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Abstract. We study the long-term behavior of injective piecewise contractions of the
interval. We prove that every injective piecewise contraction with n − 1 discontinuities has
at most n periodic orbits and is topologically conjugate to a piecewise linear contraction.

1. Introduction
A map f : [0, 1)→ [0, 1) is a piecewise contraction (PC) of n intervals if there exist
κ ∈ (0, 1) and a partition of the interval [0, 1) into n intervals I1, . . . , In such that for
every i ∈ {1, . . . , n}, the restriction f |Ii is κ-Lipschitz.

In this article we address two aspects of the dynamics of a PC. The first issue concerns
an upper bound for the number of periodic orbits of a PC of n intervals. The first attempt
to find such upper bound was done in [2]. However, the upper bound proposed therein,
2(n − 1) for n ≥ 2, besides not being sharp, holds only for typical elements of a special
class of injective PCs. In this respect, we prove that n is the sharp upper bound for the
number of periodic orbits of every injective PC of n ≥ 1 intervals. The second issue is
related to the linearization of an injective piecewise contraction.

Before stating our main results, we need the following definition. A point p ∈ [0, 1]
is an ω-limit point of x if there is a sequence of positive integers n1 < n2 < · · · such
that lim`→∞ f n`(x)= p. The collection of all such ω-limit points is the ω-limit set of x ,
denoted by ω(x). We say that f is asymptotically periodic if ω(x) is a periodic orbit of f
for every x ∈ [0, 1).

THEOREM 1.1. Every injective PC of n intervals f has at most n periodic orbits.
Moreover, if f has n periodic orbits, then f is asymptotically periodic.
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THEOREM 1.2. Every injective piecewise contraction of n intervals is topologically
conjugate to a piecewise linear contraction of n intervals whose slopes in absolute value
equal 1

2 .

The upper bound n given in Theorem 1.1 is sharp. In fact, the PC of n intervals f
defined by f (x)= 1

2 x + 1
2 ((i − 1)/n + 1/2n) if x ∈ Ii = [(i − 1)/n, i/n), 1≤ i ≤ n, has

n stable fixed points (and hence n periodic orbits). Although a typical injective PC of
the interval is asymptotically periodic (see [11]), there are examples of order-preserving
injective PCs of two intervals having irrational rotation number and no periodic orbit
(see [3, Remark, p. 1391]). In these examples, instead of a periodic orbit, the attractor
is a Cantor set. The second assertion in Theorem 1.1 says that if the PC has the maximum
number of periodic orbits allowed then no space is left for a Cantor set; thus the PC has to
be asymptotically periodic.

Theorem 1.2 is a generalization of [5, Lemma 3, p. 314] where it is proved that first
return maps to a transverse interval of some Cherry flows are, up to topological conjugacy,
piecewise linear contractions having no periodic orbit. The topological conjugacy can be
made smooth in many cases (see [6]).

Injective PCs of the interval also arise as Poincaré maps of strange billiards governing
switched server systems (see [1, 4, 9]), and in the study of a certain class of outer
billiards (see [8]). Within the framework of interval exchange transformations with flip, it
was proved in [10, p. 524] that periodic orbits are a typical phenomenon. Recently in
[12, Theorem A, p. 3] it was shown that n is the sharp upper bound for the number
of periodic components of every interval exchange transformation having n continuity
intervals.

We call attention to two articles which are related to our work. In [7], all the possible
itineraries of a piecewise contraction f : X1 ∪ X2→ X1 ∪ X2 were listed, where X i is a
complete metric space and f |X i is a contraction for i = 1, 2. In [3], the dynamics of a
typical piecewise linear contraction of C was studied.

Henceforth, let f : [0, 1)→ [0, 1) be an injective PC with partition intervals
I1, . . . , In . Assume that Ii , 1≤ i ≤ n, has endpoints at xi−1 and xi , where
0= x0 < x1 < · · ·< xn−1 < xn = 1. To simplify matters, suppose that every xi , 1≤ i ≤
n − 1, is a jump discontinuity of f .

The proof of Theorem 1.1 is much easier in the special case where Ii = [xi−1, xi ) and
f |Ii is increasing for every i ∈ {1, . . . , n}. In this case, all the periodic orbits are attractive
and thus easily detected: we count them by counting the attractors defined by them.

Here we consider the general case where Ii can be any of the intervals (xi−1, xi ),
[xi−1, xi ), (xi−1, xi ], [xi−1, xi ]. We also allow the restriction f |Ii to be decreasing for
some i ∈ {1, . . . , n}. The general case turns out to be much more difficult to deal with
because a new phenomenon appears: the presence of degenerate periodic orbits which
attract no other points besides those in themselves; thus their basins of attraction have
empty interiors. Since such orbits cannot be detected through their basins of attraction,
our approach is to show that each such orbit rules out an attractive periodic orbit. That
is achieved through a Combinatorial Lemma (Lemma 5.1). Counting attractive periodic
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orbits in the general case is not as easy as counting them in the piecewise increasing case:
the result is only provided in §4, by means of Theorem 4.1.

Note that f (xi ) ∈ { f (x−i ), f (x+i )} for every i ∈ {1, . . . , n − 1}, where f (x−i )=
limε→0+ f (xi − ε) and f (x+i )= limε→0+ f (xi + ε). Theorem 1.1 states that, no matter
how we define f at its jump discontinuities, f has at most n periodic orbits.

This article is organized in the following way. Theorem 3.3 describes the geometric
structure of stable manifolds of regular periodic orbits of f . Theorem 4.1 provides the
optimal upper bound for the number of regular (and thus attractive) periodic orbits of f .
Lemma 5.8, which is obtained using Lemma 5.1, is a stronger version of Theorem 4.1.
Theorem 1.1 is a corollary of Lemma 5.8. The proof of Theorem 1.2 depends only on
Lemma 3.6.

2. Trapping intervals and trapping regions
For a set G ⊂ [0, 1), denote by int(G) the interior of G and by G its closure, with respect
to the topology of the real line R. The boundary of G is the set ∂G = G\int(G). In this
way, if I ⊂ [0, 1) is an interval with endpoints at a < b then int(I )= (a, b) and I = [a, b].
We omit double parentheses by setting f (a, b)= f ((a, b))= { f (x) | x ∈ (a, b)}.

Let f 0 be the identity map on [0, 1) and let f ` = f ◦ f ◦ · · · ◦ f be the `th-iterate of f .
The orbit of a point p ∈ [0, 1) is the set O f (p)= { f `(p) | `≥ 0}. The point p is periodic
if there exists a positive integer k such that f k(p)= p. If k =min {`≥ 1 | f `(p)= p},
then p is called a k-periodic point. An orbit is periodic (respectively, k-periodic) if its
points are periodic (respectively, k-periodic).

A periodic point p is internal if p ∈ (0, 1)\{x1, . . . , xn−1}, otherwise p is an external
periodic point. Hence, an external periodic point is either 0 or a discontinuity of f . A
periodic orbit γ = O f (p) is internal if γ ⊂ (0, 1)\{x1, . . . , xn−1}, otherwise γ is said to
be an external periodic orbit. In this way, a periodic orbit is internal if it contains only
internal periodic points.

Throughout this article, interval means an interval with non-empty interior.

Definition 2.1. (Regular/degenerate periodic point) A periodic point p of f is regular
if there exists an interval J containing p whose iterates f `(J ), `≥ 1, are intervals. A
periodic point is degenerate if it is not regular.

LEMMA 2.2. A periodic point p of f is regular if and only if every point in its orbit is
regular.

Proof. Let p be a regular k-periodic point. By Definition 2.1, there exists an interval
J such that for every i ∈ {0, . . . , k − 1}, the k-periodic point f i (p) is contained in the
interval f i (J ). Moreover, f `( f i (J )) is an interval for every `≥ 0. Thus f i (p) is also
regular. �

By Lemma 2.2, it makes sense to define regular periodic orbit.

Definition 2.3. (Regular/degenerate periodic orbit) An orbit γ = O f (p) is regular if p is
a regular periodic point, otherwise γ is said to be degenerate.

PROPOSITION 2.4. Every periodic orbit of f that contains no discontinuity is regular.
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Proof. Let γ = O f (p) be a k-periodic orbit of f containing no discontinuity. Firstly
suppose that γ is internal, thus γ is contained in the interior of the set A =
[0, 1)\

⋃k−1
`=0 f −`({x1, . . . , xn−1}). Let ε > 0 be so small that J := [p − ε, p + ε] is

contained in A. Thus, for every ` ∈ {0, . . . , k − 1}, there exists i(`) ∈ {1, . . . , n} such
that f `(J ) is contained in the continuity interval Ii(`). Consequently, the first k iterates
f (J ), . . . , f k(J ) of J are intervals. Moreover, f k(J ) is an interval centered at p of
ratio less than κkε, where κ ∈ (0, 1) is the Lipschitz constant of f . Thus, f k(J )⊂ J .
Therefore,

f `(J )⊂ f `mod k(J )⊂ Ii(`mod k) for every `≥ 0.

In this way, f `(J ) is an interval for every `≥ 0. Now suppose that γ is external, thus γ =
O f (0) and γ ∩ {x1, . . . , xn−1} = ∅. Therefore, there exists ε > 0 such that J := [0, ε] is
contained in A. By proceeding as above, we obtain that f `(J ) is an interval for every
`≥ 0; thus γ is regular. �

Besides the internal periodic orbits, there exist external periodic orbits that are regular.
We will prove later that regular periodic orbits are attractive (and thus have basins of
attraction with non-empty interiors), whereas degenerate periodic orbits may have basins
of attraction reduced to the periodic orbits themselves.

Definition 2.5. (Trapping interval) We say that an interval J containing a k-periodic
point p is a trapping interval of p if its iterates f (J ), . . . , f k(J ) are intervals and
f k(J )⊂ J .

Next we prove the existence of a trapping interval which contains every trapping interval
of p.

LEMMA 2.6. Let {Jλ : λ ∈3} be the family of all trapping intervals of the k-periodic point
p, then

⋃
λ∈3 Jλ is a trapping interval of p.

Proof. By Definition 2.5, p ∈
⋃
λ∈3 Jλ and f `(

⋃
λ∈3 Jλ)=

⋃
λ∈3 f `(Jλ) is an interval

containing f `(p) for all 0≤ `≤ k. Moreover, f k(
⋃
λ∈3 Jλ)=

⋃
λ∈3 f k(Jλ)⊂⋃

λ∈3 Jλ. �

LEMMA 2.7. (Existence of trapping intervals) If p is a regular periodic point of f then p
admits a maximal trapping interval Jp.

Proof. Let p be a regular k-periodic point of f . By Definition 2.1, there exists an
interval K containing p such that the iterates f `(K ), `= 0, 1, 2, . . . are intervals. Let
J =

⋃
`≥0 f `k(K ), thus f m(J )=

⋃
`≥0 f m+`k(K ) is an interval for all m ≥ 1. Moreover,

f k(J )=
⋃
`≥1 f `k(K )⊂ J . This proves that J is a trapping interval of p. The existence

of the maximal trapping interval follows now from Lemma 2.6. �

Definition 2.8. We denote by Jp the maximal trapping interval of a regular periodic
point p.

Definition 2.9. (Maximal trapping region) Let γ be a regular periodic orbit. We call the
set �(γ )=

⋃
p∈γ Jp the maximal trapping region of γ .
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FIGURE 1. Distinct types of periodic points.

PROPOSITION 2.10. (Trapping region structure) Let γ be a regular periodic orbit. Then
its maximal trapping region �(γ ) has the following properties:
(TR1) f (�(γ ))⊂�(γ );
(TR2) γ =

⋂
∞

`=0 f `(�(γ ));
(TR3) �(γ ) is the union of k disjoint intervals, where k is the period of γ .

Proof. We have that f `( f (Jp)) is an interval for all `≥ 0. Moreover,

f k( f (Jp))= f ( f k(Jp))⊂ f (Jp),

and thus f (Jp) is a trapping interval of f (p), so f (Jp)⊂ J f (p). Therefore,

f (�(γ ))= f
(⋃

p∈γ

Jp

)
=

⋃
p∈γ

f (Jp)⊂�(γ ),

which proves (TR1). Let p ∈ γ , thus p ∈
⋂
`≥0 T `k(Jp) and

|T `k(Jp)| ≤ κ
`k
|Jp|,

where | · | stands for the length of the interval. Hence,
⋂
`≥0 T `k(Jp)= {p}, which proves

(TR2).
The item (TR3) follows straightforwardly from the Definition 2.9. �

Example 1. Figure 1 shows the graphs of three PCs f1, f2 and f3. The points p1 =
1
6 ,

p2 =
1
2 and p3 =

5
6 are regular periodic points of f1. Their maximal trapping intervals are,

respectively, Jp1 = [0, 1/3), Jp2 = [1/3, 2/3] and Jp3 = [5/6, 1). The existence of such
trapping intervals are ensured by Lemma 2.7.

The map f2 shows that the claim of Lemma 2.7 is false for the degenerate periodic
point p4 =

3
4 . More precisely, the point p4 is a degenerate external 1−periodic orbit of f2

that attracts no other orbit (there is another periodic orbit that attracts all orbits different
from {p4}).

The point p5 = 1/3 is an external 2-periodic point of f3 that is also degenerate.

Remark. The next example shows that it may happen that �(γ ) ∩ {x0, . . . , xn} is a one-
point-set for some regular periodic orbit γ .
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Example 2. Let g : [0, 1)→ [0, 1) be the 2-interval PC defined by g(x)=−0.4x + 0.6
if x ∈ [0, 0.5), otherwise g(x)= 0.2 (x − 0.5). The point p1 =

3
7 is a 1-periodic point

of g whereas p2 =
16
27 is a 2-periodic point of g. Moreover, Jp1 = (

1
4 ,

1
2 ) is the maximal

trapping interval of p1 and Jp2 = [
1
2 , 1) is the maximal trapping interval of p2. For γ =

Og(p1) we have that �(γ )= Jp1 = [
2
5 ,

1
2 ]. Thus �(γ ) ∩ {x0, x1, x2} = {x1}, where x0 =

0, x1 =
1
2 and x2 = 1.

LEMMA 2.11. If γ1 and γ2 are two distinct regular periodic orbits of f then �(γ1) ∩

�(γ2)= ∅.

Proof. The proof follows easily from Proposition 2.10. �

3. Stable manifolds of periodic orbits
The stable manifold (also called the basin of attraction) of a periodic orbit γ of f is the
set

W s(γ )= {x ∈ [0, 1) | ω(x)= γ } where ω(x)=
⋂

m∈N
{ f `(x) | `≥ m}.

The following lemmas are immediate.

LEMMA 3.1. Let γ be a periodic orbit; then f (W s(γ ))⊂W s(γ ).

Proof. Let x ∈W s(γ ). Then ω(x)= γ , that is,
⋂

m∈N { f `(x) | `≥ m} = γ . Hence,

ω( f (x))=
⋂

m∈N
{ f `+1(x) | `≥ m} =

⋂
m∈N
{ f `(x) | `≥ m} = γ,

and hence f (x) ∈W s(γ ). �

LEMMA 3.2. If γ1 and γ2 are two distinct regular periodic orbits of f then W s(γ1) ∩

W s(γ2)= ∅.

Proof. It follows from the fact that regular periodic orbits are attractive (see Lemma 2.7).
�

The stable manifold of a regular periodic orbit γ contains the trapping region of γ , that
is, �(γ )⊂W s(γ ). The stable manifold of a periodic orbit may also include finite sets or
intervals that are attracted by the trapping region.

Example 3. In Figure 2, the map h1 : [0, 1)→ [0, 1) is a PC of 4 intervals. The point
p = 3

8 is a fixed point of h1. In addition, the 1-periodic orbit γ = Oh1(p) is internal and
hence regular. It is easy to show that W s(γ )= [ 14 ,

1
2 ) ∪ {

3
4 }.

In figure 2, the map h2 : [0, 1)→ [0, 1) is a PC of 5 intervals having positive constant
slope. Notice that the 1-periodic points p1 =

1
10 and p2 =

9
10 are regular whereas the

3-periodic point p3 =
1
5 is degenerate. Moreover, the stable manifolds of γ1 = Oh2(p1)

and γ2 = Oh2(p2) satisfy W s(γ1) ∪W s(γ2)= [0, 1)\γ3. In Figure 1, γ = { 34 } is a
degenerate 1-periodic orbit of f2 and W s(γ )= { 34 }.

In general, the geometric structure of the stable manifold of a regular periodic orbit is
given by the next result, which turns out to be of paramount importance for the proof of
Theorem 1.1.
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FIGURE 2. Stable manifolds of periodic orbits.

THEOREM 3.3. If γ is a regular periodic orbit of f , then the interior of W s(γ ) is the
union of finitely many open intervals.

We postpone the proof of Theorem 3.3 to the end of this section. Now we will describe
the key points necessary for its proof.

First, we will define a family of finitely many pairwise disjoint open intervals F1, F2,
. . . , Fr whose iterates f `(F j ) never meet the discontinuity set {x1, . . . , xn−1} of f . In this
way, f `(F j ) is an interval for every j ∈ {1, . . . , r} and `≥ 0. The next step is to show
that the union of the forward orbits O f (F j )=

⋃
∞

`=0 f `(F j ) covers the interval [0, 1) up
to a null Lebesgue measure set. In this way, eventually some of these intervals will enter
the trapping regions of the regular periodic orbits and stay there thereafter. As we show
in Lemma 3.7, the orbit of an interval F j can enter at most one trapping region. The time
that the interval F j takes to be captured by a trapping region �(γ ) of a regular periodic
orbit γ is called the target time and is denoted by τ(F j , γ ). We set τ(F j , γ )=+∞ if
O f (F j ) ∩�(γ )= ∅.

Theorem 3.3 will then follow once we prove that for each regular periodic orbit γ

int(W s(γ )) = int(�(γ )) ∪
⋃

j∈3(γ )

τ(F j ,γ )−1⋃
`=0

f `(F j )

× (up to a null Lebesgue measure set), (3.1)

where 3(γ )= { j ∈ {1, . . . , r} | τ(F j , γ ) <+∞}.
Hereafter, we will implement the key points described above in order to prove

Theorem 3.3.
Let E be the open set defined by

E = int([0, 1)\ f ([0, 1)))

which is the union of at most n + 1 open intervals E1, E2, . . . , Es . Then the following
holds.

LEMMA 3.4. For every positive integer `, E ∩ f `(E)= ∅.
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Proof. The assertion follows from the fact that E ⊂ [0, 1)\ f ([0, 1)) and f `(E)=
f ( f `−1(E))⊂ f ([0, 1)). �

Now let B be the set consisting of those points of E which are taken by some iterate of
f into a discontinuity of f , that is:

B = E ∩
+∞⋃
`=0

f −`({x1, . . . , xn−1}). (3.2)

LEMMA 3.5. The set B has at most n − 1 elements.

Proof. We claim that the set E ∩
⋃
+∞

`=0 f −`({x j }) has at most one element for each j ∈
{1, . . . , n − 1}, otherwise the injectivity of f would imply that there exist x, y ∈ E , x 6=
y, and m > ` such that f m(x)= x j = f `(y). Hence y = f m−`(x). In particular, E ∩
f m−`(E) 6= ∅, which contradicts Lemma 3.4. Therefore, the claim is true and B has at
most n − 1 elements. �

A measurable partition of [0, 1) into intervals is a denumerable family of pairwise
disjoint open intervals A1, A2, A3, . . . such that [0, 1)\

⋃
∞

j=1 A j has Lebesgue measure
zero.

LEMMA 3.6. The set F = E\B is the union of r ≤ 2n pairwise disjoint open intervals
F1, F2, . . . , Fr . Moreover:
(i) F ∩ f `(F)= ∅ for every positive integer `;
(ii) f `(F j )⊂ (0, 1)\{x1, . . . , xn−1} for every `≥ 0 and j ∈ {1, . . . , r};
(iii) { f `(F j ) | `≥ 0 and j ∈ {1, . . . , r}} is a measurable partition of [0, 1) into open

intervals.

Proof. It follows from Lemma 3.5 that F is the union of r ≤ 2n disjoint intervals
F1, . . . , Fr . By Lemma 3.4, F ∩ f `(F)⊂ E ∩ f `(E)= ∅ for every ` > 0. Item (ii)
follows immediately from the definition of F . It follows from (i), (ii) and the injectivity
of f that the sets f `(F j ) form a family of pairwise disjoint intervals. Let I = [0, 1). It
remains to prove that I\

⋃
`, j f `(F j ) has Lebesgue measure zero. Recall that the sets⋃r

j=1 F j and I\ f (I ) are equal up to a finite set. Let A be the set

A = I

∖(⋃
`≥0

f `(I\ f (I ))
)
.

Notice that

y ∈ I\A ⇔ there exist x ∈ I\ f (I ), there exist `≥ 0 such that y = f `(x)

thus y ∈ f `(I )\ f `+1(I ).

In this way,
I\A =

⋃
`≥0

f `(I )\ f `+1(I ) thus A =
⋂
k≥1

f k(I ).

Since the Lebesgue measure of f k(I ) is not greater than κk , where κ < 1 is the
Lipschitz constant of f , we have that A has null Lebesgue measure. Moreover, A and
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I\
⋃
`, j f `(F j ) are equal up to a countable set; thus I\

⋃
`, j f `(F j ) has Lebesgue

measure zero. �

LEMMA 3.7. Let�(γ ) be the maximal trapping region of a regular k-periodic orbit γ . For
each j ∈ {1, . . . , r} and for each `≥ 0, either f `(F j ) ∩�(γ )= ∅ or f `(F j )⊂�(γ ).

Proof. Suppose that f `(F j ) ∩�(γ ) 6= ∅. We claim the following.
(i) There exists `′ ≥ ` such that f `

′

(F j )⊂�(γ ). In fact, by (TR3) of Proposition 2.10,
∂�(γ ) is a finite point-set. By item (iii) of Lemma 3.6, f `(F j ), f `+1(F j ), . . . is a family
of pairwise disjoint open intervals. Hence there exists `′ ≥ ` such that f `

′

(F j ) ∩ ∂�(γ )=

∅. By (TR1) of Proposition 2.10 and by the injectivity of f ,

f `
′

(F j ) ∩�(γ )= f `
′
−`( f `(F j )) ∩�(γ )⊃ f `

′
−`( f `(F j ) ∩�(γ )),

and thus f `
′

(F j ) ∩�(γ ) 6= ∅. This together with f `
′

(F j ) ∩ ∂�(γ )= ∅ yields f `
′

(F j )⊂

�(γ ), which proves Claim (i).
By Definition 2.9, �(γ )=

⋃
p∈γ Jp. The hypothesis that f `(F j ) ∩�(γ ) 6= ∅ implies

that there exists q ∈ γ such that Jq ∩ f `(F j ) 6= ∅; hence Jq ∪ f `(F j ) is an interval. We
claim that

(ii) The interval K := Jq ∪ f `(F j ) is a trapping interval of q. Let m > 0 be an even
integer such that mk + `≥ `′. By Definition 2.5, f ρ(Jq) is an interval for every integer
ρ ≥ 0. Moreover, f ρ( f `(F j )) is an interval for every integer ρ ≥ 0. Hence f ρ(K ) is an
interval for every ρ ≥ 0. By Claim (i) and by (TR1) of Proposition 2.10, f mk( f `(F j ))⊂

�(γ ). By Definition 2.5, f mk(Jq)⊂ Jq . Hence, f mk(K )⊂ Jq ∪�(γ )⊂�(γ ). Since
f mk(K ) is an interval that contains q, it is contained in the connected component of �(γ )
that contains q , that is, f mk(K )⊂ Jq . This proves Claim (ii).

Since Jq is a maximal trapping interval, by Claim (ii) we have that K ⊂ Jq , and thus
f `(F j )⊂ Jq ⊂�(γ ). This is the end of the proof of Lemma 3.7. �

COROLLARY 3.8. Let�(γ ) be the maximal trapping region of a regular periodic orbit γ .
Then there exist `≥ 0 and j ∈ {1, . . . , r} such that f `(F j )⊂�(γ ).

Proof. The proof follows from item (iii) of Lemma 3.6 and from Lemma 3.7. �

Proof of Theorem 3.3. For each j ∈ {1, . . . , r}, let τ(F j , γ )= inf{` ∈ N | f `(F j )⊂

�(γ )}, where inf ∅ = +∞. Let 3(γ )= { j ∈ {1, . . . , r} | τ(F j , γ ) <+∞}. It follows
from Corollary 3.8 that 3(γ ) 6= ∅. Now Proposition 2.10 and Lemmas 3.6 and 3.7 ensure
that the following claims are true:
(I) f `(F j ) ∩�(γ )= ∅ if j ∈3(γ ) and 0≤ ` < τ(F j , γ );
(II) f `(F j )⊂�(γ ) if j ∈3(γ ) and `≥ τ(F j , γ );
(III) O f (F j ) ∩�(γ )= ∅ if j 6∈3(γ ).
Let

S = int(�(γ )) ∪
⋃

j∈3(γ )

τ(F j ,γ )−1⋃
`=0

f `(F j ).
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By (TR3) of Proposition 2.10 and by item (iii) of Lemma 3.6, S is the union of finitely
many open intervals. By Claim (II) and (TR2) of Proposition 2.10, we have that S ⊂
W s(γ ). In particular, S ⊂ int(W s(γ )) because S is open.

It follows from item (iii) of Lemma 3.6 and from Claims (I)–(III) above that

�(γ )=
⋃

j∈3(γ )

⋃
`≥τ(F j ,γ )

f `(F j ) (up to a null Lebesgue measure set).

Hence, S =
⋃

j∈3(γ )
⋃
+∞

`=0 f `(F j ) (up to a null Lebesgue measure set). This, together
with Claim (III), yields

W s(γ )\S = W s(γ )
∖ ⋃

j∈3(γ )

+∞⋃
`=0

f `(F j )

= W s(γ )
∖ r⋃

j=1

+∞⋃
`=0

f `(F j ) (up to a null measure set).

By (iii) of Lemma 3.6,
⋃r

j=1
⋃
+∞

`=0 f `(F j ) has Lebesgue measure one, and thus
W s(γ )\S has Lebesgue measure zero.

Suppose that int(W s(γ )) is not the union of finitely many open intervals. Then
there exist denumerably many pairwise disjoint open intervals U1,U2, . . . such that
int(W s(γ ))=

⋃
∞

j=1 U j . Moreover, because S is the union of finitely many pairwise
disjoint open intervals and S ⊂ int(W s(γ )), there exists a positive integer d such that
S ⊂

⋃d
j=1 U j . Then W s(γ )\S contains the open set Ud+1, which is a contradiction since

W s(γ )\S has Lebesgue measure zero. �

4. A tight upper bound for the number of regular periodic orbits
In this section we will present a proof of the following result.

THEOREM 4.1. Every injective PC of n intervals has at most n regular periodic orbits.

By Proposition 2.4, Theorem 4.1 asserts that an injective PC of n intervals has at most n
internal periodic orbits. The proof of the main Theorem (Theorem 1.1) is a variation of the
proof of Theorem 4.1. The steps necessary for obtaining it from the proof of Theorem 4.1
will be outlined in the next section.

Let γ1, γ2, . . . , γm be a collection of pairwise distinct regular periodic orbits of f . Set
W j = int(W s(γ j )) for every j ∈ {1, . . . , m} and let Wm+1 = int([0, 1)\

⋃m
j=1 W j ). By

Theorem 3.3, W j , 1≤ j ≤ m + 1, is the union of finitely many intervals. Moreover,⋃m+1
j=1 W j = [0, 1].
The claim of Theorem 4.1 is that m ≤ n. Its proof follows straightforwardly from the

next lemmas.

LEMMA 4.2. For every j ∈ {1, . . . , m + 1} we have that f (W j )⊂W j .

Proof. First, let j ∈ {1, . . . , m}. By Theorem 3.3, W j is the union of finitely many
open intervals. Therefore, as f is injective and f |Ii continuous for every i ∈ {1, . . . , n},
f (W j ) is the union of finitely many intervals. Assume by contradiction that f (W j ) ∩

(R\W j ) 6= ∅, thus there exist 0≤ a < b ≤ 1 such that (a, b)⊂ f (W j ) ∩ (R\W j ).
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Lemma 3.1 together with the definition W j = int(W s(γ j )) yields

(a, b)⊂ f (W j )⊂ f (W s(γ j ))⊂W s(γ j ) and thus (a, b)⊂W j ,

which contradicts the fact that (a, b)⊂ R\W j . Hence, f (W j )⊂W j for every 1≤ j ≤ m.
Now let us prove that f (Wm+1)⊂Wm+1. Let x ∈ [0, 1) and 1≤ j ≤ m. We claim that:

(a) if f (x) ∈W j then x ∈W j .
As x ∈ [0, 1), there exists 1≤ i ≤ n such that x ∈ Ii . Suppose that f (x) ∈W j . Since

W j is open and f |Ii is monotone continuous, there exists an interval Ix ⊂ Ii , with x ∈ Ix ,
such that f (Ix )⊂W j . Then ω(y)= γ j for every y ∈ Ix . In this way, Ix ⊂ int(W s(γ j )),
that is, Ix ⊂W j . The fact that x ∈ Ix yields x ∈W j , which proves Claim (a).

It follows from Claim (a) that if x ∈ [0, 1)\
⋃m

j=1 W j then f (x) ∈ [0, 1)\
⋃m

j=1 W j .
By Theorem 3.3, [0, 1)\

⋃m
j=1 W j =Wm+1, which concludes the proof. �

LEMMA 4.3. If z ∈Wi ∩W j for some i 6= j then there exists an integer q ≥ 0 such that
f q(z) ∈ {x1, . . . , xn−1} ∩ ∂Wi ∩ ∂W j .

Proof. We may assume that z 6∈ {x1, . . . , xn−1}, otherwise the proof is finished by
taking q = 0. Thus, f is continuous in a neighborhood of z. By continuity of f and
Lemma 4.2, we have that f (z) ∈Wi ∩W j and the reasoning can be repeated. Hence,
we may assume that f (z) 6∈ {x1, . . . , xn−1}, otherwise we set q = 1 and the proof is
finished. By repeating this reasoning over and over again, we obtain that either f q(z) ∈
{x1, . . . , xn−1} for some q ≥ 0 (and the proof is finished) or O f (z) ∩ {x1, . . . , xn−1} = ∅.
This together with Lemma 4.2 yields O f (x)⊂Wi ∩W j . By Theorem 3.3, Wi ∩

W j is a finite point-set; thus O f (z) is a periodic orbit. By Proposition 2.4,
O f (z) is regular periodic orbit, which contradicts O f (z)⊂Wi ∩W j . Hence, there
exists an integer q ≥ 0 such that f q(z) ∈ {x1, . . . , xn−1}. By Lemma 4.2 and by
Theorem 3.3, Wi ∩W j ⊂ ∂Wi ∩ ∂W j . �

LEMMA 4.4. The following statements are true:
(i) if Wm+1 6= ∅ then m ≤ n − 1;
(ii) if Wm+1 = ∅ then m ≤ n.

Proof. First, let us prove (i). Let W = {W1, . . . , Wm+1}. We will define an injective map

β :W→ {x0, . . . , xn−1}. (4.1)

Set y j = inf W j for all j ∈ {1, . . . , m + 1}. By definition and by Lemma 3.2,

W1, . . . , Wm+1 are pairwise disjoint and [0, 1] =
m+1⋃
j=1

W j . (4.2)

Let j0 ∈ {1, . . . , m + 1} be the index that satisfies y j0 = x0 = 0. Set β(W j0)= x0. By
equation (4.2) and by Theorem 3.3, y1, y2, . . . , ym+1 are pairwise disjoint. Let i ∈
{1, . . . , m + 1}, i 6= j0; thus there exists W (i)

∈W, W (i)
6=Wi , such that yi ∈ ∂W (i)

∩

∂Wi . Moreover, for ε small enough, we have

(yi − ε, yi )⊂W (i) and (yi , yi + ε)⊂Wi .
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Using Lemma 4.3, let qi =min{q ≥ 0 : f q(yi ) ∈ {x1, . . . , xn−1}} and set β(Wi )=

f qi (yi ).
Now we show that the map β is injective. Let 1≤ i, k ≤ m + 1, with qi ≤ qk , be such

that β(Wi )= β(Wk). It is easy to see that i = j0 or k = j0 imply i = k = j0. Thus we may
assume that i 6= j0 and k 6= j0. By the injectivity of f ,

f qk−qi (yk)= yi ,

where 0≤ qk − qi ≤ qk . Notice that qk = 0 implies qi = 0. In this case, yi = yk , which
contradicts q1, q2, . . . , qm+1 are pairwise disjoint. Hence, we may assume that qk ≥ 1.
We have that f is continuous on a neighborhood of f j (yk) for every 0≤ j ≤ qk − 1.
Therefore, by Lemma 4.2, {Wi , W (i)

} = {Wk, W (k)
}. There are two possibilities: either

(a) Wi =Wk or (b) Wi =W (k) and Wk =W (i). Suppose that (b) happens. If yi < yk then
by equation (4.2), there exists ε > 0 such that (yi − ε, yi )⊂Wk and thus inf Wk < yi <

yk , which is a contradiction. By analogy, assuming yk < yi also yields a contradiction.
Therefore, (b) cannot happen and hence Wi =Wk . This proves that β is a well defined
injective map, and thus m ≤ n − 1. To prove (ii), we neglect Wm+1 and define W =
{W1, . . . , Wm}. By replacing in the above proof m + 1 by m, we obtain that m − 1≤
n − 1, and thus m ≤ n. �

Notice that Theorem 4.1 is a corollary of Lemma 4.4.

5. Proof of Theorem 1.1
In this section we will prove Theorem 1.1. In this respect, the combinatorial lemma we
present now is going to be of paramount importance. We will keep the notation of previous
sections.

5.1. The Combinatorial Lemma. An s-chain is a sequence of s ≥ 1 ordered pairs of
positive integers A0 = (a0, b0), A1 = (a1, b1), . . . , As−1 = (as−1, bs−1), where a`−1 ∈

{a`, b`}, for every 1≤ `≤ s − 1, and as−1 ∈ {a0, b0}. The set S = {a` : 0≤ `≤ s − 1} ∪
{b` : 0≤ `≤ s − 1} is called the set of coordinates of the s-chain whose cardinality is
denoted by #S.

Example 4. Let s ≥ 1; then the sequence A0 = (1, 2), A1 = (1, 3), . . . , As−1 = (1, s +
1) is an s-chain and its set of coordinates is S = {1, 2, . . . , s + 1}.

Example 5. The sequence A0 = (1, 2), A1 = (1, 3), A2 = (4, 1), A3 = (2, 4) is a 4-chain
and its set of coordinates is S = {1, 2, 3, 4}.

We would like to know how large the set S can be in the general case.

LEMMA 5.1. (Combinatorial Lemma) If A0 = (a0, b0), A1 = (a1, b1), . . . , As−1 =

(as−1, bs−1) is an s-chain then #S ≤ s + 1. Moreover, #S = s + 1 if and only if a0 =

a1 = · · · = as−1 and the elements a0, b0, b1, . . . , bs−1 are pairwise distinct.

Proof. The assertion follows by induction on s. The claim holds for s = 1. Now
assume that the claim holds for some s ≥ 1. Let A0 = (a0, b0), . . . , As−1 = (as−1, bs−1),
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As = (as, bs) be an (s + 1)-chain and let S be its set of coordinates. We have to prove that
#S ≤ s + 2.

If as−1 = a0 or as−1 = b0, then A0, A1, . . . , As−1 is an s-chain, then by the induction
hypothesis the set

⋃s−1
`=0{a`} ∪ {b`} has at most s + 1 elements. Now if we add as and bs ,

as at least one of them is also equal to a0 or b0, the set S must have at most (s + 1)+ 1
elements.

Otherwise, as−1 6= a0 and as−1 6= b0, thus bs = as−1 and as = a0 or as = b0 which
means that S =

⋃s−1
`=0{a`} ∪ {b`}. One of the coordinates of As−1 equals as−2. Now we

replace the couple (as−1, bs−1) by the couple (a0, as−2), so the sequence

(a0, b0), (a1, b1), . . . , (as−2, bs−2), (a0, as−2)

becomes an s-chain. By the induction hypothesis, the set
⋃s−2
`=0{a`} ∪ {b`} ∪ {a0} ∪

{as−2} =
⋃s−2
`=0{a`} ∪ {b`} has at most s + 1 elements. The set S of the (s + 1)-chain

has in addition at most one more new element which implies that #S ≤ (s + 1)+ 1. This
proves the claim. �

5.2. An application of the Combinatorial Lemma. In what follows, let γ be a
degenerate k-periodic orbit of f and let x =min γ . For the next results, we assume that

γ ⊂ [0, 1)\Wm+1. (5.1)

The hypothesis (5.1) will be removed in Lemma 5.7.

LEMMA 5.2. γ ⊂
⋃m+1

j=1 ∂W j .

Proof. By equation (4.2), it is enough to prove that γ ⊂ [0, 1)\W j for all j ∈ {1, . . . , m +
1}. Firstly we consider j ∈ {1, . . . , m}. In this case, there exists a regular periodic orbit
γ j such that ω(y)= γ j for all y ∈W j . In particular, if γ ∩W j 6= ∅ and y ∈ γ ∩W j then
γ = ω(x)= ω(y)= γ j , which is a contradiction, because γ is a degenerate periodic orbit.
Thus, γ ⊂ [0, 1)\W j for every j ∈ {1, . . . , m}. By (5.1), γ ⊂ [0, 1)\Wm+1. Hence, γ ⊂
[0, 1)\

⋃m+1
j=1 W j . By equation (4.2), [0, 1)\

⋃m+1
j=1 W j =

⋃m+1
j=1 ∂W j . �

LEMMA 5.3. There exist integers s ≥ 1 and 0≤ `0 < `1 < · · ·< `s−1 ≤ k − 1 such that
γ ∩ {x0, . . . , xn−1} = { f `0(x), f `1(x), . . . , f `s−1(x)}.

Proof. The proof follows immediately from Proposition 2.4. �

Because [0, 1)=
⋃n

j=1 I j , for each ` ∈ {0, . . . , k − 1}, there exists a unique j (`) ∈
{1, . . . , n} such that f `(x) ∈ I j (`).

LEMMA 5.4. Let {`0, `1, . . . , `s−1} be as in Lemma 5.3. For each ` ∈ {`0, `1, . . . , `s−1},
there exists a uniquely defined ordered pair (a`, b`) ∈ {1, . . . , m + 1} × {1, . . . , m + 1}
satisfying the following conditions:
(i) f `(x) ∈ int(Wa` ∪Wb`) if f `(x) 6= 0;
(ii) f `(x) ∈W a` and a` = b` if f `(x)= 0;
(iii) I j (`) ∩ ( f `(x)− ε, f `(x)+ ε)⊂W a` for small enough ε > 0 .
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Proof. Let ` ∈ {`0, `1, . . . , `s−1}; thus there exists a unique integer j (`) ∈ {1, . . . , n}
such that f `(x) ∈ I j (`) ∩ ∂ I j (`). By Lemma 5.2, γ ⊂

⋃m+1
j=1 ∂W j . By Theorem 3.3 and

by equation (4.2), there exists a unique index a` ∈ {1, . . . , m + 1} such that

I j (`) ∩ ( f `(x)− ε, f `(x)+ ε)⊂Wa`

for small enough ε > 0. If f (x)= 0 or if Wa` contains the whole interval ( f (x)−
ε, f (x)+ ε), we set b` = a`.

Otherwise, there exists a unique index b` ∈ {1, . . . , m + 1}, b` 6= a`, such that

( f `(x)− ε, f `(x)+ ε) ∩W b` 6= ∅

for all small enough ε > 0. We have proved there exists a unique pair of indices (a`, b`) ∈
{1, . . . , m + 1} × {1, . . . , m + 1} which satisfies (i), (ii) and (iii). �

LEMMA 5.5. Let (a`, b`), and 0≤ `0 < `1 < · · ·< `s−1 ≤ k − 1 be as in Lemmas 5.3 and
5.4. The following hold:
(i) A0 = (a`0 , b`0), A1 = (a`1 , b`1), . . . , As−1 = (a`s−1 , b`s−1) is an s-chain;
(ii) #S ≤ s;
(iii) if 0 ∈ γ then #S ≤ s − 1.

Proof. Let r ∈ {0, . . . , s − 1}. For convenience we set `s = `0 + k, a`s = a`0 and b`s =

b`0 . Notice that, because x is k-periodic, f `s (x)= f `0(x).
By Lemma 4.2 and by the continuity of f on f `(x) for all ` ∈ {0, . . . , k −

1}\{`0, . . . , `s−1}, we have that f `r+1(x) ∈Wa`r for all r ∈ {0, . . . , s − 1}. By the unicity
in the definition of (a`r+1 , b`r+1) (see Lemma 5.4), we have that a`r+1 = a`r or b`r+1 = a`r .
Thus, A0, A1, . . . , As−1 is an s-chain. By Lemma 5.1, #S ≤ s + 1, where S is the set of
coordinates of the chain. Moreover, if #S = s + 1 then

a`0 = a`1 = · · · = a`s−1 . (5.2)

By equation (5.2), there exists ε > 0 and an interval U containing f `0(x) such that
f `(U ) is an interval containing f `+`0(x) for all ` ∈ {0, . . . , k}. Now there are two
possibilities: either (a) f k(U )⊂U or (b) f k(U ) ∩U = { f `0(x)}. Case (a) implies that
f `0(x) is a regular periodic point, which contradicts the assumption that γ = O f (x) is
a degenerate periodic orbit. In case (b) we have that a`0 = b`0 , which together with the
second statement of Lemma 5.1 implies that #S ≤ s. Items (i) and (ii) of the assertion of
the lemma are proved.

Now suppose that 0 ∈ γ . By item (iii) of Lemma 5.4, ai0 = bi0 . Consequently,

A1 = (a`1 , b`1), . . . , As−1 = (a`s−1 , b`s−1)

is an (s − 1)-chain. By the above,
⋃s−1

r=1{ar } ∪ {br } has at most s − 1 elements. Moreover,
as ai0 ∈ {ai1 , bi1}, we have that S =

⋃s−1
r=0{a`r } ∪ {b`r } =

⋃s−1
r=1{a`r } ∪ {b`r } and so #S ≤

s − 1, which proves item (iii). �

LEMMA 5.6. The cardinality of the set { j ∈ {1, . . . , m + 1} : inf W j ∈ γ } is at most s − 1.

Proof. We claim that

#{ j ∈ {1, . . . , m + 1} : inf W j ∈ γ } = #{i ∈ S : inf Wi ∈ γ }, (5.3)

where S =
⋃s−1

r=0{a`r } ∪ {b`r }.

https://doi.org/10.1017/etds.2014.16 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2014.16


2212 A. Nogueira and B. Pires

Suppose that inf W j ∈ γ ; thus there exist r ∈ {0, 1, . . . , s − 1} and `r < `≤ `r+1 such
that f `(x)= inf W j , where for convenience we set `s = `0 + k, a`s = a`0 and b`s = b`0 .
Notice that, because the point x =min γ is k-periodic, f `s (x)= f `0(x). By Lemma 4.2
and the continuity of f at f `(x) for every ` ∈ {0, . . . , k − 1}\{`0, . . . , `s−1}, we have
that f `r+1(x) ∈W j for every r ∈ {0, . . . , s − 1}. By the definition of (a`r+1 , b`r+1) (see
Lemma 5.4), we have that a`r+1 = j or b`r+1 = j . Hence,

inf W j ∈ {inf Wa`r+1
, inf Wb`r+1

} ⊂ {i ∈ S : inf Wi ∈ γ },

which proves (5.3).
By equation (5.3), it suffices to prove that #{i ∈ S : inf Wi ∈ γ } ≤ s − 1. It follows from

item (iii) of Lemma 5.5, that if 0 ∈ γ then

#{i ∈ S : inf Wi ∈ γ } ≤ #S ≤ s − 1.

Otherwise, 0 6∈ γ and f `0(x) > 0. Moreover, there exists i(x) ∈ S such that x ∈Wi(x) and
inf Wi(x) < x . This together with the item (ii) of Lemma 5.5 yields

#{i ∈ S : inf Wi ∈ γ } ≤ #S − 1≤ s − 1. �

Let β :W→ {x0, x1, . . . , xn−1} be the map defined in equation (4.1), where W =
{W1, . . . , Wm+1} if Wm+1 6= ∅, otherwise W = {W1, . . . , Wm}.

Let γ1, . . . , γm and γ̃1, . . . , γ̃d be, respectively, collections of regular and degenerate
periodic orbits of f .

LEMMA 5.7. The image of the map β contains at most n − d elements.

Proof. Let ` ∈ {1, . . . , d}. We claim that

#(γ̃` ∩ image(β))≤ #(γ̃` ∩ {x0, . . . , xn−1})− 1. (5.4)

We split the proof of the claim into three cases.
Case 1. Wm+1 6= ∅ and γ̃` ⊂ [0, 1)\Wm+1. Let xi ∈ γ̃` ∩ image(β) and let j ∈

{1, . . . , m + 1} be such that xi = β(W j ). By the definition of xi and β, we have that
xi ∈ γ̃` ∩ O f (inf W j ); thus O f (inf W j )= γ̃`. In particular, inf W j ∈ γ̃`. This together
with the fact that image(β)⊂ {x0, . . . , xn−1}, Lemma 5.6 and the injectivity of β yields

#(γ̃` ∩ image(β)) = #({x0, . . . , xn−1} ∩ γ̃` ∩ image(β))

≤ #({ j ∈ {1, . . . , m + 1} : inf W j ∈ γ̃`})

≤ #(γ̃` ∩ {x0, . . . , xn−1})− 1,

which proves the claim in Case 1.
Case 2. Wm+1 6= ∅ and γ̃` ∩Wm+1 6= ∅. In this case, by Lemma 4.2, we have that

γ̃` ⊂Wm+1. Moreover, as γ̃` ∩Wm+1 6= ∅, we cannot have γ̃` ⊂ ∂Wm+1. Hence, there
are two possibilities: either (a) γ̃` ⊂Wm+1 or (b) γ̃` ∩Wm+1 ∩ ∂Wm+1 6= ∅. In case (a),
because Wm+1 is open and image(β)⊂

⋃m+1
j=1 ∂W j , we have that γ̃` ∩ image(β)= ∅, and

thus equation (5.4) holds. In case (b), by Lemma 4.3, γ̃` ∩ {x0, . . . , xn−1} ∩ ∂Wm+1 6=

∅. Moreover, by the hypothesis of case (b), there exists z ∈Wm+1 and xi ∈ γ̃` ∩

{x0, . . . , xn−1} ∩ ∂Wm+1 such that f (z)= xi . If z ∈ {x0, . . . , xn−1} then, by proceeding
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as above, we can see that z 6∈ image(β) and so equation (5.4) holds. Otherwise, f is
continuous on a neighborhood of z and so xi ∈ int(Wm+1). In this case, by the definition
of β, xi 6∈ image(β), hence equation (5.4) holds. This proves the claim in Case 2.

Case 3. Wm+1 = ∅. The proof of Case 1 holds word-by-word for Case 3, provided we
replace {1, . . . , m + 1} by {1, . . . , m} in that proof.

By the claim, for each ` ∈ {1, . . . , d}, there exists x̃` ∈ γ̃` ∩ {x0, . . . , xn−1} such that
x̃` 6∈ image(β). Therefore,

image(β)⊂ {x0, . . . , xn−1}\{x̃1, . . . , x̃d}.

In this way, #image(β)≤ n − d . �

By Lemma 4.4, f has at most n regular periodic orbits; thus m ≤ n. By Proposition 2.4,
every degenerate periodic orbit of f contains a discontinuity, and so d ≤ n. Therefore, a
corollary of these two results is that the number of periodic orbits of f is bounded by
2n, that is, m + n ≤ 2n. By using Lemma 5.7, we provide now a stronger version of
Lemma 4.4.

LEMMA 5.8. The following statements are true:
(i) if Wm+1 6= ∅ then m + d ≤ n − 1;
(ii) if Wm+1 = ∅ then m + d ≤ n.

Proof. By Lemma 5.7, the image of the injective map β :W→ {x0, . . . , xn−1} has at
most n − d elements. In case (i), W = {W1, . . . , Wm+1} and so m + 1≤ n − d , that
is to say, m + d ≤ n − 1. In case (ii), W = {W1, . . . , Wm} and m ≤ n − d, that is,
m + d ≤ n. �

Proof of Theorem 1.1. By items (i) and (ii) of Lemma 5.8, f has at most n periodic orbits.
Moreover, by item (i) of Lemma 5.8, if f has n periodic orbits, then Wm+1 = ∅. In this
case,

⋃m
i=1 Wi = [0, 1]. For every x ∈Wi , we have that ω(x) is the periodic orbit γi . Now

if x ∈ ∂Wi , then either O f (x) ∩Wi 6= ∅ (and so ω(x)= γi ) or O f (x) is contained in the
finite set

⋃n
i=1 ∂Wi (see Theorem 3.3), and thus O f (x) is periodic. �

6. Proof of Theorem 1.2
By item (iii) of Lemma 3.6, { f `(F j ) | `≥ 0, j ∈ {1, . . . , r}} is a denumerable family
of pairwise disjoint open intervals whose union G =

⋃
`≥0

⋃r
j=1 f `(F j ) has Lebesgue

measure one. Moreover, the subintervals of G generate the Borel σ -algebra in [0, 1). Let
K ⊂ G be an interval; then there exist `≥ 0, 1≤ j ≤ r , and a subinterval J of F j such
that K = f `(J ). We set

ν(K )= ν( f `(J ))=
1

2`+1r
|J |
|F j |

thus ν( f (K ))=
1
2
ν(K ). (6.1)

The set function K 7→ ν(K ) can be extended to a non-atomic Borel probability measure
positive on open intervals, as

ν(G)=
∑
`≥0

r∑
j=1

1
2(`+1)r

=

r∑
j=1

1
r
= 1.
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In this way, the map h : [0, 1)→ [0,∞) defined by

h(x)=

{
0 if x = 0,

ν((0, x)) if 0< x < 1

is continuous and strictly increasing. Moreover, h(1)= ν((0, 1))= ν(G)= 1. Therefore,
h : [0, 1)→ [0, 1) is a homeomorphism. Let f̂ : [0, 1)→ [0, 1) be the map defined by
f̂ = h ◦ f ◦ h−1. We have that f̂ is continuous on [0, 1)\{h(x1), . . . , h(xn−1)} and its
continuity intervals are Îi = h(Ii ), 1≤ i ≤ n.

Let B ⊂ [0, 1) be an interval. Being Lispchitz, f takes ν-null measure set onto ν-null
measure set, thus ν( f (B))= ν( f (B ∩ G)). Now it follows from equation (6.1) that

ν( f (B))= 1
2ν(B) for every interval B ⊂ [0, 1). (6.2)

Let (u, v)⊂ h(Ii ) be an interval. If f |Ii is increasing then

( f (h−1(u)), f (h−1(v)))= f (h−1(u), h−1(v)). (6.3)

By equations (6.2) and (6.3),

f̂ (v)− f̂ (u) = h( f (h−1(v)))− h( f (h−1(u)))

= ν((0, f (h−1(v))))− ν((0, f (h−1(u))))

= ν(( f (h−1(u)), f (h−1(v))))= ν( f (h−1(u), h−1(v)))

=
1
2ν(h

−1(u), h−1(v))= 1
2 [ν((0, h−1(v)))− ν((0, h−1(u)))]

=
1
2 [h(h

−1(v))− h(h−1(u))] = 1
2 (v − u).

Otherwise, f |Ii is decreasing and

f̂ (v)− f̂ (u)=− 1
2 (v − u).

We have proved that f̂ | Îi
is linear for every i ∈ {1, . . . , n}. �
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