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Internal regulation in compressible turbulent
shear layers
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High-resolution simulations of temporally evolving mixing layers, for convective Mach
numbers ranging from Mc = 0.2 to Mc = 2.0 with density ratios s = 1 and s = 7,
are analysed to characterize compressibility effects on the structure and evolution of
turbulence in this compressible flow. Published experimental results are used to validate
simulation results. Examination of the turbulence scales in the present data suggests an
internal regulation mechanism. Correlated eddying motions were found to be in support
of a ‘sonic eddy hypothesis’. Eddy scales in all spatial directions are found to be a
progressively smaller fraction of the overall mixing-layer thickness with increasing Mc,
forming independent layers of eddying motions at high Mc. These reduced spatial scales
serve to reduce the effective velocity scale for turbulent motions, suppressed Reynolds
stresses, turbulent kinetic energy (TKE) production and dissipation, and the mixing-layer
thickness growth rate.
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1. Introduction

Compressible turbulent mixing plays a key role in many diverse applications
from high-speed propulsion, supernova dynamics, interstellar turbulence and
inertial-confinement fusion (Dimotakis 1991; Andrews 2011). In compressible mixing
layers, a well-known compressibility effect manifests as a suppressed growth rate; this has
been demonstrated numerous times in both experiment and direct numerical simulation
(DNS) (Brown & Roshko 1974; Papamoschou & Roshko 1988; Lele 1989; Sandham &
Reynolds 1991; Rossmann, Mungal & Hanson 2001). This stabilization has been confirmed
to result from compressibility effects rather than density effects, though Clemens &
Mungal (1995) showed that flow compressibility has quantifiable effects on the mass
fraction fluctuations. It is widely recognized that the dominant compressibility effect is
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evident in the pressure-strain correlation (Sarkar 1995; Vreman, Sandham & Luo 1996;
Pantano & Sarkar 2002). Several models have been proposed to capture the consequences
of compressibility on turbulence in shear flows (Kim 1990; Cambon, Coleman &
Mansour 1993; Sarkar 1995; Adumitroaie, Ristorcelli & Taulbee 1999; Gomez & Girimaji
2013, 2014). Aupoix (2004) presented a comprehensive review of Reynolds-averaged
Navier–Stokes models for compressible mixing layers.

While these models succeed in capturing the gross statistics, viz. averaged velocity
profiles and reduced growth rates, current theory explaining these reduced growth rates
and other observed changes remain somewhat incomplete. A comprehensive theory
regarding high-Mach-number alterations to turbulence structure has remained elusive.
Vreman et al. (1996) reported simulation results for compressible shear layers up to
Mc = 1.2 (with Mc defined in (1.1a–d)) and introduced a relationship between growth
rates and pressure extrema. From the integrated equations for the Reynolds stress
tensor, Vreman et al. (1996) conclude that reduced pressure fluctuations act via the
pressure-strain term to reduce growth rates. They also formulated a model for pressure
fluctuation reduction informed by the sonic eddy hypothesis by Breidenthal (1992),
and showed good agreement. Breidenthal’s hypothesis of sonic eddy communication is
conceptually related to acoustic limitations on rotational velocity induced by vortices
(Papamoschou & Lele 1993). Burr & Dutton (1990) also considered communication in
terms of pressure wave propagation as the definition for a representative eddy length
scale. Pantano & Sarkar (2002) affirmed the importance of pressure-strain reduction
and showed that time delays associated with the finite speed of sound in highly
compressible flows reduce the correlation between fluctuating pressure and fluctuating
strain rate. They also showed that the gradient Mach number is a key parameter in
pressure-strain rate reduction. Freund, Lele & Moin (2000) analysed the trends in
turbulent kinetic energy (TKE) budgets, length scales and time scales at increasing Mc
from simulation of an annular round jet. More recently, near-field pressure fluctuations
including Mach wave emission from supersonic mixing layers up to Mc of 1.75 have
been studied in Buchta, Anderson & Freund (2014) and Buchta & Freund (2017).
Studies of the topology of the turbulent/non-turbulent interface of mixing layers with
increasing compressibility have detailed decreased entrainment and mass and enstrophy
transport across the interface (Jahanbakhshi & Madnia 2016, 2018). These investigations
provide further insight into compressible shear-layer behaviour but several open questions
remain.

The present work is intended to investigate the asymptotic effects of compressibility
on the structure and scales of turbulence in the high-Mach-number regime. Turbulent
statistics for compressible mixing layers over convective Mach numbers Mc =
[0.2, 0.4, 0.8, 1.2, 1.6, 2.0] with density ratio s = 1, and a set of cases at Mc =
[0.2, 0.8, 2.0] with density ratio s = 7 are used. Results on shear layer growth rates and
turbulent stresses are first validated against published data. Further analysis of results in
the self-similar regime provides insights into turbulent structures in this comprehensive
parameter space. At high Mc, the energy-containing eddies do not span across the
overall shear-layer thickness. Their spatial scale and intensity appear to be internally
regulated and suggest an alternative scaling for the Reynolds stresses, turbulence budgets
and growth rates. This paper focuses on this evidence and the internal scaling based
on the effective velocity difference seen by the eddies. The results are interpreted
in relation to the ‘multi-layered’ mixing proposed by Planché & Reynolds (1992)
and Day, Reynolds & Mansour (1998), and the sonic eddy hypothesis by Breidenthal
(1992).
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1.1. Physical parameters
The upper free stream has density ρ1, speed of sound c1 = √

γ p0/ρ1, where γ is a
constant ratio of specific heats, p0 is a constant pressure value, and velocity u1 = Δū/2.
The lower free stream has a density ρ2, speed of sound c2 = √

γ p0/ρ2 and velocity
u2 = −Δū/2. The convective Mach number Mc and the density ratio s, which quantify the
compressibility and the density variation in the flow, and two common Reynolds numbers
are defined below with kinematic viscosity ν. (Notation: ◦ indicates an initial value;¯and ′
indicate planar (x and z) averages and fluctuations; ˜ and ′′ indicate Favre averages and
fluctuations.)

Mc = Δū
c1 + c2

, s = ρ2

ρ1
, Re◦

θ = Δūδ◦
θ

ν
, Re◦

ω = Δūδ◦
ω

ν
. (1.1a–d)

The vorticity thickness δω and the momentum thickness δθ , used above, are two key
measures of mixing-layer thickness. The 99 % thickness, δ99, is a measure of the overall
thickness (transverse scale) of the flow. These length scales grow in time and remain small
compared to the height of the computational domain Ly, where y ∈ [−Ly/2, Ly/2].

δ99(t) = δ1 + δ2 with
ū(δ1)

Δū/2
= 0.99,

ū(−δ2)

Δū/2
= −0.99, (1.2)

δω(t) = Δū
|dū/dy|max

, (1.3)

δθ (t) = 1
ρ0(Δū)2

∫ Ly/2

−Ly/2
ρ̄

(
1
2
Δū − ũ1

) (
1
2
Δū + ũ1

)
dy. (1.4)

Previous DNS studies of this problem (see table 1) have presented results for convective
Mach numbers up to Mc ≤ 1.8, but at lower Reynolds numbers O(Re◦

θ ) ∼ 100 (Vreman
et al. 1996; Pantano & Sarkar 2002). Previously published data are also insufficient to
clearly isolate compressibility effects from density effects over the full range of Mc.
Pantano & Sarkar (2002) studied compressibility effects in shear layers up to Mc = 1.2
and variable density effects at a single Mc = 0.7. The density effects have not yet been
explored across a large range of Mc. The present simulations also address this gap in
knowledge.

Table 2 gives the complete suite of cases presented in this work. Each case is run with the
same initial thicknesses δ◦

θ = 1 (corresponding to δ◦
ω = 4), and continued until δθ ∼ 3.5.

The initial Reynolds number Re◦
θ = 1000, Prandtl number Pr = 0.7, and Schmidt number

Sc = 1 are also the same for all cases. The initial density profiles, set by s, and the velocity
profile with free stream values of ±Δū/2 are given below.

ū( y) = Δū
2

tanh
(

y
2δ◦

θ

)
, ρ̄( y) = ρ0

[
1 + s − 1

s + 1
tanh

(
y

2δ◦
θ

)]
. (1.5a,b)

1.2. Numerical methods
The continuity equation for species mass fractions and the Navier–Stokes equations for
momentum and total energy in the compressible flow of an ideal gas are solved. Spatial
derivatives are computed with 10th-order compact finite difference schemes (Lele 1992)
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Study Mc Re◦
θ Reθ Reω η/Δx

Pantano & Sarkar (2002) 1.1 160 1760 13 640 0.380
Vaghefi (2014) 1.8 N/A N/A 16 800 1.322
Buchta & Freund (2017) 1.75 60 2100 N/A N/A
Arun et al. (2019) 1.2 160 2080 11 112 0.465
Matsuno & Lele (2020) (present work) 2.0 1000 3800 18 480 0.409

TABLE 1. A brief comparison of key flow parameters with previous studies. N/A indicates ‘not
available’. A complete table of previous studies is given by Matsuno & Lele (2020) where the
resolution of viscous scales is also discussed.

Case Mc s
1
δ◦
θ

(Lx × Ly × Lz)
1
δ◦
θ

(Δx × Δy × Δz)

A1 0.2 1 150 × 200 × 75 0.146 × 0.138 × 0.146
A7 0.2 7 150 × 200 × 75 0.146 × 0.138 × 0.146
B1 0.4 1 150 × 200 × 75 0.146 × 0.138 × 0.146
C1 0.8 1 100 × 100 × 50 0.098 × 0.069 × 0.098
C7 0.8 7 100 × 100 × 50 0.098 × 0.069 × 0.098
D1 1.2 1 100 × 100 × 50 0.098 × 0.069 × 0.098
E1 1.6 1 80 × 80 × 40 0.078 × 0.055 × 0.078
F1 2.0 1 80 × 80 × 40 0.078 × 0.055 × 0.078
F7 2.0 7 80 × 80 × 40 0.078 × 0.055 × 0.078

TABLE 2. Parameters, domains and grid resolutions for cases studied. All cases use uniformly
spaced grid points in the x, y and z directions of Nx × Ny × Nz = 1024 × 1448 × 512.

and the system is time advanced with a low-storage 4th-order Runge–Kutta scheme. An
8th-order compact filter for dealiasing is applied for spatial derivatives at the end of
each time step. Each species follows the ideal gas equation of state, and has the same
ratio of specific heats γ1 = γ2 = 1.4. Details on interspecies mixing rules can be found
in Subramaniam (2018). Initial perturbations for the Mc = 0.2 cases follow the random
mode potential perturbations outlined in Kleinman & Freund (2008). Higher Mc cases are
initialized from turbulent Mc = 0.2 fields at time t = 60.

2. Compressibility effects on turbulent structure and high-Mach regime

2.1. Growth rates and turbulent stresses
The temporal evolution of the momentum thickness becomes linear after an initial
period of transition. As depicted in figure 1(a), this constant rate of growth decreases
monotonically with increasing Mc. Intersecting tick marks indicate the duration of
self-similar regime, which is determined from collapse of the Reynolds shear stress
profiles R12 = ũ′′v′′. All error bars presented in this study represent temporal variations
from the average value in this self-similar regime. Examples of this collapse and temporal
variability are demonstrated in Matsuno & Lele (2020).

Figure 1(b) shows the well-known departure from the incompressible growth rate δ̇inc,
with δ̇inc = 0.018, 0.013 (Pantano & Sarkar 2002) for s = 1, 7 cases, respectively. A drastic
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FIGURE 1. Growth rates and shear stress with increasing Mc: (a) evolution of δθ (t); (b)
normalized growth rates δ̇θ /δ̇inc (c) peak turbulent shear stress magnitudes

√|R12|/Δū with
numerical simulation data plotted with open circles. Present results for s = 1 are shown with
filled circles.

reduction occurs near Mc ∼ 0.5, followed by an asymptotic approach to a normalized
growth rate δ̇θ /δ̇inc ≈ 0.2. Our computed growth rates for the cases with unity density
ratio show good agreement with well-known experimental results. Peak magnitudes of
Reynolds stresses Rij = u′

iu
′
j are also consistent with previously published experimental

results at lower Mc, and figure 1(c) indicates that turbulent shear stress magnitude
continues to decrease with increasing Mc. While the reduction across Mc is not of the
same magnitude as the reduction of the momentum thickness growth rate, the decrease in
this shear stress confirms that the velocity fluctuations driving the spread of the mixing
layer are decreasing in a manner consistent with the growth rates.

Visualizations of transverse velocity across the mixing layer are shown for the lowest
and highest Mc cases in figure 2. The domains (truncated for visual comparison) are
scaled by the total mixing-layer thickness δ99 to allow for a direct comparison of eddy
length scales. The scale disparity between the two cases is qualitatively obvious; in the
next section, the turbulence scales are discussed quantitatively and used to propose an
alternative explanation for growth rate reduction.

3. Turbulence length and time scales

In addition to the thickness measures δ99, δω and δθ , which characterize the mean
velocity profile, a decorrelation length scale is used to characterize the effect of increasing
Mc on the energy-containing scales. This length scale, δy, is defined in (3.1) using a pair of
points symmetrically placed around an anchor point y0 at a mutual separation distance of
δy. A decrease in the correlation to 0.1 is used to define this length scale, with the anchor
point y0 = yc at the shear-layer centre, where ũ( yc) = 0.

v′( y0 − δy/2)v′( y0 + δy/2)

v′( y0)v′( y0)
= 0.1. (3.1)

This length scale as a fraction of total mixing-layer thickness decreases significantly from
the quasi-incompressible case at Mc = 0.2 to the highly compressible case at Mc = 2.0.
Figure 3(a) shows the transverse correlation length for the fluctuating transverse velocity
and the effect of shifting the anchor point to yc ± δ99/4. Present data indicates a threefold
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FIGURE 2. Instantaneous planar view (x–y plane) at z = Lz/2 slices of transverse velocity v at
final simulation time for (a) Mc = 0.2 and (b) Mc = 2.0 cases. Arrows indicate decorrelation
length scales based on v′ along x and y axes.
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FIGURE 3. Effect of compressibility on (a) normalized decorrelation lengths δy/δ99 for v′
measured about different y0, (b) mean velocity difference Uδ/Δū across the v′ decorrelation
length, and (c) various Mach numbers.

decrease (from low to high Mc) in δy along the centreline, and nearly a fourfold decrease in
δy for points offset from the centreline. Figure 3(a) also indicates that δy measured about
yc is the minimum decorrelation length in the mixing layer at each Mc. The occurrence of
minimum length scale is intuitive since maximum shear also occurs along the centreline.

The mean velocity difference across the average decorrelation length scale centred about
anchor point y0, defined as Uδ in (3.2), is also an important turbulent statistic of these
eddies. The behaviour of this velocity scale, plotted in 3(b), matches the familiar reduction
of normalized growth rates shown in figure 1(b).

Uδ = ũ
(

y0 + δy

2

)
− ũ

(
y0 − δy

2

)
. (3.2)
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The time scales of turbulent motions are also inherently linked to the reported
decorrelation length scales δy. The most obvious time scale of interest is that of the
acoustic scale set by the mean speed of sound c̄ = √

γ p/ρ, which effectively defines
the reach of acoustic communication in a mean sense. A second time scale to consider
is the one associated with eddy distortion due to the shearing of the mean flow, which
corresponds to the centreline (maximum) shear S = dũ/dy. Finally, the turbulent time
scales associated with the turbulent velocity fluctuations and shear stresses are considered.
In this discussion, these time scales are also interpreted as the Mach numbers defined
below.

Mt =
√

ũ′′
i u′′

i

c̄

∣∣∣∣∣∣
yc

, Mt,v =
√

ṽ′′v′′

c̄

∣∣∣∣∣∣
yc

, Mτ =
√

|ũ′′v′′|
c̄

∣∣∣∣∣∣
yc

, Mg = Sδy

c̄

∣∣∣∣
yc

.

(3.3a–d)
The turbulent Mach numbers, Mt, represent the ratio of the mean acoustic time scale to

the time scale of turbulent fluctuations. As shown in figure 3(c), while Mt shows saturation
at the highest Mc, the turbulent Mach number defined using only the transverse component
of TKE, Mt,v , indicates saturation at lower levels of compressibility, as further evidence
for the pronounced effect of compressibility on the fluctuating transverse velocity. Freund
et al. (2000) showed the beginning of a saturated regime for these time scale ratios for an
annular mixing layer. The present Mt and Mt,v show this trend at higher Mc in a self-similar
shear layer. A friction Mach number, Mτ , of the turbulent mixing layer can be defined
using the turbulent shear stress. In the present simulations, Mτ ≤ 0.5. Even at the lowest
Mc cases, Mτ remains much larger than the Mτ encountered in turbulent boundary layers of
high-speed, compressible flows (Bradshaw 1977). As a complement to the Mτ description
of turbulent shear, the gradient Mach number, Mg, describes the compressibility effect of
mean shear. The gradient Mach number represents the ratio of the acoustic time scale to
the mean deformation time scale. Unlike Mt, this time scale ratio does not show a clear
plateau although such a tendency is suggested by the data. Studies at even higher Mc are
required to fully demonstrate this saturation.

Even in the most compressible case, each of the Mach numbers investigated in
figure 3(c) remain subsonic. The sonic eddy hypothesis, as proposed by Breidenthal
(1992), would suggest that since acoustic communication across these eddies is possible,
these eddies remain coherent and participate in entrainment. Present data indicates that
in the Mc range of significant growth rate reduction, the energy-containing eddies are
subsonic. Assuming that eddies of scale δy are active in entrainment, the relative shear
across these eddies appears directly related to the growth rate behaviour. At lower Mc,
these eddies span across a large portion of the overall mixing-layer thickness, whereas at
high Mc, the mixing layer consists of several ‘colayers’ of energy-bearing eddies. Figure 4
indicates that several autocorrelation profiles can fit within the mixing-layer thickness at
Mc = 2.0, and that this structure is consistently maintained during the self-similar regime.
Such behaviour suggests an internal regulation mechanism which limits the formation of
still larger scales in the higher Mc mixing layers.

From figure 3(c), the turbulent Mach number Mt and transverse turbulent Mach number
Mt,v reach a plateau of approximately 0.5 and 0.2, respectively. The latter suggests that
sound has sufficient time to ricochet 2–3 times across the transverse correlation scale
during eddy turnover. Motions at still larger scales are evidently unable to remain coherent.
They may correspond to acoustic response, but not rotational eddies. Figure 5(a) shows the
ratio of correlation scales along x and y directions, δx/δy, and along the z and y directions,
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FIGURE 4. Autocorrelation profiles R22( y0) for v′ measured about different y0 for (a) Mc =
0.2 and (b) Mc = 2.0 at the beginning (black) and end (blue) of self-similar spreading. Overall
mixing-layer thickness δ99 is indicated in terms of initial thickness δo
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FIGURE 5. (a) Decorrelation ratios and (b) dimensionless shear (Corrsin number).

δz/δy against Mc (a data processing error invalidates the corresponding plot in Matsuno
& Lele (2020)). Note that these ratios are relatively constant (the Mc = 2.0 point is an
outlier since it may be affected by the smaller domain size in x). The internal regulation
mechanism which limits the transverse scale to a decreasing fraction of the total shear-layer
thickness δ99 also limits the correlation scales in the x and z directions and maintains
approximately the same ratio in correlation scales. All of these trends are consistent
with acoustic communication as the regulation mechanism for maintaining coherent
eddying motions. Figure 5(b) shows the dimensionless shear number, or Corrsin number,
Sδy/

√
Rii = Mg/Mt and Sδy/

√
R22 = Mg/Mt,v against Mc, with Rii = ũ′′

i u′′
i and R22 =

ṽ′′v′′. These measures are relatively constant with Mc, which affirms that the regulation
is not associated with an increased importance of shear with Mc, but with acoustic
communication limiting the turbulence length scales in the flow.

4. Scaling of Reynolds stress, turbulent production and growth rates

Profiles of Reynolds shear stress magnitudes |R12| = |u′v′| scaled using the total
velocity difference Δū and the effective velocity scale Uδ are shown in figure 6. Whereas
scaling using Δū indicates a steady decline in |R12|, scaling using U2

δ results in a clear
separation between Reynolds stress profiles at low versus high Mc. Turbulent shear stresses
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FIGURE 6. Turbulent shear stress: (a) |R12|/(Δū)2; (b) |R12|/U2
δ ; (c) integrated |R12| vs. Mc.
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FIGURE 7. Scaling for s = 7 cases: (a) decorrelation scales δy and Uδ; (b) |R12|/U2
δ ; (c)

|R12|/(Δū)2 at Mc = 0.2 compared to recent literature for Mc → 0.

scaled by Δū reported by Almagro, García-Villalba & Flores (2017) at s = 8 and Baltzer
& Livescu (2020) at s = 7 with Mc → 0 are compared to our quasi-incompressible
case, Mc = 0.2, in figure 7(c) as confirmation that the variable density stresses are
within the range of comparable studies. The scaling for s = 7 cases is similar to that of
the s = 1 cases. The internal length scale δy and effective velocity scale Uδ in figure 7(a)
follow similar declines to those in figures 3(a) and 3(b). Figure 3(b) shows the same scaling
in 6(b) applied to |R12| = |ũ′′v′′| for s = 7 cases. A similar separation arises between the
low and high Mc cases, and the high Mc cases attain scaled magnitudes close to those in
the s = 1 cases.

Similarly, TKE production and dissipation may be scaled using either the overall
mixing-layer scales or the internal scales associated with transverse velocity decorrelation.
Figure 8 shows integrated TKE production P, TKE dissipation D, and pressure-strain
component Π11 = 2p′(du′′/dx), which acts to transfer energy out of R11 = ũ′′u′′,
scaled by δ99/(Δū)3 and δy/U3

δ . The production term is related to the growth rate
definition offered by Vreman et al. (1996), such that the values plotted in figure 8(a)
represent δ̇θ × ρ∞δ99/(2δθΔū). Dissipation normalized with internal scales transforms
the trend of progressive decrease of the quantity with Mc to an approximately constant
value for Mc > 0.2. Internally scaled production and pressure-strain Π11 show a
similar asymptotic behaviour past Mc ∼ 0.8. The asymptotic approach towards constant
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FIGURE 8. Selected TKE budget terms, integrated and scaled with (a) total thickness δ99 and
total velocity difference Δū and with (b) internal scales δy and Uδ .

production, pressure-strain and dissipation, as well as evidence for constant turbulent shear
stress magnitudes using the effective velocity scale Uδ further suggests the importance
of δy as the defining length scale associated with turbulent mixing. This distinction may
improve length-scale-based turbulence models.

5. Conclusion

In this work, the scales governing the turbulent structures in mixing layers with notable
compressibility and density effects are thoroughly characterized. It is confirmed that
as Mc increases, turbulence length scales, including the transverse length scale, reduce
dramatically as a fraction of the overall shear-layer thickness. These length scales appear
to be limited by acoustic communication; turbulence-associated Mach number(s) show
saturation at higher levels of compressibility. The internal regulation adapts the spatial and
temporal scales of shear-layer turbulence inferred from two-point correlations. It reduces
the effective velocity scale, suppresses pressure fluctuations and mixing-layer growth
rate. To accurately capture the effects of compressibility in free shear flows, turbulence
models should capture not only the increasing anisotropy of turbulent stresses, but also the
reduction in the turbulence length scales.
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