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Abstract. We study the repetition of patches in self-affine tilings in R?. In particular,
we study the existence and non-existence of arithmetic progressions. We first show
that an arithmetic condition of the expansion map for a self-affine tiling implies the
non-existence of certain one-dimensional arithmetic progressions. Next, we show that the
existence of full-rank infinite arithmetic progressions, pure discrete dynamical spectrum,
and limit-periodicity are all equivalent for a certain class of self-affine tilings. We finish by
giving a complete picture for the existence or non-existence of full-rank infinite arithmetic
progressions in the self-similar tilings in RY.
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1. Introduction

A tiling is a cover of the Euclidean space R? by a set of tiles without interior overlaps.
The simplest class of tilings is that of crystallographic tilings, where a tiling 7 is crys-
tallographic if its symmetry group is a crystallographic group, that is, it has translational
symmetry 7 4 x = T for the vectors x in a basis of R¢. Although the crystallographic
tilings are interesting, the discovery of quasicrystals requires us to go beyond that category
and study non-periodic tilings, that is, tilings without translational symmetry. As models
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FIGURE 1. Self-affine tiling: (a) a chair tiling; (b) a Robinson triangle tiling.

of quasicrystals, the non-periodic tilings that are ‘ordered’ are important, although there
are several interpretations of the term ‘ordered’. The most important interpretation is that
the tiling is pure point diffractive, which by definition means that the diffraction measure is
pure point. (The diffraction measure models the physical diffraction pattern. The presence
of point masses is an indication of ‘order’ for the tiling. For an introduction to diffraction
spectra, see, for example, [4, Ch. 9].) Being pure point diffractive is equivalent to having
pure discrete dynamical spectrum [5]. (We will define pure discrete dynamical spectra
on page 2961.) Being pure point diffractive is also equivalent to being almost periodic in
the sense of Gouéré [12] and to being mean almost periodic [20]. These forms of almost
periodicity characterize how patterns (patches) distribute in the tiling. This is why the dis-
tribution of patches in a given tiling, especially the repetition of finite patches, is important.

Another interpretation of the term ‘ordered’ is that the tiling is limit-periodic. Here, a
tiling is said to be limit-periodic if, except for a set of zero-density tiles, all tiles T repeat
crystallographically, which means that there is a lattice L of R? for each T such that all
translates 7 4 x, x € L, are included in the tiling. We usually further assume that the
lattice L which appears in this way belongs to a decreasing sequence of lattices. This is
a geometric version of Toeplitz sequences [14]. The period-doubling tiling and the chair
tilings are well-known examples of limit-periodic tiling.

In this paper we deal with a type of repetition of patches, arithmetic progressions
of patches, and discuss its relations with pure point diffraction and limit-periodicity for
self-affine tilings. A self-affine tiling is a tiling with an inflation-subdivision symmetry,
which means that there exists an expansive linear map Q that makes all tiles larger and we
can subdivide them into the tiles of original size to obtain the original tiling. Illustrative
examples are found in Figure 1, where we show a chair tiling and a Robinson triangle
tiling. The latter is essentially the same as one of the famous Penrose tilings —that is to
say, they are mutually locally derivable (MLD) [4, §6.2].

A one-dimensional arithmetic progression of a patch P is a patch of the form | J;_, P +
kx, where x is a non-zero vector of R?. Here, n is either a positive integer or co. This is
a pattern where the patch P appears n times, separated in each instance by the translation
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vector x from the previous patch. It is interesting to observe that a chair tiling possesses
such an arithmetic progression in the diagonal direction, as we see in Figure 1. In this
paper we first give an arithmetic condition on the expansion map Q for self-affine tilings
which implies the non-existence of arbitrarily long arithmetic progressions for fixed P and
X (Theorems 3.1 and 3.6). For example, in Penrose tilings, the arithmetic progressions stop
at a certain finite n which depends on each P and x. This is done in §3.

Next, in §4, we deal with full-rank infinite arithmetic progressions, which are by
definition patches of the form

d
U P+ b
j=1

(W, lg)ezd

where {b1, by, . . ., by} is a basis of R, Interestingly, for a class of self-affine tilings,
the existence of full-rank arithmetic progressions is equivalent to having pure discrete
dynamical spectrum and also to being limit-periodic (Theorem 4.7 and Corollary 4.19).

In §5 we give a complete picture of the existence or non-existence of full-rank infinite
arithmetic progressions in a self-similar tiling in R?. We then give further problems in §6.
We conclude the paper with an Appendix, in which we provide some of the proofs.

All of this is done after introducing the necessary notation and recalling known results
in §2.

2. Notation and known results

In this section we recall relevant notation and known results. Throughout the paper,
B(x, R) is the closed ball in the d-dimensional Euclidean space R with center x € R? and
radius R > 0. Often B(0, R) is denoted by Br. The symbol T denotes the one-dimensional
torus: T={z € C| |z] = 1}.

2.1. Tilings and substitutions. Let L be a finite set. An L-labeled tile is a pair (S, /) of a
compact non-empty subset S of R?, such that §° = § (the closure of the interior coincides
with the original S), and an [ € L. We often fix L and call L-labeled tiles just tiles. For
atile T = (S, 1), we write S = supp 7 and [ = [(T"). We also write int(7)) = (supp 7)°.
ForaT = (S,/)andan x € RY, wesetT + x = S +x,0).

Alternatively, we also call a compact non-empty subset S of R? such that S = S° a
tile. Thus a ‘tile’ refers to either a ‘labeled’ or an ‘unlabeled’ tile. Both types of tile
are useful in aperiodic order. For example, if we consider the geometric realization of a
constant-length symbolic substitution, we have to give labels to tiles in order to distinguish
the intervals for different letters. On the other hand, for many geometric substitutions labels
are not necessary. (Sometimes it is not a good idea to use {(A;,i) | i = 1,2, ..., n} as the
alphabet of a geometric substitution, since this does not describe the rotational symmetry
of a substitution (w(R(P)) = R(w(P)), where P is a proto-tile and R is a rotation), which
we often use tacitly. It is sometimes more convenient to use unlabeled tiles and sometimes
labeled ones, and so it is useful to include both types of tile in the definition of tiles.) For
an unlabeled tile S, we also use the notation supp S = § and int(S) = S°.

A set P of tiles is called a patch if, for any T, T» € P with int(T7) N int(72) # @, we
have T = T,. For a patch P, its support supp P is defined by supp P = (Jrp supp 7.

https://doi.org/10.1017/etds.2021.59 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2021.59

2960 Y. Nagai, S. Akiyama and J.-Y. Lee

If a patch 7 satisfies the condition supp 7 = R?, we call T a tiling. Often patches are
assumed to be finite sets, but in this paper we do not do so. (Infinite patches that are not
tilings appear in this paper.) A patch that is a finite set is called a finite patch. Given a tiling
T, a patch P is said to be T -legal if there is an x € R4 such that P + x C T, where, for
apatch Pin R? andanx € R?, weset P +x = {T +x | T € P}. A vector x € R? such
that thereisa T € T with T + x € T is called a return vector for T The set of all return
vectors for 7 is denoted by E(T).
For a patch P and a subset S of R?, we define a new patch P 1 S via

PnS={T eP|suppT NS # 7} (1)
Define another patch P A S via
PAS={T eP|suppT C S}. (2)
Next, we define the densities for patches. We first define van Hove sequences.

Definition 2.1. A sequence (A;)n=1p2,.. of measurable subsets of R? with positive
Lebesgue measures is called a van Hove sequence if, for each compact K C R¢, we have

vol(0X4,)

lim =0,

n  vol(Ay,)
where vol denotes the Lebesgue measure and
0K Ay = (K + A\ AD U (=K +RI\ 4,) N Ay).

The density dens(a,)P of a patch P with respect to a van Hove sequence (A,), is
defined via

dens(a,), P = lim sup vol((supp P) N A,). 3)

n—oo VOI(A,)

We say that a patch P has zero density if, for any van Hove sequence (A, ),, the density
densa,), P is zero.

If the diameters of the tiles in P are bounded from above by some uniform constant, we

have
dens(a,), P = lim sup vol(supp(P M A,))
n—oo VOI(Ay)
= lim sup vol(supp(P A Ap)).

n—00 VOI(An)

The corresponding dynamical system for a tiling is an important object. To define it, we
need to define the local matching topology on the set of all patches as follows. For patches
P1 and P,, we define a set A(P;, P,) to be the set of all real numbers & between 0 and
1/ /2 such that there are X1, X € B, with

(P1+x1) M Bije = (P2 + x2) N Bye.
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Define a metric p on the space of all patches in R? via

1
p(P1, P2) =inf A(P1, Po) U {\/E}
Here, the choice of the number 1/+/2 makes it easier to prove the triangle inequality. The
topology defined by p is called the local matching topology. If we instead use A as a cut-off
operation, the resulting topology is the same on a large space of patches. It is known that
this metric is complete [22].
Given a tiling T, define the continuous hull X via

X7 ={T +x|x eRI},

where the closure is taken with respect to the local matching topology. There is a necessary
and sufficient condition, finite local complexity (FLC), for the continuous hull to be
compact. A tiling 7 has FLC if, for each compact K C R, the set

(TN(K +x)|xeRY

is finite up to translation (that is, if we identify two patches that are translates of each other,
then the set is finite). The FLC of a tiling is equivalent to the compactness of its continuous
hull [4, Proposition 5.4]. By taking K = {0}, we also see the FLC implies that there are
only finitely many tiles in 7 up to translation. The group R¢ acts continuously on X7 via

XTdea(S,x)i—)S—i—xeXT.

The pair of X7 and this action is called the tiling dynamical system associated with 7T
The tiling 7 is said to be repetitive if, for any finite 7 -legal patch P, the translates of P
appear in 7 with a uniformly bounded gap. If T is repetitive, then the tiling dynamical
system (X, R4 ) is minimal [4, Proposition 5.4], that is, every orbit is dense.

In this paper we assume that all tilings which appear have FLC, and there is one and
only one invariant probability measure p for each tiling dynamical system. The self-affine
tilings defined via primitive FLC substitutions, which we focus on in this paper (we give
the definition below), satisfy this assumption.

If, for a vector a € RY, there is a non-zero vector fe L2(,u) such, that for each x € RY,
the two maps

X738 f(S—x),
X738 T f(S)

coincide p-almost everywhere, then we call a an eigenvalue for the tiling dynamical system
(X7, RY). Here, (-, -) is the standard Euclidean inner product. In this case the function f
is called an eigenfunction. If the function f can be chosen to be continuous, we call a a
topological eigenvalue and f a continuous eigenfunction. We say that T has pure discrete
dynamical spectrum if there is a complete orthonormal basis for the Hilbert space L (1)
consisting of eigenfunctions.

One can construct interesting tilings via substitution rules. Intuitively, a substitution
rule is a recipe for ‘expanding a tile, followed by subdividing it so that we obtain a patch’.
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FIGURE 2. The chair substitution.

(See Figure 2. This is an example of substitution rule, called the chair substitution, that

generates chair tilings in Figure 1.) A substitution rule by definition consists of:

e an alphabet A, which is a finite set consisting of tiles in RY:

e an expansion map Q, which is a linear transformation Q: R? — R? whose eigenval-
ues are all greater than 1 in absolute value; and

e amap w, which sends each element P of A to a patch w(P) consisting of translates of
elements of .4 such that

supp (P) = Q(supp P).

Often the map w is also called a substitution rule. The elements of .4 are called proto-tiles.
For the example of the chair substitution, the alphabet A consists of the tile on the left-hand
side of Figure 2 and its rotations by 90, 180, and 270 degrees. Q = 21 (where [ is the
identity matrix) and the map w sends each element of A to the patch that is obtained in the
manner depicted in Figure 2.

Given a substitution rule @ with an indexed alphabet A = {Ty, T>,..., T,}, we
associate a substitution matrix M, whose (i, j)th element is the number of occurrences
of the tile 7; in w(T;). The substitution w is said to be primitive if the matrix M, is
primitive, which means that its sufficiently large powers have only non-zero elements. The
substitution w is said to be irreducible if the characteristic polynomial of M,, is irreducible.

Given an w, we can define, in a natural way, a patch o (P) for a patch P consisting of
translates of tiles in .4, by applying the same ‘expanding and subdividing’ rule to each
tile in P. We can iterate w and sometimes, as n — 00, @" (P) grows larger and larger and
converges to a tiling. Intuitively, a tiling constructed in this way is called a self-affine tiling,
of which formal definition is given below. If a tiling 7 consists of translates of tiles in .A
and we have w(7T) = T, we call T a fixed point of the substitution rule w. If, moreover,
T has FLC and is repetitive, we call 7 a self-affine tiling. If the expansion map is of the
form M./ for some \ > 1, where [ is the identity map, then the resulting self-affine tiling is
called a self-similar tiling. In this case, the number X\ is called the expansion factor. Some
chair tilings are self-similar tilings with expansion factor 2.

For a substitution rule w of R?, we say w has FLC if, for each compact K C RY, the set

{@"(P)N(K +x)|n>0PecAxeR

is finite up to translation. If w has FLC, any repetitive fixed points for w have FLC.

In general, given a tiling 7 of R? with FLC, we can obtain a discrete and closed subset
D of R by choosing one representative point from the support of each tile in 7, in such
a way that the relative positions of representative points for translationally equivalent tiles
are always the same. This D is an example of Delone set, because, first, distances between
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any two points are uniformly bounded from below, and second, there is an R > 0 such that
any balls of R¢ with radius R contain points of D. If T is a self-affine tiling associated with
a substitution rule o with an expansion map Q, we can take a control point from each tile as
a representative point [24]: we first choose a tile map f: 7 — 7T such that f(T) € w(T)
for each T € T, and let ¢(T) € supp T be the unique point in (oo, Q" (f"(T)). The
resulting Delone set D = {¢(T) | T € T} is well behaved in the sense that, first, we have
Q(D) C D (because Q(c(T)) = c(f(T))), and second, with an additional condition on
T, the set D is a Meyer set, which means that, for some neighborhood U of 0 € RY, we
have

((D—-D)—(D—-D))NnU = {0}.

The tilings 7 with the latter property (2) for some choice of representative points are said
to have the Meyer property.

A condition for a self-affine tiling 7 to have the Meyer property is given in [18]. We say
that a set A of algebraic integers forms a Pisot family if, for any N € A and any algebraic
conjugate p of \ with || > 1, we have u € A.

THEOREM 2.2. [18] Let T be a self-affine tiling in R¢ with an expansion map Q. Suppose
Q is diagonalizable over C and all the eigenvalues are algebraic conjugates and have the
same multiplicity. Then T has the Meyer property if and only if sp(Q) is a Pisot family,
where sp(Q) is the set of all eigenvalues for Q.

2.2. Arithmetic progressions in tilings. In this subsection we define arithmetic progres-
sions in tilings and describe known results for them.

Definition 2.3. Let T be a tiling in R?, P a non-empty finite patch, n an integer greater
than 0, and x a vector in RY \ {0}. A set of tiles of the form

n
U P+ kx
k=1
is called a (one-dimensional) arithmetic progression of length n. A set of tiles of the form
o0
U P+ kx
k=1
or
oo
U P+kx
k=—00
is called a (one-dimensional) infinite arithmetic progression.
Let B = {b1, by, ..., by} be abasis of R4, which is regarded as a vector space over R.
A set of tiles of the form
d

U P—‘,—Zlibi

(GRIS A/ i=1

is called a full-rank infinite arithmetic progression.
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In this paper we discuss the existence or non-existence of various arithmetic progres-
sions in various tilings. We first note that the following two lemmas hold.

LEMMA 2.4. Let T be a tiling in R? that has FLC. Let P be a non-empty, finite and
T-legal patch and take an x € R? \ {0}. Then the following conditions are equivalent.

(1) Foreachn > 0, an arithmetic progression | J;_, P + kx is T -legal.

(2)  Forsome S € X, an infinite arithmetic progression | Jye.; P + kx is S-legal.

(3)  Forsome S € X, an infinite arithmetic progression | Jye._o, P + kx is S-legal.

Proof. If the first condition is satisfied, we can take a sequence x1, X2, . . . € R4 such that,
for each n, the translate 7 — x, includes | J;_, P + kx. By FLC, the hull X7 is compact
and we can take a subsequence (x,,_/.) jsuchthat S =limj_ o0 T — Xn; is convergent. This
S includes the patch U,fil P + kx. We can also take an x,, such that 7 — x;,, includes
Ur—_, P + kx. By the same argument, we can findan S € X7 thatincludes | Jgo_ P +
kx. We have proved that the first condition implies both the second and the third condition.

Conversely, if the second or the third condition is satisfied, then, for each n, the patch
Ui~ P + kx is S-legal. Since S can be approximated by translates of 7, we see that
Ui~ P + kx is T-legal for each n. O

LEMMA 2.5. Let T be atiling in R? that has FLC and is repetitive. Let P be a non-empty,
finite and T-legal patch and B = {by, ba, . . . by} be a basis of RY. Then the following
conditions are equivalent.

(1) Foreachn > 0, the set
d
U P+ lib )
(1,12, olg)ef1,2,...,n}d i=l

is a T -legal patch.
(2)  The infinite arithmetic progression

d
U P+ i 5)
(1 layesla)€ZA i=1
is S-legal for any S € X7
Proof. If the first condition is satisfied, there is an x, € R? for n = 1,2, ... such that

T — x, contains a patch

d
U P+ libi. (6)
i=1

laselg)e{—n,—n+1,...,n}4

Since X7 is a compact metric space, we can take n; < ny < n3 < - - - such that 7 — Xn;
converges as j — 0o to some S € Xg. This S contains (5). Since the tiling dynamical
system (X, R4 ) is minimal, for each R € X7 there is a sequence yi, y2, ... € R4 such

that lim,; .00 S + vy = R. We can take a subsequence (ym/.) j that is convergent mod
spany, B. We still have R =1lim; o0 S + Ymjs and this R contains a translate of the
infinite arithmetic progression (5). O
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FIGURE 3. Arbitrarily long arithmetic progressions in chair tilings.

Remark 2.6. Notice that: (1) for a repetitive 7, the existence or non-existence of a
one-dimensional finite arithmetic progression | J;_; P + kx does not depend on the choice
of § € X, because X7 coincides with the local isomorphism class [4, Proposition 5.4];
(2) the existence or non-existence of a one-dimensional infinite arithmetic progression
Ui P + kx may depend on the choice of the tiling from the hull (compare Lemma 2.4);
and (3) the existence or non-existence of the full-rank infinite arithmetic progressions
does not (Lemma 2.5). In this paper, we discuss the existence or non-existence of
finite arithmetic progressions (1) and of full-rank infinite arithmetic progressions (3).
We discuss the existence and non-existence inside a repetitive fixed point 7 of a
substitution which we initially consider, but the same existence or non-existence applies for
any S € X7

Example 2.7. Let w be the chair substitution. For Py and x # 0, as depicted in Figure 3,
there is an arithmetic progression of length 2F at the kth step of the substitution. This
means that the chair tilings satisfy the equivalent conditions of Lemma 2.4 for this Py
and x. If we pick an arbitrary finite patch P that appears in chair tilings, since a translate
of P is included in o' (Pp) for some I > 0, we see, for P and 2!x, that there are arbitrarily
long (one-dimensional) arithmetic progressions in chair tilings.

We can see that the chair tilings admit full-rank infinite arithmetic progressions by
considering the modification of the chair tilings into tilings with decorated squares [6, §4].
The supertiles of the decorated squares have common tiles except for the main diagonals.
Since the supertiles are aligned in a translate of 2" Z?, if we chose tiles from supertiles that
are relatively the same position and are outside the main diagonals, we can find a full-rank
infinite arithmetic progression.

Example 2.8. Let o be the table substitution [4, Example 6.2]. As is seen at the center
of Figure 4, there are arbitrarily long finite arithmetic progressions (in the horizontal
direction) in the self-similar tilings for w. However, we will see by using Theorem 4.7
that there are no full-rank infinite arithmetic progressions in those tilings, since they do
not have pure discrete dynamical spectrum [26, Example 7.3].
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FIGURE 4. A patch generated by the table substitution.

To prove the existence of arithmetic progressions in tilings, the following theorem is

useful.

THEOREM 2.9. [9, Theorem 2.6] Let X be a compact metric space and T1, T, ..., T;
commuting continuous maps of X to itself. Then there exist a point x € X and a sequence
ni — o0 such that Tl."kx — x simultaneously fori = 1,2, ...,1.

Using this multiple Birkhoff recurrence theorem, the authors of [7] proved the following
theorem.

THEOREM 2.10. [7, Theorem 2] Let T be a tiling in R4 that has FLC. Given an ¢ > 0 and
a finite set F C RY, there existanm € 7~ and a patch P such that:

(1)  the support of P covers a ball of radius 1/¢; and
(2) foreachu € F, there is a vector ¢ € R? such that ||c|| < ¢ and

P+mu+ccCT.
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Given a tiling 7 in R? of FLC, an x € R? \ {0} and an n > 0, by applying Theorem
210 for F ={0, x,2x, ..., (n — 1)x} and an ¢ > 0, we see that there is a patch P that
covers a ball of radius 1/e and an m € Z- such that an ‘almost arithmetic progression’

n
U P+ kmx + ci
k=1

is T -legal (‘almost’ means that there is an error term ¢ with ||c|| < ¢).

If we start with a non-empty finite patch Q and assume that 7 is repetitive, then if ¢ is
small enough every patch of 7 that covers a ball of radius 1/& contains a translate of Q. If
¢ is small enough in this sense, then P contains a translate Q + y of O, and so

n
U Q+ kmx + ¢
k=1

is T -legal.

If 7 has the Meyer property, we will have an ‘exact’ arithmetic progression without the
error terms. Assuming that the tiling 7 has the Meyer property (page 2963), then there is
an r > 0 such that

(E—-8)N B, ={0},

where E = E(7) is the set of all return vectors (page 2960). If there is such an r, by taking
& < r/4 we see that

k + D)mx + cx41 — (kmx 4 cx) = kmx + cx — ((k — Dmx + cx—1)

for each k, and so by denoting this vector by z we see tat the patch

n—1

U Q+kz

k=0

is T -legal. We have proved the following corollaries.

COROLLARY 2.11. Ifatiling T is repetitive and has FLC and the Meyer property, then,
for any finite T-legal patch P and n > 0, there is a z € R? \ {0} such that

UP+ke (7)
k=1

is T-legal. The direction z/||z|| can be chosen arbitrarily close to any given vector of
length 1.

COROLLARY 2.12. Let T be a self-affine tiling as in Theorem 2.2 and assume sp(Q) is a
Pisot family. Then, for any finite T -legal patch P and n > 0, there is a z € R¢ \ {0} such
that the arithmetic progression (7) is T-legal. The direction z/||z|| can be chosen to be
arbitrarily close to any given vector of length 1.

Recently, this corollary was generalized in [15] as follows.
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THEOREM 2.13. [15] Let A be a Meyer set in RY. Then, for all positive integers r and k,
there is an R > 0 such that, for any coloring of points in A in r colors and any x € R,
there is a monochromatic arithmetic progression of length k inside A N B(x, R).

This van der Waerden-type theorem is more general than Corollary 2.12 because it is
valid for arbitrary Meyer sets and colorings. Corollary 2.12 is obtained from this theorem,
except for the last statement on z/||z|| in the corollary, when we apply this theorem to the
Meyer set {x e RY | P +x C T}.

Corollary 2.11 proves the existence of arithmetic progressions, given a P and the length
n of the arithmetic progression. Comparing this to Lemma 2.4, we then pose the following
problem.

Problem 2.14. Take a tiling 7, a patch P and a non-zero return vector x. Decide if the
arithmetic progression

UP+kx ®)
k=1

is always 7T -legal for every n > 0.

For a self-affine tiling, we can check all the patterns that can be observed in ball-shaped
windows of a certain radius R > 0. If, for some P and x, the arithmetic progressions
always stop in the patterns, then we see the arithmetic progressions stop at a fixed finite
step anywhere in the tiling. However, we can check this only for a certain choice of R and
there are infinite possibilities for R. In some cases, we can use induction to show there
are arbitrarily long arithmetic progressions (Examples 2.7 and 2.8) for some P and x.
How about the Penrose tilings? We will show in §3 that, for the Penrose tilings and many
self-affine tilings, any arithmetic progression always stops at a fixed finite step.

By the same argument as in Corollary 2.12, we can prove the following ‘full-rank
version’:

THEOREM 2.15. Let T be a tiling as in Theorem 2.2 and assume sp(Q) forms a Pisot
family. Then, for any finite T -legal patch P and an n > 0, there is a basis {b1, b, . . . , bg}
of R? such that the patch

d
U P‘FZIjbj
=1

Ul nlg)e{1,2,...n)e
is T-legal.
The set {b1/||b1l, b2/11b2|l, . . ., ba/llball} can be chosen arbitrarily close to any subset
of cardinality d of the unit sphere that forms a basis of RY, because we can take at least

one {by, by, . .., by} which forms a basis.
Then a natural question arises (compare Lemma 2.5).

Question 2.16. Which tilings 7 admit full-rank infinite arithmetic progressions, and which
T do not?
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We will address this question for self-affine tilings in §4. Under a certain assumption,
the existence of full-rank infinite arithmetic progressions is equivalent to the pure discrete
spectrum of the associated tiling dynamical system, in which case we can actually prove
that the tiling is limit-periodic.

3. The non-existence of arbitrarily long arithmetic progressions

In this section we prove several results on the non-existence of arbitrarily long arithmetic
progressions that have a fixed distance, in a self-affine tiling, and so give a partial answer
to Problem 2.14.

3.1. An argument using continuous eigenfunctions. In this subsection we prove the
following theorem, which states that there are no arbitrarily long arithmetic progressions
for a fixed difference v, if the expansion factor is irrational and Pisot.

THEOREM 3.1. Let w be a primitive and FLC tiling substitution in R¢ with an expansion
factor '\ that is irrational and Pisot. Let T be a fixed point of w. Assume T is repetitive.
Then, for any T-legal, non-empty and finite patch P and v € R¢ \ {0}, there is ng € N
such that | J;° (P + nv) is not T-legal.

Remark 3.2. If we drop the assumption that A is irrational, there is a counterexample
for the statement, as we have shown in Example 2.7. We do not know if there is a
counterexample if we drop the assumption that X is Pisot. For the one-dimensional case,
there is no arbitrarily long arithmetic progressions if A is irrational (Theorem 5.1). Note
that 7 is non-periodic because the expansion factor is irrational so that the frequency for
a tile is irrational.

We divide the proof into several parts, as follows. First we define Ap, which will play
an important role in the proof.

Definition 3.3. Let T be a tiling and P be a patch. We consider a set
Ap={Se X7 |PCS}

Although this is dependent on X7, we denote it just by Ap, since in this subsection 7 is
fixed.

Foreach S € X7, we have S D P if and only if S € Ap.
Note that we have defined the notation A in (2) on page 2960. In the next lemma the
important point is that we can take R that is independent of x.

LEMMA 3.4. Let T be a tiling of RY which has FLC. Let f: X7 — T be a continuous
eigenfunction. Then, for any ¢ > 0, there is an R > 0 such that the conditions

e S,5€eXT,

e xeR? and

e S AB(x,R)=8 AB(x,R)

https://doi.org/10.1017/etds.2021.59 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2021.59

2970 Y. Nagai, S. Akiyama and J.-Y. Lee

imply | f(S1) — f(S2)| < e. Therefore, given a continuous eigenfunction f and an ¢ > 0,
if R > 0 is large enough and a patch P covers a ball of radius R, then the diameter of
f(Ap) is less than ¢.

Proof. Since f is continuous, there is an R > 0 such that if S|, S € X and
S1 A B, R) =8, A B(O, R),

then | f(S1) — f(S2)| < €. In order to prove the statement of this lemma, take S1, S) €
X7 andanx € R4, and assume

Si AB(x,R) =8 A B(x, R).
Then
(St —x) AB(O,R)=(S, —x) AB(O, R),
and so | f(S] — x) — f(S» — x)| < &. Since we have
|£(S) = f(S)] = [ £(S1) = 1Y f(S)] = | £(S1 —x) = f(S2 = x)],

we have proved the first claim.

If P is a patch that covers B(x, R) for some x € R? and S|, Sy € Ap, then S§1 A
B(x, R) = S A B(x, R), and so | f(S1) — f(S52)| < e. This means that the diameter of
f(Ap) is less than e. U

Proof of Theorem 3.1. Let {by, by, ...bg} be a basis of R? consisting of topological
eigenvalues for (X7, RY). Such a basis exists by [27, the last part of pp. 13].

For a P and a v as in the statement of the theorem, there is an i such that (b;, v) # 0.
Let f be a T-valued continuous eigenfunction for b;.

To prove the statement, let us assume to the contrary that, for each n > 0, the patch
Uk—o P + kv is T-legal. We will show that this leads to a contradiction. Since w(7) =
T, for each n > 0 and m > 0, the patch Py, , = J;_y @™ (P) + \"kv is T-legal, which
means that there is an S, € X7 such that S, O Py . By the definition of A, (py, for
eachn,m >0andk =0,1,...,n, we have

Sn’m - )\.mkv E Awm('])).
This implies that
F(Sum = W'kv) = 20K £(S, ) € f (Aun(p)).

If m is large enough, then the number (b;, N"v) is irrational, and so the diameter of
S (Agm(py) is greater than 1/2. On the other hand, by Lemma 3.4, if m is large enough,
then the diameter of f (A, (p)) can be arbitrarily small. We have a contradiction and have
proved the theorem. O

Example 3.5. The Penrose tilings are essentially the same (MLD) as the Robinson triangle
tilings, which are generated by a substitution with an expansion factor (1 + +/5)/2. This
is an irrational Pisot number and, by Theorem 3.1, we see that there are no arbitrarily long
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arithmetic progressions when we fix P and v, in both the Penrose tilings and the Robinson
triangle tilings.

3.2. An argument using an internal space. In this subsection we introduce another
method to show the non-existence of arbitrarily long arithmetic progressions in a given
self-affine tiling (Theorem 3.6). The argument relies on [19, Theorem 4.1] and is valid for
a more general class of self-affine tilings, whereas Theorem 3.1 is valid only for self-similar
tilings.

Let 7 be a self-affine tiling with an alphabet A = {T1, T2, . . . T,;}, an expansion map
Q and a primitive FLC substitution map w. We assume Q is diagonalizable over C and all
eigenvalues are algebraic conjugates of the same multiplicity J. We select control points
(page 2963) to obtain a Delone set A = U;"zl A;, where each A; is the set of all control
points of the tiles of type i.

Since Q is diagonalizable and the multiplicities of the eigenvalues of Q are always
J, if the real eigenvalues are A, h2, ..., Ay and imaginary eigenvalues are @i = aj +
biv—1,mr=a; —biv—1,..., 0 =a; +biv/—1, 757 = a; — bya/—1, there is a basis

B of R¥ such that the matrix [Q]g of Q with respect to B is

A 0 O --- 0
o A 0 --- 0
[Qls=| . . e
0 A
where
[ 0 0 --. 0 ]
0 n O 0
0
As
A= a; —b
by a
0 ar —b;
L O bt ay _
(This is the real canonical form of Q.) Leta; (j = 1,2, ..., J) be the vector of R? such

that the representation with respect to the basis B is
©,0,...,0, IL1,...1, 0,...0)
—
from (j — 1)m + 1to jm

where m = s + 2t.
By [19, Theorem 4.1], there exists an isomorphism p : RY — R? such that pQ = Qp
and

A Cp(Z[Qlay + - - - + Z[Qlexy).

This is the first tool that we use in Theorem 3.6.
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The other tool is the following. By [26, Lemma 6.5], there exists a finite set F C A — A

such that, for any element x € A — A, there are ann > 0 and wi, wy, . .., w, € F with
n
x=Y 0w ©)
i=0

In fact, x = ¢(T') — ¢(S) for some tiles 7 and S in 7. By repetitivity, we may assume
that 7 and S are both in " (U) for some n > 0and U € T. Thereare T® = U, TW ¢
(T, T ¢ (D), ... suchthat T = T™ € o(T"D). We have

n—1

o(T) = Z Qn—l—k(c(T(k+l))) _ Qn—k(c(T(k))) + Qn(C(T(O))).

k=0

There are also S© =U, SD € w(§©), @ € w(SD), ... such that §= 85" ¢
w(S®~D). We have

n—1
c(S) = Z Qn—l—k(C(S(k+l))) _ Qn—k(C(S(k))) + Qn(C(S(O))).

k=0

Therefore,

n—1
c(T) —c(S) = Z Qn_l_k(C(T(k'H)) — Q(C(T(k))))

k=0

n—1
=Y 0" (S D) — Q(e(sM))).

k=0

Each of ¢(T**+D) — 0(c(T®)) and c¢(S*tD) — 0(c(8%)) is a difference of tiles inside
a level-one supertile.

With this machinery, we can prove the following theorem. The idea is to use a kind
of internal space. For a model set D [4, Ch. 7] with a Euclidean internal space, if there
are arbitrarily long arithmetic progressions x, x + y, x + 2y, ... x +ny € D with a fixed
y # 0, then since y* # 0, for a large n, the corresponding point x* + ny* should be outside
the window and we have a contradiction. Here, we construct a similar Euclidean ‘internal
space’ and have a similar argument to obtain a contradiction if there are arbitrarily long
arithmetic progressions.

THEOREM 3.6. Let T be a self-affine tiling of R? with an expansion map Q and a
primitive FLC substitution rule o. Suppose Q is diagonalizable over C and all the
eigenvalues are algebraic conjugates with the same multiplicity J. If there exists an
algebraic conjugate B of eigenvalues of Q such that |B| < 1, then, for any return
vector x € R\ {0}, there is an ng € N such that T +nx ¢ T foralln > ngand T € T.
Therefore, for each T € T and x # 0, there is an ng > 0 such that UZ(;I T + kx is not
T-legal.

Proof. Without loss of generality, we may assume that p is the identity.
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For each g1 (x), g2(x), . . ., qj(x) € Z[x], the representation of the vector g1 (Q)x| +
-+ g7 (Q)ay with respect to the basis B is
q1(A)1
q2(A)1
qs(A)1

where 1 € R is the vector whose entries are all 1. Define a well-defined injective map
®: Z[Qlar + - - - + Z[Qlay — C’ by

q1(A)1 q1(B)

q2(A)1 q2(B)
. H .

q5(A)1 q7(B)

Since the set F in (9) is finite and |8| < 1, we can observe that the image of A by
@ is bounded. If x € A — A and x # 0, then since ®(x) # 0, there is an ng such that
|®(nox)|| = |[no®(x)]| is greater than the diameter of ®(A). This implies that if y € A,
then, for each n > ng, we have ®(y + nx) ¢ ®(A) and y + nx ¢ A. ]

4. The existence and non-existence of full-rank infinite arithmetic progressions

In this section we investigate Question 2.16 for self-affine tilings in R?. In particular, we
prove that, under additional assumptions, the existence of full-rank infinite arithmetic pro-
gressions implies the pure discrete spectrum of the tiling (Theorem 4.7), and the converse
(Corollaries 4.11 and 4.14 and Theorem 4.15). Then the conclusion is strengthened by
showing that the tiling is in fact limit-periodic (Theorem 4.18 and Corollary 4.19).

4.1. Full-rank infinite arithmetic progressions imply pure discrete spectrum. The fol-
lowing setting is assumed throughout this subsection.

Setting 1. In this subsection 7 is a self-affine tiling with an expansion map Q and a
primitive FLC substitution map w.

The key notion here is overlap coincidence, which under a mild assumption is equivalent
to pure discrete spectrum.

Definition 4.1. [26] A triple (T, y, S), with T, S € T and y € E(T), is called an overlap
if the intersection supp(y + 7') N supp(S) has a non-empty interior. We say that two
overlaps (T, v, S) and (T’, y', §') are equivalent if, for some g € RY, we have y + T =
g+ Yy +T, S=g+ S Denote by [(T, y, S)] the equivalence class of an overlap. An
overlap (T, y, S) is a coincidence if y + T = S. The support of an overlap (T, y, S) is
supp(T’, y, §) = supp(y + T') N supp(S).

We define the subdivision graph Go(T) for overlaps. Its vertices are the equivalence
classes of overlaps for 7. Let O = (T, y, S) be an overlap. We will specify directed edges
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leading from the equivalence class [O]. w(y + T) = Qy + o(T) is a patch of Qy + T,
and w(S) is a T -patch, and moreover,

supp(Qy + w(T)) N supp(w(S)) = Q(supp(T', y, S)).

For each pair of tiles T’ € w(T) and S’ € w(S) such that O’ := (T, Qy, S’) is an overlap,
we draw a directed edge from [O] to [O'].
The following equivalence is useful when we discuss overlaps.

LEMMA 4.2. For an overlap O = (T, y, S), the following conditions are equivalent.

(1) Thereis ann > 0 such that " (T + y) N @"(S) # @.

(2)  From the equivalence class [O] there is a path that leads to the equivalence class of
a coincidence.

We also use the following two lemmas concerning overlaps.

LEMMA 4.3. [17, Lemma A.8] Assume that E(T) is a Meyer set. Then the number of
equivalence classes of overlaps for T is finite.

We set
D, =TN(T +x) (10)

for a vector x € R?.
The following lemma is slightly different from [17, Lemma A.9], but the proof is the
same.

LEMMA 4.4. [17, Lemma A.9] Assume that E(T) is a Meyer set. Let x € E(T). The

following are equivalent.

@) lim;,_, o dens(Dgny) = 1.

(i) 1 —dens(Dgny) < Cr", n > 1, for some C > 0andr € (0, 1).

(iii)  From each vertex O of the graph Go(T) such that O = [(T, OFx, $)] for some
T,S €T and k > 0, there is a path leading to a coincidence.

THEOREM 4.5. [26, Theorem 6.1] Assume that E(T) is a Meyer set. If there exists a basis
B for RY such that, forall x € B,

o
Z(l —dens(Dgny)) < 00,
n=0
then the tiling dynamical system (X7, v, R?) has pure discrete spectrum.
By these two results we have the following corollary.

COROLLARY 4.6. Assume that E(T) is a Meyer set. Let B be a basis of R¢ that is included
in E(T). Suppose that, for each overlap (S, QXy, T) with y € B and k > 0, there is a path
Sfrom [(S, Qky, T)] to a coincidence (that is, there is an n > 0 such that " (S + Qky) N
" (T) # 0). Then the dynamical system (X1, |, Rd) is pure discrete.
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THEOREM 4.7. Suppose that there exist a tile Ty € T and a lattice L on R? such that
{(To+v|velL)yCTand Q(L) C L. Then (X, j, R?) has pure discrete spectrum.

Proof. Note that E(7) is a Meyer set by the existence of a full-rank infinite arithmetic
progression and FLC: any return vector is written as the sum of the displacement to
the nearest tile in a full-rank infinite arithmetic progression, a vector inside L, and the
displacement of a tile in a full-rank infinite arithmetic progression to the target. We also
note that L C E (7). We consider the overlaps which can occur from the translation vectors
in L. For each such overlap O = (T, y, S), y € L, we can find some integer n € N such
that the nth inflation of the support of the overlap O contains at least one element of
{To + v | v € L}, that is, there exists u € L such that

supp(Tp +u) C Q" (supp(T, y, S)).
By the assumption that {Tp +v |v e L} C T,
To +u € " (S).

Since QL C L, Ty +u — Q"y € " (T). Therefore, the overlap O = (T, y, S) admits a

coincidence in the nth iteration. We can choose a set of the vectors B := {y, ..., vy} C L
which forms a basis of R?. By using Q8 C L and applying Corollary 4.6 to B, we see that
the dynamical system is pure discrete. O

Example 4.8. The condition Q(L) C L is always satisfied if Q = nl for some natural
number n. The table tilings (Example 2.8) do not admit full-rank infinite arithmetic
progressions.

4.2. Pure discrete spectrum and a lattice property imply full-rank infinite arithmetic
progressions. In this subsection we discuss the existence of full-rank infinite arithmetic
progressions in the following setting.

Setting 2. Let w be a primitive FLC substitution rule in R? with an expansion map Q. Let
us denote the alphabet by A = {T1, T», . . ., Tiy}. Let T be a self-affine tiling generated by
. We take a control point from each tile of 7. The symbol A; will denote the set of all
control points of tiles of type i. Let E = E(7) be the set of all return vectors of 7.

In this subsection we first prove sufficient conditions for 7 to admit full-rank infinite
arithmetic progressions. We use the following characterization of having pure discrete
dynamical spectrum.

THEOREM 4.9. [16, Theorem 3.13] Let S be a self-affine tiling with an expansion map Q
and an alphabet B. We take control points for the tiles in S, and let Mt be the set of all
control points of type T € B. Then the following conditions are equivalent.

(1) S has pure discrete dynamical spectrum.
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(2) Therearean N > 0, an S € B and an n € Mg such that
OV (E(S)) C Ms —n,
where B(S) is the set of all return vectors for S.

The second condition in this characterization is called algebraic coincidence. Using
algebraic coincidences, we now prove the following corollary.

COROLLARY 4.10. Let L be a discrete subgroup of R?. Consider the following four
conditions:

(1)  there are a positive integer K and a T € T such that {T +x | x € QX(L)} c T;
(2)  E > 0K(L) for some positive integer K ;

(3) there is a positive integer K such that, for each positive integer k, we have

E+E+---+ED 0K (11)
——
k times

(4) there are positive integers k and K such that (11) holds.

Then we always have (1) = (2) = (3) = (4), and if T has pure discrete dynamical
spectrum, we have (4) = (1).

Proof. The implication (1) = (2) is proved by the definition of E, the implication (2) =
(3) is seen by the fact that 0 € E. and the implication (3) = (4) is clear. Let us now assume
condition (4) and that 7 has pure discrete dynamical spectrum.

By algebraic coincidence, we have

0N (E+8) c QV(A; — Ay) € QN (B).
By induction, we see that

OV Ky c o"N@E+E+---+B) c oM@ c A -

k times
This implies that {T; + n + x | x € QKN TK(L)} c T. 0O

By this theorem, if 7 has pure discrete dynamical spectrum, the question of whether
T admits arithmetic progressions boils down to deciding if condition (2), (3) or (4) holds.
We first discuss the easiest case where these conditions are satisfied.

COROLLARY 4.11. Assume that the group L generated by Z is a lattice in R and that the
tiling T has pure discrete dynamical spectrum. Then there are a positive integer K and
T € T such that {T + x | x € QX (L)} C T. In other words, T admits a full-rank infinite
arithmetic progression.

Proof. Since E is relatively dense in R?, we may take an R > 0 such that & + Bg = R¢.
The set L N By, is a finite set and so there is a positive integer M such that

LNBRCE+E+---+E.
—_—

M times
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For each x € L, there is a y € E such that ||x — y|| < R. Since x —y € L N Bg, we see
that

x=y+x—yed8+E8+---4+E.
—_—
M + 1 times
We conclude that

L=E+E+---+E.
M + 1 times

[

The equivalent conditions in Corollary 4.10 are satisfied. U

Example 4.12. Suppose w is a block substitution (a block inflation in [21, Subsection 5.2]).
This is a substitution rule where the supports of the proto-tiles are all [0, 1]¢ and the map
Q is given by a diagonal matrix with integer diagonal elements. The group generated by E
is always a lattice. 7" admits full-rank infinite arithmetic progressions if it has pure discrete
dynamical spectrum.

We next give a general sufficient condition for condition (4) in Corollary 4.10. The proof
is given in the Appendix.

PROPOSITION 4.13. Let 1 < e <d and vi, v, . .., v, be vectors in R, Assume the
following conditions.

(1) foreachi =1,2,...,e, there is a positive integer n; such that Qv; = n;v;.
(2) ThereareT® e T, T](O), Tz(o), cee Te(o) € w(TD) of the same tile type such that
0
(1) = Q) = v,

foreachi.

Then there is a positive integer M such that

spany{vi, v2,..., 0} CE+E+---+&. (12)
—_—
M times
COROLLARY 4.14. Let e < d and vy, va, . . ., v. be vectors in R? that form a linearly
independent set. Denote the group generated by {vi, va,...,v.} by L. If the two

assumptions in Proposition 4.13 are satisfied and T has pure discrete dynamical spectrum,
then there are a tile T € T and a positive integer K such that {T +x | x € QX(L)} c T.

Proof. The claim follows from Corollary 4.10 and Proposition 4.13. O
For the self-similar case, the situation is simple.

THEOREM 4.15. Assume Q = nl, where n is a positive integer and I is the identity map.
Then there are a lattice L of R? and a positive integer M such that

LCE4+E+---+E.
—_—

M times
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If T has pure discrete dynamical spectrum, then there are also a positive integer K and a
T € T such that

(T+x|xenfL)CT.
In other words, T admits a full-rank infinite arithmetic progression.

Proof. We give two proofs, the first of which relies on Proposition 4.13. By replacing O
and o with their powers, by repetitivity we may take a 7(® e T, a linearly independent
i, va, .. va) CRYand T, 70 T\ € w(T©) such that
° Tl(o), T. 2(0), . Td(o) are the same tile type as TO and
o o(T”) — Q(c(T®)) = v; for each i.
The first statement of this theorem is proved by Proposition 4.13. The second statement is
seen by Corollary 4.10.

The second proof does not use Proposition 4.13 and relies on a result by Kenyon, which

is found in [27, Theorem 5.1], or its generalization [18, Theorem 4.1]. There is a basis
{b1, ba, ..., by} of RY such that

E CZby+7Zby~+-- -+ 7Zby,.

The group L generated by Z is a lattice of R?. By the same argument as in Corollary 4.11,
the first statement is proved. The second statement follows from Corollary 4.10. O

We will show that for irrational expansion factors, there are no full-rank infinite
arithmetic progressions in self-similar tilings (Theorem 5.1).

In fact, we can prove a stronger statement that 7 is limit-periodic, which is defined as
follows. Recall the densities of patches are defined in (3) on page 2960. Using densities,
we define the limit-periodic tilings.

Definition 4.16. [8, Definition 4.2] We say that a tiling S is limit-periodic if there are a
subset P C S of zero density and a decreasing sequence L1 D Ly D - - - of lattices of RY
such that, forany 7 € S \ P, there is n with {T +x | x € L,} C S.

For example, the period-doubling sequence and the repetitive fixed points of the chair
substitution are limit-periodic [6].

Remark 4.17. 1t is hard to find the definition of limit-periodic tilings in the literature and
different authors seem to use the term with different meanings. Limit-periodic tilings are
geometric analogues for Toeplitz sequences [14]. The regular Toeplitz sequences have
pure discrete dynamical spectrum, but there are non-regular Toeplitz sequences with
non-zero continuous spectrum [13], which means a “Toeplitz structure’ in a definition of
limit-periodic tilings does not imply pure discrete dynamical spectrum. The definition of
limit-periodicity in [3] seems to include pure discrete dynamical spectrum, whereas in [10]
the authors do not include it. Here, we adopt the definition in [8] and do not assume pure
discrete spectrum. Note that by Theorem 4.7, if T is self-similar with Q = nl, where n
is a positive integer and 7 is the identity map, the limit-periodicity of 7 implies the pure
discrete dynamical spectrum.
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We now have the following theorem. Note that we assumed the conditions in Setting 2
at the beginning of this subsection.

THEOREM 4.18. If T has pure discrete dynamical spectrum and satisfies the equivalent
conditions in Corollary 4.10, then there is a lattice L and a patch P C T of zero density
such that if T € T\ P, then {T +x | x € Q'(L)} C T for some natural number I. If,
moreover, we have L D Q(L), then the tiling T is limit-periodic.

Proof. The proof is given in the Appendix; here, we shall give an intuitive explanation of
the idea of the proof. We recall the set D, = 7 N (7 — x) in (10). Foreachk = 1,2, . . .,
consider the set

M Poss- (13)

X€d

If T is in this set, then, for all x € E, we have T € T — Qk (x). By assumption, there is
an M > 0 such that QM(L) C &, and so, for each x € L, we have T + Qk+M(x) eT.
In other words, T is a part of a full-rank infinite arithmetic progression. If the density of
the set (13) is close to 1, then there are ‘many’ T in this set, and each such T satisfies the
condition {T + QM**(x) | x € L} C T. Thus it suffices to show that the set (13) has large
density. More precisely, it suffices to show the density of (13) tends to 1 as k — oo.

This is seen by modifying the proof for the claim that an overlap coincidence implies
an algebraic coincidence [16]. The set (13) is written as

ﬁ Dor(xy = U ﬂ " (T) N (T = x).

xXeg TeT x€&

In other words, for each T € T, we can consider all possible overlaps (7, x, S). By
inflation, it gives rise to coincidences, and the set of all coincidences for this overlap by
the kth inflation is ¥ (TN ok (S — x). Inside the supertile a)k(T) there are other sets of
coincidences o*(T) N w* (S’ — x) with the same x but a different tile S'. Fixing x, we
collect all such coincidences, and the resulting set is @*(T') N " (T — x). The ratio of the
area that this set of coincidences covers to the area that the supertile o (T) covers tends
to 1, by the argument of Lemma 4.4. Moreover, since there are only finitely many overlaps,
the intersection

ﬂ o (T) N (T = x) (14)

xeld

is in fact a finite intersection. For each x € &, the set *(T) N w*(T — x) grows, and so
the ratio of the area that the patch (14) covers to the support supp »*(T) tends to 1.

This happens for each T € 7, and again by using the fact that there are only finitely
many overlaps up to equivalence, the convergence of the ratio of the area of (14) to 1 is
uniform for all 7 € 7. This in turn implies that the density of (13) tends to 1. O]

COROLLARY 4.19. Suppose that the tiling T has pure discrete dynamical spectrum.
Moreover, assume one of the following conditions:

(1)  the group generated by E is a lattice;
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(2) there is a basis {b1,ba,...,bq} of RY that satisfies the two assumptions in
Proposition 4.13;
(3) there is a positive integer n such that Q = nl.

Then T is limit-periodic.

Proof. By using Theorem 4.18, this follows from Corollary 4.11, Proposition 4.13 and
Theorem 4.15. O

Example 4.20. The block substitution (Example 4.12) satisfies the first condition in
Corollary 4.19. If the substitution satisfies the coincidence condition (a high-dimensional
version of Dekking’s condition [25, Definition 6.5], which follows from the overlap
algorithm [26]), then it is limit-periodic.

The self-similar tilings by the sphinx substitution [11] are known to be limit-periodic.
We give another proof for this fact. We can check that the sphinx substitution satisfies
the overlap coincidence [26, Example 7.2]. By Corollary 4.19, the fact that the expansion
factor is 2 implies that the self-similar tilings defined via the sphinx substitution are
limit-periodic.

5. The conclusion for full-rank infinite arithmetic progressions in self-similar tilings
By what we have proved, we have the following complete picture for the existence or
non-existence of full-rank infinite arithmetic progressions in any self-similar tiling.

THEOREM 5.1. Let T be a self-similar tiling in R? with a primitive FLC substitution and
an expansion factor \.
(1) If \ is irrational, then there are no full-rank infinite arithmetic progressions in T
(2) If '\ is rational (that is, a natural number), then the following three conditions are
equivalent.
(@) T admits full-rank infinite arithmetic progressions.
(b) T is limit-periodic.
(¢) T has pure discrete dynamical spectrum.

Proof. The second statement is clear by Theorem 4.7 and Corollary 4.19. We shall prove
the first statement.

Suppose that \ is irrational. The statement follows from the observation that if we
have two full-rank infinite arithmetic progressions with incommensurate distances, then
there are two different tiles that are arbitrarily close, which contradicts the fact that T is
a tiling. We shall elaborate the argument. We assume there are a T € 7 and a lattice L
of R? such that {T +x | x € L} C T and we will obtain a contradiction. We take a basis
{b1, by, ..., bg}of R such that L is the Z-span of this basis.

We can take a natural number N such that there is a y € R? with T 4+ y € o™ (T). For
each ¢ > 0, we can take integersn;, m; (j = 1,2, ..., d), such that

d d
0< )\Nznjbj —I—y—ijbj
j=1 j=1

< é&.
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These inequalities show that the two tiles 7+ XY Y n;b; +y and T+ Y m;b; are
different but their interiors overlap. Since these tiles are both in 7, we obtain a
contradiction. O]

Remark 5.2. Although we described Theorem 5.1 as a ‘complete picture’, it is not
clear when 7 has pure discrete dynamical spectrum. The Pisot conjecture, which states
that a self-similar tiling for any irreducible substitution with Pisot expansion factor
has pure discrete dynamical spectrum, has not been proved. However, we have an
algorithm to decide if a given self-similar tiling has pure discrete dynamical spectrum
[1, 26].

For the one-dimensional case, if the substitution w is also irreducible, we can prove the
first claim of Theorem 5.1 by using the Perron—Frobenius theory, as follows.

Assume that @ has an indexed alphabet A ={T}, T»,...,T,} and is primitive.
Assume also that the support of each tile in A is an interval. By the Perron—Frobenius
theorem, there is a positive eigenvalue that is greater than any other eigenvalues in
modulus. We call it the Perron—Frobenius eigenvalue, and for substitutions it coin-
cides with the expansion factor. Let (/;)j=12,..m and (rj)j=12,.» be left and right
eigenvectors, respectively, with positive elements, which exist uniquely up to scalar
multiples.

LEMMA 5.3.[2, Lemma4.3] Ifw is primitive and irreducible, then the d-entries of (I;) jea
(respectively, (r;) jea) are linearly independent over Q.

Recall that by primitivity, the corresponding tiling dynamical system is uniquely
ergodic, which is equivalent to having uniform patch frequency.

We now prove that an infinite arithmetic progression cannot be observed in a self-similar
tiling generated by an irreducible primitive substitution @ with the cardinality of the
alphabet greater than 1. Note that the irreducibility implies that \ is irrational.

THEOREM 5.4. Let w be a one-dimensional irreducible primitive substitution with interval
supports of the tiles in the alphabet and with the cardinality of the alphabet greater than 1.
Let 'To be a repetitive fixed point for w. If T is a tiling in X7;, then, for any tile T € T and
non-zero vector v, the patch {T + kv | k € N} is not included in T . Therefore, there are no
arbitrarily long arithmetic progressions if we fix the distance v # 0.

Proof. Assume that {T 4 kv | k € N} is included in 7. We prove that this leads to a
contradiction for the case where v > 0. The case where v < 0 is proved in a similar way.
Consider a legal patch Py (k € N) of interval support whose leftmost tile is 7 + kv and
rightmost tile is the tile just before T + (k + 1)v. The support of the patch P is an interval
of fixed length v which is filled by translates of alphabets T; with cardinalities n ;, where
J €{L,2,...n}. Then the cardinality vector (n;);e(12,.n} € N is independent of the
choice of k by Lemma 5.3. For each m > 0, the patch UZ’Z_OI ‘Px contains mn ; translates

of T; for j €{l,2,...,n} and has support [0, mv]. By the uniform patch frequency,
this shows that r; = ni/(Z'}zl n;) € Qfori e {1,2,...,n}. It gives a contradiction to
Lemma 5.3. O
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6. Further questions

In Theorem 3.1 we assumed that the expansion factor X\ is irrational and Pisot. If \ is
rational, which means it is a natural number, there may be arbitrarily long arithmetic
progressions even if we fix the distance x € R4 \ {0}, as we have seen in Examples
2.7 and 2.8. However, we do not understand the situation where we drop the Pisot
assumption. We do not know any examples with irrational non-Pisot expansion factors
that admit one-dimensional arithmetic progressions of arbitrary length. Moreover, the
existence and absence of infinite one-dimensional arithmetic progressions may depend on
the choice of a tiling from the hull. For example, we do not know if there is a tiling in
the hull of the table substitution that does not admit infinite one-dimensional arithmetic
progressions.

The study of full-rank infinite arithmetic progressions in §4 is also not complete. We
understand the self-similar case, but for general Q there are still open problems. For
example, we suspect if all the eigenvalues for Q are integers and the tiling has pure discrete
dynamical spectrum, then the tiling is limit-periodic, but we do not have a proof for this.
We have assumed several conditions, such as that Q(L) C L in Theorem 4.7. We do not
know what happens if we drop these assumptions.
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ported by JSPS grants (17K05159, 17H02849, BBD30028). JL was supported by NRF
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referee for valuable comments. The authors also thank Dan Rust for checking the English
in §1 and §2.

A. Appendix
We give here some proofs postponed from the main part of the paper.

A.l. Proof of Proposition 4.13. We set M = e max{ni, ny, . . ., n.} and prove that this
M satisfies the desired condition. To prove this, we take arbitrary ki, k2, ..., k. € Z
and we shall prove that Zle kiv; is included in E + E + - - - + E (the result of the
summation of M Es). We use a tile map f: 7 — 7T which was used to define a control
points map c. We can assume that 7 and f(7) are always the same tile type. For
any i = 1,2, ..., e such that k; = 0, by considering n;-adic expansion of k;, there are
ki,o, ki,l» Ce, ki,Ni € {0,1,...n; — 1} such that

N;

Ni—j

kl' = Zki,j”i ! J.
—0

For i with k; < 0, similarly there are k; o, k; 1, ..., kin; € {0, 1, ..., n;} such that

Ni

Ni—j

—k,‘ = Zkiv]‘ni ! ].
—0
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Since each N; can be replaced with a larger integer, we may assume that Ny = Ny = - - -
N,. Let us denote this number by N. Set Iy ={i =1,2,...,¢e | k; =20} and I_ = {i
1,2,...,e| ki <O}

Foreachi € I andl =1,2,...,n; — 1, we shall choose tiles

/
SN+1Lis S0,
and foreachi € I_and! =1, 2, .. ., n;, we shall chose tiles
/
TN+1,l,is T(),l,i’

all in 7 and with the same tile type, such that

ni—1 ni—1 e
DD SN = e(Sh)) = D D> (i) — e(Tg0) =Y kivi. (Ad)
iely =1 iel_ I=1 i=1

Since all objects ¢(Sy+14i) — C(S(/)’l’i) and c¢(Ty+14i) — C(T()/,l,i)’ wherei =1,2,...,¢
and/ =1, 2,...n; — 1, are members of E, and the number of these objects is at most M,
once we have proved this equation (A.l), the proof of this proposition is complete.
First,takei € I and/ = 1,2, ... n; — 1, and we shall construct Sy 41, and 56,1,1“ The
latter is defined by S{),l’i =f N+1 (T(O)). To construct the former, we set Sp;; = 7O and

choose 81, S27,i, - - ., Snt1,, inductively, as follows. Given an §;;; of the same tile
type as 7O, by assumption we can take an S;j1;; € w(Sj;,;) of the same type as 7O
such that

v; ifk,"j g l,

0 otherwise.

c(Sj4100) — O(Sj4)) = {

By induction, we have found Sy41,;-
Similarly, foreachi € /_and/ =1,2,...n; — 1, wecantake Ty;; = 7O, Tigis---s
Tn+14,; € T of the same type so that

v ifkij =1,

0 otherwise.

c(Tjy104) — Oc(Tjy,) = {

By induction, we have defined Tn41,,. Tél ; is defined as f’\“rl (Togi)-
Having defined the necessary tiles, we prove equation (A.1). By using the fact that

ni—1

D (e(Sj1i) = Qe(Sj-11:))) = ki j- 10,
=1

we have
ni—1 ni—1
D (e(Sny1a) — (S0 = Y (Sni10) — OV (e(S0.)))
=1 =1
N+1n;—1 '
=3 0NN e(Sj) — Q(e(Sj-11)))
j=1 I=1
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N+1
N—j+1
= > OV (ki j1vi)
j=1
N+1
N—j+1
= n; ki,j—lvi
j=1
= kiv;

Also, we have an equation

n,-—l

D (e(Tygri) = e(Ty ) = —kivi.
=1

These two equations prove equation (A.1).

A.2. Proof of Theorem 4.18. Let w be a primitive FLC substitution rule with an
expansion map Q and an alphabet A. For each P € A, the patch w(P) is the result of
‘expanding P by Q and then subdividing it’. Henceforth we also use a ‘subdividing without
expanding’ map o. By using this ¢ instead of w, the proof is simplified. The map o is
defined via

o(P) = 0 H(w(P))

(see Figure 5). Here, we set QX(T) = (QK(S), I) for each labeled tile T = (S, [) and k € Z,
and Q%(P) = {QX(T) | T e P} for each patch P. (For unlabeled tiles 7, Q*(T') has the
usual meaning.) We will also ‘subdivide without expanding’ the Q'(P) + x, where [ € Z,
x € R? and P € A, and so define

o(Q'(P) +x) = 0" N (w(P)) +x.
For each patch P whose elements are of the form Ql (P) + x, we set

o(P)= ] oM.

TeP

Then we have the following properties.

(1) o (P) is also a patch consisting of tiles of the form Q'(P) + x and supp o (P) =
supp P.
2 o00'=0! oo forany!l € Z.

We now assume Setting 2 in §4.2 and that the self-affine tiling 7 has pure discrete
dynamical spectrum and satisfies the equivalent conditions in Corollary 4.10. To prove
Theorem 4.18 we divide the proof into lemmas. First, by using Lemma 4.3 and replacing
with its power, without loss of generality we may assume that, for each overlap (S, x, T)
for T, we have

oS+ x)Nw(T) #0, (A2)
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o @

FIGURE 5. The chair substitution @ and the corresponding subdivision map o.

which is equivalent to

o(S+x)Na(T) #0. (A.3)
Set Vinax = maxpeg VOl(P), Vinin = minpc 4 vol(P) and D = | det Q.

In what follows we tacitly use the following result on the boundaries 07 of the tiles T
in self-affine tilings.

LEMMA A.1.[23] Let T be atile in a self-affine tiling. Then vol(dT) = 0, where 9 denotes
the boundary.

LEMMA A.2. For an overlap (So, yo, To) and k € Z~, set

Ky = supp(a*(So + yo) N o X (Tp)).

Then, for each k, Ky C Ky41 and

B Vol(Kg+1)
vol((supp So + o) N supp Tp)
§ (1 _ Vinin ) ( _ vol(Ky) >’ (A.4)
D Viax vol((supp So + yo) N supp Tp)

and so vol(Ky) — vol((supp So + yo) N supp Tp) as k — oo.

Proof. Ifk > 0, S € 6%(So + yo), T € o¥(Tp), int SNint T # @ and S # T, then there
isaUsrt €0(S)No(T). Itis clear that int Us 7 N Ky = ¢, since otherwise S = T. We
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have
VOl(Kg+1) < vol(Ky)

— <1-—
vol((supp So + yo) Nsupp Tp) — vol((supp So + yo) N supp Tp)

1

— vol(supp Us. 1),
vol((supp So + yo) N supp To) 2 voltsupp

where the sum is for all S and 7" with the above condition. The claim of the lemma follows
from the observations

D Vi card{(S, T) € o*(So + yo) No*(To) | T # S, int T Nint S # ¥}
= vol((supp(So + yo) N supp 7o) \ Ki)
and
vol(supp Us.r) 2 D Wi, O
Set

Pr = ﬂ oK (T = x).

x€EB

Note that QF(Py) = MNyez D gk (y)- We will show that any T' € Ok(Py) is a part of a
full-rank infinite arithmetic progression, and that the density of Py, which is same as the
density of Ok (Py), tends to 1 as k — oo.

Note that by Lemma A.2, we have supp Py C supp Pk+1 for each k > 0.

LEMMA A.3. There is a natural number M such that, for any k > 0 and S € Pk, the tile
OFS is atilein T with {Q*S +x | x € Q¥*ML) C T.

Proof. By assumption, there is an M such that
oML c E. (A.5)

Ifk > O0and S € P, then, foreachx € E, wehave S + x € ak(T). By the definition of o,
we see that QK (S) + 0% (x) € Q%" (T) = ¥ (T) = T. By (A.5), we canset x = QM ()

foreachy € L. O
LEMMA A4. IfT € T does not satisfy {T + x | x € Q'(L)} C T foranyl > 0, then T ¢
QF Py for any k.

Proof. This is clear by Lemma A.3. O

By this lemma, the proof of Theorem 4.18 is complete if we prove that the density of
each Py is large enough. We now show this.

LEMMA A.5. For all van Hove sequences (A,),, we have
lim dens(a,),7 \ 0" P, = 0.
k—00

(In fact, the convergence as k — 00 is uniform for all van Hove sequences (A)n.)
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Proof. Foreach S € T and x € E, by Lemma A.2 we have, as k — oo,

vol supp(a¥(S) N a* (T — x)) = vol supp ( U ok (S) nok(T — x)>
TeTn(int S+x)

= Z vol supp(ok(S) N ok(T —Xx))
TeTn(int S+x)

— Z vol(supp S N (supp T — x))
TeTn(int S+x)
= vol supp S. (A.6)

Since there are only finitely many equivalence classes of overlaps, this convergence is
uniform in § and x.

We use the fact that the overlaps are finite up to equivalence once more. Take an S € T
and fix it. Consider a map

Esx> {[S,x,T]1| T € Tri(int$+x).

Since the range of this map is a finite set, there is a finite set Fs C E such that, for any
x € g, thereisay € Fg with

{[S,x, T1| T eTn(ntS+x)}={S,y, T]| T €T n(ntS+y)}

Note that card Fg < N for some constant N independent of S, where N = 2% and N
is the number of all equivalence classes of overlaps in 7. (N is the number of all subsets
of the set of the equivalence classes of overlaps.) We will use this estimate for the estimate
of the density of o*(7") \ Py as follows.

Let ¢ be an arbitrary positive real number. There is a natural number kg such that, if
k Z ko, S €T and x € B, then

0 < vol supp S — vol supp(ok(S) N ok(T —x)) = vol Supp(ok(S) \ ak(T — X)) <e&.

For any van Hove sequence (A,), and k = ko,

vol supp((a*(T) \ P) A A)
. 1
= lim sup vol(A))

1
vol(A,)

1
vol(A,)

lim sup
n—oo vol An)

Z vol supp(a* (T) \ Py)

TeT A,

Z Z vol supp(ok(T) \ (T = x))

TeT AA, xeFr

ZN&

TeTnA,

< lim sup
n

< lim sup
n

Ne
Vmin

A

s

https://doi.org/10.1017/etds.2021.59 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2021.59

2988 Y. Nagai, S. Akiyama and J.-Y. Lee

where we used the fact that

and

M\ Pe= | oM T)\o* (T —x)

xXel&

= J M\ T -0

xeFr

Vinin card T A A, S vol(A)).

We now finish the proof. Take a van Hove sequence (A,,),. For each k = ko, (0 %A
is again a van Hove sequence. By 7 = o*(T) = Qka¥(T), we have

and

(1]
[2]
[3]
[4]
[51
[6]
(71
[8]
91
[10]
[11]
[12]
[13]

[14]
[15]

[16]

1
dens(a,), T\ Q*Px = lim sup ———— vol supp((T \ Q*Py) A A,)
n vol(Ay)

= lim sup vol supp((a*(T) \ Pi) A 0%A,)

1
n o vol(Q7%A,)
Ne
Vmin '

A

so dens(a,), T \ Ok Py, tends to 0 as k — 0. O

n)n
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