
J. Fluid Mech. (2020), vol. 901, A33. © The Author(s), 2020.
Published by Cambridge University Press

901 A33-1

doi:10.1017/jfm.2020.524

Predictions of the transient loading exerted on
circular cylinders by arbitrary pressure waves

in air

H. L. Gauch1, O. Lines1, V. Bisio2, S. Rossin2, F. Montomoli1 and
V. L. Tagarielli1,†

1Department of Aeronautics, Imperial College London, London SW7 2AZ, UK
2Baker Hughes, Via Felice Matteucci 2, 50127 Firenze FI, Italy

(Received 15 December 2019; revised 29 April 2020; accepted 22 June 2020)

This study investigates the transient loading exerted on rigid circular cylinders by
impinging pressure waves of arbitrary shape, amplitude and time duration. Numerical
calculations are used to predict the transient flow around the cylinder for wide ranges
of geometric and loading parameters. An analytical model is developed to predict the
transient loading history on the cylinder and this is found to be in good agreement with
the results of the numerical calculations. Both models are used to identify and explore
the different loading regimes, and to construct non-dimensional maps to allow direct
application of the findings of this study to the design of structures exposed to the threat of
pressure wave loading.
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1. Introduction

Understanding the nature and severity of transient loads exerted on objects by a
surrounding fluid has been a concern for researchers over the past decades, due to the
numerous safety-relevant applications of such knowledge in the defence, transport, energy
and processing industries. Compared to loads resulting from steady-state flows of similar
particle velocity, the loads exerted by a shock wave sweeping over a body can be up to
one order of magnitude greater in amplitude (Tanno et al. 2003; Sun et al. 2005). When a
shock wave encounters a solid body, high pressure gradients are caused around the body
due to the finite speed of wave propagation and due to the reflection of the wave from
the forward-facing surfaces of the body. Transient loads due to shock waves passing over
cylinders and spheres have been previously measured experimentally (Takayama & Itoh
1985; Tanno et al. 2003; Sun et al. 2005), computed numerically (Drikakis et al. 1997;
Ofengeim & Drikakis 1997; Zółtak & Drikakis 1998; Sun et al. 2005; Luo et al. 2017a,b)
and modelled analytically (Friedman & Shaw 1960; Shaw 1975; Parmar, Haselbacher &
Balachandar 2009).

Many existing studies were motivated by defence applications and focused on shock
waves; at the other end of the spectrum, extensive literature exists on the propagation
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901 A33-2 H. L. Gauch and others

of sound waves and their interactions with solid bodies. The intermediate regime has
received very little attention and will be the focus of this study, which is motivated by the
growing need for predictive approaches to determine the forces exerted in deflagrations
of mixtures of air and gas. In accidental deflagration events in congested environments,
such as hydrocarbon processing plants, pressure waves of considerable duration and
rise time (of the order of 0.1 s) can be emanated (American Petroleum Institute 2006;
Det Norske Veritas 2010) and impinge on surrounding structures. Some of these structures
can be assimilated to cylinders, for instance piping racks, pressure vessels or centrifugal
compressor casings. At the moment, no accurate analytical methods exist to predict loads
on structures by deflagration events (The Steel Construction Institute 2018). Here we aim
at filling this gap.

The physical process of shock wave interaction with circular cylinders has been
thoroughly investigated by other researchers. Due to the change in incidence angle, the
initially regular reflection transforms into a Mach reflection during the progression of the
shock front over the cylinder surface. The transition angle between regular and irregular
reflection was shown to depend on the incident Mach number (Ben-Dor, Takayama &
Kawauchi 1980) as well as on the Reynolds number (Takayama & Sasaki 1983). In a
combined experimental and numerical investigation Tanno et al. (2003) and Sun et al.
(2005) determined the transient forces on spheres of different diameters by sustained
shock waves, i.e. waves of rectangular evolution in pressure. After an initial peak of high
amplitude, which the authors attributed to the initial reflection of the shock wave, the drag
was shown to rapidly decrease with time due to the equilibration of the pressure around
the cylinder. After approximately 10–15 non-dimensional units of time (defined as sphere
radius divided by the ambient speed of sound), the drag loads were found to agree well
with reference values for the same particle velocity and Reynolds number in steady-state
flow (Sun et al. 2005).

For the case of arbitrary incident wave shapes and wavelengths, the evolution of
overpressure and incident particle velocity can be of a highly unsteady nature. In addition
to the reflection and diffraction of the incident wave and the establishment of an inertial
flow field over time, the fluid experiences acceleration relative to the solid body. This
acceleration is known to cause a significant contribution to the load in some cases, and
is termed added-mass force in the case of incompressible flow. In this case the force on
an object is linearly related to the relative acceleration between flow and solid, which
was demonstrated to hold for a wide range of Reynolds numbers (Chang & Maxey 1995;
Magnaudet & Eames 2000; Wakaba & Balachandar 2007). In compressible flow this
simple relation was shown to be inapplicable due to the finite speed of wave propagation
(Miles 1951; Longhorn 1952), and the resulting force amplitudes were found to be
significantly higher for finite Mach numbers (Parmar, Haselbacher & Balachandar 2008).

It can thus be inferred from previous research that multiple physical phenomena cause
force contributions to the loading of cylinders by arbitrary pressure waves. Magnaudet
& Eames (2000) suggested that the force on a particle immersed in unsteady flow can
be categorised into five contributions, namely: quasi-steady, inviscid unsteady, viscous
unsteady, lift and buoyancy-gravity, i.e.

F (t) = F qs(t) + F iu(t) + F vu(t) + F l(t) + F bg(t). (1.1)

It seems obvious to neglect the viscous unsteady and buoyancy-gravity driven forces
in unsteady, high Reynolds number, high speed flow. However, simplified modelling
techniques will need to consider at least quasi-steady and inviscid unsteady contributions.
Parmar et al. (2009) presented a simple model for spheres, including pressure gradient,
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pi D
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FIGURE 1. Definition of the pressure profile impinging on a circular cylinder.

acceleration reaction and quasi-steady contributions, but neglected the reflection and
diffraction of the wave and the effects of changing Mach numbers. Other simple methods,
for example those widely used in industrial design guidelines (The Steel Construction
Institute 2018), make first-order estimates of the individual force contributions and identify
the dominant one as a function of the object’s size. These methods are, however,
extrapolated from simplified methods used in defence applications and yield inaccurate
results in many cases, as we have recently shown elsewhere (Gauch et al. 2019b).

In a parallel paper (Gauch et al. 2019a), we focused on the transient loading of
two-dimensional box-like objects loaded by the passage of pressure waves of arbitrary
shape, amplitude and time duration. Here we aim at extending this investigation to the case
of two-dimensional circular cylinders. We will develop analytical predictions, validate
them by numerical calculations and present the results in the form of non-dimensional
design maps of immediate use to design engineers.

2. Problem definition

A planar pressure wave of length λi in space, rise coefficient αr and maximum
overpressure pi is incident upon a rigid, fixed circular cylinder of diameter D, as in figure 1.
The initial overpressure distribution along the wave is assumed to be defined piecewise
linear, to give a triangular wave profile. The triangular shape is chosen for its capability of
approximating both shock waves and pressure waves originated by deflagration events, but
the models developed in this study are applicable to pressure wave of arbitrary shape. The
surrounding medium, air, is characterised by the heat capacity ratio γ = 1.4, the specific
gas constant R = 287 Jkg−1 K−1 and the ambient pressure and temperature p0 and T0,
respectively. The objective of this study is to determine the transient load on the cylinder.
As the tail of the incoming wave travels at the ambient speed of sound, c0, a loading
duration can be quantified as

ti = λi

c0
, c0 =

√
γ RT0. (2.1a,b)

Dimensional analysis dictates that the problem at hand depends on the following
non-dimensional groups:

pi

p0
, αr, τi = ti

D/c0
= λi

D
,

Rei = ρiviD
μi

, γ, τ = t
D/c0

,

⎫⎪⎪⎬
⎪⎪⎭ (2.2)
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FIGURE 2. Domain of validity of proposed model in comparison to existing studies for
(a) shock waves (αr = 0) and (b) pressure waves of finite rise time (αr > 0).

where ρi, vi and μi denote the maximum density, particle velocity and dynamic viscosity
of the fluid within the incident wave, respectively, and t denotes time. Functional
relationships between ρi, vi and the pressure wave coefficients pi, αr are given in
appendix A.

With reference to the non-dimensional groups defined in (2.2), we can visualise the wide
range of problem parameters we aim to analyse in this study and mark domains covered
by existing studies. Figure 2(a) depicts the range of possible shock wave cases and the
domains covered by existing studies as well as by the models presented in this paper.
It can be seen that most studies on shock waves correspond to very large wavelengths
(τi → ∞), as the waves in those studies were defined as rectangular. Analytical models
for the interaction of a pressure wave with a cylinder were proposed by Friedman & Shaw
(1960) and Shaw (1975). These models are limited to the acoustic region (pi/p0 → 0). In
comparison, the models proposed here cover the whole range of wavelengths and we will
prove their validity from the acoustic region to significant overpressures (0 < pi/p0 < 3).

Similarly, in figure 2(b) we compare ranges of applicability of results available in
literature to the domain of validity of models developed in this study, for pressure waves
of non-zero risetime. For very large non-dimensional rise times (αrτi → ∞) abundant
literature is available, as this corresponds to the case of steady-state flow around a cylinder.
The previously introduced models by Friedman & Shaw (1960) and Shaw (1975) are,
again, only applicable for very low overpressure ratios. Additionally, the range of validity
of these models narrows for longer non-dimensional rise times, as the contribution of the
wave diffraction to the maximum drag on the cylinder decreases, as will be discussed in
detail below.

In figures 2(a) and 2(b) ranges of Reynolds number have not been included for
simplicity. As for overpressure ratio, non-dimensional wavelength and risetime, to our
knowledge there is no model available in literature that covers wide ranges of Reynolds
numbers. Developing such models is, therefore, the main objective of this study.

3. Numerical and analytical models

In this section we present both the numerical and the analytical modelling approaches
developed in this study. Firstly, the numerical methodology and a mesh convergence study
are presented, then the new analytical model is described in detail and validated against
the numerical predictions.
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3.1. Numerical model

3.1.1. Modelling assumptions and simulation set-up
The gas surrounding the cylinder is modelled as a perfect gas with heat capacity ratio

γ = 1.4, so that the compressible, unsteady Navier–Stokes equations govern the behaviour
of the flow. These were solved in their Reynolds-averaged form (URANS) using the
solver rhoCentralFoam (Greenshields et al. 2010), which is part of the Open Source
CFD software package OpenFoam (Weller et al. 1998), version 5.x. The choice of this
numerical approach is driven by its simplicity and the ready availability of open-source
code. The viscosity of the gas was determined using Sutherland’s law, with coefficients
changed from case to case to achieve flow situations of different Reynolds numbers, while
keeping the cylinder diameter D constant for all simulations to facilitate mesh generation.
The k − ω − SST turbulence model (Menter 1994) was used as closure for the URANS
equations in all conducted simulations in this study. This model has been used by other
authors to investigate similar flow scenarios (Catalano & Amato 2003; Benim, Pasqualotto
& Suh 2008; Rosetti, Vaz & Fujarra 2012; Stringer, Zang & Hillis 2014). While the
inherent drawbacks of URANS modelling become apparent mostly in the critical flow
regime (Stringer et al. 2014), the k − ω − SST model was found to outperform other
two-equation models for this type of flow situation (Catalano & Amato 2003; Benim
et al. 2008).

The boundary conditions were assigned to be of the symmetry type for the top
and bottom boundaries; zero-gradient boundaries were assigned at the left and right
end of the domain and a no-slip condition was enforced on the velocity field
on the cylinder surface. Non-physical wave reflections from the boundaries were
precluded by choosing a sufficiently large domain size. In order to decrease the
computational effort, the assumption of two-dimensional flow was employed. Whereas
the assumption of two-dimensionality is accurate for the initial wave reflection and
diffraction (Sun et al. 2005), resolving the flow structures in the wake of an object
would necessitate a three-dimensional approach. The computational effort to conduct
a three-dimensional parametric study was, however, deemed prohibitively expensive,
in consideration of the objectives of the study and of the fact that other researchers
have found reasonable agreement, in terms of drag, comparing two-dimensional URANS
simulations to experiments, three-dimensional URANS and large eddy simulations for
high-Reynolds-number flows past bluff bodies (Rodi 1997; Iaccarino et al. 2003; Meliga,
Pujals & Serre 2012; Stringer et al. 2014). It is clear, however, that limitations arise
from employing a two-dimensional URANS approach. The fidelity of predicting turbulent
transition, flow detachment and vortices is not comparable to more detailed approaches,
such as large eddy simulations or direct numerical simulations. The implications on the
predictions will be discussed later.

The pressure wave or shock wave was modelled as an initial field of pressure, particle
velocity and temperature immediately adjacent to the object. The equations defining the
spatial distribution of these quantities as a function of the wave parameters pi, αr, τi
are given in appendix A. The rest of the fluid domain was assigned homogeneous initial
conditions of p = p0, T = T0, v = 0 m s−1. Figure 3 shows the computational domain and
the initial pressure contours for the case αr = 0.5, τi = 10, pi/p0 = 1. It can be seen that
the front of the pressure wave is initially placed almost in contact with the cylinder, such
that the wave distortion before arrival at the object is minimised.

The chosen integration schemes were of first order in time and second order in space.
Due to the explicit prediction of the fluxes in rhoCentralFoam (Greenshields et al.
2010), the maximum time step was determined by enforcing a Courant–Friedrichs–Lewy
number less than 0.2. Interpolation of the convective terms was accomplished with the
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FIGURE 3. Initial field of pressure for the case αr = 0.5, τi = 10, pi/p0 = 1.

scheme by Kurganov & Tadmor (2000), employing flux limiters after van Leer (1974), as
recommended by Greenshields et al. (2010). Zółtak & Drikakis (1998) have compared
various computational schemes as well as static and adaptive meshing techniques for
the simulation of the interaction of a shock wave with a cylinder. It was concluded
that, whereas small differences between the results obtained with different computational
schemes exist, very good agreement between static and adaptive mesh techniques was
observed.

Due to the wide range of cases to be examined and the analysis of non-shock waves
with the same computational scheme, a static meshing approach is employed here. In
order to efficiently simulate cases for a wide range of wavelengths, i.e. τi = [1, 200], the
domain size and cell distribution need to adapt, however, to the individual cases. Due to
the high local gradients of the flow, the mesh was successively refined towards the region
closest to the cylinder to a side length Δxcyl, with D/�xcyl = 200. To fully resolve the
boundary layer, the mesh was further refined in the direction normal to the cylinder surface
to guarantee that for the non-dimensional wall distance y+ holds y+ < 1 in the first cell,
in line with recommendations by Menter (1994) and findings by Benim et al. (2008) for
turbulent flow past circular cylinders. In order to ensure sufficient resolution of the wave,
the maximum cell size in the whole domain was limited to

�xmax = λi

200
. (3.1)

In figure 4, an example of the mesh for the case αr = 0.5, τi = 10, pi/p0 = 1 is depicted.
The successive refinement of the cells towards the object surface leads to a sufficient
resolution of the zones with the highest gradients due to wave diffraction, the influence of
the boundary layer, flow separation and vortex shedding. We note that a coarsened mesh
is depicted in figure 4 for visualisation purposes.

3.1.2. Mesh convergence study
An extensive mesh convergence study was conducted to estimate the spatial

and temporal discretisation errors of the CFD simulations. As wide ranges of the
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FIGURE 4. Detail of the mesh for cases with τi = 10, displayed with fourfold coarsened grid.

non-dimensional parameters pi/p0, αr, τi, Rei are of interest in this study, numerous
cases with different parameter combinations needed to be examined. The following
parameter combinations were considered:

αr = {0, 0.5}, pi/p0 = {0.1, 1, 3},
τi = {1, 10, 50}, Rei = {102, 104, 106},

}
(3.2)

where the highest pressure ratio was omitted for the finite rise time case, αr = 0.5, as
pressure waves of this amplitude turn into shock waves almost immediately. Therefore,
spatial and temporal convergence were investigated for a total of 45 cases following the
widely used methodology by Roache (1994). We quantify convergence using the grid
convergence index (GCI) of the form (Roache 1994)

GCI12 = Fs

rp̂ − 1

∣∣∣∣ f2 − f1

f1

∣∣∣∣ , (3.3)

where Fs denotes a factor of safety, p̂ the observed order of convergence, f1, f2 denote
scalar solution values obtained on the finest and second finest grid and r is the refinement
factor. The observed order of convergence can be computed as

p̂ =
ln

(
f3 − f2

f2 − f1

)
ln(r)

, (3.4)

making use of a solution value obtained on a third grid f 3. Typically, values for p̂
between one and two were obtained, which is to be expected as the spatial discretisation
scheme reduces to first order in the vicinity of shocks (Banks, Aslam & Rider 2008).
Three meshes were used for each case, with an isotropic refinement factor of r =
1.5. Applying the recommendations proposed by Roy (2010) for the factor of safety
and the limits of p̂, we obtained the maximum and mean GCI values across all
investigated cases listed in table 1. The chosen solution variables were the maximum
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Solution variable GCImax (%) GCImean (%)

Fmax 10.7 1.70
tmax 10.4 2.98
Imax 7.36 1.18

TABLE 1. Results of the mesh convergence study in terms of the GCI.
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FIGURE 5. Comparison of simulation results with numerical model to results from literature
for an example case with pi/p0 = 0.805, αr = 0, Rei = 7 × 105, τi → ∞.

drag force on the cylinder, Fmax , the maximum imparted impulse on the cylinder,
Imax , and the time at which the maximum drag value is reached, tmax . It can be seen
that the maximum GCI values in both force and time are found to be around 10 %;
these were found for the cases employing the lowest pressure ratio of pi/p0 = 0.1,
whereas the maximum GCI value in terms of maximum impulse was slightly lower.
The mean values across all 45 cases were significantly smaller and were deemed
satisfactory.

3.1.3. Validation of numerical model with results from literature
We now compare results obtained with the proposed numerical model to results

available in literature (see figure 2). As can be seen in figure 5, the results of the present
numerical model are in very good agreement with those obtained by Drikakis et al. (1997).
Experimentally obtained results published by Takayama & Itoh (1985) are also included,
which are in broad agreement with the two sets of numerical results.

By means of figure 5 we introduce a scaling of the force on the cylinder different to
most studies in literature. Whereas most existing studies use the classic drag coefficient of
the form F/(0.5ρiv

2
i D) (left ordinate), we choose to employ a scaling of the form F/(piD)

(right ordinate). This is due to the fact that drag coefficients for pressure waves with small
overpressures (pi → 0) tend to infinity, whereas F/(piD) allows compact representation
of results for wide ranges of overpressure.
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3.1.4. Parametric study
An extensive parametric study was conducted exploring the following parameter

combinations:

Rei = {102, 104, 106}, pi/p0 = {0.1, 0.5, 1, 1.5, 2, 3},
τi = {1, 5, 10, 20, 30, 40, 50, 60, 100, 200}, αr = {0, 0.25, 0.5}.

}
(3.5)

It was deemed unrealistic to encounter finite rise time pressure waves of amplitude
pi/p0 > 2 in practice, as these evolve rapidly into shock waves. The highest pressure
ratio was, therefore, only used for αr = 0, whereas the two longest wavelengths were
only combined with αr = 0.5, leading to a total of 414 cases. The simulations were run
on a high-performance computing cluster, using 32 processors. A significant amount of
explicit time steps was necessary due to the locally refined mesh and long simulation
times, leading to run times for the individual cases of up to six days.

3.2. Analytical model
As a complement to the detailed numerical model, we now present a semianalytical model
which is able to capture the most important physics without the significant computational
effort of the CFD model and fosters understanding of the nature of the loading in a wide
range of scenarios.

The outset of the new model is the force superposition after Magnaudet & Eames
(2000), given in (1.1). Along the lines of a drag model for spheres, proposed by Parmar
et al. (2009), the viscous unsteady, lift and buoyancy-gravity force contributions are
neglected. The inviscid unsteady force F iu consists of two parts, namely a pressure gradient
and a history term. Parmar et al. (2009) define the former to be due to pressure gradients
in the flow which exist neglecting the presence of the object, and the latter to be due to
the acceleration of the ambient fluid. We argue, however, that, in the present case, the
pressure gradient force is more accurately described as force resulting from the reflection
and diffraction of the incoming pressure wave. The force parametrisation therefore reads

F (t) = F qs(t) + F iu(t)
= F qs(t) + F diff (t) + F hist(t),

(3.6)

with F diff denoting the force resulting from reflection and diffraction and F hist denoting the
history force term. In figure 6 we provide an overview of the different parts of the analytical
model and the flow of the overall calculation. From a set of chosen input parameters,
the propagation of the wave under the influence of compressibility is predicted, yielding
temporal and spatial evolution of the relevant flow quantities. These are used as input to
the three separate models for the three force contributions defined in (3.6). Finally, the
overall force on the cylinder is obtained by superposing these three force contributions.

We will proceed by introducing individual modelling approaches for each of the parts
depicted in figure 6.

3.2.1. Propagation of a finite amplitude wave
The analytically formulated models described in the following make use of

time-dependent values of the flow variables pressure, particle velocity, density, Reynolds
number and Mach number, which is denoted as M. As defined in § 2, we assume an
incoming wave of triangular overpressure evolution. At t = 0, the front of the wave has
reached the front surface of the structure. Subsequently, the wave propagates along the
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Define input parameters:

pi/p0, αr,τi, Rei

Predict wave propagation:

v(x, t), p(x, t), ρ(x, t), Re(x, t), M(x, t)
Average over cylinder surface:

v̄cyl(t), p̄cyl (t), ρcyl (t), Recyl (t), Mcyl(t)¯¯ ¯

Predict history force Fhist:

�  Use averaged flow quantities

�  Evaluate convolution integral

    with kernel functions given in

    Parmar et al. (2008)

�  Introduce fade-in function

    and averaging

Predict diffraction force Fdiff :

�  Use spatial distribution of

    flow quantities

�  Follow procedure outlined in

    Shaw (1975) amended by

    reflection coefficient

Predict quasi-steady force Fqs:

�  Use averaged flow quantities

�  Use drag coefficients from

    literature

�  Apply averaging

Superpose contributions to predict total drag force:

F = Fdiff + Fhist + Fqs

FIGURE 6. Flowchart of calculations for the proposed analytical model.

object, inducing diffraction and a transient flow field. As the pressure waves of interest
in this study are of significant amplitude, the wave shape distorts during propagation due
to the local differences in speed of sound and particle velocity (see e.g. Liepmann 1957).
This effect is further intensified by the wave diffraction and reflection, which increase the
differences in the local properties across the wave.

A semianalytical approach, based on the method of characteristics, is used to compute
the time-dependent flow variables around the structure: the given wave is split into 100
individual wavelets, each possessing an individual particle velocity and local speed of
sound (see appendix A). After a time step the jth wavelet has advanced by the distance
�xj = (cj + vj)�t, leading to a distortion of the initial wave shape. The cases of a shock
wave and of a pressure wave that develops into a shock wave need special treatment, as
the velocity of a shock front is not equal to that of a simple (non-shock) wave of the same
amplitude. In first-order approximation, the shock front propagates at the mean value of
the velocities of the simple waves in front of and behind the shock front (Courant 1948).
The wavelets behind the shock front, therefore, propagate faster and, by catching up with
the wave front, continuously change the pressure and velocity of the shock front.

The procedure is illustrated in figure 7, which shows the distortion of a finite amplitude
wave, the transition to a shock wave once the wave front is overtaken by the wavelets
behind it, and the decay of the maximum pressure after the peak of the wave has overtaken
the front. At every point in space or time, the arrival of the individual wavelets yields
a discrete distribution of pressure, which was interpolated linearly to approximate the
distorted wave shape. This simple procedure yields time-dependent flow properties of
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FIGURE 7. Prediction of the distortion of a finite amplitude wave via the method of
characteristics.

good accuracy at different positions (e.g. front (x = 0) and back edge (x = D)) around
the cylinder. Average or ‘effective’ quantities are then calculated by averaging the flow
variables over a number of points on the cylinder surface with uniform angular spacing of
5°. These are denoted in the following with an overbar and the index ‘cyl’.

3.2.2. Diffraction model
When a pressure wave encounters an impermeable solid object, the wave is subject to

reflection and diffraction which cause a highly transient pressure distribution on the object
surface. With the assumption of small disturbances, the well-known linearised equations of
motion of acoustics can be deduced. The procedure outlined in Friedman & Shaw (1960)
and Shaw (1975) is followed, but amended by the introduction of the reflection coefficient

CR(t) =
(3γ − 1)

(
pin(θ, t)

p0

)
+ 4γ

(γ − 1)

(
pin(θ, t)

p0

)
+ 2γ

, (3.7)

which permits an approximation of the effect of wave reflection from the cylinder surface
under the influence of compressibility. The definition of the reflection coefficient in (3.7)
corresponds to the normal reflection of a shock wave from a rigid surface (see e.g. Courant
1948). While the reflection coefficient for an isentropic wave (αr > 0) is higher for large
pressure ratios (Gauch, Montomoli & Tagarielli 2018), this difference is negligible for the
isentropic waves treated in this study (pi/p0 ≤ 2). In (3.7) pin(θ, t) denotes the incident
pressure at time t and angular position θ , with θ = 0 at the point that the wave encounters
first. The time retarded integral equation for the pressure on the cylinder surface

p(r, t) = pr + 1
2π

∫
S

{(
p
R2

+ 1
c0R

∂p
∂t0

)
∂R
∂n0

}
t0=t−R/c0

dS0

+ 1
π

∫ 2π

0

∂zou

∂t

[
p

c0R
∂R
∂n0

]
t=t0−R/c0

z0=zou

dθ (3.8)

is solved at points with equal angular spacing of 10° over the cylinder surface at every time
step. The time step has to be chosen such that points influence neighbouring points only
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with their past values, i.e. �t < �θD/2c0 (Shaw 1975). In (3.8) S0 denotes the cylinder
surface and R the distance between a point on the cylinder surface r = (r, θ, z)T and the
source point (i.e. integration variable) r0, whereas n0 denotes the inward surface normal
direction at r0. The last term in (3.8) is due to the pressure directly behind a possible
shock front, and zou thus denotes the axial distance to a source point at which the shock
front arrives at the delayed time t0 = t − R/c0. Finally, pr models the effect of the reflected
incoming pressure, which is approximated as

pr(θ, t) =

⎧⎪⎨
⎪⎩

(
CR(θ, t) − CR(θ, t) − 2

tfade
t
)

pin(θ, t), cos θ > 0 ∪ t < tfade,

2, elsewhere.
(3.9)

It can be seen in (3.9) that a linear ‘fade-out’ function, using the parameter tfade, was
applied to the reflection coefficient CR to account for the set-up of an inertial flow over
time. A linear form was chosen for the sake of simplicity.

Equation (3.8) can be solved with little computational effort by direct numerical
approximation (Shaw 1975), yielding a value for the pressure at discrete points on the
cylinder surface at every time step and thus direct information about the force due to
diffraction and reflection.

3.2.3. History force model
In this section we will adapt the results published by Parmar et al. (2008) to yield an

estimate for the force contribution on a circular cylinder due to flow acceleration. Parmar
et al. (2008) computed the time-dependent history forces on cylinders and spheres at finite
Mach numbers numerically, and provided a functional relationship using a convolution
integral

F hist = −
∫ t

−∞
K

d(mdf v)

dt
d

(
c0χ

D/2

)
. (3.10)

Here K = K(c0(t − χ)/(D/2); M) denotes Mach number dependent kernel functions
which were published in graphic form by Parmar et al. (2008). The quantities mdf and
v denote the time-dependent mass of the displaced fluid and the particle velocity of the
incident flow, respectively, and χ is an integration variable. As the forces in Parmar et al.
(2008) were computed for a previously fully developed flow and constant Mach numbers,
several changes are necessary in order to predict forces during the highly transient scenario
of a passing pressure wave.

Firstly, the force kernel K changes with Mach number, and thus, to account for this fact,
the convolution integral is evaluated multiple times at different Mach numbers (e.g. for 20
time intervals) to account for the change of the incident flow conditions. Secondly, as the
flow does not start from a fully developed state, the forces are multiplied by a ‘fade-in’
function β, defined, in linear form for the sake of simplicity, as

β(t) =

⎧⎪⎨
⎪⎩

t
tfade

, t < tfade,

1, t ≥ tfade.

(3.11)
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Finally, the resulting forces are averaged over a small time span, �tavg,hist, to account for
the inertia of the flow field for changing incident conditions. The history force is thus
defined as

Fhist(t) = β

�tavg,hist

∫ t

t−�tavg,hist

∫ t̃

−∞
K(M̄cyl)

d(mdf ,cylv̄cyl)

dt̃
d

(
c0χ

D/2

)
dt̃, (3.12)

with

mdf ,cyl = πρ̄cylD2

4
. (3.13)

Equation (3.12) can readily be integrated numerically with time steps small enough to
sample the force kernel with sufficient accuracy. This was assured by limiting the time
step to a one-hundredth of the wave duration and by sampling the non-zero portion of the
force kernel with at least 150 points. The flow quantities v̄cyl, ρ̄cyl, M̄cyl are ‘effective’ flow
quantities averaged over the whole cylinder surface, as explained in § 3.2.1.

3.2.4. Quasi-steady force model
The drag force on a circular cylinder due to a steady-state flow depends on both the

governing Reynolds number and Mach number, such that

Fqs(t) = 1
2

cD(Re, M)ρv2D. (3.14)

Ample literature exists on Reynolds and Mach number dependent drag coefficients
cD (summarised in e.g. Hoerner 1965; Blevins 1984). In this context, a simplified
representation of the drag coefficient is used, as given in Blevins (1984). Figure 8 depicts
the assumed dependency of the drag coefficient on the governing Reynolds and Mach
number. In this context, the drag forces are averaged over a short period of time, �tavg,qs,
to account for the non-instantaneous change of the flow field with changing incoming
particle velocity. The forces due to quasi-steady flow thus read

Fqs(t) = 1
�tavg,qs

∫ t

t−�tavg,qs

1
2

cD(Recyl, Mcyl)ρ̄cylv̄
2
cylD dt̃. (3.15)

The averaging employed in (3.15) is executed numerically and the used flow quantities
v̄cyl, ρ̄cyl, Recyl, Mcyl are once again to be interpreted as ‘effective’ averaged flow quantities,
as described in § 3.2.1.

3.2.5. Choice of parameters
The previously introduced parameters �tavg,hist, �tavg,qs, and tfade are meant to account

for the inertia of the transient flow field with respect to the incident flow. Both the
quasi-steady and history force models were initially developed for fully developed flow,
and are rendered more flexible using the time averaging and fade-in functions.

Similarly, the reflection coefficient CR only holds for the reflection of a shock wave
before an inertial flow has developed. Once the particles navigate along the object instead
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Re > 5 × 105

3.0

M

FIGURE 8. Definition of steady-state drag coefficient for a circular cylinder for varying Mach
and Reynolds numbers (Blevins 1984).

of being brought to an abrupt halt, this coefficient quickly diminishes before attaining the
acoustic value of 2. In a preliminary parametric study, it was found that

�tavg,hist = �tavg,qs = tfade = πD
c0

(3.16)

gives good agreement between the analytically and numerically obtained force histories.
We note that πD/c0 equals the time a sound wave takes to orbit the cylinder once.

3.2.6. Validation of the analytical model
Results obtained using the new analytical modelling technique are now compared

to results obtained with the numerical model. In figure 9 we present non-dimensional
force histories predicted by numerical simulations and analytical calculations, as well as
pressure contours at the moment of maximum drag load (as predicted by CFD).

Figures 9(a) and 9(b) illustrate the loading of a circular cylinder by a shock wave of
small overpressure. It can be seen that the maximum load occurs before the wave front has
reached the midplane of the cylinder. The load amplitude is, therefore, mostly determined
by the reflection and diffraction of the wave. We observe very good agreement between the
analytical and the numerical model in terms of total drag load on the cylinder. Figure 9(a)
also shows the contributions of the three force terms defined in (3.6), which confirms the
dominance of the reflection–diffraction term. Figure 9(a) further shows the evolution of
the impulse imparted on the cylinder

I =
∫ t

0
F dt̃ (3.17)

normalised by the incident impulse on the cross-section area of the cylinder

iiD = D
∫ λi

0
ρ(ζ )v(ζ ) dζ . (3.18)
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FIGURE 9. Comparison of the numerical and analytical force histories (a,c,e,g) and numerically
obtained pressure contours at maximum load (b, d, f,h). Input parameters: τi = 30, Rei =
104; (a,b) αr = 0.0, pi/p0 = 0.1; (c,d) αr = 0.5, pi/p0 = 0.1; (e, f ) αr = 0.0, pi/p0 = 1.0;
(g, h) αr = 0.5, pi/p0 = 1.0.
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FIGURE 10. Correlation between numerical (subscript CFD) and analytical predictions
(subscript an) of (a) the maximum force on the cylinder Fmax and (b) the maximum transmitted
impulse Imax.

The initial distributions of density and particle velocity over the wavelength are given
in appendix A. It can be seen that the maximum impulse imparted on the cylinder is only
∼1/10 of the incident impulse. Further, we note that the analytical model predicts a slightly
higher impulse compared to the numerical model.

Figures 9(c) and 9(d) show a case that differs from the previous case only in the
rise coefficient αr, which is now 0.5, representing a pressure profile in the form of an
isosceles triangle; this causes a reduction in maximum drag by approximately one order
of magnitude. As can be seen in figure 9(d), the pressure gradients are much milder
for this case, corresponding to a long non-dimensional rise time αrτi. We note again
good agreement between analytical and numerical model, although the peak force is
overestimated by the analytical model in this case.

In figure 9(e–h) we present results for two cases that differ from the previous two cases
in the pressure amplitude of the incoming wave. First, we note very good agreement
in both cases between analytical and numerical model. Comparing the individual force
contributions in figures 9(e) and 9(g), we find that while the shock wave case is again
dominated by wave diffraction and reflection, in the finite rise time case all three force
contributions have significant influence on the load amplitude. This can also be seen
comparing figures 9( f ) and 9(h), with the latter showing pressure contours similar to those
encountered in steady-state flow, with vortex structures in the cylinder wake.

We proceed by assessing the loading intensity, in terms of force and impulse, obtained
with the analytical and numerical models for the large data set defined in (3.5). It can be
seen in figure 10(a) that the analytical model is in good agreement with the numerical
model in terms of maximum drag load for the whole range of parameters explored,
with predicted normalised peak loads spanning two orders of magnitude. Similarly, in
figure 10(b) we observe broad agreement between the two approaches in terms of peak
imparted impulse, with a slightly larger scatter. As can be seen in both figures 10(a)
and 10(b), the analytical model tends to overpredict the load amplitudes, such that our
analytical estimate can be considered slightly conservative.

We note that the proposed analytical model also needs a discretisation in space and time,
as equations are not obtained in closed form. A comparison of the computational times
using the set of simulations presented in figure 10 showed that the analytical calculation is
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FIGURE 11. Maximum load on the cylinder for the shock wave cases (αr = 0). (a) Dependency
of maximum load on the load duration τi for Rei = 106. (b) Dependency of maximum load on
Reynolds number for τi = 60.

much faster than the CFD simulations, with savings in computation time of several orders
of magnitude. Solution times on a commercial workstation were of a few seconds in the
case of the analytical model, while they were of several hours, or of a few days in the most
demanding cases, for the CFD simulations.

4. Results and discussion

In the following, we construct non-dimensional maps from the results of numerical
simulations. Subsequently, the analytical predictions are used to analyse the influence of
the three force contributions (3.6) on the overall load, to shed light on the nature of the
loading in different regimes of response (compare figure 2).

4.1. Numerical predictions
We start by analysing shock wave cases at various wavelengths, τi, pressure ratios,
pi/p0, and maximum Reynolds numbers, Rei. In figure 11(a) we present the maximum
non-dimensional force on a cylinder at Rei = 106 for a range of incident wavelengths.
It can be seen that after a rapid increase in the range τi < 10, the maximum force
values approach a pressure ratio dependent asymptote at approximately τi = 40. These
values can, therefore, be seen as representative for triangular shock waves of very long
wavelength, corresponding to rectangular waves. It is evident that the average pressure
on the cylinder front Fmax/(piD) increases with increasing overpressure ratio due to the
effects of compressibility (compare with (3.7)).

Figure 11(b) illustrates the dependency of the maximum drag force on the maximum
incident Reynolds number. It can be seen that for small Reynolds numbers the maximum
force is greater than for higher Reynolds numbers, which has previously been shown
experimentally (Takayama & Sasaki 1983) and can be attributed to an influence of viscous
effects on the shock reflection pattern (Kleine et al. 2014). On the other hand, in the regime
Rei > 104, the Reynolds number can be seen to have only a small influence on the load, in
accordance with findings by Kleine et al. (2014).
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FIGURE 12. Contours of the maximum force on the cylinder as a function of the rise time,
pressure ratio and Reynolds number.

Next, in figure 12 we analyse the influence of the non-dimensional rise time αrτi on
the maximum load for various overpressure ratios and Reynolds numbers. In the range
αrτi < 1, the contours can be seen to approach horizontal asymptotes corresponding to
the maximum loads for a shock wave (dependent on pressure ratio and Reynolds number),
which were given in figure 11. For intermediate rise times, 1 < αrτi < 10, the maximum
load is found to be strongly dependent on the rise time. As the pressure gradient in the
incoming wave becomes less severe, the maximum drag load diminishes. It can be seen
that for most of the values of overpressure ratio and non-dimensional rise time shown,
the lowest Reynolds number yields the highest drag loads on the cylinder, whereas the
contours for Rei = 104 and Rei = 106 correspond closely. The contours can be seen to
flatten out again for αrτi > 10. However, for the two higher Reynolds numbers, the general
trend of decreasing maximum load with increasing non-dimensional rise time can be
observed to reverse. This can be explained by the development of a quasi-steady flow
field around the cylinder for long non-dimensional wavelengths. Periodic vortex shedding
is triggered after a while, which leads to increased maximum drag loads, especially for
higher Mach numbers (Rodriguez 1984; Xu, Chen & Lu 2009; Xia et al. 2016).

In figures 13–15 the same data as in figure 12 is presented in alternative form for
closer examination. Figure 13 depicts the normalised maximum force on a cylinder for
a maximum Reynolds number of 102

. It can be seen that up until αrτi = 100 the force
amplitudes are decreasing monotonically for all investigated pressure ratios. Interestingly,
the maximum force changes by a factor of more than 10 in the investigated range of rise
times for the lower pressure ratios, whereas for the highest pressure ratio this factor is up to
two. As a reference, the mean steady-state drag value is given for every overpressure ratio
as 0.5cDρiv

2
i D with drag coefficients cD as defined in figure 8. The maximum forces seem

to approach these values asymptotically. It is to be expected that for higher wavelengths,
the above described vortex shedding will develop and that higher maximum force values
would, therefore, be recorded.

Figure 14 shows similar information but for a maximum Reynolds number of Rei = 104.
The higher Reynolds number gives rise to the earlier mentioned reversal of the downward
trend of the maximum forces. This effect can only be observed here for pi/p0 ≥ 1, which
can be explained by the higher shedding frequencies due to higher incident particle
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FIGURE 13. Variation of the maximum force on the cylinder with rise time, for Rei = 102.
Values at infinity are steady-state drag values.
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FIGURE 14. Variation of the maximum force on the cylinder with rise time for Rei = 104.
Values at infinity are steady-state drag values.

velocities and the shock waves triggered by an oscillating wake for higher Mach numbers
(Xu et al. 2009).

Finally, in figure 15 we present the results for the highest investigated Reynolds number,
Rei = 106. Comparing figures 14 and 15, it can be seen that the increase of the maximum
force is triggered even earlier than for the case of Rei = 104, whereas similar values for the
maximum force are obtained for low non-dimensional rise times.

We proceed by comparing the maximum impulse imparted on a cylinder to the incoming
impulse for a wide range of wavelengths. Figure 16(a) illustrates the peak imparted
impulse on a cylinder by shock wave loading. It can be seen that relative to the incident
impulse the highest impulses are recorded for the shortest wavelengths. This can be
explained by higher gradients in the incoming wave and a more prominent diffraction
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FIGURE 15. Variation of the maximum force on the cylinder with rise time for Rei = 106.
Values at infinity are steady-state drag values.
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FIGURE 16. Variation of the maximum impulse exerted on the cylinder with wavelength.

of waves of short wavelengths. For increasing wavelengths, the impulse can be seen to
decrease in amplitude and only small changes are observed in the range τi > 20.

In figure 16(b) the same information is shown for a rise coefficient of αr = 0.5 and
a wider range of wavelengths. It can be seen that for τi → 0 the normalised imparted
impulse attains values slightly above unity, whereas for large wavelengths, values one
order of magnitude smaller are predicted. In contrast to the shock wave case, given in
figure 16(a), the normalised impulses decrease until τi ≈ 50 or longer, before approaching
a steady value. This steady value can be approximated by calculating the imparted impulse
on a cylinder due to purely quasi-steady drag. In first approximation, neglecting wave
distortion, the impulse on a cylinder due to the quasi-steady flow caused by a pressure
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FIGURE 17. Contours of the force contributions F<> to the maximum force according to the
analytical model, for Rei = 106.

wave is

Iqs =
∫ ti

0

1
2

cD(t)ρ(t)v2(t)D dt

= D
2c0

∫ λi

0
cD(ζ )ρ(ζ )v2(ζ ) dζ . (4.1)

In (4.1), cD(ζ ) denotes the drag coefficient as in figure 8, with M(ζ ) and Re(ζ ), which can
be evaluated using the equations given in appendix A. In contrast to the maximum forces,
given in figures 13–15, the quasi-steady impulse can be seen to be a mostly conservative
estimate of the imparted impulse predicted numerically for long wavelengths. This can
be explained by the periodicity of the wake oscillations described earlier, which tend to
balance out when integrated over time.

4.2. Analytical predictions
We now use the results obtained with the analytical model to draw conclusions on
the importance of the individual force contributions (3.6) in different regimes of input
parameters.

In figure 17 we present a contour map of the relative importance of the three
contributions for a Reynolds number of 106 and the whole examined ranges of
non-dimensional rise time and pressure ratio. It is evident that for all pressure ratios the
contribution from diffraction and reflection is dominant for αrτi → 0 and accounts for
more than 60 % of the peak load, up until αrτi = 10. In this regime the contribution of
the history force can be seen to reach a peak of over 25 % for the higher pressure ratios.
For increasing wavelengths the quasi-steady contribution is found to gain more and more
importance and accounts for over 75 % of the peak load at αrτi > 100, pi/p0 > 1. For lower
pressure ratios the quasi-steady force is found to be less dominant.

In order to examine the influence of the Reynolds number, figure 18 depicts a slice
through figure 14 with an added line for Rei = 102, 104. The same trends as in figure 17
can be observed, with the diffraction contribution dominating for αrτi → 0 and the
quasi-steady contribution gaining more and more significance for rising non-dimensional
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FIGURE 18. Variation of the force contributions with rise time for pi/p0 = 1.0.

rise times. Due to the higher drag coefficients for lower Reynolds numbers (compare to
figure 8), the quasi-steady contribution is stronger for the lower Reynolds numbers.

4.3. Discussion
The results presented in this section can directly be used in industrial design for arbitrary
pressure wave loading, for example for the design of cylindrical structures common in
hydrocarbon processing plants, opening new opportunities for structural optimisation.
Figures 11–16 give access to peak loads for a wide range of input parameters without any
further calculation. This constitutes a substantial improvement over the current industrial
design practice, where methods and charts developed for shock waves are used (The
Steel Construction Institute 2018), giving high levels of uncertainty and, in general,
unnecessarily conservative predictions.

An increase in maximum drag load has been found for the higher examined Reynolds
numbers at large non-dimensional rise times, which can be explained by the unsteady
vortex shedding from the cylinder. It depends on the structural design case under
assessment if these higher load frequencies need to be considered. Furthermore, it can be
expected that the assumption of two-dimensionality of the flow and the use of the URANS
equations in the numerical solver have a detrimental effect on the solution accuracy
in these regimes. At high Reynolds numbers the cylinder wake becomes turbulent and
transitions from laminar to turbulent flow appear around the cylinder. These can only be
captured coarsely by the approach employed here.

A further investigation of this effect lies yet outside the scope of this work and studies
have been published by other authors (e.g. Rodriguez 1984; Xu et al. 2009; Xia et al.
2016).

The newly proposed analytical model provides transient load histories with little
computational effort and has been shown to agree well with the more detailed numerical
model. As the load histories caused by a triangular wave can take complex evolutions in
time, as can be seen in figure 9, this model can contribute valuable additional information
in a design process, and costly numerical computations can be avoided.

It has to be borne in mind that the assumption of two-dimensionality was made
throughout this study. Cylinders of finite width experience yet, in general, lower drag loads
than cylinders of infinite width (assumption of two-dimensionality). The results presented
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here can, therefore, be seen as upper bounds to the loads experienced by structures of finite
width.

Finally, we note that models similar to the analytical model proposed here can
be developed for other simple geometrical shapes, as we have already shown for a
two-dimensional box-like structure in a companion study (Gauch et al. 2019a).

5. Conclusions

We have developed a numerical and an analytical modelling approach to predict the
transient loading on circular cylinders by pressure waves of arbitrary shape, amplitude and
time duration. The analytical modelling approach was validated using the more detailed
numerical approach, and its asymptotic behaviour was explored. The main conclusions of
this study are as follows:

(i) A predictive tool was developed to allow estimates of the transient loading histories
induced on circular cylinders by arbitrary pressure waves.

(ii) Using the numerical model, a large parametric study was conducted and the results
were synthesised in the form of non-dimensional design charts of immediate
application.

(iii) The maximum drag loads exerted on cylinders by pressure waves of finite rise time
were shown to depend primarily on the non-dimensional rise time αrτi and the
overpressure ratio pi/p0.

(iv) It was shown that for short non-dimensional rise times, the loads are most severe and
mainly governed by reflection and diffraction, whereas for large non-dimensional
rise times the loads approach quasi-steady nature. In between these two extremes,
all three force contributions (3.6) were shown to be significant.
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Appendix A

At t = 0, the given triangular pressure wave implies a distribution in terms of
overpressure p = pabs − p0 is

p(ζ ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

pi

αrtic0
ζ, 0 ≤ ζ ≤ αrtic0,

pi

ti(1 − αr)c0
(tic0 − ζ ), αrtic0 < ζ ≤ tic0,

0, ζ > tic0,

(A 1)

where ζ is a spatial coordinate pointing from the wave front to the wave tail, with ζ = 0
at the wave front. For the case of a negligible rise time coefficient αr = 0, the pressure
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wave is a shock wave and the properties behind the shock front are determined by the
Rankine–Huguinot equations for a perfect gas (e.g. Liepmann 1957)

ρshock = ρ0

2γ + (γ + 1)
pi

p0

2γ + (γ − 1)
pi

p0

, Tshock = pi + p0

Rρshock
,

vshock =
pi

p0

√
p0

ρ0√
γ + 1

2
pi

p0
+ γ

, Mshock = vshock√
γ RTshock

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 2)

Further behind the shock front it can be assumed that the gas undergoes isentropic
expansion

p
ργ

= const. (A 3)

Therefore, the density, temperature and velocity fields can be calculated as

ρ(ζ ) = ρ0

(
p(ζ )

pi + p0

)1/γ

, T(ζ ) = p(ζ )

ρ(ζ )R
,

v(ζ ) = vshock − 2
γ − 1

(√
γ RTshock − √

γ RTshock(ζ )
)
, M(ζ ) = v(ζ )√

γ RT(ζ )
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 4)

Similarly, for the case of a non-negligible rise time coefficient αr, the density, temperature
and velocity fields can be calculated as

ρ(ζ ) = ρ0

(
p(ζ )

p0

)1/γ

, T(ζ ) = p(ζ )

ρ(ζ )R
,

v(ζ ) = 2
γ − 1

(√
γ RT(ζ ) − c0

)
, M(ζ ) = v(ζ )√

γ RT(ζ )
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 5)
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