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Abstract
Emerson and Halpern (1986, Journal of the Association for Computing Machinery 33, 151–178) prove that
the Computation Tree Logic (CTL) cannot express the existence of a path on which a proposition holds
infinitely often (fairness for short).
The scope is widened from CTL to a general branching-time logic. A path quantifier is followed by a lan-
guage with temporal descriptions. In this extended setting, the said inexpressiveness is strengthened in
two aspects. First, universal path quantifiers are unrestricted. In this way, they are relieved of any temporal
quantifiers such as of those in AU and AR from CTL. Second, existential path quantifiers are allowed with
any countable language. Instances are the temporal quantifiers in EU and ER from CTL. By contrast, the
fairness statement is an existential path quantifier with an uncountable language. Both aspects indicate
that this inexpressiveness is optimal with respect to the polarity of path quantifiers and to the cardinality
of their languages.
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1. Introduction
Propositional Dynamic Logic (PDL), cf. Fischer and Ladner (1979) or Harel et al. (2000, Chap. 5),
and Computation Tree Logic (CTL), cf. Clarke and Emerson (1982) or Emerson and Halpern
(1985), are proposed as specification formalisms. However, these logics were shown to be unable to
express fairness, cf. Harel and Sherman (1982) for PDL and Emerson and Halpern (1986, Thm. 7)
or Clarke and Draghicescu (1989) for CTL. Here, fairness means the existence of a path on that a
certain proposition holds infinitely often, cf. Lamport (1980). By contrast, some extensions of PDL
and CTL can express fairness, cf. Streett (1981) for PDL and Emerson and Halpern (1986) for CTL.

In essence, the semantics of CTL comprises a path quantifier and a temporal quantifier along the
path. Axelsson et al. (2010a,b) incorporate ideas from PDL into CTL. Basically, the domain of the
temporal quantifier is refined from the set of all times to a syntax-given set of times. In this way,
the obtained logic (XCTL) can express, for instance, that a path exists on which a certain formula
holds at all even times. Because the quantifier pattern remains unchanged, the logic is expected to
not express fairness either. However, the proof in Axelsson et al. (2010b, Claim 2 in the proof to
Lem. 4.3) is faulty.1

This article provides a unified proof that neither PDL, CTL, nor XCTL captures fairness. A second
aspect concerns the universal path quantifiers.

Fairness depends on a single path. Accordingly, universal path quantifiers should not assist
any formula in expressing fairness. The inexpressiveness results by Emerson and Halpern (1986,
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Thm. 7), Harel and Sherman (1982), and by Clarke and Draghicescu (1989, Thm. 3) are not stated
for arbitrary universal path quantifiers because the results regard negation-closed logics. As an
example, we consider the two formulae

ϑ1 := E tt U p and ϑ2 := E tt U (p∧ ¬EGF p) (1)

where p is some proposition, E tt U ψ states that a vertex is reachable at whichψ holds, and EGF p
stands for p-fairness. Neither ϑ1 nor ϑ2 is equivalent to p-fairness. More precisely, the linear loop-
free structure on that p holds only at the root is a model of both formulae but is p-unfair. The
formula ϑ1 belongs to CTL and is expressible in PDL. The subformula EGF p places ϑ2 outside
of CTL and PDL. Hence, the three cited proofs can handle ϑ1 but not ϑ2. Nevertheless, the last
two proofs can be adjusted. Basically, it is sufficient to decompose equivalences into implications
according to the polarity of the subformulae, similar to the pair (18) and (19) in Lemma 19. Such
an adjustment cannot be taken for granted, cf. Bojańczyk (2008) for a peculiar case. For instance,
Demri et al. (2016, Thm. 10.3.7) simplify the proof by Emerson and Halpern (1986, Thm. 7)
but the younger proof applies its induction hypothesis bidirectionally. Hence, a polarity-based
decomposition cannot adjust this proof.

Section 3 defines a plain branching-time logic with the said logics as its sublogics. Theorem 20
in Section 4 is the main result. As a consequence, the mentioned sublogics are uniformly proven
unable to express fairness. Section 6 addresses an extension of Section 4.

2. Notations
Ordinal numbers are understood in the sense of von Neumann. In particular, the set of natu-
ral numbers is written as ω, and each number is the set of all smaller numbers. For example,
ω+ 1= {0, 1, . . . ,ω} and c \ a= {b | a≤ b< c}.

Let 〈 , 〉 be a bijection from ω×ω to ω such that a≤ 〈a, b〉 for all a, b ∈ω. For instance, Cantor
suggests 〈a, b〉 := (a+ b)(a+ b+ 1)/2+ a.

A function and its graph are considered as interchangeable. The image of a function f is written
as img(f ).

3. A Unified Branching-Time Logic
3.1 Syntax
Let P denote a non-empty set of propositions. The set F of formulae is the least fixed point (Phillips
1992, Subsec. 3.1) for the following rules.

F � ψ ::= p | ¬ψ | ψ ∨ψ | EL
p ∈ P

L ⊆ ω →� (2)
� is a finite set of objects named ψ (3)

The variables ϕ, α, and ε refer to formulae. An entity L generated by (2) is a language of infinite
words. Its alphabet 	(L) := ⋃{img(w) |w ∈ L} is finite due to (3). In formulae, parentheses may
be inserted to improve readability.

3.2 Semantics
A structure is a quadruple (V , E, 
, r) that consists of a set V of vertices, a set E of edges as a subset
of V ×V such that each v ∈V has a w ∈V with (v,w) ∈ E, a labelling function 
 in V → 2P, and
a root r in V . For such a structure S , the root is changed to s by S @ s. A path π is a function
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inω→V such that π(0)= r and (π(i), π(i+1)) ∈ E for all i ∈ω. Whether a structureS is amodel
of a formula ϕ, written as S |= ϕ, is defined as follows.

S |= p iff p ∈ 
(r) for the root r of S
S |= ¬ψ iff S �|=ψ

S |=ψ0 ∨ψ1 iff S |=ψj for some j ∈ 2
S |= EL iff there is a pair of a path π for S and of a word z in L

such that S @ π(i) |= z(i) for all i ∈ω
For a chosen pair in the last clause, its components are called witnessing path and witnessing word.

Two structures S1 and S2 are 0-bisimilar, written as S1 ≈0 S2, iff each proposition p fulfils
S1 |= p iff S2 |= p. Two formulae are equivalent iff they have the same models.

3.3 Abbreviations
Boolean values and operations are available by the usual abbreviations tt := p∨ ¬p for some p ∈ P
and ψ0 ∧ψ1 := ¬(¬ψ0 ∨ ¬ψ1). A disjunction ψ0 ∨ψ1 could have been alternatively defined as
E{z0, z1} where, for both j ∈ 2, the word zj is constantly true, e.g. ¬E∅, but is ψj at 0. For concise
definitions in Subsection 3.4, disjunctions are first-class citizens, though.

The EU-, EG-, EX-, ER-constructors from CTL can be imitated and generalised. For α, ε ∈ F and
for A, E⊆ω, the languages

α AUE ε := {
z
∣∣ some n ∈ E fulfils z(n)= ε
and z(k)= α for all k ∈A∩ n
and z(k)= tt for all k ∈ω \ (n+ 1)

}
(4)

and

GAα := {
z
∣∣ each n ∈ω fulfils z(n)= α if n ∈A and z(n)= tt otherwise

}
(5)

are defined as subsets of ω→ {tt, α, ε} and of ω→ {tt, α}, respectively. For convenience,
Xε := tt ∅U{1} ε (6)

and

ε ERA α := GAα ∪ α AUE∩A (ε ∧ α) ∪ α AUE\A ε . (7)

The sets A and E restrict the temporal quantifiers. For instance, EG{2t | t∈ω}ϕ asks for a path on
that the formula ϕ holds at all even times while odd times are unspecified. The standard con-
structors appear when A= E=ω. The setting (7) rests on the corresponding decomposition
of ER-formulae for CTL, cf. Emerson and Halpern (1985, proof of Thm. 8.4) or Demri et al. (2016,
dual of Lem. 7.1.2).

Example 1. Let ϕ be a formula. The formula

AGF ϕ := ¬Ett ωUω
(
E¬tt ωRω ¬ϕ)

asserts that ϕ holds infinitely often on every path. With the language

GF ϕ := {
z : ω→ {tt, ϕ} ∣∣ z(i)= ϕ for infinitely many i ∈ω}

(8)

the dual formula EGF ϕ asserts that ϕ holds infinitely often on some path.

Definition 2 (Fairness). Let ϕ be a formula. A structure is ϕ-fair iff it is a model of EGF ϕ.
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Lemma 3. Every language of the shape (4), (5), (6), or (7) is countable.

Proof. Words in (4) are eventually constant. The word in (5) is unique.

Remark 4. Each proof that is cited in Section 1 shows that a pair of two structures cannot be distin-
guished by some PDL- or CTL-formulae. However, EG{2t | t∈ω}p distinguishes the pairs by Emerson
and Halpern (1986, Thm. 7) and EG{2t | t∈ω}¬p the pair by Clarke and Draghicescu (1989, Sec. 4).
Both formulae are handled by Theorem 20.

3.4 Sublogics
Definition 5. The sets of negative and positive subformulae of a formula ϕ are the smallest
sets subf−1(ϕ) and subf1(ϕ) that fulfil for both signs s ∈ {−1, 1}

• ϕ ∈ subf1(ϕ),
• ¬ψ ∈ subfs(ϕ) implies ψ ∈ subf−s(ϕ),
• ψ0 ∨ψ1 ∈ subfs(ϕ) implies {ψ0,ψ1} ⊆ subfs(ϕ), and
• EL ∈ subfs(ϕ) implies	(L)⊆ subfs(ϕ).

Definition 6. Let S⊆ {−1, 1} be a set of signs. Its set of languages in a formula is

lngsS(ϕ) := {L | EL ∈ subfs(ϕ) for some s ∈ S} .
Restrictions on F through lngs reveal various branching-time logics. Prominently, CTL is just

{
ϕ ∈ F

∣∣ each L ∈ lngs{−1,1}(ϕ) has the shape of (6) or of (4) or (7) for A= E=ω
}
. (9)

Example 7. In continuation of Example 1, the formula AGF ϕ belongs to CTL but EGF ϕ does not.

Because any restriction of negative E-constructors is irrelevant for Theorem 20, we drop those
constraints and obtain the larger logic

{
ϕ ∈ F

∣∣ each L ∈ lngs{1}(ϕ) has the shape of (6) or of (4) or (7) for A= E=ω
}
. (10)

In other words, negative E-constructors are entirely unrestricted and may quantify along a path
freely. A variant is

{
ϕ ∈ F

∣∣ each L ∈ lngs{1}(ϕ) has the shape of (4) or (7)
}

(11)

which allows to customise the range of the temporal quantifiers on both sides of an U and a R. The
logic subsumes limited variants (Axelsson et al. 2010a,b) that allow the customisation on the right
side of U and R only. Similarly,

{
ϕ ∈ F

∣∣ each z ∈ ⋃
lngs{1}(ϕ) fulfils z(i)= tt for almost all i ∈ω }

(12)

captures reachability and thus subsumes PDL and its nonregular extensions (Harel et al. 2000,
Chap. 5 and 9). All stated subsumptions ignore edge labels or understand them as encoded by
propositions, cf. De Nicola and Vaandrager (1990). In particular, Theorem 20 disregards edge
labels.

4. Inexpressiveness of Fairness
To reveal fairness as inexpressible, a fair structure and a bunch of unfair structures are proven
as indistinguishable, cf. Theorem 20 with its elaboration in Section 4.1. Finally, Subsection 4.2
applies Theorem 20 to the logics from Subsection 3.4.
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4.1 Indistinguishable structures
Assumption 8. Until the end of this subsection, we let p be a proposition and let ϑ be an arbitrary
formula such that

⋃
lngs{1}(ϑ) is a countable set of words.

In Definition 15, we shall construct a set {Tk | k ∈ω+ 1} of structures. The structure Tω is
p-fair while Tk is not for any k ∈ω, cf. Lemma 16.

Lemma 19 demonstrates that both kinds of structures are indistinguishable. The crucial cases
are the E-subformulae of ϑ . Positive E-subformulae shall transfer from the p-fair structure Tω to
a p-unfair structure Tk for k ∈ω. The direction of negative E-subformulae is reverse.

In a first approximation, each structure is linear. Along the sole path in the structure Tω, the
proposition p is placed infinitely often but sparsely. The places are enumerated by the function T,
as determined by Definition 11 with Lemma 10. The vertices for p are so seldom that, for each
possible witnessing word of each positive E-subformulae, each asked formula is also asked at a
vertex for ¬p. Hence, some suffix of the witnessing word can cope with only ¬p. Along the corre-
sponding suffix of the path, the proposition p can be erased stealthily, cf. the proof of Lemma 18.
The modification for the k-th suffix yields the p-unfair structure Tk. So far, the backbone of Tk for
k ∈ω+ 1 is described.

The other direction has to convey a negative E-subformula from Tk for k ∈ω to Tω. In such
a formula EL, the language L is not captured by Assumption 8. As a compensation, we attach
for each E-subformula a p-unfair model to Tω to capture any witnessing path from the p-unfair
structure Tk, cf. Lemma 17. Back to the first direction, witnessing paths in Tω can enter the now
attached structures. Thus, these structures are also attached to Tk for each k ∈ω. All in all, we
collected all ingredients for Definition 15.

The just drafted diagonalisation against positive E-subformulae requires that the set of all
possible witnessing words is enumerable, cf. Assumption 8 and Definition 9.

Definition 9. We fix an arbitrary enumeration Z : ω→ (ω→ F) of all words in
⋃
lngs{1}(ϑ).

Lemma 10. There exists a function T : ω→ω such that all n ∈ω meet the condition

each t2 ∈ω with T(n+ 1)< t2
has a t1 ∈ω with T(n)< t1 < T(n+ 1)
such that z(t1 − t0)= z(t2 − t0)

where t0 and i fulfil n= 〈t0, i〉
and z abbreviates Z(i).

⎫⎪⎪⎬
⎪⎪⎭

(13)

Proof. An induction on n constructs T(n) and entails that n≤ T(n) as a support. Given n, the
values t0 and i exist. Because t0 ≤ 〈t0, i〉 = n≤ T(n), the set X := { z(t − t0) | T(n)< t ∈ω } is well
defined and not empty. As z is a word, the set is finite. Hence, the conditions

min{ t | z(t − t0)= x and T(n)< t ∈ω } < T(n+ 1) for each x ∈ X

characterise T(n+ 1) completely. As a by-product, n≤ T(n)< T(n+ 1).

Definition 11. Henceforth, an arbitrary function provided by Lemma 10 is designated as T.

Definition 12 (Default Unfair Models). For each formula, ϕ let Uϕ = (Vϕ , Eϕ , 
ϕ , rϕ) be some
model of ϕ ∧ ¬EGF p if existing and an arbitrary model of ¬EGF p otherwise. We consider their sets
of vertices as pairwise disjoint and disjoint from ω.

Attaching a structure to another structure can change the modelled formulae at the shared root.
As Lemma 17 bridges from an attached structure to the entire structure, Definition 15 filters each
E-subformula of ϑ by the formulae that can be asked at a root.

Definition 13. The filtering of a language L by a formula ψ is L ↓ψ := {z ∈ L | z(0)=ψ}.

https://doi.org/10.1017/S0960129521000475 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000475


1140 M. Latte

Figure 1. The structureTk where k ∈ω+ 1.

Definition 14. E-subformulae of ϑ are split by their first letter through

� := {
E(L ↓ψ) ∣∣ EL ∈ subf−1(ϑ)∪ subf1(ϑ) and ψ ∈	(L)

}
.

Definition 15 (Sample Structures). Let k ∈ω+ 1. The structure Tk is the quadruple (V , E, 
, 0)
where the set V of vertices is

⋃
ξ∈�

Vξ ∪ ω ,

the set E of edges is
⋃
ξ∈�

Eξ ∪
⋃
ξ∈�

{
(t, s)

∣∣ t ∈ω and (rξ , s) ∈ Eξ
} ∪ { (t, t + 1) | t ∈ω } ,

and the labelling function 
 is
⋃
ξ∈�


ξ ∪ { (
t, {p | t ∈ img(T)∩ k}) ∣∣ t ∈ω }

.

Figure 1 sketches the structureTk. Basically,Tk is linear where at each vertex t the structureUξ

is attached for all ξ ∈�. Along the linear basis, the places for the proposition p are determined
by img(T) until k. For k ∈ω+ 1 and t ∈ω, the backbone of Tk @ t is the path {(i, t + i) | i ∈ω},
that is, the t-th suffix of the underlying linear structure.

Lemma 16. Let k ∈ω+ 1 and t ∈ω. Then, Tk @ t |= EGF p iff k=ω.

Proof. The function T is unbounded. On the backbone of Tk @ t, the set of p-labelled vertices
is img(T)∩ k \ t. Its cardinality is infinite iff k=ω. Because each attached structure Uξ for ξ ∈�
is a model of ¬EGF p, any witnessing path for Tk @ t |= EGF p sits on the backbone.

As tools for the proof of Lemma 19 later, Lemma 17 basically exchanges a p-unfair model of an
E-subformula for a p-fair model, and Lemma 18 shows that each witnessing word from Z can be
misled by some p-unfair structure.

Lemma 17. Let k ∈ω+ 1, let t ∈ω, and let ξ ∈� of the shape E(L ↓ψ). If ξ ∧ ¬EGF p has a model
and Tk @ t |=ψ then Tk @ t |= ξ .

Proof. A witness for Uξ |= ξ is adjusted to a witness for Tk @ t |= ξ . The first vertex of the wit-
nessing path is replaced with t while the witnessing word remains. The adjustment is sound. First,
Uξ is a model of ψ because any word in L ↓ψ begins with ψ . Second, Tk @ t is also a model
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of ψ by assumption. Third, Uξ is a substructure of Tk @ t and no edge in Tk @ t leaves this
substructure.

In Lemma 18, the line (15) switches a p-fair model of an E-formula to a p-unfair model if the
witnessing word is captured by the enumeration Z. The premise (14) is provided by the induction
hypothesis when (15) is applied in the proof of Lemma 19.

Lemma 18. Let t0, i ∈ω. Set c := T
(〈t0, i〉 + 1

) + 1 and z := Z(i). If

Tω @ t1 |= ψ implies Tc @ t2 |= ψ (14)

for all ψ ∈	({z}) and for all pairs t1, t2 ∈ω such that Tω @ t1 ≈0 Tc @ t2, then

Tω @ t0 |= E{z} implies Tc @ t0 |= E{z} . (15)

Proof. Let π be a witnessing path for Tω @ t0 |= E{z}. We take this path for Tc @ t0 |= E{z}.
Because the structures that are attached to the backbone are shared among Tω @ t0 and Tc @ t0, it
remains to consider the backbone. So, let t2 be a vertex of π on the backbone. As the backbone is
linear,

Tω @ t2 |= ψ := z(t2 − t0) .
Next, we show that

Tω @ t1 |= ψ and Tω @ t1 ≈0 Tc @ t2 for some t1 ∈ω (16)
because this property together with (14) entails that Tc @ t2 |=ψ and complete the proof.

Case: t2 < c. We take t2 as t1. In particular, Definition 15 ensures the second part of (16)
because t1 ∈ω on the backbone and because t2 ∈ c in this case.

Case: c≤ t2. The condition (13) for n := 〈t0, i〉 yields a t1 such that
T(n) < t1 < T(n+ 1) and z(t1 − t0) = ψ . (17)

Because the first conjunct implies t1 ≤ t2 in this case, t1 also refers to the backbone. Hence, the
second conjunct in (17) shows that Tω @ t1 |=ψ . The second part of (16) is a consequence of
Definition 15 for the following reason. First, Tω @ t1 |= ¬p due to the first conjunct in (17).
Second, Tc @ t2 |= ¬p because t2 /∈ c in this case.

Lemma 19. Each formula ϕ fulfils
ϕ ∈ subf1(ϑ) and Tω @ tω |= ϕ imply T k @ tk |= ϕ (18)

and

ϕ ∈ subf−1(ϑ) and T k @ tk |= ϕ imply Tω @ tω |= ϕ (19)
for all k ∈ω, and all pairs tk, tω ∈ω such that Tω @ tω ≈0 Tk @ tk.

Proof. Induction on ϕ. A proposition is handled by the definition of≈0. The induction hypothesis
yields negation and disjunction where a negation swaps between (18) and (19). So, let ϕ be EL for
some language L.

Case: the premises of (19) hold. Let z be a witnessing word for Tk @ tk |= ϕ. Hence,
Tk @ tk |= z(0) and Tk @ tk |= E

(
L ↓ z(0)

) =: ξ . (20)
The induction hypothesis for the first conjunct and Lemma 16 for the second conjunct entail that

Tω @ tω |= z(0) and Tk @ tk |= ξ ∧ ¬EGF p .
Because ξ ∈�, Lemma 17 combines both parts to Tω @ tω |= ξ . Finally, as the semantics of E is
monotone in the language, Tω @ tω |= ϕ.
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Case: the premises of (18) hold. Let z be a witnessing word for Tω @ tω |= ϕ. As z ∈ L and
L ∈ lngs{1}(ϑ), Definition 9 yields an i ∈ω such that Z(i)= z. Thus,

Tω @ tω |= z(0) and Tω @ tω |= E{z} .
Because the induction hypothesis supplies the premise (14) of Lemma 18, the implication (15)
affects the second conjunct. As the semantics of E is monotone in the language,

Tω @ tω |= z(0) and Tc @ tω |= E
(
L ↓ z(0)

) =: ξ

for some c ∈ω. This situation reminds of (20). The reasoning there results in Tk @ tk |= ϕ

here.

The scope of Assumption 8 ends here.

4.2 Consequences
Theorem 20. Let p be a proposition, and let ϑ be a formula. If

⋃
lngs{1}(ϑ) is a countable set of

words then ϑ is not equivalent to EGF p.

Proof. Assumption 8 is fulfilled. We consider Lemma 19 for ϕ := ϑ , k := 1, and tk := 0=: tω. In
particular, Tω @ tω ≈0 Tk @ tk due to Definition 15. The implication (18) and Lemma 16 reject an
equivalence of ϑ and EGF p.

The language GF p is uncountable. Consequently, Theorem 20 also shows that EL is not
equivalent to EGF p when L is only a countable subset of GF p.

Corollary 21. Let p be a proposition. The logics in (10), (11), and (12) do not contain any formula
that is equivalent to EGF p.

Proof. By Theorem 20 with Lemma 3. In particular, the number of subformulae is finite.

For example, Corollary 21 handles both formulae from (1). They belong to (10) although the
second formula hosts EGF p as a negative subformula.

Given the subsumptions between logics in Subsection 3.4, Corollary 21 remedies the faulty
argument in Axelsson et al. (2010b, Lem. 4.3) and reproves the results by Emerson and Halpern
(1986, Thm. 7) on CTL and by Harel and Sherman (1982) on PDL.

Corollary 22. Let p be a proposition. Neither CTL, XCTL, PDL nor its nonregular extensions contain
any formula that is equivalent to EGF p.

5. Remark on Unfair Models
The proofs by Harel and Sherman (1982) and by Emerson and Halpern (1986, Thm. 7) as well
as the proof here attach some unfair structures to a fair structure. The cited proofs construct
each attached unfair structure explicitly as an open box. By contrast, Definition 12 picks unfair
structures and attach them as closed boxes.

The closed-box principle can simplify the definition of structures and shorten argumentations.
An example is the proof by Emerson and Halpern that CTL cannot express p-fairness. Figure 2
depicts a pair of a p-fair structureS +

ϑ and a p-unfair structureS −
ϑ for a CTL-formula ϑ . However,

this formula cannot distinguish between both structures. In fact, an induction yields
S +
ϑ @ v |= ϕ iff S −

ϑ @ v |= ϕ (21)

for both v ∈ 2 and each subformula ϕ of ϑ . The transfer of a witnessing path from S +
ϑ to S −

ϑ
basically tightens the cycle 0→1→0 to the loop 0→0 and possibly redirects the edge 0→1 to 0→rε
if a formula E α U ε is considered and S −

ϑ @ 1 |= ε.
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Figure 2. The structuresS +
ϑ andS −

ϑ for a CTL-formula ϑ . Both differ in the edge 0→1.

Looking back to the introduction, the previous argument can be expanded to any formula ϑ
from (10). For this purpose, the equivalence (21) is split by the polarity of ϕ similar to (18)
and (19).

6. Extension
Theorem 20 requires any language L to be countable if EL is a positive subformula. This constraint
cannot be relaxed from “countable” to “uncountable” as the opponent language GF p is already
uncountable. Hence, the cardinality is a border between unfairness and fairness.

Harel and Sherman (1982) prove that a certain extension of PDL cannot express fairness.
Basically, this extension allows languages of finite-state automata that regard each infinite run
as accepting. An instance is the uncountable language {ψ0,ψ1}ω for two different formulae ψ0
and ψ1. Nevertheless, this class of languages is tame through its pumping property (Harel and
Sherman 1982, case “loop(α)” in the proof of Lemma 7): each suffix s of each word in such a lan-
guage admits two finite words x and y such that the length of xy is language-specifically bounded,
xy is a prefix of s, and s can be replaced with xyω. Such languages can be incorporated into
Subsection 4.1 with ease. First, the enumeration Z has to list those languages as well. Second, (13)
is expanded such that if n refers to such a language then T(n+ 1)− T(n) exceeds the language-
specific bound. Third, Lemma 18 has to be adjusted. The line (15) was formulated with a singleton
language just for simplicity. Now, the pumping property requires to mention the entire language
because the witnessing word will be replaced.

7. Conclusion
Theorem 20 draws the line between unfairness and fairness at the level of cardinality for positive
E-subformulae. In particular, the rigidity of the temporal constructors EU, EG, . . . alone cannot be
hold responsible for unfairness. In truth, their implicit countability is responsible. On the other
hand, Theorem 20 additionally reveals that negative E-subformulae have no impact on fairness.
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Note
1 The formula EG	(	k+2)∗q does distinguish the considered pair of structures at the respective (n, k+1)-indexed vertex.
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