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A right Engel sink of an element g of a group G is a set R(g) such that for every
x ∈ G all sufficiently long commutators [...[[g, x], x], . . . , x] belong to R(g). (Thus, g
is a right Engel element precisely when we can choose R(g) = {1}.) It is proved that
if every element of a compact (Hausdorff) group G has a countable right Engel sink,
then G has a finite normal subgroup N such that G/N is locally nilpotent.
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1. Introduction

A group G is called an Engel group if for every x, g ∈ G the equation [x, ng] = 1
holds for some n = n(x, g) depending on x and g. Henceforth, we use the left-normed
simple commutator notation [a1, a2, a3, . . . , ar] := [. . . [[a1, a2], a3], . . . , ar] and the
abbreviation [a, kb] := [a, b, b, . . . , b] where b is repeated k times. A group is said to
be locally nilpotent if every finite subset generates a nilpotent subgroup. Clearly,
any locally nilpotent group is an Engel group. Wilson and Zelmanov [27] proved
the converse for profinite groups: any Engel profinite group is locally nilpotent.
Later Medvedev [16] extended this result to Engel compact groups. (Henceforth,
by compact groups we mean compact Hausdorff groups.)

Generalizations of Engel groups can be defined in terms of Engel sinks.

Definition. A left Engel sink of an element g of a group G is a set E (g) such that
for every x ∈ G all sufficiently long commutators [x, g, g, . . . , g] belong to E (g), that
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is, for every x ∈ G there is a positive integer l(x, g) such that [x, lg] ∈ E (g) for all
l � l(x, g).

A right Engel sink of an element g of a group G is a set R(g) such that for
every x ∈ G all sufficiently long commutators [g, x, x, . . . , x] belong to R(g), that
is, for every x ∈ G there is a positive integer r(x, g) such that [g, rx] ∈ R(g) for all
r � r(x, g).

(Thus, g is a left Engel element precisely when we can choose E (g) = {1}, and a
right Engel element when we can choose R(g) = {1}.)

Earlier, we considered in [12,14] compact groups G in which every element has
a countable or finite left Engel sink and proved the following theorem.

Theorem 1.1 [14, theorem 1.2]. If every element of a compact group G has a
countable left Engel sink, then G has a finite normal subgroup N such that G/N is
locally nilpotent.

(Henceforth by ‘countable’ we mean ‘finite or denumerable’.)
For right Engel sinks we proved earlier in [13] that if every element of a compact

group has a finite right Engel sink, then the group is finite-by-(locally nilpotent).
In the present paper we extend this result to countable right Engel sinks.

Theorem 1.2. Suppose that G is a compact group in which every element has a
countable right Engel sink. Then G has a finite normal subgroup N such that G/N
is locally nilpotent.

In theorem 1.2 it also follows that there is a locally nilpotent subgroup of finite
index—just consider CG(N).

While it is well-known that the inverse of a right Engel element is a left Engel
element, it is unclear if the existence of a countable (or finite) right Engel sink of a
given element implies the existence of a countable (or finite) left Engel sink of this
element or its inverse. It is only by virtue of our theorem 1.2 that if all elements of
a compact group have countable right Engel sinks, then in fact all elements have
finite right and left Engel sinks contained in the same finite normal subgroup.

The proof uses the aforementioned Wilson–Zelmanov theorem for profinite
groups. First, the case of pro-p groups is considered, where Lie ring methods are
applied including Zelmanov’s theorem on Lie algebras satisfying a polynomial iden-
tity and generated by elements all of whose products are ad-nilpotent [28–30]. As
we noted in [13], it is easy to see that if every element of a pro-p group has a finite
right Engel sink, then the group is locally nilpotent. But in the present paper, with
countable right Engel sinks, the case of pro-p groups requires substantial efforts.
Then the case of prosoluble groups is settled by using properties of coprime actions
including a profinite analogue of a theorem of Thompson [23]. The general case
of profinite groups is dealt with by bounding the nonsoluble length of the group,
which enables induction on this length. (We introduced the nonsoluble length in
[11], although bounds for nonsoluble length had been implicitly used in various
earlier papers, e.g. in the celebrated Hall–Higman paper [5], or in Wilson’s paper
[25]; more recently, bounds for the nonsoluble length were used in the study of
verbal subgroups in finite and profinite groups [3,10,21,22].) Finally, the result
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for compact groups is derived with the use of the structure theorems for compact
groups.

2. Preliminaries

In this section, we recall some notation and terminology and establish some general
properties of left and right Engel sinks in compact and profinite groups.

Our notation and terminology for profinite and compact groups is standard; see,
for example, [17], [26], and [7]. A subgroup (topologically) generated by a subset
S is denoted by 〈S〉. Recall that centralizers are closed subgroups, while commuta-
tor subgroups [B,A] = 〈[b, a] | b ∈ B, a ∈ A〉 are the closures of the corresponding
abstract commutator subgroups.

For a group A acting by automorphisms on a group B we use the usual notation
for commutators [b, a] = b−1ba and commutator subgroups [B,A] = 〈[b, a] | b ∈ B,
a ∈ A〉, as well as for centralizers CB(A) = {b ∈ B | ba = b for all a ∈ A} and
CA(B) = {a ∈ A | ba = b for all b ∈ B}.

We record for convenience the following simple lemma.

Lemma 2.1 [14, lemma 2.1]. Suppose that ϕ is a continuous automorphism of a
compact group G such that G = [G,ϕ]. If N is a normal subgroup of G contained
in CG(ϕ), then N � Z(G).

We denote by π(k) the set of prime divisors of k, where k may be a positive
integer or a Steinitz number, and by π(G) the set of prime divisors of the orders of
elements of a (profinite) group G. Let σ be a set of primes. An element g of a group
is a σ-element if π(|g|) ⊆ σ, and a group G is a σ-group if all of its elements are
σ-elements. We denote by σ′ the complement of σ in the set of all primes. When
σ = {p}, we write p-element, p′-element, etc.

Recall that a pro-p group is an inverse limit of finite p-groups, a pro-σ group is
an inverse limit of finite σ-groups, a pronilpotent group is an inverse limit of finite
nilpotent groups, a prosoluble group is an inverse limit of finite soluble groups.

We denote by γ∞(G) =
⋂

i γi(G) the intersection of the lower central series of a
group G. A profinite group G is pronilpotent if and only if γ∞(G) = 1.

Profinite groups have Sylow p-subgroups and satisfy analogues of the Sylow the-
orems. Prosoluble groups satisfy analogues of the theorems on Hall π-subgroups.
We refer the reader to the corresponding chapters in [17, Ch. 2] and [26, Ch. 2].
We add a simple folklore lemma.

Lemma 2.2 [14, lemma 2.2]. A profinite group G that is an extension of a prosoluble
group N by a prosoluble group G/N is prosoluble.

We shall use several times the following well-known fact, which is straightforward
from the Baire Category theorem (see [9, theorem 34]).

Theorem 2.3. If a compact Hausdorff group is a countable union of closed subsets,
then one of these subsets has non-empty interior.

We now establish some general properties of Engel sinks. Clearly, the intersection
of two left Engel sinks of a given element g of a group G is again a left Engel sink of
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g, with the corresponding function l(x, g) being the maximum of the two functions.
Therefore, if g has a finite left Engel sink, then g has a unique smallest left Engel
sink, which has the following characterization.

Lemma 2.4 [12, lemma 2.1]. If an element g of a group G has a finite left Engel
sink, then g has a smallest left Engel sink E (g) and for every s ∈ E (g) there is an
integer k � 1 such that s = [s, kg].

There are similar observations about right Engel sinks. The intersection of two
right Engel sinks of a given element g of a group G is again a right Engel sink of g,
with the corresponding function r(x, g) being the maximum of the two functions.
Therefore, if g has a finite right Engel sink, then g has a unique smallest right Engel
sink, which has the following characterization.

Lemma 2.5 [13, lemma 2.2]. If an element g of a group G has a finite right Engel
sink, then g has a smallest right Engel sink R(g) and for every z ∈ R(g) there are
integers n � 1 and m � 1 and an element x ∈ G such that z = [g, nx] = [g, n+mx].

(Of course, the element x and numbers m,n in the above lemma vary for different
z and are not unique.)

The following lemma was proved by Heineken [6].

Lemma 2.6 [18, 12.3.1]. If g is a right Engel element of a group G, then g−1 is a
left Engel element.

Furthermore, for metabelian groups we have the following.

Lemma 2.7 [13, lemma 2.5]. If G is a metabelian group, then a right Engel sink of
the inverse g−1 of an element g ∈ G is a left Engel sink of g.

Thus, if G is a metabelian group in which all elements have finite right Engel
sinks, then all elements of G also have finite left Engel sinks, and if all elements of
G have countable right Engel sinks, then all elements of G also have countable left
Engel sinks.

Remark 2.8. If every element of a group has a countable right Engel sink, then this
condition is inherited by every section of the group, and we shall use this property
without special references. The same applies to a group in which every element has
a finite right Engel sink. Similar properties hold for left Engel sinks.

3. Pronilpotent groups

When G is a pro-p group, or more generally a pronilpotent group, the conclusion
of the main theorem 1.2 is equivalent to G being locally nilpotent, and this is what
we prove in this section.

Theorem 3.1. Suppose that G is a pronilpotent group in which every element has
a countable right Engel sink. Then G is locally nilpotent.
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First we establish an Engel-like property.

Lemma 3.2. Suppose that G is a profinite group in which every element has a
countable right Engel sink. For any elements a, b ∈ G there exist positive integers
k, s,m (depending on a, b) such that

[[b, kas], at] = 1.

Proof. Let {s1, s2, . . . } be a countable right Engel sink of b. Consider the subsets

Ti,j,k = {x ∈ 〈a〉 | [b, kx] = si and [si, x] = sj}
(where 〈a〉 is the procyclic subgroup generated by a). Note that each Ti,j,k is a
closed subset of 〈a〉.

By the definition of a right Engel sink, we have

〈a〉 =
⋃
i,j,k

Ti,j,k.

By theorem 2.3 some Ti,j,k contains an open subset of 〈a〉, so Nd ⊂ Ti,j,k for some
open subgroup N of 〈a〉 and some d ∈ 〈a〉. Since 〈a〉/N is finite, we can assume
that d = as for some positive integer s.

Since [si, nd] = sj for all n ∈ N , it follows that [si, N ] = 1. Since 〈a〉/N is finite,
we have at ∈ N for some positive integer t, so that [si, a

t] = 1. As a result,

[[b, kas], at] = [[b, kd], at] = [si, a
t] = 1. �

The bulk of the proof of theorem 3.1 is about the case where G is a pro-p group.
First we remind the reader of important Lie ring methods in the theory of pro-p
groups.

For a prime number p, the Zassenhaus p-filtration of a group G (also called the
p-dimension series) is defined by

Gi = 〈gpk | g ∈ γj(G), jpk � i〉 for i ∈ N.

This is indeed a filtration (or an N -series, or a strongly central series) in the sense
that

[Gi, Gj ] � Gi+j for all i, j. (3.1)

Then the Lie ring Dp(G) is defined with the additive group

Dp(G) =
⊕

i

Gi/Gi+1,

where the factors Qi = Gi/Gi+1 are additively written. The Lie product is defined
on homogeneous elements xGi+1 ∈ Qi, yGj+1 ∈ Qj via the group commutators by

[xGi+1, yGj+1] = [x, y]Gi+j+1 ∈ Qi+j

and extended to arbitrary elements of Dp(G) by linearity. Condition (3.1) ensures
that this product is well-defined, and group commutator identities imply that Dp(G)
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with these operations is a Lie ring. Since all the factors Gi/Gi+1 have prime expo-
nent p, we can view Dp(G) as a Lie algebra over the field Fp of p elements. We
denote by Lp(G) the subalgebra generated by the first factor G/G2. (Sometimes,
the notation Lp(G) is used for Dp(G).) If u ∈ Gi \ Gi+1, then we define δ(u) = i to
be the degree of u with respect to the Zassenhaus filtration.

A group G is said to satisfy a coset identity if there is a group word w(x1, . . . , xm),
elements a1, . . . , am and a subgroup H � G such that w(a1h1, . . . , amhm) = 1 for
any h1, . . . , hm ∈ H. We shall use the following result of Wilson and Zelmanov [27]
about coset identities.

Theorem 3.3 [27], theorem 1. If a group G satisfies a coset identity on cosets of a
subgroup of finite index, then for every prime p the Lie algebra Lp(G) constructed
with respect to the Zassenhaus p-filtration satisfies a polynomial identity.

Theorem 3.3 was used in the proof of the above-mentioned theorem on profinite
Engel groups, which we state here for convenience.

Theorem 3.4 [27], theorem 5. Every profinite Engel group is locally nilpotent.

The proof of theorem 3.4 was based on the following deep result of Zelmanov
[28–30], which is also used in our paper.

Theorem 3.5 [28–30]. Let L be a Lie algebra over a field and suppose that L
satisfies a polynomial identity. If L can be generated by a finite set X such that
every commutator in elements of X is ad-nilpotent, then L is nilpotent.

We now consider pro-p groups with countable right Engel sinks.

Proposition 3.6. Suppose that P is a finitely generated pro-p group in which every
element has a countable right Engel sink. Then P is nilpotent.

Proof. We will first apply theorem 3.5 to show that the Lie algebra Lp(P ) is
nilpotent. We need to verify that the conditions of that theorem are satisfied.

Lemma 3.7. The Lie algebra Lp(P ) is generated by finitely many elements such
that all commutators in these elements are ad-nilpotent.

Proof. The image of the finite generating set of P in the first homogeneous com-
ponent of the Lie algebra Lp(P ) is a finite set of generators of Lp(P ). We claim
that all commutators in these generators are ad-nilpotent. In fact, we prove that
every homogeneous element ā of Lp(P ) is ad-nilpotent. We may assume that ā is
the image of an element a ∈ P in the corresponding factor Pδ(a)/Pδ(a)+1 of the
Zassenhaus filtration, where δ(a) is the degree of a. We fix the notation a and ā for
the rest of the proof of this lemma.
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For our a ∈ P , we consider the sets

Uk,s,t = {x ∈ P | [[x, kas], at] = 1}, k, s, t ∈ N.

Each set Uk,s,t is closed, and

P =
⋃

k,s,t

Uk,s,t

by lemma 3.2. Therefore by theorem 2.3 some Uk,s,t contains a coset Nd of an open
normal subgroup N of P . We obtain that

[[nd, kas], at] = 1 for all n ∈ N. (3.2)

We are going to derive from this equation the desired ad-nilpotency of ā in Lp(P ).
Let s = s1p

l and t = t1p
m for s1, t1 coprime to p. Since 〈at〉 = 〈as1pm〉, we can

replace t with s1p
m in (3.2), so that

[[nd, kas1pl

], as1pm

] = 1 for all n ∈ N, (3.3)

where (s1, p) = 1. Since the image as1 of as1 in Pδ(a)/Pδ(a)+1 is equal to s1ā and s1

is coprime to the characteristic p of the ground field of Lp, it is sufficient to prove
that as1 is ad-nilpotent. Replacing a with as1 we change notation in (3.3), so that
we have

[[nd, kapl

], apm

] = 1 for all n ∈ N. (3.4)

For generators x, y, z, h of a free group we write

[[xy, kz], h] = [[x, kz], h] · [[y, kz], h] · v(x, y, z, h),

where the word v(x, y, z, h) is a product of commutators of weight at least k + 3,
each of which involves x, y, h and involves z at least k times. Substituting x = n,
y = d, z = apl

, and h = apm

and using (3.4) we obtain that

[[n, kapl

], apm

] = v(n, d, apl

, apm

)−1 for all n ∈ N.

If |P/N | = pr, then for any g ∈ P we have [g, ra
pl

] ∈ N , so that we also have

[[g, k+ra
pl

], apm

] = v([g, ra
pl

], d, apl

, apm

)−1. (3.5)

We claim that ā is ad-nilpotent in Lp(P ) of index (k + r)pl + pm.
Recall that δ(u) denotes the degree of an element u ∈ P with respect to the

Zassenhaus filtration. It is well known that

up ∈ Ppδ(u). (3.6)

Furthermore, in Lp(P ) for the images of u and up in Pδ(u)/Pδ(u)+1 and
Ppδ(u)/Ppδ(u)+1, respectively, we have

[x, ūp] = [x, pū] (3.7)

(see, e.g. [1, ch. II, § 5, exercise 10]).
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By (3.6) the degree of v([g, ra
pl

], d, apl

, apm

) on the right of (3.5) is at least δ(d) +
δ(g) + ((k + r)pl + pm)δ(a), which is strictly greater than w = δ(g) + ((k + r)pl +
pm)δ(a). This means that the image of the right-hand side of (3.5) in Pw/Pw+1

is trivial. At the same time, by (3.7) the image of the left-hand side of (3.5) in
Pw/Pw+1 is equal to the image of [g, (k+r)pl+pma] in Pw/Pw+1, which is in turn equal
to the element [ḡ, (k+r)pl+pm ā] in Lp(P ). Thus, for the corresponding homogeneous
elements of Lp(P ) we have

[ḡ, (k+r)pl+pm ā] = 0.

Since here ḡ can be any homogeneous element, this means that ā is ad-nilpotent of
index (k + r)pl + pm, as claimed. �

Lemma 3.8. The Lie algebra Lp(P ) satisfies a polynomial identity.

Proof. Consider the subsets of the direct product P × P

Vk,s,t = {(x, y) ∈ P × P | [[x, kys], yt] = 1}, k, s, t ∈ N.

Note that each subset Vk,s,t is closed in the product topology of P × P . By
lemma 3.2 we have

P × P =
⋃

k,s,t

Vk,s,t.

By theorem 2.3 one of the sets Vk,s,t contains an open subset of P × P . This means
that there are cosets aN and bN of an open normal subgroup N of P and positive
integers k, s, t such that

[[x, kys], yt] = 1 for any x ∈ aN, y ∈ bN.

Thus, P satisfies a coset identity on cosets of a subgroup of finite index and therefore
the Lie algebra Lp(P ) satisfies a polynomial identity by theorem 3.3. �

We can now finish the proof of proposition 3.6. By lemmas 3.7 and 3.8 the Lie
algebra Lp(P ) satisfies the hypotheses of theorem 3.5, by which Lp(P ) is nilpotent.
The nilpotency of the Lie algebra Lp(P ) of the finitely generated pro-p group P
implies that P is a p-adic analytic group. This result goes back to Lazard [15];
see also [19, corollary D]. Furthermore, by a theorem of Breuillard and Gelander
[2, theorem 8.3], a p-adic analytic group satisfying a coset identity on cosets of a
subgroup of finite index is soluble.

Thus, P is soluble, and we prove that P is nilpotent by induction on the derived
length of P . By induction hypothesis, P has an abelian normal subgroup U such
that P/U is nilpotent. We aim to show that P is an Engel group. Since P/U is
nilpotent, it is sufficient to show that every element a ∈ P is an Engel element
in the product U〈a〉. Since this product is a metabelian group, all of its elements
also have countable left Engel sinks by lemma 2.7 and then U〈a〉 is nilpotent by
theorem 1.1.

Thus, P is an Engel group and therefore, being a finitely generated pro-p group,
P is nilpotent by theorem 3.4. �
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We now consider the general case of a pronilpotent group.

Proof of theorem 3.1. Let G be a pronilpotent group in which every element has
a countable right Engel sink; we need to prove that G is locally nilpotent. By
theorem 3.4, it is sufficient to prove that G is an Engel group.

For each prime p, let Gp denote the Sylow p-subgroup of G, so that G is a
Cartesian product of the Gp, since G is pronilpotent. Given any two elements
a, g ∈ G, we write g =

∏
p gp and a =

∏
p ap, where ap, gp ∈ Gp. Clearly, [gq, ap] = 1

for q �= p. We need to show that [g, ma] = 1 for some positive integer m = m(a, g).
Let {s1, s2, . . .} be a countable right Engel sink of g. Consider the subsets

Ti,j,k = {x ∈ 〈a〉 | [g, kx] = si and [si, x] = sj}
(where 〈a〉 is the procyclic subgroup generated by a). Note that each Ti,j,k is a
closed subset of 〈a〉. By the definition of a right Engel sink, we have

〈a〉 =
⋃
i,j,k

Ti,j,k.

By theorem 2.3 some Ti,j,k contains an open subset of 〈a〉, so Nd ⊂ Ti,j,k for some
open subgroup N of 〈a〉 and some d ∈ 〈a〉, so that

[g, kx] = si and [si, x] = sj for any x ∈ Nd.

Since 〈a〉/N is finite, we can assume that d = as for some positive integer s. Since
[si, nd] = sj for all n ∈ N , it follows that [si, N ] = 1. Thus,

[[g, k(n1a
s)], n2] = 1 for any n1, n2 ∈ N. (3.8)

Let σ = π(|〈a〉/N |) be the (finite) set of prime divisors of the order of 〈a〉/N .
Then aq ∈ N for any q �∈ σ. Choosing n1 = a1−s

q and n2 = aq in (3.8) we obtain for
the q-components

[gq, k+1aq] = [[gq, kaq], aq] = 1 for any q �∈ σ. (3.9)

For every prime p the group Gp is locally nilpotent by proposition 3.6, so there
is a positive integer kp such that [gp, kp

ap] = 1. Now for

m = max{k + 1, max
p∈σ

{kp}}

in view of (3.9) we have [gp, map] = 1 for all p, which means that [g, ma] = 1. Thus,
G is an Engel group and therefore it is locally nilpotent by theorem 3.4. �

4. Prosoluble groups

Any profinite group G has the largest normal pronilpotent subgroup F (G), called
the Fitting subgroup of G. Further terms of the Fitting series are defined by induc-
tion: F1(G) = F (G) and Fi+1(G) is the inverse image of F (G/Fi(G)). By definition
a group has finite Fitting height if Fk(G) = G for some k ∈ N.
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Recall that by theorem 3.1 any pronilpotent group with countable right Engel
sinks is locally nilpotent. Therefore, if G is a profinite group with countable right
Engel sinks, then the Fitting subgroup F (G) is locally nilpotent.

The proof of the main theorem 1.2 for a prosoluble group G with countable right
Engel sinks will follow from a key proposition stating that F (G) �= 1. We approach
the proof of this proposition in a number of steps. First we list several profinite
analogues of the properties of coprime automorphisms of finite groups, which are
used in this section in relation to Engel sinks.

If ϕ is an automorphism of a finite group H of coprime order, that is, such that
(|ϕ|, |H|) = 1, then we say for brevity that ϕ is a coprime automorphism of H. This
definition is extended to profinite groups as follows. We say that ϕ is a coprime
automorphism of a profinite group H meaning that a procyclic group 〈ϕ〉 faithfully
acts on H by continuous automorphisms and π(〈ϕ〉) ∩ π(H) = ∅. Since the semidi-
rect product H〈ϕ〉 is also a profinite group, ϕ is a coprime automorphism of H if
and only if for every open normal ϕ-invariant subgroup N of H the automorphism
(of finite order) induced by ϕ on H/N is a coprime automorphism. The following
lemma is derived from an analogue of the Schur–Zassenhaus theorem for profinite
groups; we shall freely use this fact without special references.

Lemma 4.1 (see [14], lemma 4.1). If ϕ is a coprime automorphism of a profinite
group G, then for every prime q ∈ π(G) there is a ϕ-invariant Sylow q-subgroup
of G. If G is in addition prosoluble, then for every subset σ ⊆ π(G) there is a
ϕ-invariant Hall σ-subgroup of G.

The following lemma is a special case of [17, proposition 2.3.16].

Lemma 4.2. If ϕ is a coprime automorphism of a profinite group G and N is a
ϕ-invariant closed normal subgroup of G, then every fixed point of ϕ in G/N is an
image of a fixed point of ϕ in G, that is, CG/N (ϕ) = CG(ϕ)N/N .

As a consequence, we have the following.

Lemma 4.3 (see [14], lemma 4.3). If ϕ is a coprime automorphism of a profinite
group G, then [[G,ϕ], ϕ] = [G,ϕ].

We will be applying the following profinite version of a theorem of Thompson.
Namely, Thompson [23] proved that if G is a finite soluble group on which a finite
soluble group A of coprime order acts by automorphisms, then the Fitting height
h(G) is bounded in terms of h(CG(A)) and the number of prime divisors of |A|
counting multiplicities. (Further results in this direction were devoted to improving
the corresponding bounds, with best possible one obtained by Turull, see his survey
[24].) The profinite version of Thompson’s theorem can be deduced by standard
arguments in the spirit of [25, lemma 2], since the hypotheses are inherited by
quotients by closed normal subgroups by lemma 4.2.

Theorem 4.4 Thompson. Let G be a prosoluble group on which a finite soluble
group A acts by continuous automorphisms and suppose that π(G) ∩ π(A) = ∅. If
CG(A) has finite Fitting height, then G also has finite Fitting height.
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We begin our step-by-step approach to proving that F (G) �= 1 in any nontrivial
prosoluble group with countable right Engel sinks. The first step is considering the
case where all Sylow subgroups are finite.

Lemma 4.5. Suppose that G is a nontrivial prosoluble group in which Sylow
p-subgroups are finite for all primes p. If every element of G has a countable right
Engel sink, then F (G) �= 1.

Proof. For a given arbitrary element g ∈ G, let {s1, s2, . . .} be a countable right
Engel sink of g. Consider the subsets

Ti,j,k = {x ∈ G | [g, kx] = si and [si, x] = sj}.
Note that each Ti,j,k is a closed subset of G. By the definition of a right Engel sink,
we have

G =
⋃
i,j,k

Ti,j,k.

By theorem 2.3 some Ti,j,k contains a coset Nd of an open normal subgroup N of
G, so that

[g, kx] = si and [si, x] = sj for any x ∈ Nd. (4.1)

Since [si, nd] = sj for all n ∈ N , it follows that [si, N ] = 1. Then si has centralizer
of finite index in G, and si has finitely many conjugates in G. Hence the normal
closure 〈sG

i 〉 is central-by-finite. Given that G is a prosoluble group, it follows that
if si �= 1, then G has a normal abelian subgroup and therefore also a closed normal
abelian subgroup, so that F (G) �= 1.

Thus, the lemma is proved unless for every g ∈ G the element si given by the
above argument in (4.1) is trivial. In other words, it remains to consider the case
where for every g ∈ G there is a positive integer k = k(g) and a coset Nd of an
open subgroup N of G such that

[g, kx] = 1 for any x ∈ Nd. (4.2)

We now observe that the group G has only countably many open normal sub-
groups. Indeed, any normal subgroup of finite index n must contain the normal
subgroup H(π(n)) generated by all Sylow q-subgroups for all primes q �∈ π(n), and
each quotient by G/H(π(n)) is finite, since all Sylow subgroups of G are finite.
Therefore G has only finitely many normal subgroups of any given finite index and
hence only countably many open normal subgroups. Consequently, G has countably
many cosets of such subgroups, say, {D1,D2, . . . }. Consider the subsets

Uj,k = {x ∈ G | [x, ky] = 1 for any y ∈ Dj}.
Note that each Uj,k is a closed subset of G. By our assumption involving (4.2), we
have

G =
⋃
j,k

Uj,k.
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By theorem 2.3 some Uj,k contains a coset Kb of an open normal subgroup K of
G, so that

[x, ky] = 1 for any x ∈ Kb and any y ∈ Dj ,

where Dj = Nd for some d ∈ G and an open normal subgroup N of G. Setting
L = K ∩ N we obtain

[ub, kvd] = 1 for any u, v ∈ L. (4.3)

Let σ = π(G/L), which is a finite set of primes. Then G = LH for a Hall σ-subgroup
H, which is finite, since all Sylow subgroups are finite. We can choose the coset
representatives b, d ∈ H satisfying (4.3). Then B = 〈b, d〉 is a finite subgroup of H.

By standard commutator formulae equation (4.3) implies that

1 = [ub, kvd] = [b, kd][u, kv] = [u, kv] for any u, v ∈ CL(B). (4.4)

Hence CL(B) is a k-Engel group. Therefore CL(B) is locally nilpotent by
theorem 3.4.

Recall that σ = π(G/L) and H is a Hall σ-subgroup. Since H is finite, there is an
open normal subgroup M of G that intersects H trivially; replacing L with L ∩ M ,
we can assume that L is a σ′-subgroup.

By theorem 4.4 applied to the action of B on L we obtain that L has a finite
series of characteristic closed subgroups with pronilpotent factors. This implies that
F (G) �= 1 (even if L = 1, since G is prosoluble). �

We now consider coprime automorphisms in relation to Engel sinks. In the proof
of the following lemma we use the well-known fact that if G is nilpotent and G/G′

is finite, then G is finite (see, e.g. [18, 5.2.6]).

Lemma 4.6. Let ϕ be a coprime automorphism of a pronilpotent group G. If all
elements of the semidirect product G〈ϕ〉 have countable right Engel sinks, then
γ∞(G〈ϕ〉) is finite and γ∞(G〈ϕ〉) = [G,ϕ].

Proof. The group G is locally nilpotent by theorem 3.1. The quotient G〈ϕ〉/[G,ϕ]
is obviously the direct product of the images of G and 〈ϕ〉 and therefore is
pronilpotent. Hence, γ∞(G〈ϕ〉) � [G,ϕ]. By lemma 4.3,

[[G,ϕ], ϕ] = [G,ϕ].

Therefore also γ∞(G〈ϕ〉) � [G,ϕ], so that γ∞(G〈ϕ〉) = [G,ϕ].
Let V be the quotient of [G,ϕ] by its derived subgroup. The semidirect prod-

uct V 〈ϕ〉 is metabelian and therefore all elements of it also have countable left
Engel sinks. By theorem 1.1 then γ∞(V 〈ϕ〉) = [V, ϕ] = V is finite. It follows that
the locally nilpotent pronilpotent group [G,ϕ] is finitely generated and therefore
nilpotent and finite. �

We shall further need the following simple lemma about finite groups.
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Lemma 4.7. Suppose that G is a finite q-soluble group admitting a coprime auto-
morphism α such that G = [G,α]. If Q is a nontrivial α-invariant Sylow q-subgroup
of G, then [Q,α] �= 1.

Proof. We can assume from the outset that Oq′(G) = 1; then Oq(G) �= 1 and
CG(Oq(G)) � Oq(G). Suppose the opposite: [Q,α] = 1. Then [Oq(G), α] = 1,
whence [Oq(G), [α,G]] = [Oq(G), G] = 1 by lemma 2.1, so that G = Oq(G) and
G = [G,α] = [Q,α] = 1, a contradiction. �

We now consider the action of a coprime automorphism of a prosoluble group.

Lemma 4.8. Let ϕ be a nontrivial coprime automorphism of a prosoluble group G.
If all elements of the semidirect product G〈ϕ〉 have countable right Engel sinks, then
F ([G,ϕ]) �= 1.

Proof. By lemma 4.3 we can assume from the outset that G = [G,ϕ].
For a prime q, let Q be a ϕ-invariant Sylow q-subgroup of G. Then [Q,ϕ] is finite

by lemma 4.6. Since G〈ϕ〉 is a profinite group, it has an open normal subgroup U
such that U ∩ [Q,ϕ] = 1; then N = G ∩ U is a ϕ-invariant open normal subgroup
of G such that N ∩ [Q,ϕ] = 1.

We claim that [N,ϕ] is a q′-group. Indeed, Q ∩ N is a Sylow q-subgroup of N , and
then Q1 = Q ∩ [N,ϕ] is a Sylow q-subgroup of [N,ϕ]. We have [Q1, ϕ] � [Q,ϕ] ∩
N = 1. Applying lemma 4.7 to every finite quotient of [N,ϕ]〈ϕ〉, we obtain that
[N,ϕ] is a q′-group.

Then [N,ϕ] � Oq′(N) � Oq′(G). In the quotient Ḡ = G/Oq′(G) we have [N̄ , ϕ] =
1, so N̄ � Z(Ḡ) by lemma 2.1. This means that Ḡ is central-by-finite, whence Ḡ′

is finite by Schur’s theorem [18, 10.1.4]. Since G/G′ = [G/G′, ϕ] is also finite by
lemma 4.6, we obtain that G/Oq′(G) is finite. Therefore, a Sylow q-subgroup of G
is finite for every prime q. The result now follows from lemma 4.5. �

We now consider the case of prosoluble groups of finite Fitting height.

Lemma 4.9. Let G be a prosoluble group of finite Fitting height. If every element
of G has a countable right Engel sink, then γ∞(G) is finite.

Proof. It is sufficient to prove the result for the case of Fitting height 2. Then
the general case will follow by induction on the Fitting height k of G. Indeed,
then γ∞(G/γ∞(Fk−1(G))) is finite, while γ∞(Fk−1(G)) is finite by the induction
hypothesis, and as a result, γ∞(G) is finite.

Thus, we assume that G = F2(G). By theorem 1.1, it is sufficient to show that
every element a ∈ G has a finite left Engel sink. Since G/F (G) is locally nilpotent,
a left Engel sink of a in F (G)〈a〉 is also a left Engel sink of a in G. Therefore, it is
sufficient to prove that γ∞(F (G)〈a〉) is finite.

For a prime p, let Fp be a Sylow p-subgroup of F (G), and write a = apap′ ,
where ap is a p-element, ap′ is a p′-element, and [ap, ap′ ] = 1. Then Fp〈ap〉 is a
normal Sylow p-subgroup of Fp〈a〉, on which ap′ induces by conjugation a coprime
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automorphism. By lemma 4.6 the subgroup γ∞(Fp〈a〉) = [Fp, ap′ ] is finite. Since

γ∞(F (G)〈a〉) =
∏
p

γ∞(Fp〈a〉) =
∏
p

[Fp, ap′ ],

it remains to prove that γ∞(Fp〈a〉) = [Fp, ap′ ] = 1 for all but finitely many primes
p.

Let V = F (G)/[F (G), F (G)]. In the metabelian group V 〈a〉 all elements also have
countable left Engel sinks by lemma 2.7. By theorem 1.1 the subgroup γ∞(V 〈a〉)
is finite. Since

[F (G), F (G)] =
∏
p

[Fp, Fp],

it follows that [Fp, ap′ ] � [Fp, Fp] for all but finitely many primes p. But if [Fp, ap′ ] �
[Fp, Fp], then CFp

(ap′)[Fp, Fp] = Fp by lemma 4.2, whence CFp
(ap′) = Fp, that is,

[Fp, ap′ ] = 1. Hence the result. �

Lemma 4.10. Let ϕ be a coprime automorphism of a prosoluble group G. If all
elements of the semidirect product G〈ϕ〉 have countable right Engel sinks, then
[G,ϕ] is finite.

Proof. By lemma 4.3 we can assume from the outset that G = [G,ϕ]. Since
γ∞(F2(G)) is finite by lemma 4.9, there is a ϕ-invariant open normal subgroup
N of G such that N ∩ γ∞(F2(G)) = 1. It follows that γ∞(F2(N)) = 1, which
means that F2(N) = F (N). Then ϕ must act trivially on N/F (N), since otherwise
F2(N) �= F (N) by lemma 4.8 applied to N/F (N). Thus, [N,ϕ] � F (N) � F (G).
Then NF (G)/F (G) � Z(G/F (G)) by lemma 2.1, since G = [G,ϕ] by our assump-
tion. In particular, the Fitting height of G〈ϕ〉 is finite, and we obtain that
γ∞(G〈ϕ〉) = [G,ϕ] is finite by lemmas 4.6 and 4.9. �

We now prove the key proposition of this section.

Proposition 4.11. If every element of a nontrivial prosoluble group G has a
countable right Engel sink, then F (G) �= 1.

Proof. Since G is prosoluble, we have G �= γ∞(G). Choose a prime p ∈
π(G/γ∞(G)). If γ∞(G) is a pro-p group, then F (G) �= 1 and we are done. Oth-
erwise, let H be a Hall p′-subgroup of γ∞(G). By an analogue of the Frattini
argument we have G = NG(H)γ∞(G). Indeed, for any x ∈ G the Hall p′-subgroups
H and Hx of γ∞(G) are conjugate in γ∞(G), so that H = Hxy for y ∈ γ∞(G) and
then x ∈ NG(H)y−1.

We can now choose a nontrivial p-element a ∈ NG(H) (so that |a| = pk, where
k ∈ N ∪ {∞}). By lemma 4.10 the subgroup [H, a] is finite. Therefore, there is an
open normal a-invariant subgroup N of γ∞(G) such that N ∩ [H, a] = 1. Then [N ∩
H, a] = 1. Since N = (H ∩ N)P for an a-invariant Sylow p-subgroup P of γ∞(G),
we have [N, a] = [(H ∩ N)P, a] = [P, a]. Hence the subgroup [N, a] is pronilpotent,
and therefore,

[N, a] � F (N) � F (γ∞(G)) � F (G).

Thus, the proposition is proved if [N, a] �= 1.
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If [N, a] = 1, then also [N, [γ∞(G), a]] = 1. Then [γ∞(G), a] has a central sub-
group of finite index and therefore has finite Fitting height. By lemma 4.9,
γ∞([γ∞(G), a]) is finite, and therefore F ([γ∞(G), a]) �= 1 unless [γ∞(G), a] = 1.
Since

F ([γ∞(G), a]) � F (γ∞(G)) � F (G),

the proof is complete if [γ∞(G), a] �= 1. Finally, if [γ∞(G), a] = 1, then a is an
Engel element since G/γ∞(G) is locally nilpotent by theorem 3.1. Then the nor-
mal subgroup [G, a]〈a〉 is pronilpotent by Baer’s theorem [8, Satz III.6.15], and
F (G) �= 1. �

We are now ready to prove the main result of this section.

Theorem 4.12. Suppose that G is a prosoluble group in which every element has a
countable right Engel sink. Then G has a finite normal subgroup N such that G/N
is locally nilpotent.

Proof. By theorem 3.1 it is sufficient to prove that γ∞(G) is finite. Since γ∞(F2(G))
is finite by lemma 4.9, there is an open normal subgroup N of G such that N ∩
γ∞(F2(G)) = 1. It follows that γ∞(F2(N)) = 1, which means that F2(N) = F (N).
It follows from proposition 4.11 that F (N) = N . In particular, N is locally nilpotent
and therefore N � F (G). Hence the quotient group G/F (G) is finite, and therefore
the Fitting height of G is finite. We obtain that γ∞(G) is finite by lemma 4.9. �

Here we also derive the following corollary for a virtually prosoluble group (i.e. a
group with a prosoluble open normal subgroup), which will be needed in the sequel.

Corollary 4.13. Suppose that G is a virtually prosoluble group in which every
element has a countable right Engel sink. Then G has a finite normal subgroup N
such that G/N is locally nilpotent.

Proof. By theorem 3.1 it is sufficient to show that γ∞(G) is finite. By hypothesis,
G has an open normal prosoluble subgroup H. By theorem 4.12, γ∞(H) is finite.
Therefore, passing to the quotient group, we can assume that γ∞(H) = 1 and the
Fitting subgroup F (G) is open.

Since G/F (G) is finite, we can use induction on |G/F (G)|. The basis of this
induction includes the trivial case G/F (G) = 1 when γ∞(G) = 1. But the bulk of
the proof deals with the case where G/F (G) is a finite simple group. If G/F (G)
is abelian, then G has Fitting height 2 and γ∞(G) is finite by lemma 4.9 and the
proof is complete.

Thus, suppose that G/F (G) is a non-abelian finite simple group. Let p be a prime
divisor of |G/F (G)|, and g ∈ G \ F (G) an element of order pn, where n is either a
positive integer or ∞ (so pn is a Steinitz number). Let T be the Hall p′-subgroup
of F (G). By lemma 4.6 the subgroup [T, g] is finite.

Since [T, g] is normal in F (G), its normal closure R = 〈[T, g]G〉 in G is a product
of finitely many conjugates and is therefore also finite. Therefore, it is sufficient
to prove that γ∞(G/R) is finite. Thus, we can assume that R = 1. Note that then
[T, ga] = 1 for any conjugate ga of g.
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Choose a transversal {u1, . . . , uk} of G modulo F (G). Let G1 = 〈gu1 , . . . , guk〉.
Clearly, G1F (G)/F (G) is generated by the conjugacy class of the image of g. Since
G/F (G) is simple, we have G1F (G) = G. By our assumption, the Hall p′-subgroup
T of F (G) is centralized by all elements gui . Hence, [G1, T ] = 1. Let P be the Sylow
p-subgroup of F (G) (possibly, trivial). Then also [PG1, T ] = 1, and therefore

γ∞(G) = γ∞(G1F (G)) = γ∞(PG1).

Let the bar denote images in Ḡ = G/P . Note that γ∞(Ḡ) = γ∞(Ḡ1), while F (Ḡ) =
T̄ and Ḡ/T̄ = Ḡ1T̄ /T̄ ∼= F/F (G) is a non-abelian finite simple group. Hence, Ḡ =
γ∞(Ḡ1)T̄ . Therefore, since [γ∞(Ḡ1), T̄ ] = 1,

γ∞(Ḡ1) = [γ∞(Ḡ1), Ḡ1] = [γ∞(Ḡ1), γ∞(Ḡ1)T̄ ] = [γ∞(Ḡ1), γ∞(Ḡ1)].

As a result, γ∞(Ḡ1) ∩ T̄ is contained both in the centre and the derived subgroup
of γ∞(Ḡ1), and therefore is isomorphic to a subgroup of the Schur multiplier of
the finite group γ∞(Ḡ1)/(γ∞(Ḡ1) ∩ T̄ ) ∼= G/F (G). Since the Schur multiplier of a
finite group is finite [8, Hauptsatz V.23.5], we obtain that γ∞(Ḡ1) ∩ T̄ is finite.
Since T̄ is canonically isomorphic to T , it follows that

γ∞(G) ∩ T ∼= γ∞(Ḡ) ∩ T̄ = γ∞(Ḡ1) ∩ T̄

is also finite. Therefore, we can assume that T = 1, in other words, that F (G) is a
p-group.

Since G/F (G) is a non-abelian simple group, we can choose another prime r �= p
dividing |G/F (G)| and repeat the same arguments as above with r in place of p.
As a result, we reduce the proof to the case F (G) = 1, where the result is obvious.

We now finish the proof of corollary 4.13 by induction on |G/F (G)|. The basis of
this induction where G/F (G) is a simple group was proved above. Now suppose that
G/F (G) has a nontrivial proper normal subgroup with full inverse image N , so that
F (G) < N � G. Since F (N) = F (G), by induction applied to N the group γ∞(N)
is finite. Since N/γ∞(N) � F (G/γ∞(N)), by induction applied to G/γ∞(N) the
group γ∞(G/γ∞(N)) is also finite. As a result, γ∞(G) is finite, as required. �

5. Profinite groups

We approach the general case of profinite groups by obtaining bounds for the so-
called nonprosoluble length. These bounds follow from the bounds for nonsoluble
length of the corresponding finite quotients. We begin with the relevant definitions.

The nonsoluble length λ(H) of a finite group H is defined as the minimum number
of nonsoluble factors in a normal series in which every factor either is soluble or is
a direct product of non-abelian simple groups. (In particular, the group is soluble
if and only if its nonsoluble length is 0.) Clearly, every finite group has a normal
series with these properties, and therefore its nonsoluble length is well defined. It
is easy to see that the nonsoluble length λ(H) is equal to the least positive integer
l such that there is a series of characteristic subgroups

1 = L0 � R0 < L1 � R1 < · · · � Rl = H

in which each quotient Li/Ri−1 is a (nontrivial) direct product of non-abelian simple
groups, and each quotient Ri/Li is soluble (possibly trivial).
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We shall use the following result of Wilson [25], which we state in the special
case of p = 2 using the terminology of nonsoluble length.

Theorem 5.1 [see [25], theorem 2*]. Let K be a normal subgroup of a finite
group G. If a Sylow 2-subgroup Q of K has a coset tQ consisting of elements of
order dividing 2k, then the nonsoluble length of K is at most k.

We now turn to profinite groups. It is natural to say that a profinite group G has
finite nonprosoluble length at most l if G has a normal series

1 = L0 � R0 < L1 � R1 < · · · � Rl = G

in which each quotient Li/Ri−1 is a (nontrivial) Cartesian product of non-abelian
finite simple groups, and each quotient Ri/Li is prosoluble (possibly trivial). As a
special case of a general result in Wilson’s paper [25] we have the following.

Lemma 5.2 (see [25], lemma 2). If, for some positive integer m, all continuous
finite quotients of a profinite group G have nonsoluble length at most m, then G
has finite nonprosoluble length at most m.

We now prove a key proposition on bounds for the nonprosoluble length.

Proposition 5.3. Suppose that G is a profinite group in which every element has
a countable right Engel sink. Then G has finite nonprosoluble length.

Proof. Let H =
⋂

G(i) be the intersection of the derived series of G (where G(1) =
[G,G] and by induction G(i+1) = [G(i), G(i)]). Then H = [H,H]. Indeed, if H �=
[H,H], then the quotient G/[H,H] is a prosoluble group by lemma 2.2, whence
H =

⋂
G(i) � [H,H], a contradiction. Since the quotient G/H is prosoluble, it is

sufficient to prove the proposition for H. Thus, we can assume from the outset that
G = [G,G].

Let T be a Sylow 2-subgroup of G. By theorem 3.1 the group T is locally nilpotent.
For each positive integer i, consider the subset of the direct product T × T

Si = {(x, y) ∈ T × T | the subgroup 〈x, y〉 is nilpotent of class at most i}.
Note that each subset Si is closed in the product topology of T × T , because the
condition defining Si means that all commutators of weight i + 1 in x, y are trivial.
Since every 2-generator subgroup of T is nilpotent, we have

⋃
i

Si = T × T.

By theorem 2.3 one of the sets Si contains an open subset of T × T . This means
that there are cosets aN and bN of an open normal subgroup N of T and a positive
integer c such that

〈x, y〉 is nilpotent of class c for any x ∈ aN, y ∈ bN. (5.1)

(The subsequent arguments include the case where N = T , even with certain
simplifications.)
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Let K be an open normal subgroup of G such that K ∩ T � N . If we replace N
by K ∩ T , then (5.1) still holds with the same a, b. Hence we can assume that N is
a Sylow 2-subgroup of K.

We now apply the following general fact (which, e.g. immediately follows from
[17, lemma 2.8.15]).

Lemma 5.4. Let G be a profinite group and K a normal open subgroup of G. There
exists a subgroup H of G such that G = KH and K ∩ H is pronilpotent.

Let H be the subgroup given by this lemma for our group G and subgroup K.
Since H is virtually pronilpotent and every element has a countable right Engel
sink, by corollary 4.13 the subgroup γ∞(H) is finite. Recalling our assumption that
G = [G,G], we obtain

G = [G,G] = γ∞(G) � γ∞(HK) � γ∞(H)K.

Thus, G = γ∞(H)K, where γ∞(H) is a finite subgroup.
Hence we can choose the coset representative a satisfying (5.1) in a conjugate of

a Sylow 2-subgroup of γ∞(H), and therefore having finite order, say, |a| = 2n.
For any y ∈ bN the 2-subgroup 〈a, y〉 is nilpotent of class at most c, while a2n

= 1.
Then

[a, y2n(c−1)
] = 1. (5.2)

This follows from well-known commutator formulae (and for any p-group); see, for
example, [20, lemma 4.1].

In particular, for any z ∈ N by using (5.2) we obtain

[z, cy
2n(c−1)

] = [az, cy
2n(c−1)

] = 1, (5.3)

since 〈az, y2n(c−1)〉 is a subgroup of 〈az, y〉, which is nilpotent of class c by (5.1).
(Note that in the case N = T we could have put K = G, H = 1, a = b = 1, and
n = 0.)

Our aim is to show that there is a uniform bound, in terms of |G : K|, c, and n,
for the nonsoluble length of all continuous finite quotients of G. Let M be an open
normal subgroup of G and let the bar denote the images in Ḡ = G/M . It is clearly
sufficient to obtain a required bound for the nonsoluble length of K̄.

Let R0 be the soluble radical of K̄, and L1 the inverse image of the generalized
Fitting subgroup of K̄/R0, so that

L1/R0 = S1 × S2 × · · · × Sk (5.4)

is a direct product of non-abelian finite simple groups. Note that R0 and L1 are
normal subgroups of Ḡ. The group Ḡ acting by conjugation induces a permutational
action on the set {S1, S2, . . . , Sk}. The kernel of the restriction of this permutational
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action to K̄ is contained in the inverse image R1 of the soluble radical of K̄/L1:
⋂
i

NK̄(Si) � R1. (5.5)

This follows from the validity of Schreier’s conjecture on the solubility of the
outer automorphism groups of non-abelian finite simple groups, confirmed by the
classification of the latter, because L1/R0 contains its centralizer in K̄/R0.

Let e be the least positive integer such that 2e � c, and let t = 2n(c−1)+e. We
claim that for any y ∈ b̄N̄ the element y2t

normalizes each factor Si in (5.4). Argu-
ing by contradiction, suppose that the element y2t

has a nontrivial orbit on the
set of the Si. Then the element y2n(c−1)

has an orbit of length 2s � 2e+1 on this
set; let {T1, T2, . . . , T2s} be such an orbit cyclically permuted by y2n(c−1)

. Since
non-abelian finite simple groups have even order (by the Feit–Thompson theorem
[4]) and the subgroups Si are subnormal in K̄/R0, each subgroup Si contains a
nontrivial element of N̄R0/R0. If x is a nontrivial element of T1 ∩ N̄R0/R0, then
the commutator

[x, cȳ
2n(c−1)

],

written as an element of T1 × T2 × · · · × T2s , has a nontrivial component in Tc+1

since 2s � 2e+1 > c. This, however, contradicts (5.3).
Thus, for any element y ∈ b̄N̄ the power y2t

normalizes each factor Si in (5.4).
Let 2d be the highest power of 2 dividing |G : K|, and let u = max{t, d}. Then
y2u ∈ R1 by (5.5), since y2u ∈ K̄ and y2u

normalizes each Si in (5.4) by the choice
of u.

As a result, in the quotient Ḡ/R1 all elements of the coset b̄N̄R1/R1 of the
Sylow 2-subgroup N̄R1/R1 of K̄/R1 have order dividing 2u. We can now apply
theorem 5.1, by which the nonsoluble length of K̄/R1 is at most u. Then the
nonsoluble length of K̄ is at most u + 1. Clearly, the nonsoluble length of Ḡ/K̄
is bounded in terms of |G : K|. As a result, since the number u depends only on
|G : K|, n, and c, the nonsoluble length of Ḡ is bounded in terms of these parameters
only. Since this holds for any continuous finite quotient of the profinite group G,
the group G has finite nonprosoluble length by lemma 5.2. This completes the proof
of proposition 5.3. �

We are now ready to handle the general case of profinite groups using
corollary 4.13 on virtually prosoluble groups and induction on the nonprosoluble
length. First we eliminate infinite Cartesian products of non-abelian finite simple
groups.

Lemma 5.5. Suppose that G is a profinite group that is a Cartesian product of non-
abelian finite simple groups. If every element of G has a countable right Engel sink,
then G is finite.

Proof. Suppose the opposite: then G is a Cartesian product of infinitely many
non-abelian finite simple groups Gi over an infinite set of indices i ∈ I.

Every non-abelian finite simple groups S contains an element s ∈ S with a
nontrivial smallest right Engel sink R(s) �= {1}. Actually, any nontrivial element
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s ∈ S \ {1} has nontrivial minimal right Engel sink. Indeed, otherwise s is a right
Engel element of S, and right Engel elements of a finite group belong to its
hypercentre by Baer’s theorem [18, 12.3.7]. By lemma 2.5, for any z ∈ R(s) we
have

z = [s, nx] = [s, n+mx]

for some x ∈ S and some n � 1 and m � 1, and then also

z = [s, nx] = [s, n+mlx] for any l ∈ N.

For every i, we choose a nontrivial element gi ∈ Gi, a nontrivial element zi ∈
R(gi) ⊆ Gi, and the corresponding xi ∈ Gi such that for some ni � 1 and mi � 1

zi = [gi, ni
xi] = [gi, ni+milxi] for any l ∈ N. (5.6)

Consider the element

g =
∏
i∈I

gi.

For any subset J ⊆ I, consider the element

xJ =
∏
j∈J

xj .

If R(g) is any right Engel sink of g in G, then for some k ∈ N the commutator
[g, kxJ ] belongs to R(a). Because of the properties (5.6), all the components of
[g, kxJ ] in the factors Gj for j ∈ J are nontrivial, while all the other components
in Gi for i �∈ J are trivial by construction. Therefore, for different subsets J ⊆ I we
thus obtain different elements of R(g). The infinite set I has at least continuum
of different subsets, whence R(g) is uncountable, contrary to g having a countable
Engel sink by the hypothesis. �

Theorem 5.6. Suppose that G is a profinite group in which every element has a
countable Engel sink. Then G has a finite normal subgroup N such that G/N is
locally nilpotent.

Proof. By proposition 5.3 the group G has finite nonprosoluble length l. This means
that G has a normal series

1 = L0 � R0 < L1 � R1 < L1 � · · · � Rl = G

in which each quotient Li/Ri−1 is a (nontrivial) Cartesian product of non-abelian
finite simple groups, and each quotient Ri/Li is prosoluble (possibly trivial). We
argue by induction on l. When l = 0, the group G is prosoluble, and the result
follows by theorem 4.12.

Now let l � 1. By lemma 5.5 each of the nonprosoluble factors Li/Ri−1 is finite.
In particular, the subgroup L1 is virtually prosoluble, and therefore γ∞(L1) is finite
by corollary 4.13. The quotient R1/γ∞(L1) is prosoluble by lemma 2.2. Hence the
nonprosoluble length of G/γ∞(L1) is l − 1. By the induction hypothesis we obtain
that γ∞(G/γ∞(L1)) is finite, and therefore γ∞(G) is finite. By theorem 3.1 the
quotient G/γ∞(G) is locally nilpotent, and the proof is complete. �
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6. Compact groups

In this section, we prove the main theorem 1.2 about compact groups with countable
right Engel sinks. We use the structure theorems for compact groups and the results
of the preceding section on profinite groups. Parts of the proof are similar to the
proof of the main results of [12,14] about finite and countable left Engel sinks. In
the end, we reduce the proof to the situation where every element has a finite left
Engel sink and then apply theorem 1.1.

By the well-known structure theorems (see, e.g. [7, theorems 9.24 and 9.35]),
the connected component of the identity G0 of a compact (Hausdorff) group G is
a divisible normal subgroup such that G0/Z(G0) is a Cartesian product of (non-
abelian) simple compact Lie groups, while the quotient G/G0 is a profinite group.
(Recall that a group H is said to be divisible if for every h ∈ H and every positive
integer k there is an element x ∈ H such that xk = h.)

We shall be using the following lemma from [12].

Lemma 6.1 [12, lemma 5.3]. Suppose that G is a compact group in which every
element has a finite left Engel sink and the connected component of the identity G0

is abelian. Then for every g ∈ G and for any x ∈ G0 we have

[x, kg] = 1 for some k = k(x, g) ∈ N.

For compact groups with countable right Engel sinks, we begin with eliminating
simple Lie groups.

Lemma 6.2. A non-abelian simple compact Lie group contains an element all of
whose right Engel sinks are uncountable.

Proof. It is well known that any non-abelian compact Lie group G contains a sub-
group isomorphic either to SO3(R) or SU2(C) (see, e.g. [7, proposition 6.46]), and
therefore in any case, a section isomorphic to SO3(R). Since the property that every
element has a countable right Engel sink is inherited by sections, it is sufficient to
consider the case G = SO3(R).

Consider the following elements of SO3(R):

aϑ =

⎛
⎝

cos ϑ sin ϑ 0
− sin ϑ cos ϑ 0

0 0 1

⎞
⎠ , ϑ ∈ R, and g =

⎛
⎝
−1 0 0
0 1 0
0 0 −1

⎞
⎠ .

Here, aϑ is a perpendicular rotation through ϑ around the z-axis. We observe that
ag

ϑ = a−ϑ. We therefore have

[aϑ, g] = a−1
ϑ ag

ϑ = a2
−ϑ = a−2ϑ,

and then by induction,

[aϑ, ng] = a(−2)nϑ.

Therefore any left Engel sink of g must contain, for every ϑ ∈ R, an element of the
form a(−2)n(ϑ)ϑ for some n(ϑ) ∈ N. Since for ϑ we can choose continuum elements of
R that are linearly independent over Q, any left Engel sink of g must be uncountable.
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All the elements aϑ form an abelian subgroup A, which is normalized by g.
The above arguments actually show that any left Engel sink of g in A〈g〉 must be
uncountable.

Since the group A〈g〉 is metabelian, by lemma 2.7 a right Engel sink of g = g−1

in A〈g〉 is a left Engel sink of g in A〈g〉. Therefore any right Engel sink of g must
be uncountable. �

The next lemma is a step towards proving that every element has a finite Engel
sink.

Lemma 6.3. Suppose that G is a compact group in which every element has a count-
able right Engel sink. If G has an abelian subgroup A with locally nilpotent quotient
G/A, then every element of G has a finite left Engel sink.

Proof. Since G/A is locally nilpotent, for showing that an element g ∈ G has a finite
left Engel sink we can obviously assume that G = A〈g〉. Since the group A〈g〉 is
metabelian, by lemma 2.7 every element of it also has a countable left Engel sink.
Then g has a finite left Engel sink by theorem 1.1. �

We are now ready to prove the main result.

Theorem 6.4. Suppose that G is a compact group in which every element has a
countable right Engel sink. Then G has a finite normal subgroup N such that G/N
is locally nilpotent.

Proof. In view of lemma 6.2, the connected component of the identity G0 is an
abelian divisible normal subgroup.

Lemma 6.5. For every g ∈ G and for any x ∈ G0 we have

[x, kg] = 1 for some k = k(x, g) ∈ N.

Proof. We can obviously assume that G = G0〈g〉. The group G0〈g〉 satisfies the
hypothesis of lemma 6.3 and therefore every element in it has a finite left Engel sink.
Then for any x ∈ G0 we have [x, kg] = 1 for some k = k(x, g) ∈ N by lemma 6.1. �

We proceed with the proof of theorem 6.4. Applying theorem 5.6 to the profinite
group Ḡ = G/G0 we obtain a finite normal subgroup D with locally nilpotent quo-
tient. Then every element g ∈ Ḡ has a finite smallest left Engel sink Ē (g) contained
in D. Consider the subgroup generated by all such sinks:

E = 〈Ē (g) | g ∈ Ḡ〉 � D.

Clearly, Ē (g)h = Ē (gh) for any h ∈ Ḡ; hence E is a normal finite subgroup of Ḡ.
Note that Ḡ/E is also locally nilpotent by theorem 3.4 as an Engel profinite group.

We now consider the action of Ḡ by automorphisms on G0 induced by
conjugation.

Lemma 6.6. The subgroup E acts trivially on G0.
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Proof. In the proof of this lemma, we consider G0 as an abstract abelian divisible
group. Thus, G0 is a direct product A0 ×

⊕
p Ap of a torsion-free divisible group

A0 and divisible Sylow p-subgroups Ap over various primes p. Clearly, every Sylow
subgroup Ap is normal in G.

First we show that E acts trivially on each Ap. It is sufficient to show that
for every g ∈ Ḡ every element z ∈ Ē (g) acts trivially on Ap. Consider the action
of 〈z, g〉 on Ap. Note that 〈z, g〉 = 〈z〈g〉〉〈g〉, where 〈z〈g〉〉 is a finite g-invariant
subgroup, since it is contained in the finite subgroup E. For any a ∈ Ap we have
[a, kg] = 1 for some k = k(a, g) ∈ N by lemma 6.5. Hence the subgroup

〈a〈g〉〉 = 〈a, [a, g], [a, g, g], . . . 〉

is a finite p-group; note that this subgroup is g-invariant. The images of 〈a〈g〉〉 under
the action of elements of the finite group 〈z〈g〉〉 generate a finite p-group B, which is
〈z, g〉-invariant. We claim that 〈z, g〉/C〈z,g〉(B) is a finite p-group. Indeed, otherwise
there is a p′-element y ∈ 〈z, g〉/C〈z,g〉(B) that acts non-trivially on the finite p-group
B and therefore also acts nontrivially on its Frattini quotient V = B/Φ(B) by [8,
Satz 3.18]. By the well-known properties of coprime action (see lemma 4.3), then
[[V, y], y] = [V, y] �= 1 and therefore C[V,y](y) = 1 by Maschke’s theorem, whence
[V, y] = {[v, y] | v ∈ [V, y]}. By easy induction we also obtain that [V, y] = {[v, ny] |
v ∈ [V, y]} for any n, and this contradicts lemma 6.5. Thus, 〈z, g〉/C〈z,g〉(B) is a
finite p-group. But since z ∈ Ē (g), by lemma 2.4 we have z = [z, mg] for some m ∈ N.
Since a finite p-group is nilpotent, this implies that z ∈ C〈z,g〉(B). In particular, z
centralizes a. Thus, E acts trivially on Ap, for every prime p.

We now show that E also acts trivially on the quotient W = G0/
⊕

p Ap of
G0 by its torsion part. Note that W can be regarded as a vector space over
Q. Every element y ∈ E has finite order and therefore by Maschke’s theorem
W = [W, y] ⊕ CW (y) and [W, y] = {[w, ny] | w ∈ [W, y]} for any n. If [W, y] �= 0,
then this contradicts lemma 6.5.

Thus, E acts trivially both on W and on
⊕

p Ap. Then any automorphism η of
G0 induced by conjugation by h ∈ E acts on every element a ∈ A0 as aη = ah = at,
where t = t(a, h) is an element of finite order in G0. Then aηi

= ati, and therefore
the order of t must divide the order of η.

Assuming the action of E on G0 to be non-trivial, choose an element h ∈ E acting
on G0 as an automorphism η of some prime order p. Then there is a ∈ A0 such that
ah = as, where s ∈ Ap has order p. There is an element a1 ∈ A0 such that ap

1 = a.
Then ah

1 = a1s1, where sp
1 = s. Thus, |s1| = p2, and therefore p2 divides the order

of η. We arrived at a contradiction with |η| = p. �

We now finish the proof of theorem 6.4. Let F be the full inverse image of E in G.
Then we have normal subgroups G0 � F � G such that G/F is locally nilpotent,
F/G0 is finite, and G0 is contained in the centre of F by lemma 6.6. Since F
has centre of finite index, the derived subgroup F ′ is finite by Schur’s theorem
[8, Satz IV.2.3]. The quotient G/F ′ is an extension of an abelian subgroup by a
locally nilpotent group. Hence every element of G/F ′ has a finite left Engel sink
by lemma 6.3. By theorem 1.1 the group G/F ′ has a finite normal subgroup with
locally nilpotent quotient. The full inverse image of this subgroup is a required finite
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normal subgroup N such that G/N is locally nilpotent. The proof of theorem 6.4
is complete. �
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