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Abstract
In the classical collective model over a fixed time period of two insurance portfolios, we are
interested, in this contribution, in the models that relate to the joint distribution F of the largest claim
amounts observed in both insurance portfolios. Specifically, we consider the tractable model where
the claim counting random variable N follows a discrete-stable distribution with parameters (α,λ).
We investigate the dependence property of F with respect to both parameters α and λ. Furthermore,
we present several applications of the new model to concrete insurance data sets and assess the fit of
our new model with respect to other models already considered in some recent contributions. We can
see that our model performs well with respect to most data sets.
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1. Introduction

In insurance applications, modelling of multivariate data is crucial, for instance, for pricing
of dependent risks, risk management of different portfolios or reinsurance modelling of
joint risks. The choice of tractable multivariate distributions for such modelling purposes is large.
In this contribution, we are concerned with the joint distribution of the largest claims observed in
two insurance portfolios. In this respect, we denote by Xi and Yi the ith claim observed in each
portfolio, respectively. We consider the classical collective model over a fixed period of time. Hence,
we define N as the claim counting random variable. Clearly, when N= 0, no claims are reported and
the largest claim observed in each portfolio is null. However, we are mainly interested in the case
where N≥ 1. Therefore, we define Λ=N|N≥1. For a given bivariate distribution function G, a new
class of bivariate distributions, denoted F, can be introduced in the context of the distribution of
largest claims observed in a bivariate portfolio as illustrated in Hashorva et al. (2017). An instance
that motivates F in practice is if Xi’s model the claim sizes of an insurance portfolio and Yi’s the
allocated loss adjustment expense related to the settlement of Xi’s, such as legal fees, investigations of
claims, etc. The dependency observed between the largest claims of Xi and Yi is relevant when pricing
an excess-of-loss reinsurance treaty in the case where the insurer and reinsurer share the settlement
costs, see Cebrian et al. (2003) for more details.

*Correspondence to: Maissa Tamraz, Université de Lausanne, Faculté des Hautes Etudes Commerciales, Quartier
UNIL-Chamberonne, Bâtiment Extranef, 1015 Lausanne, Switzerland. Tél: 021 692 33 00. E-mail: maissa.
tamraz@unil.ch

391

https://doi.org/10.1017/S174849951800012X Published online by Cambridge University Press

https://doi.org/10.1017/S174849951800012X
mailto:maissa.tamraz@unil.ch
mailto:maissa.tamraz@unil.ch
https://doi.org/10.1017/S174849951800012X


More specifically, if Λ is a discrete random variable with P Λ=if g=pðiÞ≥0; i 2 N, then F can be
defined by its Laplace transform, see Joe (1997, Chapter 4.2):

F x; yð Þ=LΛ �lnG x; yð Þð Þ; x; y≥0 (1)

with LΛ the Laplace transform of Λ. Moreover, if G has continuous marginal df’s G1, G2, we have
that F has marginal df’s:

Fi xið Þ=LΛ �lnGi xið Þð Þ; i= 1; 2

and unique copula:

C u1; u2ð Þ=LΛ �lnQ υ1; υ2ð Þð Þ; u1; u2 2 0; 1½ � (2)

where we set υi = e�L�1
Λ uið Þ and Q the unique copula of G.

Note that by differentiating (2) we get the corresponding copula density c of C as follows:

c u1; u2ð Þ=
∂υ1
∂u1

∂υ2
∂u2

Q2 υ1; υ2ð Þ ðL′
ΛðtÞ +L′′

ΛðtÞÞ
∂Qðυ1; υ2Þ

∂υ1
∂Qðυ1; υ2Þ

∂υ2
�L′

ΛðtÞQðυ1; υ2Þqðυ1; υ2Þ
� �

(3)

where L′
ΛðsÞ=�E Λe�sΛ� �

; L′′
ΛðsÞ= E Λ2e�sΛ� �

and q the pdf of Q given by

q u1; u2ð Þ= g G�1
1 u1ð Þ; G�1

2 u2ð Þ� �
g1 G�1

1 u1ð Þ� �
g2 G�1

2 u2ð Þ� � ; u1; u2 2 0; 1½ �

Here g is the pdf of G and g1, g2 its marginal pdf’s.

In the aforementioned paper, three special cases for Λ were considered by transforming a discrete
random variable N, namely Shifted Geometric, Shifted Poisson or Truncated Poisson. For these
choices of Λ, the density function c has a very tractable form and therefore can be easily used for
parametric estimation purposes.

As seen from (3), it is crucial that we have a tractable formula for the Laplace transform LΛ or that of
the random variable N.

Instead of the Poisson choice for N we can take, for instance

N =
d
Poisson λWð Þ (4)

where λ>0 is a fixed parameter and W a modifier, i.e., a non-negative random variable. Here =
d

means equality in distribution. Clearly, this idea carries over to other parametric models for Λ.

Another interesting choice of N is motivated by the Poisson case. Clearly, we can write a Poisson
random variable as a compound Poisson random variable. Thus, with motivation from the collective
model, we consider N to be a compound random variable as follows:

N =
XY
i= 1

Zi; N = 0 if Y = 0 (5)

where Y is a counting random variable independent of Zi’s which are discrete random variables with
values in 0,1….
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Both constructions above are interesting and lead to new classes of mixture copulas. The drawback is
that in many cases, no explicit form of the Laplace transform is available, which renders the
parametric estimation difficult.

In this paper, we shall focus on a tractable choice for Zi’s, namely these are independent copies of a
Sibuya random variable Z with probability generating function (pgf):

PZ zð Þ= 1� 1�zð Þα

with α∈ (0, 1] a fixed parameter. For such Z and Y a Poisson random variable with parameter λ>0,
then N given by (5) has a discrete-stable distribution with parameters λ>0 and α∈ (0, 1]. Discrete-
stable distributions have been discussed in Steutel & Van Harn (1979). These so-called discrete
distributions satisfy many interesting properties. Specifically, in view of Steutel & Van Harn (1979)
the pgf P of a discrete-stable distribution N with parameters (α, λ) is of the form:

PN zð Þ= e�λð1�zÞα (6)

where λ>0, α∈ (0, 1] and |z|≤1. By setting z= e − t in (6), we can define the distribution of N via its
Laplace transform:

LN tð Þ= E e�tN� �
= e�λ½1�e�t �α ; t≥0; λ> 0; α 2 ð0; 1� (7)

We have the following explicit formulas:

P N = 0f g= e�λ (8)

P N =1f g= αλe�λ (9)

P N = 2f g= αλ

2
e�λ 1�α + αλð Þ (10)

Clearly, we obtain the Poisson distribution for α=1 in (7).

The case α<1 is substantially different from the Poisson case of α= 1. Indeed, if α<1, then
EðNÞ=1 and for such α the discrete-stable distribution is heavy-tailed.

Hereafter, we shall discuss two different models for Λ based on N as above, namely:

Model A (Shifted discrete-stable): Setting Λ=N+ 1, we have that

LΛ tð Þ=E
�
e�tð1+NÞ�= e�te�λ½1�e�t �α ; t≥ 0 (11)

hence
F x; yð Þ=G x; yð Þe�λ½1�Gðx; yÞ�α ; x; y≥ 0 (12)

Model B (Truncated discrete-stable): We define Λ=N|N≥ 1. Hence p(i)= p(i)/(1− p(0)), i≥ 1. This
implies that

E e�tΛ� �
=
X1
i= 1

p ið Þ
1�p 0ð Þ e

�ti +
p 0ð Þ

1�p 0ð Þ�
p 0ð Þ

1�p 0ð Þ

=
e�λ 1�e�tð Þα�e�λ

1�e�λ
ð13Þ
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leading to (set bλ : = e�λ

1�e�λ)

F x; yð Þ= 1
1�e�λ

e�λ½1�Gðx; yÞ�α�e�λ
h i

=bλ eλð1�½1�Gðx; yÞ�αÞ�1
h i

; t≥0 (14)

All the models introduced above lead to distribution functions F which depend on two additional
parameters α and λ. The dependence introduced by the choice of G and (α, λ) is interesting. Even if
we have the product case

G x; yð Þ=G1 xð ÞG2 yð Þ; x; y 2 R

the distribution function F is not a product distribution.

In this paper, we are interested in the main properties of F for Λ specified as above and the possible
applications of such F for modelling-dependent insurance data. This paper is structured as follows. In
section 2, we study some dependence properties of F by means of Monte Carlo simulations for
Model A. Section 3 discusses various methods for estimating the parameters of the new constructed
copula as well as goodness of fit. Finally, section 4 is dedicated to applications of this copula to
concrete insurance data sets.

2 Dependence Properties of F

2.1 Dependence measures

We investigate the dependence properties of F and its corresponding copula C for a given joint
distribution function G with copula Q and Λ as in Model A. The dependence between the largest
claim amounts observed in two insurance portfolios, i.e. (XΛ:Λ, YΛ:Λ), is evaluated with respect
to the parameter α of the shifted discrete-stable distribution. In this respect, we define below the
most commonly used non-parametric methods. They measure different aspects of the dependence
structure governed by C, see Fredricks & Nelsen (2007).

For a given copula C, Kendall’s τ is defined as

τ Cð Þ= 4
ð1
0

ð1
0

Cðu; υÞdCðu; υÞ�1

whereas Spearman’s rank correlation coefficient ρS is given by

ρS Cð Þ=12
ð1
0

ð1
0

C u; υð Þdudυ�3= 12
ð1
0

ð1
0

uυdCðu; υÞ�3

Remarks 2.1 We show in the next section by simulation that for a given copulaQ with parameter θ,
the level of dependence governed by C decreases as the parameter α of the shifted discrete-stable
distribution increases.

2.2 Monte Carlo simulation

We study the dependence property of C by means of Monte Carlo simulations. In order to do so, we
consider two types of copula forQ, namely the Gumbel and the Clayton copula both with parameter
θ= 10 and Λ as defined in Model A with λ= 10. We compare the level of dependence governed by
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copula C with respect to the parameter α of the discrete-stable distribution. The simulation proce-
dure follows Step 1 to Step 4 described below and is repeated 10,000 times.

Step 1: Generate a random value n from the discrete-stable distribution Λ.

Step 2: Generate n random vectors (U11, U21),… , (U1n, U2n) from copula Q.

Step 3: Calculate Z1= max(U11,… , U1n) and Z2= max(U21,… , U2n).

Step 4: Return the vector (V1, V2) with

V1 =Z1e�λð1�Z1Þα ; V2 =Z2e�λð1�Z2Þα

In view of Step 1, simulating a random number from the discrete-stable distribution is not
straightforward as it does not have a closed form for its probability mass function. Therefore,
Devroye (1993) developed the following result.

Lemma 2.2 If a random variable X follows a discrete-stable distribution with parameters (α, λ), then
X follows a Poisson distribution with parameter λ1/αSα,1, where Sα,1 a positive stable random variate
with parameter α.

Several methods were discussed in the literature for the choice of Sα,1. In the sequel, we refer to the
method described in Kanter (1975) where the expression of Sα,1 is given by

Sα;1 =
sin ð1�αÞπUð Þ
E sin απUð Þ

� �ð1�αÞ
α sin απUð Þ

sin πUð Þ
� �1

α

with α∈ (0, 1) and U ~Uniform (0, 1) being independent of the unit exponential random variable
E~Exp(1).

In Table 1, we compute the empirical dependence measures relative to copula C.

Table 1 shows that as the parameter α of the discrete-stable distribution decreases, the level of
dependence governed by copula C increases. Note that α=1, i.e., the Shifted Poisson case, yields the
lowest level of dependence between the maximal claim amounts observed in the two portfolios.

Table 1. Empirical Kendall’s τ and Spearman’s ρ with respect to α.

Q: Gumbel copula with θ=10 Q: Clayton copula with θ=10

α τ(C) ρS(C) τ(C) ρS(C)

1.00 0.9034 0.9863 0.3511 0.5030
0.90 0.9104 0.9882 0.3549 0.5034
0.80 0.9221 0.9911 0.3771 0.5321
0.75 0.9254 0.9919 0.4034 0.5645
0.60 0.9393 0.9946 0.4656 0.6396
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3 Parameter Estimation and Goodness of Fit

3.1 Parameter estimation

In this section, we discuss different methods to estimate the parameters of the new copula C,
principally the parameter θ of the original copula Q and the parameters (α, λ) of the discrete-stable
distribution Λ. In the sequel, for the sake of simplicity, we denote by Θ= (θ, α, λ) the parameters of
the new copula. The different methods for estimating the parameters of a copula is widely discussed
in the literature. We count two parametric methods and one semi-parametric. The choice of one of
these methods depends on the willingness of the user to make assumptions or not about the
unknown margins.

Typically, when marginal distributions are known, parametric methods are more frequently
employed. The most popular method discussed in the literature is the maximum likelihood esti-
mation (MLE). It is a fully parametric method well known for its optimality properties. The para-
meters of the copula and of the marginal distributions are estimated simultaneously by maximising
the log-likelihood function. However, this method is computationally intensive especially when
estimating multiple parameters. An alternative method that requires less computations is the Infer-
ence Functions for Margins (IFM) proposed by Joe (1997). It is a two-step estimation method. In the
first step, the parameters of the marginal distributions are estimated separately by maximising the
corresponding log-likelihood functions. Next, by replacing the marginal parameters by their first
stage estimators, the maximisation of the log-likelihood solves for Θ in the second step. However,
both methods rely on the choice of the marginals. Kim et al. (2007) show that a misspecification of
the marginals may lead to discrepancies in the performance of the estimators.

In practice, the marginal distributions are unknown and are thus estimated non-parametrically.
Genest et al. (1995) described a new method for estimating the dependence parameter Θ of the
copula C which is a semi-parametric one known as the Pseudo-maximum likelihood (PML) method.
It is solely based on the ranks of the observations. In the first stage, the marginals are replaced by
their empirical counterparts in the pseudo-log-likelihood function. Then, in the second stage, the
maximisation of the latter returns the estimators of Θ of the new copula C. In the sequel, we shall
utilise the PML method.

Let X ~G1 and Y ~G2 where G1 and G2 are the marginals of X and Y, respectively. In light of the
PML method, G1 and G2 are estimated by their empirical counterparts denoted hereafter by fG1 andfG2 and defined as follows:

fG1 xð Þ= 1
n

Xn
i= 1

1 Xi ≤ xf g; fG2 yð Þ= 1
n

Xn
i= 1

1 Yi ≤ yf g

The method consists in finding Θ that maximises the pseudo-log-likelihood function given by:

l Θð Þ=
Xn
i=1

logcΘ Ui; Við Þ (15)

where cΘ is the copula density defined in (3), Ui = n
n+ 1

fG1ðxiÞ and Vi = n
n+ 1

fG2ðyiÞ are the pseudo-
observations. The rescaling factor n

n +1 is introduced to avoid numerical difficulties arising at the
boundaries [0, 1]2 (see Genest et al., 1995). Kim et al. (2007) show that the PML methods performs
better than the IFM and MLE methods. Moreover, Genest et al. (1995) and Shih & Louis (1995)
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(in the presence of censorship) show that under suitable conditions, the resulting estimator of Θ is
consistent and asymptotically normally distributed.

Below, we give the expression of the copula density for both Model A and Model B along with the
corresponding pseudo-log-likelihood functions.

∙ Model A: Λ follows a shifted discrete-stable distribution.

The pdf of the shifted discrete-stable copula is given by

cΘ u1; u2ð Þ=W υ1; υ2ð Þ eλ ð1�υ1Þα + ð1�υ2Þα�ð1�Qðυ1; υ2ÞÞα½ �

1 + λαυ1 1�υ1ð Þα�1
� 	

1 + λαυ2 1�υ2ð Þα�1
� 	 (16)

where

W υ1; υ2ð Þ= λα 1�Qðυ1; υ2Þð Þα�2 2�ðα +1ÞQðυ1; υ2Þ + λαQðυ1; υ2Þð1�Qðυ1; υ2ÞÞα½ � ∂Q υ1; υ2ð Þ
∂υ1

∂Q υ1; υ2ð Þ
∂υ2

+ 1 + λαQ υ1; υ2ð Þ 1�Qðυ1; υ2Þð Þα�1
h i ∂2Q υ1; υ2ð Þ

∂υ1∂υ2

and vj = f�1 uj
� �

such that f vj
� �

= vj e
�λ 1�vjð Þα ; j= 1; 2:

The resulting pseudo-log-likelihood function of the above copula can be written as follows:

l Θð Þ=
Xn
i= 1

λ 1�υ1ið Þα + 1�υ2ið Þα� 1�Q υ1i; υ2ið Þð Þα½ �½ �ln 1 + λαυ1i 1�υ1ið Þα�1
� 	

�ln 1 + λαυ2i 1�υ2ið Þα�1
� 	

+ lnW υ1i; υ2ið Þ
i

∙ Model B: Λ follows a truncated discrete-stable distribution.

The joint density of the truncated discrete-stable copula is of the form:

c u1; u2ð Þ=W v1; v2ð Þ 1�e�λ

λα

eλ 1�v1ð Þα + 1�v2ð Þα� 1�Q v1 ;v2ð Þð Þα½ �

1�v1ð Þα�1 1�v2ð Þα�1 1�Q v1; v2ð Þð Þα�2

 !
(17)

where

W v1; v2ð Þ= 1�α + λα 1�Q v1; v2ð Þð Þαð Þ ∂Q v1; v2ð Þ
∂v1

∂Q v1; v2ð Þ
∂v2

+ 1�Q v1; v2ð Þð Þ ∂
2Q v1; v2ð Þ
∂v1∂v2

and vj = 1� � ln e�λ + uj 1�e�λ
� �� �
λ


 �1
α

; j=1; 2

The resulting pseudo-log-likelihood function of the above copula is given by

l Θð Þ=
Xn
i=1

ln 1�e�λ
� ��ln λαð Þ + λ 1�v1ið Þα + 1�v2ið Þα� 1�Q v1i; v2ið Þð Þα½ ��

� α�1ð Þln 1�v1ið Þ� α�1ð Þln 1�v2ið Þ + α�2ð Þln 1�Q v1i; v2ið Þð Þ + lnW v1i; v2ið Þ�
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3.2 Goodness of fit

Following the estimation of the parameter Θ, one need to assess the fit of the parametric copula CΘ to
a given data set. In this respect, we consider the hypothesis tests

H0 : CΘ 2 C0 againstH1 : CΘ=2C0

where C0 = CΘ : Θ 2 Of g is a class of some known parametric copulas and O an open subset of ℝp

for some integer p≥ 1. We refer to Genest et al. (2009) for a review of the different methods used to
assess the goodness of fit of a parametric copula.

In the sequel, we shall use the Cramer–von Mises test statistic, denoted hereafter by CVM. The
corresponding statistic of this test is denoted by Sn and is defined as follows:
letCn u; vð Þ= ffiffiffi

n
p

Cn u; vð Þ�CΘ u; vð Þð Þð Þ

Sn =
ð1
0

ð1
0

Cn u; vð Þ2dCn u; vð Þ

where Cn u; vð Þ= 1
n

Pn
i=1 1 Ui ≤u;Vi ≤ vf g6 is the empirical copula and CΘ the fitted copula with

parameter Θ. It is worth mentioning that Cn depends solely on the pseudo-observations Ui and Vi

(see Deheuvels, 1979; Genest & Favre, 2007). Large values for this test lead to the rejection of H0.

Moreover, one might be interested to compute the p-values associated to Sn. The larger the p-value
the less likely is the rejection of the hypothesis H0 at a significance level p. Genest et al. (2009)
described a parametric bootstrap procedure for the computation of the p-values corresponding to the
goodness of fit using the CVM test statistic. The procedure is summarised under the following steps:

∙ Step 1: Calculate the MLE Θ̂ of Θ using the PML method.

∙ Step 2: Compute the value of the test Sn with Sn =
Pn

i=1 Cn Ui; Við Þ�CΘ̂ Ui; Við Þ� �2.
∙ Step 3: Let K denotes the number of bootstrap replications. Repeat Steps 4–6 for k∈ {1,… , K}:

∙ Step 4: Generate a random sample X̂i;k; Ŷi;k

� 	
for i∈ {1,… ,n} from CΘ̂ as described in

section 2.2 and compute their corresponding pseudo-observations, i.e, Ûi;k = n
n +1 X̂i;k and

V̂i;k = n
n +1 Ŷi;k.

∙ Step 5: Compute the empirical copula Cn;k u; vð Þ= 1
n

Pn
i=1 1fÛi;k ≤u; V̂i;k ≤ vg6 and estimate

the MLE of Θ by Θ̂k at each iteration based on Ûi;k; V̂i;k

� 	
for i∈ {1,… ,n}.

∙ Step 6: Calculate Sn;k =
Pn

i=1 Cn;k Ûi;k; V̂i;k

� 	
�CΘ̂k

Ûi;k; V̂i;k

� 	� 	2
.

An approximate p-value for this test is given by

p=
1
K

XK
k=1

61 Sn;k ≥ Sn
� �

:

Note that the largest the sample size, the more accurate the bootstrap procedure is (see Genest et al., 2009).

4 Insurance Applications

For illustration purposes, we consider real insurance data set applications. The original copulaQ can
be one of the following copulas: Gumbel, Frank, Student and Joe, see Appendix for more details on
the copulas. Also, Λ with parameters (α, λ) follows one of the two distributions: shifted discrete-
stable and truncated discrete-stable. We construct a new copula based on Q and Λ and assess the fit
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of this new family of copula to insurance data sets. We use the AIC criteria to assess the quality of
each model relative to each of the other models. It is defined as

AIC=�2l Θ̂
� 	

+ 2p

where p=3 is the number of parameters to estimate and l Θ̂
� �

the pseudo-log-likelihood function as
in (15) evaluated at Θ̂, estimator of Θ. Moreover, we use the CVM test to assess the goodness of fit of
the copula to the data sets and compute the corresponding p-values relative to each copula model.
Additionally, we include the root mean square error to measure the differences between the observed
values and the ones predicted by the model. It is denoted hereafter by RMSE and is defined as
follows, see Vandenberghe et al. (2010), for instance

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i=1

CΘ Ui; Við Þ�Cn Ui; Við Þð Þ2
s

where Cn is the empirical copula based on the observed values and CΘ the fitted one. Both models are
then compared to other families of copulas already considered in Hashorva et al. (2017).

Remarks 4.1 In light of the bootstrap procedure described in section 3.2 for the computation
of the p-value, we set K= 1,000 that is K random samples of size n are generated where
n corresponds to the size of each data set. Generally, K should be taken larger than the size of the
data set used (see Genest et al., 2009). However, this is computationally intensive for most of the
data sets considered.

4.1 Loss ALAE from medical insurance

In this section, we consider the SOA Medical Group Insurance data sets describing the medical
claims observed over the years 1991–1992. These data sets can be found on the Society of Actuaries
website under the following path: https://www.soa.org/Research/Experience-Study/group-health/
91-92-group-medical-claims.aspx. The 171,236 claims recorded in both data sets are part of a larger
database that includes the losses of 26 insurers over the period 1991–1992, see Grazier et al. (1997)
for more description on the data.

We shall investigate the dependence between the hospital charges, corresponding to the loss
variable Xi, and the Other charges corresponding to the ALAE variable Yi associated to the settle-
ment of Xi.

The same data set was explored in Cebrian et al. (2003) where claims occurring during accident
year 1991 were considered. For our study, we work with claims occurring during accident year
1992. The sample comprises of 75,789 claims. There are four different medical group plan types.
Each policyholder belongs to one of these medical groups.

In the sequel, we consider the 1992 records relating to Plan type 4, the loss variable Xi exceeding
25,000 in order to observe a positive dependence between the loss and the ALAE variables, and
strictly positive ALAE. Some statistics on the data are presented in Table 2.

The scatterplot (ALAE, loss) on a log scale is depicted in Figure 1.
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Furthermore, we compute the empirical dependence measures between the losses and their respective
ALAE as shown in Table 3. The latter indicates a positive dependence between these two variables
with an empirical upper tail dependence of 0.3806.

By maximising (15), we get the estimators of the parameters Θ of the copula models
summarised hereunder in Table 4. The table includes as well the estimation of the parameters
when Λ is either Geometric, Shifted Poisson or Truncated Poisson already considered in Hashorva
et al. (2017).

Following the estimation of the parameters, one is interested to assess the fit of these new copula
models to the data set. The Table 5 illustrates the results.

Table 5 shows that

∙ Based on the p-values, the family of Gumbel and Joe copula are accepted at a significance level of
10% with the exception of Joe copula having a p-value of 5.5%. Clearly, the family of Frank and
Student copula do not represent a good fit to the data due to a p-value smaller than 5%, however,
the Student Geometric copula model is accepted at a significance level of 5%.

∙ Based on the RMSE, the Joe Geometric copula outperforms the other models having the
smallest RMSE.

Table 2. Statistics for Loss ALAE data from medical insurance.

Loss ALAE

Minimum 25,003 5
Q1 30,859 7,775
Q2 40,985 14,111
Q3 64,067 23,547
Maximum 1,404,432 409,586
No. of observations 5,106 5,106
Mean 62,589 20,001
s.d. 69,539 24,130

Figure 1. Scatterplot for log ALAE and log Loss.
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∙ And finally based on the AIC criteria, the Joe Geometric copula is the model that best fits the data
followed by the Joe Truncated Poisson, Joe truncated discrete-stable and Gumbel truncated
discrete-stable copulas.

4.2 Worker’s compensation insurance data

This data set examines the losses due to permanent and partial disability of the worker’s compen-
sation line of business. In this data, we model the dependence between the pure premium P, defined
as the loss due to partial and permanent disability per dollar of payroll, and the payroll PayR. The
same data were used in Zhang & Lin (2016) and Frees et al. (2001). In order to reproduce the fit of
the Geometric mixture copula developed by Zhang & Lin (2016) we use the same estimation
procedure. Therefore, the losses and payrolls are transformed to a logarithmic scale such that

Table 3. Dependence measures for Loss ALAE data from medical insurance.

Dependence measures Values

Pearson’s correlation 0.4442
Spearman’s ρ 0.4442
Kendall’s τ 0.3088
Upper tail dependence 0.3806

Table 4. Parameter estimation for the different copula models.

Original copula Q Distribution for N λ α θ m

Gumbel None – – 1.4328 –

Geometric 0.9751 – 1.4262 –

Truncated Poisson 0.0380 – 1.4278 –

Shifted Poisson 23.751 – 1.4035 –

Truncated discrete-stable 1.0243 0.6742 1.000 –

Shifted discrete-stable 1 0.8261 1.2078 –

Frank None – – 3.0482 –

Geometric 0.9999 – 3.0481 –

Truncated Poisson 0.0001 – 3.0481 –

Shifted Poisson 0.0001 – 3.0481 –

Truncated discrete-stable 1.0242 0.6742 0.0001 –

Shifted discrete-stable 1.1190 0.6102 0.0013 –

Student None – – 0.4576 11.893
Geometric 0.9999 – 0.4576 11.892
Truncated Poisson 0.0001 – 0.4576 11.890
Shifted Poisson 0.0001 – 0.4576 11.890
Truncated discrete-stable 1.1751 0.6899 0.0001 13.999
Shifted discrete-stable 0.3598 0.6404 0.2912 9.9874

Joe None – – 1.6440 –

Geometric 0.5804 – 1.4477 –

Truncated Poisson 1.0243 – 1.4832 –

Shifted Poisson 0.5626 – 1.4945 –

Truncated discrete-stable 1.0243 0.8787 1.3033 –

Shifted discrete-stable 1.0000 0.8268 1.2890 –
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X= ln P and Y= ln PayR. Also, before replacing the marginals by their empirical distributions for the
PML estimation approach, we smooth them by using the Gaussian non parametric kernel smoothing
method defined for both components as follows (see e.g. Hansen, 2004):

cFX xið Þ= 1
n

Xn
i= 1

Φ
xi�xj
h

� 	
with h= 0:2605; cFY yið Þ= 1

n

Xn
i= 1

Φ
yi�yj
h

� 	
with h=0:1290

The empirical dependence measures are summarised in Table 6.

Table 7 gathers the estimation results from maximising (15). The parameters are estimated for all
copula models including the ones considered in Hashorva et al. (2017) namely the case where Λ is
either Geometric, Poisson or Truncated Poisson.

Table 5. p-Values, RMSE and AIC values for the different copula models.

Original copula Q Distribution for N p-value RMSE AIC

Gumbel None 0.755 0.0039 − 1,371.21
Geometric 0.740 0.0039 −1,369.28
Truncated Poisson 0.745 0.0039 −1,369.27
Shifted Poisson 0.527 0.0047 −1,328.14
Truncated discrete-stable – 0.0032 −1,384.87
Shifted discrete-stable 0.267 0.0059 −1,326.77

Frank None 0.021 0.0096 −1,137.12
Geometric 0.026 0.0096 −1,135.09
Truncated Poisson 0.021 0.0096 −1,135.10
Shifted Poisson 0.017 0.0096 −1,135.12
Truncated discrete-stable – 0.0032 −1,384.86
Shifted discrete-stable – 0.0039 −1,282.69

Student None 0.046 0.0090 −1,195.83
Geometric 0.063 0.0090 −1,193.82
Truncated Poisson 0.024 0.0090 −1,193.82
Shifted Poisson 0.045 0.0090 −1,193.82
Truncated discrete-stable – 0.0031 −1,377.86
Shifted discrete-stable 0.030 0.0065 −1,288.69

Joe None 0.055 0.0039 −1,371.21
Geometric 0.986 0.0027 −1,393.23
Truncated Poisson 0.919 0.0032 −1,386.87
Shifted Poisson 0.892 0.0034 −1,384.34
Truncated discrete-stable – 0.0032 −1,384.87
Shifted discrete-stable 0.799 0.0740 −1,370.37

Table 6. Dependence measures between P and PayR.

Dependence measures Values

Pearson’s correlation 0.8194
Spearman’s ρ 0.8181
Kendall’s τ 0.6306
Upper tail dependence 0.6627
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Following the estimation of the parameters, Table 8 highlights the results from the Goodness of fit
test along with the RMSE and AIC criteria for each copula model.

Table 8 shows that

∙ based on the p-values, all models are accepted at a significance level of 10% with the exception of
Joe copula having a p-value of 5.1%;

∙ based on the RMSE, the Gumbel copula followed by the Joe Truncated Poisson copula represent
the best fit for the data as they have the smallest RMSE;

∙ and finally based on the AIC criteria, the family of Frank mixture copulas outperforms the others
as for the majority of these copula models, the AIC is the smallest.

Joe copula should not be used to model this data as it has the lowest p-value (5.1%) and the greatest
RMSE (0.0241) and AIC (−640.19) among all copula models. Moreover, Table 8 shows that for the
majority of the models an increase in the p-value is associated with a decrease in the RMSE.

4.3 Danish fire insurance data

In this section, we shall consider the Danish data set collected from the Copenhagen Reinsurance
Company which describes the fire insurance claims observed over the period 1980–1990. This data
set is available on the following website www.ma.hw.ac.uk/∼mcneil/. It comprises of n=2,167 fire
losses based on three components: buildings, content and profit. However, in the sequel, we shall
analyse the dependency between the first two components. Let Xi, Yi be the ith loss observed for both

Table 7. Parameter estimation for the different copula models.

Original copula Q Distribution for N λ α θ m

Gumbel None – – 2.4238 –

Geometric 0.3013 – 2.0356 –

Truncated Poisson 1.5530 – 2.2109 –

Shifted Poisson 4.1778 – 2.2193 –

Truncated discrete-stable 1.6537 0.9999 2.1778 –

Shifted discrete-stable 0.9458 0.9749 2.1801 –

Frank None – – 8.7858 –

Geometric 0.9267 – 10.0930 –

Truncated Poisson 0.0001 – 8.7857 –

Shifted Poisson 0.0001 – 8.6998 –

Truncated discrete-stable 1.6553 0.4523 3.1376 –

Shifted discrete-stable 0.0001 0.7991 8.6998 –

Student None – – 0.8117 12.825
Geometric 0.9999 – 0.8117 12.826
Truncated Poisson 1.0000 – 0.8015 12.999
Shifted Poisson 1.0000 – 0.8026 12.924
Truncated discrete-stable 0.0887 0.7980 0.7673 14.999
Shifted discrete-stable 0.0003 0.8000 0.8081 8.6620

Joe None – – 2.8596 –

Geometric 0.1299 – 2.0409 –

Truncated Poisson 10.1113 – 2.4120 –

Shifted Poisson 6.7874 – 2.3976 –

Truncated discrete-stable 8.3546 0.9999 2.3752 –

Shifted discrete-stable 7.2456 0.9467 2.2790 –
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components respectively. For more description on the data, we refer to Haug et al. (2011). Table 9
displays the estimated parameters for each family of copula obtained when maximising the pseudo-
log-likelihood function defined in (15).

The Table 10 summarises the relevant measures relative to each copula model.

For this data set, Table 10 shows that

∙ based on the p-values, all models are rejected at a significance level of 1%;

∙ based on the RMSE, the Frank shifted discrete-stable copula models best the data with the lowest error;

∙ and finally based on the AIC, the copulas that best fit the data are the Student truncated discrete-
stable copula followed by the Joe copula.

Table 8. p-Values, RMSE and AIC values for the different copula models.

Original copula Q Distribution for N p-value RMSE AIC

Gumbel None 0.474 0.0127 −784.96
Geometric 0.389 0.0134 −808.94
Truncated Poisson 0.423 0.0130 −798.90
Shifted Poisson 0.393 0.0140 −779.87
Truncated discrete-stable 0.410 0.0135 −788.39
Shifted discrete-stable 0.403 0.0134 −786.29

Frank None 0.229 0.0158 −846.57
Geometric 0.184 0.0174 −883.23
Truncated Poisson 0.261 0.0158 −846.56
Shifted Poisson 0.239 0.0158 −839.04
Truncated discrete-stable 0.154 0.0152 −774.30
Shifted discrete-stable 0.248 0.0158 −837.04

Student None 0.313 0.0150 −803.80
Geometric 0.294 0.0150 −801.80
Truncated Poisson 0.215 0.0164 −789.33
Shifted Poisson 0.181 0.0175 −775.52
Truncated discrete-stable – 0.0143 −800.15
Shifted discrete-stable 0.281 0.0152 −795.50

Joe None 0.051 0.0241 −640.19
Geometric 0.416 0.0132 −811.03
Truncated Poisson 0.469 0.0128 −783.24
Shifted Poisson 0.445 0.0133 −772.27
Truncated discrete-stable 0.430 0.0134 −771.43
Shifted discrete-stable 0.432 0.1384 −771.99

Table 9. Parameter estimation for the different copula models.

Original Shifted discrete-stable (λ,α) Truncated discrete-stable (λ,α)

θ m λ α θ m λ α θ m

Gumbel (θ) 1.1762 – 0.0001 0.9395 1.1762 – 10.000 0.8508 1 –

Frank (θ) 0.8807 – 0.2879 0.5000 0.0001 – 10.000 0.8508 0.0001 –

Student (θ, m) 0.1574 9.59 0.3498 0.6079 0.0001 3.99 10.000 0.9761 0.0001 1.99
Joe (θ) 1.3585 – 0.0001 0.9916 1.3581 – 10.000 0.9093 1.0687 –
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However, it is clear that, for this data set, the above models do not describe well the dependence of
the maximum claim amounts and this is mainly explained by a low dependence level between the
two components (see Hashorva et al., 2017).

4.4 Loss ALAE from general liability insurance

We use the data set available in R collected by the Insurance Services Office that examines the losses
and their respective ALAE of a general liability insurance portfolio. For more description on the data,
we refer to Denuit et al. (2006). The data set comprises of n= 1,500 claims from which 34 claims
were censored. In the sequel, Xi represents the ith loss observed and Yi the corresponding ALAE.
Each loss Xi is associated with a policy limit ℓi. Typically, if Xi exceeds the policy limit ℓi, the
observed loss corresponds to ℓi, i.e., the exact amount of the loss is unknown. In this respect, we
define the indicator function δi as follows:

δi =
1 if Xi ≤ ‘i;

0 if Xi > ‘i; i= 1; ¼ ; n

(

To estimate the parameters of the new copula, we shall maximise the pseudo-log-likelihood
function l(Θ) defined in (15). Typically, Ui and Vi are the pseudo-observations of the variables
Xi and Yi, respectively, as defined in section 3.1. However, given that this data set is right-censored

Table 10. p-Values, RMSE and AIC values for the different copula models.

Original copula Q Distribution for N p-value RMSE AIC

Gumbel None 0.000 0.0248 −133.18
Geometric 0.003 0.0248 −131.17
Truncated Poisson 0.001 0.0248 −131.18
Shifted Poisson 0.001 0.0248 −131.17
Truncated discrete-stable – 0.0282 −63.64
Shifted discrete-stable 0.000 0.0248 −129.28

Frank None 0.000 0.0264 −29.12
Geometric 0.001 0.0264 −27.12
Truncated Poisson 0.000 0.0264 −27.12
Shifted Poisson 0.000 0.0264 −27.12
Truncated discrete-stable – 0.0282 −63.64
Shifted discrete-stable – 0.0216 −175.81

Student None 0.000 0.0266 −47.86
Geometric 0.000 0.0266 −45.84
Truncated Poisson 0.000 0.0266 −45.81
Shifted Poisson 0.000 0.0266 −45.42
Truncated discrete-stable – 0.0310 −288.44
Shifted discrete-stable 0.009 0.0221 −172.98

Joe None 0.002 0.0224 −204.85
Geometric 0.003 0.0224 −202.83
Truncated Poisson 0.001 0.0224 −202.84
Shifted Poisson 0.007 0.0224 −202.83
Truncated discrete-stable – 0.0282 −63.64
Shifted discrete-stable 0.007 0.0224 −200.84
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for the loss variable Xi, the marginal of the latter, i.e., fG1 xð Þ, shall be approximated by the
Kaplan–Meier estimator. Thus, the resulting pseudo-log-likelihood function is given by

l Θð Þ=
Xn
i= 1

δi ln cΘ ui; við Þ + 1�δið Þ ln 1� ∂CΘ ui; við Þ
∂v

� �� �
(18)

We shall estimate the parameter Θ of the new copula by maximising (18). The Table 11 describes the
estimated parameters for the different families of copulas.

Following the estimation of the parameters, one is interested in assessing the fit of those models to the
general liability data set. The table highlights the p-values, RMSE and AIC criteria for each model.
These models are then compared to the ones observed in Hashorva et al. (2017), i.e., the case where
Λ is either Geometric, Shifted Poisson or Truncated Poisson.

Table 12 shows that

∙ based on the p-values, all models are accepted at a significance level of 10%;

∙ based on the RMSE, the Joe Shifted discrete-stable copula outperforms the others having the
smallest RMSE followed by the Gumbel and Joe shifted Poisson copulas;

∙ and finally based on the AIC criteria, the Frank shifted discrete-stable copula is the model that best
fits the data, having the smallest AIC among all other models.

5 Proofs

5.1 Derivation of (16)–(17)

We derive first (16). Λ follows a shifted discrete-stable distribution with Laplace transform
defined in (11). In light of (3), we compute the 1st and 2nd derivatives of (11) with respect
to t:

L
0
Λ tð Þ=�e�te�λ 1�e�tð Þα 1 + λαe�t 1�e�tð Þα�1

� 	
;

L
00
Λ tð Þ= e�te�λ 1�e�tð Þα 1 + 3λαe�t 1�e�tð Þα�1 + λ2α2e�2t 1�e�tð Þ2α�2

�
+ λαe�2t 1�e�tð Þα�2�λα2e�2t 1�e�tð Þα�2

Table 11. Parameter estimation for the different copula models.

Original Shifted discrete-stable (λ,α) Truncated discrete-stable (λ,α)

θ m λ α θ m λ α θ m

Gumbel (θ) 1.4284 – 0.2117 0.8916 1.3613 – 0.7733 0.8427 1.1950 –

Frank (θ) 3.0440 – 0.7146 0.7000 1.2887 – 0.7206 0.7002 0.6865 –

Student (θ,m) 0.4642 10.00 0.5950 0.6502 0.2212 6.99 1.5783 0.7141 0.0001 8.99
Joe (θ) 1.6183 – 0.7333 0.9999 1.4530 – 1.3592 0.7881 1.1294 –
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By setting t= − lnQ(v1, v2) in (19) with vi = e�L�1
Λ uið Þ for i=1, 2, cΘ(u1, u2) defined in (3) is given by

cΘ u1; u2ð Þ= eλ 1�v1ð Þα + 1�v2ð Þα� 1�Q v1; v2ð Þð Þα½ �

1 + λαv1 1�v1ð Þα�1
� 	

1 + λαv2 1�v2ð Þα�1
� 	 2λαð1�Q v1; v2ð Þð Þα�1 + λ2α2Q v1; v2ð Þ

h

1�Q v1; v2ð Þð Þ2α�2 + λαQ v1; v2ð Þ 1�Q v1; v2ð Þð Þα�2�λα2Q v1; v2ð Þ 1�Q v1; v2ð Þð Þα�2
	

∂Q v1; v2ð Þ
∂v1

∂Q v1; v2ð Þ
∂v2

+ 1 + λαQ v1; v2ð Þ 1�Q v1; v2ð Þð Þα�1
� 	 ∂2Q v1; v2ð Þ

∂v1∂v2

�

=
eλ 1�v1ð Þα + 1�v2ð Þα� 1�Q v1; v2ð Þð Þα½ �

1 + λαv1 1�v1ð Þα�1
� 	

1 + λαv2 1�v2ð Þα�1
� 	 λα 1�Q v1; v2ð Þð Þα�2 2� α + 1ð ÞQ v1; v2ð Þð

h

+ λαQ v1; v2ð Þ 1�Qðv1; v2Þð ÞαÞ ∂Q v1; v2ð Þ
∂v1

∂Q v1; v2ð Þ
∂v2

+ 1 + λαQ v1; v2ð Þ 1�Q v1; v2ð Þð Þα�1
� 	 ∂2Q v1; v2ð Þ

∂v1∂v2

i
where for i=1, 2

ui = vie�λ 1�við Þα and
∂vi
∂ui

=
eλ 1�við Þα

1 + λαvi 1�við Þα�1

Table 12. p-Values, RMSE and AIC values for the different copula models.

Original copula Q Distribution for N p-value RMSE AIC

Gumbel None 0.967 0.0055 −210.18
Geometric 0.482 0.0088 −278.23
Truncated Poisson 0.939 0.0059 −360.49
Shifted Poisson 0.908 0.0062 −361.20
Truncated discrete-stable – 0.0057 −207.28
Shifted discrete-stable 0.946 0.0058 −206.92

Frank None 0.304 0.0106 −321.44
Geometric 0.185 0.0119 −174.40
Truncated Poisson 0.276 0.0105 −306.40
Shifted Poisson 0.297 0.0105 −306.41
Truncated discrete-stable – 0.0059 −206.99
Shifted discrete-stable 0.721 0.0076 −194.84

Student None 0.456 0.0089 −180.99
Geometric 0.328 0.0101 −228.82
Truncated Poisson 0.279 0.0107 −271.40
Shifted Poisson 0.223 0.0115 −295.42
Truncated discrete-stable – 0.0060 −209.58
Shifted discrete-stable 0.489 0.0088 −181.51

Joe None 0.565 0.0055 −179.00
Geometric 0.643 0.0080 −292.41
Truncated Poisson 0.702 0.0077 −331.21
Shifted Poisson 0.936 0.0058 −361.76
Truncated discrete-stable – 0.0059 −206.87
Shifted discrete-stable 0.975 0.0434 −206.01
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Next, we show (17). Hereafter, Λ follows a truncated discrete-stable distribution. Its Laplace
transform is defined in (13) and the corresponding first and second derivatives of (13) are given by

L
0
Λ tð Þ= �λαe�λ 1�e�tð Þαe�t 1�e�tð Þα�1

1�e�λ
;

L
00
Λ tð Þ= λαe�λ 1�e�tð Þαe�t 1�e�tð Þα�2

1�e�λ
1�αe�t + λαe�t 1�e�tð Þα� � ð20Þ

By replacing t in (20) with − lnQ(v1, v2), we show that (3) is given by

cΘ u1; u2ð Þ= 1�e�λ

λα

� �2 eλ 1�v1ð Þα + 1�v2ð Þα½ �

1�v1ð Þα�1 1�v2ð Þα�1

λα

1�e�λ

� �
e�λ 1�Q v1; v2ð Þð Þα 1�Q v1; v2ð Þð Þα�2

´ 1�α + λα 1�Q v1; v2ð Þð Þαð Þ ∂Q v1; v2ð Þ
∂v1

∂Q v1; v2ð Þ
∂v2

+ 1�Q v1; v2ð Þð Þ ∂
2Q v1; v2ð Þ
∂v1∂v2


 �

=
1�e�λ

λα

eλ 1�v1ð Þα + 1�v2ð Þα� 1�Q v1; v2ð Þð Þα½ �

1�v1ð Þα�1 1�v2ð Þα�1 1�Q v1; v2ð Þð Þα�2

1�α + λα 1�Q v1; v2ð Þð Þαð Þ ∂Q v1; v2ð Þ
∂v1

∂Q v1; v2ð Þ
∂v2

+ 1�Q v1; v2ð Þð Þ ∂
2Q v1; v2ð Þ
∂v1∂v2


 �

where for i= 1, 2

vi =1� �ln e�λ + ui 1�e�λ
� �� �

λ

� �1
α

and
∂vi
∂ui

=
1�e�λ

λα

eλ 1�við Þα

1�við Þα�1
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Appendix

In light of section 4, we describe below some distributional properties of the original copula
Qθ(v1,v2) that we considered for illustration purposes.

A.1 Gumbel copula

The Gumbel copula is an Archimedean copula with generator ψθ(t)= (− lnt)θ and distribution
function defined as follows:

Qθ v1; v2ð Þ= e� �ln v1ð Þθ + �ln v2ð Þθ½ �1θ

where θ≥1 is the dependence parameter.

The partial derivative of Qθ with respect to v1 is given by

∂Qθ v1; v2ð Þ
∂v1

=
1
v1

�ln v1ð Þθ�1 �ln v1ð Þθ + �ln v2ð Þθ
h i 1

θ�1
e� �ln v1ð Þθ + �ln v2ð Þθ½ �1θ (21)

By differentiating (21) with respect to v2, we get the joint density copula qθ(v1,v2) defined below

qθ v1; v2ð Þ= �ln v1ð Þθ�1 �ln v2ð Þθ�1

v1v2
´

�ln v1ð Þθ + �ln v2ð Þθ
h i2

θ�2
+ θ�1ð Þ �ln v1ð Þθ + �ln v2ð Þθ

h i1
θ�2

� �
e� �ln v1ð Þθ + �ln v2ð Þθ½ �1θ
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A.2 Frank copula

The Frank copula is an Archimedean copula with generator ψθ tð Þ=�ln e�θt�1
e�θ�1

� 	
and distribution

function given by

Qθ v1; v2ð Þ= �1
θ

ln 1 +
e�θv1�1
� �

e�θv2�1
� �

e�θ�1

� �
where θ≠1 is the dependence parameter.

The partial derivative of Qθ with respect to v1 is defined as follows:

∂Qθ v1; v2ð Þ
∂v1

=
e�θv1 e�θv2�1

� �
e�θ�1ð Þ + e�θv1�1ð Þ e�θv2�1ð Þ (22)

By differentiating (22) with respect to v2, the joint density copula qθ(v1, v2) can be expressed as
follows:

qθ v1; v2ð Þ= θ 1�e�θ
� �

e�θ v1 + v2ð Þ

1�e�θð Þ� 1�e�θv1ð Þ 1�e�θv2ð Þ½ �2

A.3 Joe copula

The Joe copula is an Archimedean copula with generator ψθ(t)= − ln(1− (1 − t)θ) and distribution
function defined as follows:

Qθ v1; v2ð Þ= 1� 1�v1ð Þθ + 1�v2ð Þθ� 1�v1ð Þθ 1�v2ð Þθ
h i1

θ

where θ≥ 1 is the dependence parameter.

The partial derivative of Qθ with respect to v1 is given by

∂Qθ v1; v2ð Þ
∂v1

= 1�v1ð Þθ�1 1� 1�v2ð Þθ
� 	

1�v1ð Þθ + 1�v2ð Þθ� 1�v1ð Þθ 1�v2ð Þθ
� 	1

θ�1
(23)

By differentiating (23) with respect to v2, the joint density copula can be written as

qθ v1; v2ð Þ= 1�v1ð Þθ�1 1�v2ð Þθ�1 θ�1 + 1�v1ð Þθ + 1�v2ð Þθ� 1�v1ð Þθ 1�v2ð Þθ
� 	

´ 1�v1ð Þθ + 1�v2ð Þθ� 1�v1ð Þθ 1�v2ð Þθ
� 	1

θ�2

A.4. Clayton copula

The Clayton copula is an Archimedean copula with generator ψθ tð Þ= 1
θ t�θ�1
� �

and distribution
function defined as follows:

Qθ v1; v2ð Þ= max u�θ + v�θ�1; 0
� �� ��1

θ

: = u�θ + v�θ�1; 0
� ��1

θ

where θ∈ [−1, ∞)\{0} is the dependence parameter.
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The partial derivative of Qθ with respect to v1 is given by

∂Qθ v1; v2ð Þ
∂v1

= v� θ + 1ð Þ
1 v�θ

1 + v�θ
2 �1

� ��1
θ�1

(24)

By differentiating (24) with respect to v2, the joint density copula can be expressed as follows:

qθ v1; v2ð Þ= θ + 1ð Þ v1 v2ð Þ� θ + 1ð Þ v�θ
1 + v�θ

2 �1
� ��1

θ�2

A.5. Student copula

The distribution function of the Student copula with dependence parameter θ∈ (−1, 1) andm degrees
of freedom is defined as follows:

Qθ;m v1; v2ð Þ= tθ;m t�1
m v1ð Þ; t�1

m v2ð Þ� �
=
ðt�1

m ðv1Þ

�1

ðt�1
m ðv2Þ

�1

1

2π 1�θ2
� �1 =2 1 +

s2�2θst + t2

m 1�θ2
� �" #�ðm + 2Þ = 2

dsdt

The partial derivative with respect to v1 is given by

∂Qθ;m v1; v2ð Þ
∂v1

= tm + 1 t�1
m v2ð Þ�θt�1

m v1ð Þ� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m + ðt�1

m ðv1ÞÞ2
� 	

1�θ2
� �

m + 1

vuut0BB@
1CCA

, 3775
2664 (25)

By differentiating (25) with respect to v2, we get the joint density copula qθ(v1,v2) defined below

qθ;m v1; v2ð Þ= 1

2π
ffiffiffiffiffiffiffiffiffiffiffi
1�θ2

p 1
dt t�1

m v1ð Þ� �
dt t�1

m v2ð Þ� � 1 +
t�1
m v1ð Þ2 + t�1

m v2ð Þ2�2θt�1
m v1ð Þt�1

m v2ð Þ
m 1�θ2
� � !�m + 2

2

where dt t�1
m við Þ� �

=
Γ m + 1

2ð Þ
Γ m

2ð Þ ffiffiffiffiffiπm
p 1 + t�1

m við Þ2
m

� 	�m + 1
2

for i= 1, 2.
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