1

D×νi
×Gm .

For each 1 6 i 6 m, let Gi denote the reductive group over Qp defined by Dνi . Then

there are two cases: if D splits at νi , then Gi = ResFνi |Qp GL2; otherwise, if D ramifies at

νi , Gi is the inner form of ResFνi |Qp GL2 defined by the local quaternion algebra Dνi . Let

{µi } be the conjugacy class of cocharacters µi : Gm −→ GiQp
induced from µ. We have

also the component µ0 of µ corresponding to the factor Gm . Fix an isomorphism C ' Qp
which induces a bijection

Hom(F,R) = Hom(F,C) −→
m∐

i=1

Hom(Fνi ,Qp).
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Recall the subset Z ⊂ Hom(F,R) of infinite places at which D is split. By abuse of

notation, let Z denote also its image under the above bijection. For each 1 6 i 6 m, we

define

di = ]Z ∩Hom(Fνi ,Qp),

then clearly d =
∑m

i=1 di with d = ]Z. One sees easily that these integers di determine

the corresponding cocharacters µi . Now we have to make the following assumption to

apply our results in [28]:

for 1 6 i 6 m, if D ramifies at νi , then di 6 1.

Let Frob be a fixed geometric Frobenius in the Weil group WE . Let j > 1 be a fixed

integer and r = j[κE : Fp]. Fix 1 6 i 6 m. For τ ∈ Frob j IE ⊂ WE , hi ∈ C∞c (Gi (Zp)) with

values in Q, we have a well-defined function φτ,hi ∈ C∞c (Gi (Qpr )). Indeed, for the case

that D splits at νi , φτ,hi is defined in [26, § 4]; for the case D ramifies at νi , φτ,hi is defined

in [28, § 4] (if di = 0 in this case, the function φτ,hi does not depend on τ and was denoted

by φhi in [28]). Let h0 ∈ C∞c (Z×p ) with values in Q, and φτ,h0 be the function defined in

[26, Proposition 4.10]. Now consider the function in C∞c (G
′(Zp))

h = h1× · · ·× hm × h0,

and define

φτ,h := φτ,h1 × · · ·×φτ,hm ×φτ,h0 ,

which is a well-defined function in C∞c (G
′(Qpr )). When τ, h as above vary, these functions

φτ,h are our test functions at p for the unitary Shimura varieties ShG ′,C ′ .

Now we consider the quaternion case. We have the local reductive group

D×Qp
'

m∏
i=1

D×νi
.

Similar to the above, D×νi
is either ResFνi |Qp GL2 or the inner form of ResFνi |Qp GL2,

depending on D whether splits at νi or not. We will be interested in the open compact

subgroups C p of D×(Qp) of the form

C p =

m∏
i=1

C p,i , C p,i ⊂ D×νi
(Qp).

In this case, we have also the conjugacy class of cocharacters {µ} defined from hD in the

Shimura datum, and the local conjugacy classes {µi } for 1 6 i 6 m. Actually these µi
are the same as those in the unitary case. In particular we have also the integers di . To

define the test functions for the Shimura varieties ShD,C , we use the coarse moduli spaces

SG,C . Recall the local reductive group

GQp =

m∏
i=1

(D×νi
× F×νi

).

For each 1 6 i 6 m, let C̃ p,i = C p,i × O×Fνi
⊂ D×νi

× F×νi
and C̃ p =

∏m
i=1 C̃ p,i = C p ×

F×(Zp). Let τ ∈ Frob j IE ⊂ WE and Frob, j, r be as above. Let h ∈ C∞c (D
×(Zp)) with
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values in Q. It extends to the function h̃ = h× 1 ∈ C∞c (G(Zp)), where the second factor

is the constant function 1 on F×(Zp). We fix an open compact subgroup of the form

C = C pC0
p ⊂ D×(Ap

f )× D×(Qp) with C0
p ⊂ D×(Qp) maximal.

Definition 4.1. Let δ ∈ D×(Qpr ). Define

φτ,h(δ) = 0

unless δ is associated to some ϕ ∈ ID and ε ∈ Hϕ(Q)/(F× ∩C). In the latter case, let

H = A[p∞] be the p-divisible group associated to the abelian variety A over Fp attached

to x by considering the inclusion SD,C (Fpr ) ⊂ SD,C (Fp) ⊂MC (Fp) ' SG,C (Fp). Then

define

φτ,h(δ) = tr(τk j
D × h̃|H∗(X H ,C̃ p

×Cp,Ql)),

for any normal open compact pro-p-open subgroup C p ⊂ C0
p such that h is

bi-C p-invariant. Here kD is the element as defined in § 2, X H ,C̃ p
is the level C̃ p cover of the

rigid generic fiber over K(= Q̂nr
p ) of DefH ' Sp f ÔSG,C ,x , the deformation space of H as

p-divisible group with additional structures parameterized by MG,C . The tower of spaces

X H ,C̃ p
is equipped with a twisted Galois action of Gal(Qnr

p /E), such that σ ∈ Gal(Qnr
p /E)

acts as σkv(σ )D , where v(σ ) = [(Qnr
p )

σ
: E].

Here in the above definition we have followed the convention of [26] that H∗ means the

alternating sum of cohomology groups. We note that when j is large, the twisting factor

k j
D in the definition of φτ,h disappears, since the schemes MC and SG,C are isomorphic to

each other after a finite unramified extension of Zp, see the definition of MC in § 3. This

definition may seem somehow unnatural, but it is a direct translation of the method of [26]

in our quaternionic setting. We investigate these functions in more details later, and we

will see that they can be defined actually in a more natural way (cf. Proposition 4.3).

Proposition 4.2. The function φτ,h : D×(Qpr ) −→ Ql is well defined and takes values

in Q. It is locally constant with compact support. For h = h1× · · ·× hm with hi ∈

C∞c (D
×
νi
(Zp)) takes values in Q for 1 6 i 6 m, we have a decomposition

φτ,h = φτ,h1 × · · ·×φτ,hm

with some functions φτ,hi ∈ C∞c (D
×
νi
(Qpr )) defined in a similar way to φτ,h.

Proof. By construction, the twisted Galois action on SG,C ×Znr
p which defines MC

coincides with the natural Galois action after base changing SG,C over a finite extension

of OE . Therefore, one sees easily that the arguments of Scholze in [26, § 4] apply to

our situation. We only remark that as in loc. cit., the last statement is related to the

decomposition of p-divisible groups

A[p∞] =
m⊕

i=1

(A[π∞ν̃i
]⊕ A[π∞ν̃i

c ]),

where for a place ν̃ of K above p, πν̃ is a uniformizer for the local field K ν̃ , and
A is an abelian variety associated to an Fp-point on SG,C . Under the decomposition
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K×(Qp) =
∏m

i=1(K
×

ν̃i
× K×

ν̃i
c ), the element kD can be written as (k1, . . . , km). The functions

φτ,hi are defined using deformation spaces of A[π∞ν̃i
]⊕ A[π∞

ν̃i
c ] and the factors ki in a

similar way to φτ,h .

For j large, the factors k j
i disappears in the definition of φτ,hi in the last proposition.

We would like to say more about these test functions. To compare test functions for

the groups G ′ and D×, we introduce upper subscripts in the notation. For D splits

or ramifies at νi , and the above τ and hi we have the test functions φG ′
τ,hi

as in the

unitary case by using deformation spaces of these p-divisible groups with additional

structures. Let x ∈ SG,C (Fp) come from a point in SD,C (Fpr ) and (A, ι,3, η) be the

associated abelian variety with additional structure. This means that (A, ι,3, η) and

σ r (A, ι,3, ηk j
D) define the same point of SG,C (Fp). Let Hi = A[π∞ν̃i

] under the above

decomposition of the associated p-divisible group. We write Hi = (Hi , ιi ) with the induced

action ιi : ODνi −→ End(Hi ). Then for any open compact subgroup C p,i ⊂ D×νi
(Qp), we

have an isomorphism of rigid analytic spaces over K

X Hi⊕Hi
D,C̃ p,i

' X Hi ,C p,i ,

where both sides are cover spaces of the generic fibers of deformation spaces of the

corresponding p-divisible groups with additional structures. By definition, for any δi ∈

D×νi
(Qp) coming from the p-divisible group Hi , the test function φD×

τ,hi
is defined by

φD×
τ,hi
(δi ) = tr(τk j

i × h̃i |H∗(X Hi⊕Hi
D,C̃ p,i

×Cp,Ql))

= tr(τ (k′i )
j
× hi |H∗(X Hi ,C p,i ×Cp,Ql)),

where in the second equality k′i = pei ∈ K×ν̃i
= F×νi

is the element introduced in § 3. For j
large, the twisting factor (k′i )

j disappears and we have

φD×
τ,hi
= φG ′

τ,hi
.

In the general case, we have the following proposition.

Proposition 4.3. For any δ ∈ D×νi
(Qpr ) coming from a p-divisible group, the twisted orbital

integrals of φD×
τ,hi

and φG ′
τ,hi

are the same

T Oσδ(φD×
τ,hi
) = T Oσδ(φG ′

τ,hi
).

Proof. Indeed, since δ is associated to Hi which comes from the decomposition of the

p-divisible group associated to (A, ι,3, η) ∈ SG,C (Fp), a c-virtual abelian variety with

additional structures coming from a point in SD,C (Fpr ), we get (k′i )
jδ is associated to the

corresponding factor H ′i of the p-divisible group associated to (A, ι,3, ηk j
D) ∈ SG,C (Fp),

which now is a c-virtual abelian variety with additional structures coming from a point

in SG,C (Fpr ). By construction, we have

φD×
τ,hi
(δ) = φG ′

τ,hi
((k′i )

jδ).

As (k′i )
j is an central element in D×νi

(Qpr ), the twisted orbital integrals of φG ′
τ,hi

at δ and

(k′i )
jδ are the same.
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For 1 6 i 6 m, consider the functions φτ,hi defined so far in this section. The field

of definition of the conjugacy class of cocharacters µi : Gm −→ D×νi
is denoted by Ei ,

with the associated integer di defined in § 4. Let rµi be the associated representation of
L(Gi Ei ) where Gi = D×νi

(cf. [8, 2.1.2]). If D splits at νi , we can define a transfer fτ,hi ∈

C∞c (Gi (Qp)) with matching (twisted) orbital integrals (cf. [1, 27]). Moreover, by [27,

Theorem 8.1] we have the following identity. For any irreducible smooth representation

π of Gi (Qp) with L-parameter ϕπ (cf. [7]),

tr( fτ,hi |π) = tr(τ |(rµi ◦ϕπ |WEi
)| − |−di /2)tr(hi |π).

Indeed, for the unitary case the above identity follows directly from the results of [27].

The quaternion case follows from the unitary case, by Proposition 4.3.

Now we consider the case D ramifies at νi . Then the group Gi = D×νi
is not quasi-split.

Recall we have assumed di 6 1 in this case. If di = 0, then rµi is the trivial representation,

and hi ∈ C∞c (Gi (Zp)) may be viewed as a transfer for the function φτ,hi , since they

have matching orbital integrals. Now we assume di = 1. For δ ∈ Gi (Qpr ), as in [28], the

conjugacy class of the norm Nδ := δσ (δ) · · · σ r−1(δ) does not always contain an element

of Gi (Qp). Nevertheless, we have the following proposition.

Proposition 4.4. Suppose Gi is defined by a local quaternion algebra. For δ ∈ Gi (Qpr ), if

the conjugacy class of the norm Nδ does not contain an element of Gi (Qp), then

T Oσδ(φτ,hi ) = 0.

In particular, we can define a function fτ,hi ∈ C∞c (Gi (Qp)) with matching (twisted)

orbital integrals of φτ,hi . Moreover, for any irreducible smooth representation π of Gi (Qp)

with L-parameter ϕπ (cf. [2, 4, 23]), we have the following character identity

tr( fτ,hi |π) = tr(τ |(rµi ◦ϕπ |WEi
)| − |−1/2)tr(hi |π).

Proof. For the unitary case, the proposition is just the special case (n = 2) of [28,

Theorem 5.4 and Proposition 6.2]. The quaternionic case follows by Proposition 4.3.

We remark that in the quaternionic case with h as the characteristic function of C0
p

divided by the volume of C0
p, the test function φτ,h should have the same twisted orbital

integrals as the function 8 defined in [19] based on the study of the local structures

of these varieties. When D is totally indefinite, the description of SD,C (Fpr ) and the

definition of φτ,h can be done more directly by using the PEL moduli problems for these

varieties (cf. [15]).

5. Cohomology and semisimple zeta functions

In this section we change our notations sightly. We write G = D× or G = G ′. For

ϕ ∈ ID and ε ∈ Iϕ(Q) we write uniformly the reductive group attached to ϕ as Iϕ , the

sets attached to ε as X p(γ ) and X p(δ). Let l 6= p be prime, and ξ be an algebraic

Ql -representation of G. Then by standard method we can associate Ql -local systems

Lξ on the Shimura varieties ShG,C for any open compact subgroup C ⊂ G(A f ). For

a fixed open compact subgroup C p
⊂ G(Ap

f ), let SG,C p be the integral model of the
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Shimura variety ShG,C0
pC p defined in § 3, where C0

p ⊂ G(Qp) is as usual the maximal

open compact subgroup (associated to the maximal order OD or OB). We are interested

in the alternating sum of cohomology groups

Hξ =
∑

i

(−1)i lim
−→
C

H i (ShG,C ×Qp,Lξ )

as a virtual representation of G(A f )×WE . To analyze this representation, we consider

the traces of the action of τ × h f p on Hξ with τ ∈ Frob j IE ⊂ WE , h ∈ C∞c (G(Zp)),

f p
∈ C∞c (G(A

p
f )). Here G(Zp) = C0

p is associated to the integral model of GQp defined

by OD or OB . We fix the Haar measures on G(Qp) respectively G(Qpr ) that give G(Zp)

respectively G(Zpr ) volume 1.

Proposition 5.1. With the notations as above, we have the formula

tr(τ × h f p
|Hξ ) =

∑
ϕ∈ID

∑
ε

vol(Iϕ,ε(Q) \ Iϕ,ε(A f ))T Oσδ(φτ,h)Oγ ( f p)tr ξ(ε).

Note by Proposition 4.3, only those δ such that the conjugacy class of Nδ contains an

element of G(Qp) can have non-trivial contribution to the sum.

Proof. Having the description of the set SG,C p (Fpr ) (r = j[κE : Fp]), the proof is standard

by applying the Lefschetz trace formula (cf. [30]). Here we sketch the main points, see also

[26, §§ 6,7]. First, fix a sufficiently small C p
⊂ G(Ap

f ) and a normal subgroup C p ⊂ C0
p.

We can assume that f p is the characteristic function of C pg pC p divided by the volume

of C p for some g p
∈ G(Ap

f ), and h is the characteristic function of C pgp divided by the

volume of C p for some gp ∈ G(Qp). We have the following diagram

ShG,C pC p
g p

p̃1

yy

p̃2

%%��
ShG,C pC p

��

ShG,C0
pC p

g p

p1

yy

p2

%%

ShG,C pC p

��
ShG,C0

pC p ShG,C0
pC p

where C p
g p = C p

∩ (g p)−1C pg p. Here the p1, p̃1 are the natural projections, whereas p̃2
is the composition of the natural projection ShG,C pC p

g p
−→ ShG,C p(g p)−1C p g p with the

isomorphism ShG,C p(g p)−1C p g p ' ShG,C pC p , and similarly for p2 with C p replaced by C0
p.

Let πC pC p : ShG,C pC p −→ ShG,C0
pC p be the natural projection. We have an isomorphism

of Ql -sheaves on SG,C p ×Fp

RψπC pC p∗Lξ ' Lξ ⊗ RψπC pC p∗Ql ,

where Rψ is the nearby cycle functor for SG,C p . Since SG,C p is proper and flat, we have

isomorphisms of (alternating sums of) cohomology groups
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H∗(ShG,C pC p ×Qp,Lξ ) = H∗(ShG,C0
pC p ×Qp, πC pC p∗Lξ )

= H∗(SG,C p ×Fp, RψπC pC p∗Lξ )
= H∗(SG,C p ×Fp,Lξ ⊗ RψπC pC p∗Ql).

Now the trace

tr(τ × h f p
|Hξ ) = tr(τ × (gp, g p)∗|H∗(ShG,C pC p ×Qp,Lξ ))

= tr(τ × (gp, g p)∗|H∗(SG,C p ×Fp,Lξ ⊗ RψπC pC p∗Ql)),

where (gp, g p)∗ in the first equality is the map associated to (the cohomological

correspondence induced from) the upper Hecke correspondence in the above diagram,

and τ × (gp, g p)∗ in the second equality is the map associated to (the cohomological

correspondence induced from) the composition of the Frobenius correspondence and

Hecke correspondence on the special fiber. By applying the Lefschetz trace formula [30,

Theorem 2.3.2] we get

tr(τ × h f p
|Hξ ) =

∑
x∈SG,C p

g p
(Fp)

Fr j
◦p1(x)=p2(x)

tr(ux )

where tr(ux ) is the local term given by the trace of

ux : (Lξ ⊗ RψπC pC p∗Ql)Fr j
◦p1(x) −→ (Lξ ⊗ RψπC pC p∗Ql)p2(x).

Now similar to the description of SG,C p (Fpr ), the set {x ∈ SG,C p
g p
(Fp)|Fr j

◦ p1(x) = p2(x)}

can be written as ∐
ϕ∈ID

∐
ε

Iϕ,ε(Q) \ X p(δ)× X p(γ ),

with

X p(γ ) = {z ∈ G(Ap
f )| z

−1γ z ∈ g pC p
}/C p

g p ,

and all the other terms are as those in § 3. We write the sum as∑
ϕ∈ID

∑
ε

∑
x∈Iϕ,ε(Q)\X p(δ)×X p(γ )

tr(ux ).

For the last term tr(ux ), one sees it decomposes as tr ξ(ε)φτ,h(δ). As [10, p. 432], we can

rewrite the above last sum as∑
x∈Iϕ,ε(Q)\X p(δ)×X p(γ )

tr ξ(ε)φτ,h(δ) = vol(Iϕ,ε(Q) \ Iϕ,ε(A f ))T Oσδ(φτ,h)Oγ ( f p)tr ξ(ε).

Hence we get the desired formula.

Remark 5.2. We believe this proposition holds true for general Shimura varieties, at least

when we have a suitable description of the points over finite fields on them (cf. [10, 26]).

However, when passing to the automorphic side, it is not very useful unless one can prove

some vanishing results for the twisted orbital integrals T Oσδ(φτ,h) like Proposition 4.2.
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The main theorem of this paper is as follows. We keep our assumption for the ramified

places of D above p as in the last section, i.e., di 6 1. This assumption is made to

apply our results in [28] concerning the local test functions at such ramified places.

The following theorem confirms the expected description of the cohomology of Shimura

varieties (cf. [27]) due to Langlands and Kottwitz in new cases. Recall the cocharacter µ

associated to the Shimura data gives rise to a representation rµ : L(G E ) −→ GL(V ) for

a finite dimensional Ql -vector space V , cf. [8, 2.1.2] or [19, § 11] for an explicit definition

in the quaternionic case.

Theorem 5.3. Under the above assumptions and notations, we have an identity

Hξ =
∑
π f

a(π f )π f ⊗ (rµ ◦ϕπp |WE )| − |
−d/2

as virtual G(Zp)×G(Ap
f )×WE -representations. Here π f runs through irreducible

admissible representations of G(A f ), the integer a(π f ) is as in [12, p. 657], ϕπp is the local

Langlands parameter associated to πp, d = dimShG,C is the dimension of the Shimura

varieties ShG,C for any open compact subgroup C ⊂ G(A f ).

Proof. This theorem is a consequence of Propositions 4.4 and 5.1. In fact, by Proposition

5.1 we have

tr(τ × h f p
|Hξ ) =

∑
ϕ∈ID

∑
ε

vol(Iϕ,ε(Q) \ Iϕ,ε(A f ))T Oσδ(φτ,h)Oγ ( f p)tr ξ(ε),

for all τ ∈ Frob j IE ⊂ WE , h ∈ C∞c (G(Zp)), f p
∈ C∞c (G(A

p
f )). By Proposition 4.4, only

those δ such that the conjugacy class of Nδ contains an element of G(Qp) can have

non-trivial contribution to the sum. For these δ, as in [28, proof of Lemma 5.3] we can find

γ0 such that (γ0; γ, δ) forms a Kottwitz triple for G, and vice versa (for the quaternionic

case one can also see [19, Lemma 7.4]). In this case we have tr ξ(ε) = tr ξ(γ0). In particular

we can rewrite the above as

tr(τ × h f p
|Hξ ) =

∑
(γ0;γ,δ)

c(γ0; γ, δ)Oγ ( f p)T Oδσ (φτ,h)tr ξ(γ0),

where the sum runs over degree- j-Kottwitz triples, and c(γ0; γ, δ) = vol(Iϕ,ε(Q) \
Iϕ,ε(A f )). Then one goes through the process of pseudostabilization to get

tr(τ × h f p
|Hξ ) = N−1tr( fτ,h f p

|Hξ ).

Here N is the integer defined in [12, p. 659]. By Matsushima’s formula (cf. Lemma 4.2 of

loc. cit.)

Hξ = N
∑
π f

a(π f )π f .

We can take h of the form h = h1× · · ·× hm , and fτ,h = fτ,h1 × · · ·× fτ,hm (for the unitary

case there is also a factor h0 of h (respectively fτ,h0 of fτ,h) corresponding to Gm). At

a place νi above p, we can apply [27, Theorem 8.1] for fτ,hi (in the quaternionic case
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we use the twisted version) if D splits at νi , and Proposition 4.3 if D is ramified at νi .

Putting all together, we get

N−1tr( fτ,h f p
|Hξ ) =

∑
π f

a(π f )tr(τ |(rµ ◦ϕπp |WE )| − |
−d/2)tr(h f p

|π f ).

We can conclude.

As a corollary we get the local semisimple zeta functions of these Shimura varieties.

Our result generalizes the previous works of Reimann [19, 22] to arbitrary levels at p.

Let Ẽ be the global reflex field and ν be a place of Ẽ above p such that E = Ẽν .

Corollary 5.4. Let the situation be as in the theorem. Let C ⊂ G(A f ) be any sufficiently

small compact open subgroup. Then the semisimple local Hasse–Weil zeta function of

ShG,C at the place ν of Ẽ is given by

ζ ss
ν (ShG,C , s) =

∏
π f

Lss(s− d/2, πp, rµ)
a(π f )dimπC

f .

Proof. We can assume that C has the form as C pC p ⊂ G(Ap
f )×G(Zp). Then the

corollary follows from the previous theorem and the definitions.

By [16, § 2] one can recover the classical Hasse–Weil zeta function if one knows the

Weight-Monodromy conjecture holds true in this setting.

Corollary 5.5. Assume the Weight-Monodromy conjecture is true for the Shimura

varieties ShG,C , e.g. d = 2. Let C ⊂ G(A f ) be any sufficiently small open compact

subgroup in the situation of the theorem. Then the local Hasse–Weil zeta function of

ShG,C at the place ν of Ẽ is given by

ζν(ShG,C , s) =
∏
π f

L(s− d/2, πp, rµ)
a(π f )dimπC

f .

Recall that we have changed the notation from § 3: here G = D× or G = G ′. Thus the

Shimura varieties ShG,C are not the same as that in § 3.

Finally we remark that, along the same way, one should be able to describe the points

over finite fields for the case of Shimura varieties ShG,C as in § 3, and the results of §§ 4

and 5 should also be generalized to this case under the same assumptions. This will be

left to the reader as an exercise.
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