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The nonlinear response of a compressible boundary layer to unsteady free-stream
vortical fluctuations of the convected-gust type is investigated theoretically and
numerically. The free-stream Mach number is assumed to be of O(1) and the effects
of compressibility, including aerodynamic heating and heat transfer at the wall,
are taken into account. Attention is focused on low-frequency perturbations, which
induce strong streamwise-elongated components of the boundary-layer disturbances,
known as streaks or Klebanoff modes. The amplitude of the disturbances is
intense enough for nonlinear interactions to occur within the boundary layer. The
generation and nonlinear evolution of the streaks, which acquire an O(1) magnitude,
are described on a self-consistent and first-principle basis using the mathematical
framework of the nonlinear unsteady compressible boundary-region equations, which
are derived herein for the first time. The free-stream flow is studied by including
the boundary-layer displacement effect and the solution is matched asymptotically
with the boundary-layer flow. The nonlinear interactions inside the boundary layer
drive an unsteady two-dimensional flow of acoustic nature in the outer inviscid
region through the displacement effect. A close analogy with the flow over a thin
oscillating airfoil is exploited to find analytical solutions. This analogy has been
widely employed to investigate steady flows over boundary layers, but is considered
herein for the first time for unsteady boundary layers. In the subsonic regime the
perturbation is felt from the plate in all directions, while at supersonic speeds the
disturbance only propagates within the dihedron defined by the Mach line. Numerical
computations are performed for carefully chosen parameters that characterize three
practical applications: turbomachinery systems, supersonic flight conditions and wind
tunnel experiments. The results show that nonlinearity plays a marked stabilizing
role on the velocity and temperature streaks, and this is found to be the case for
low-disturbance environments such as flight conditions. Increasing the free-stream
Mach number inhibits the kinematic fluctuations but enhances the thermal streaks,
relative to the free-stream velocity and temperature respectively, and the overall
effect of nonlinearity becomes weaker. An abrupt deviation of the nonlinear solution
from the linear one is observed in the case pertaining to a supersonic wind tunnel.
Large-amplitude thermal streaks and the strong abrupt stabilizing effect of nonlinearity
are two new features of supersonic flows. The present study provides an accurate
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signature of nonlinear streaks in compressible boundary layers, which is indispensable
for the secondary instability analysis of unsteady streaky boundary-layer flows.

Key words: compressible boundary layers, transition to turbulence

1. Introduction

The transition from a laminar to a turbulent state in boundary layers, although
studied for over a century, still represents one of the outstanding unsolved problems in
fluid mechanics. A thorough understanding of the physics underlying this phenomenon
is of great importance from a fundamental as well as from a practical point of view.
The wall shear stress and heat transfer characteristics change dramatically depending
on the flow regime being laminar, transitional or turbulent. Therefore, quantitative
prediction and control of transition play a decisive role in determining the operating
conditions and performance of flows around high-speed airfoils in a variety of
industrial applications. Relevant examples are commercial and high-speed aircraft,
space capsule re-entry into the atmosphere and flows around turbine stator vanes or
rotor blades.

Boundary-layer transition is known to be strongly influenced by disturbances present
in the oncoming stream, which penetrate into the boundary layer and eventually
lead to the breakdown of the laminar flow. Such perturbations consist of acoustic
(pressure), kinematic (vortical) and entropy (temperature) fluctuations, and may exist
independently of each other when they are of sufficiently small amplitude.

In this paper we are concerned with free-stream vortical perturbations whose
intensities are high enough (Tu = 1 % or more, where Tu is the root-mean-square
value of the velocity fluctuations) for transition to occur rather early, bypassing
the so-called orderly route via viscous Tollmien–Schlichting (T–S) waves. In this
scenario, referred to as bypass transition (Morkovin 1984), the laminar boundary-layer
breakdown is preceded and caused by unsteady streamwise-elongated regions of high
and low streamwise velocity. These structures have been referred to as breathing
modes (Taylor 1939) because of their resemblance to a thickening and thinning of
the layer, Klebanoff modes (Kendall 1985) after the experiments of Klebanoff (1971),
or laminar streaks. The focus of our work is on the generation and nonlinear evolution
of streaks in the compressible regime because in high-speed flows transition occurs
more frequently through the bypass route than via the T–S wave growth described by
the classical stability theory.

1.1. Experiments and direct numerical simulations
Experimental works (Arnal & Juillen 1978; Kendall 1985, 1990, 1991; Westin et al.
1994, 1998; Matsubara & Alfredsson 2001; Fransson, Matsubara & Alfredsson 2005)
and direct numerical simulations (DNS) using realistic free-stream disturbances
(Nagarajan, Lele & Ferziger 2007; Ovchinnikov, Choudhari & Piomelli 2008;
Brinkerhoff & Yaras 2015) have provided an overall picture of bypass transition
induced by free-stream turbulence in the incompressible regime. The reader is
also referred to DNS studies (e.g. Jacobs & Durbin 2001; Brandt, Schlatter &
Henningson 2004; Zaki & Durbin 2005) using inflow conditions synthesized through
the continuous modes of the Orr–Sommerfeld/Squire equations. Despite its importance

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

88
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2017.88


82 E. Marensi, P. Ricco and X. Wu

in high-speed aircraft design and turbomachinery applications, the literature available
on bypass transition in compressible flows is more limited than for incompressible
flows. Supersonic wind tunnel experiments (Laufer 1961; Kendall 1967; Pate &
Schueler 1969; Schneider 2001) showed that the transition behaviour is dominated by
the noise radiated from the turbulent boundary layers on the walls. Transition may
occur earlier in laboratory experiments than in flight conditions because of the high
levels of tunnel noise (Schneider 2001). This discrepancy prevents the direct use of
laboratory data for high-speed vehicle design. Although most of the experimental
studies in the last few decades have focussed on acoustic disturbances, it should
be recognized that more attention needs to be devoted to vortical disturbances. As
speculated by Kendall (1975), at low speeds the tunnel sound might be less effective
than other type of disturbances, such as the vortical fluctuations. In flight conditions
vortical disturbances are the main source of perturbation influencing transition, while
acoustic modes are weak and only become relevant at locations affected by the noise
radiated by the engine.

Mayer, Von Terzi & Fasel (2011) performed DNS of the downstream development
of a pair of oblique instability waves in a supersonic flat-plate boundary layer. They
showed that transition in supersonic two-dimensional boundary layers can be initiated
by very low disturbance levels (e.g. less than 0.01 %), which explains the practical
relevance of the oblique breakdown mechanism for quiet environment such as free
flight. Joo & Durbin (2012) carried out DNS of the transition initiated by discrete
instability modes and continuous vortical modes in a Mach 4.5 boundary layer. As
in Jacobs & Durbin (2001) and Zaki & Durbin (2005), their approach consisted of
specifying the inflow conditions in terms of a superposition of the continuous spectra
of the Orr–Sommerfeld and Squire operators. Such a practice has been questioned by
Dong & Wu (2013) and Wu & Dong (2016), who showed that continuous spectra
exhibit non-physical features (i.e. entanglement of Fourier components and abnormal
size of the streamwise free-stream velocity) because non-parallel flow effects in the
boundary layer are neglected. Non-parallelism actually plays a leading-order role in
the entrainment of free-stream vortical disturbances into the boundary layer.

1.2. Theoretical works
In order to include the interaction between free-stream disturbances and the boundary
layer, a rigorous mathematical formulation has been developed by Goldstein and
co-workers (Goldstein, Leib & Cowley 1992; Goldstein & Leib 1993; Goldstein 1997;
Wundrow & Goldstein 2001). Goldstein’s theory is based on the boundary-region
equations (Kemp 1951), which are the rigorous asymptotic limit of the Navier–Stokes
equations for low-frequency and long-wavelength perturbations. For these disturbances,
the streamwise derivatives in the viscous and pressure gradient terms are negligible,
while the spanwise viscous diffusion is retained. In the limit of small-amplitude
disturbances or short downstream distance, the boundary-region equations can be
linearized about the Blasius solution. Leib, Wundrow & Goldstein (1999) used the
linearized unsteady boundary-region equations (LUBR) to investigate the response of
an incompressible laminar boundary layer to free-stream unsteady vortical fluctuations
of the convected-gust type. Wu & Choudhari (2003) and Wu & Luo (2003) studied
the instability of a Blasius boundary layer in the presence of steady and unsteady
streaks, and showed that inviscid instability may occur when the distortion of the
Klebanoff modes reaches a certain threshold value.

The linear analysis of Leib et al. (1999) was extended by Ricco, Luo & Wu (2011)
to include nonlinear effects. Nonlinearity was found to attenuate the amplification of
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the streaks and to distort the mean-flow profile significantly. A secondary instability
analysis was carried out on the nonlinear streaks, proving that the streaky boundary
layer may become inviscidly unstable during certain phases of the time modulation.

Ricco & Wu (2007) extended the incompressible analysis by Leib et al. (1999)
to the compressible case and explained the formation and growth of thermal streaks,
which are thought to play a significant role in the secondary instability. Ricco,
Tran & Ye (2009) and Ricco, Shah & Hicks (2013) further studied the influence
of wall heat transfer and wall suction, respectively, on the thermal streaks. The
boundary-layer signature in the region relatively close to the leading edge corresponds
to the inhomogeneous solution forced by the free-stream disturbance. However, Ricco
& Wu (2007) also observed that sufficiently downstream exponentially growing
disturbances are formed. For high subsonic and supersonic Mach numbers, the
appearance of the amplifying disturbances was in the streamwise region of practical
interest. Ricco & Wu (2007) showed that the growing disturbances evolved from the
so-called quasi-three-dimensional Lam–Rott eigensolutions, which are excited by the
free-stream disturbance and may be identified as highly oblique low-frequency T–S
waves in the so-called first-mode family (Mack 1975, 1984). Ricco et al. (2009) found
that wall cooling suppresses the streaks and enhances the growth of the instability
waves.

The parabolized-stability equations (PSE) approach has been developed and used
to study the evolution of instability modes in compressible boundary layers (see
e.g. Chang et al. 1991). This methodology is based on the assumption that the base
flow varies slowly in the streamwise direction and thus a Wentzel–Kramers–Brillouin
(WKB) type of analysis is employed to parabolize the Navier–Stokes equations.
The method requires, however, an ad hoc iterative procedure to identify a local
streamwise wavenumber, and, furthermore, the presence of the streamwise pressure
gradient causes some numerical instability due to a residual ellipticity in the equations
(Li & Malik 1996). Neither of these problems occurs in the boundary-region equation
approach because the local streamwise wavenumber tends to zero in the low-frequency
asymptotic limit, and the equations are strictly parabolic. It should be pointed out that
what we referred to as the boundary-region equation approach consists of appropriate
initial (upstream) and boundary conditions, which correctly describe the entrainment
of physically realizable free-stream disturbances. This is in contrast to the so-called
optimal perturbation theory (Andersson, Berggren & Henningson 1999; Zuccher,
Bottaro & Luchini 2006), which uses the adjoint of the boundary-region equations
or of the PSE to find the initial (upstream) disturbances that undergo the maximum
gain when evolving to a pre-selected streamwise location. Free-stream disturbances,
the very factor causing bypass transition, are not taken into account in the latter
formulation.

1.3. Objectives
As in the incompressible case, bypass transition in compressible boundary layers is of
relevance for engineering applications, but it is also challenging theoretically because
of the difficult mathematics involved and the complex physical mechanisms at play. As
an essential step towards understanding and predicting compressible bypass transition,
we formulate a rigorous description of the formation and nonlinear development of
the unsteady compressible streaks induced by free-stream vortical fluctuations. Such
a mathematical theory for compressible disturbances responsible for bypass transition
is still absent. A further goal is to explain the nonlinear interactions between the
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free-stream flow and the viscous boundary-layer flow, which occur through the
displacement effect.

In § 2, the mathematical formulation and the scalings adopted are presented. In
§ 2.1 the free-stream perturbation is described and in § 2.2 the nonlinear unsteady
compressible boundary-region equations are derived. In § 2.3 the outer-flow solution
is obtained and matched with the inner solution in § 2.4. The numerical procedure
to solve the boundary-region problem is outlined in § 3. The outer-flow velocity and
pressure fields are shown in § 4 for the subsonic and supersonic regimes. In § 5.1
three different cases are considered, i.e. a turbomachinery flow (§ 5.1.1), a free flight
flow (§ 5.1.2) and a supersonic wind tunnel flow (§ 5.1.3). The relevant results for
the unsteady compressible streaks are presented in §§ 5.2 and 5.3. A summary and
conclusions are given in § 6.

2. Formulation: scalings and governing equations
An air flow with a mean uniform velocity U∗∞ and constant temperature T∗∞

is considered; hereinafter, the symbol ∗ is used to indicate dimensional quantities.
Superimposed on the mean flow are homogeneous, statistically stationary turbulent
vortical fluctuations, which are of the convected-gust type, i.e. they are passively
advected by U∗∞. The oncoming flow is considered isentropic and air is treated as a
perfect gas. The speed of sound in the free stream is:

a∗∞ =
√
γR∗T∗∞, (2.1)

where γ = 1.4 is the ratio of the specific heats and R∗ is the universal gas constant
(R∗ = 287.05 N m kg−1 K−1). The Mach number is defined as

M∞ ≡ U∗∞
a∗∞
=O(1). (2.2)

In the Cartesian coordinate system employed to describe the flow, a point is
represented by a position vector x∗ = x∗i+ y∗j+ z∗k, where x∗, y∗ and z∗ define the
streamwise, wall-normal and spanwise directions, respectively. The spatial coordinates
are non-dimensionalized by a suitable reference length scale λ∗, which we shall
specify below. The velocity and temperature reference scales are U∗∞ and T∗∞. The
fluid properties, such as the density ρ∗ and the dynamic viscosity µ∗, are scaled by
their respective constant free-stream values, ρ∗∞ and µ∗∞. The time t∗ and the pressure
p∗ are non-dimensionalized by λ∗/U∗∞ and ρ∗∞U∗2∞ , respectively.

It should be pointed out that in the supersonic regime shocks appear when the
aerodynamic body (including a flat plate) has a finite thickness, and that at sufficiently
high Mach numbers shocks can also arise for the idealized case of a flat plate
with zero thickness due to the significant displacement produced by the viscous
boundary-layer motion near the leading edge. The presence of a shock may change
the boundary-layer instability properties if it is sufficiently close to the boundary
layer (Chang, Malik & Hussaini 1990; Cowley & Hall 1990). Moreover, when any
of the three types of perturbations, e.g. a vortical fluctuation, interacts with a shock,
all three disturbances may appear downstream of the shock (McKenzie & Westphal
1968). The acoustic and entropy perturbations may influence transition via receptivity
mechanisms (Fedorov & Khokhlov 2003; Zhong & Wang 2012; Qin & Wu 2016).
In the present study, effects of shocks are neglected on the grounds that the plate
is sufficiently thin and the Mach number is moderate so that shocks are weak and
distant from the boundary. In this case, the interaction of unsteady disturbances with
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the shock is decoupled from their subsequent interaction with the boundary layer
(Qin & Wu 2016). The response of the boundary layer to each type of free-stream
disturbance downstream of a shock can be analysed separately.

2.1. Free-stream disturbances and scaling
Free-stream turbulence is in general of broadband nature. For simplicity, we
consider the case of vortical perturbation consisting of a pair of vortical modes
with the same frequency (and hence streamwise wavenumber), but opposite spanwise
wavenumber ±k∗z . In the incompressible analysis of Ricco et al. (2011), this choice of
free-stream disturbance has led to good quantitative agreement between the theoretical
prediction and wind tunnel experimental data. A similar behaviour is expected in the
compressible case. The formulation and computation can be extended to realistic
free-stream perturbations, which are of broadband nature as was shown by Zhang
et al. (2011) for incompressible flows.

The velocity field of free-stream convected gusts of the assumed form can be
expressed as

u− i= εu∞(x− t, y, z)= ε (û∞+ eikzz + û∞− e−ikzz
)

eikx(x−t)+ikyy + c.c., (2.3)

where û∞± = {û∞x,±, û∞y,±, û∞z,±} = O(1) is a real vector, ε� 1 is a measure of the free-
stream perturbation level and c.c. indicates the complex conjugate. From the continuity
equation, it follows that

kxû∞x,± + kyû∞y,± ± kzû∞z,± = 0. (2.4)

It is appropriate and convenient to take λ∗ = 1/k∗z , so that kz = 1. The characteristic
Reynolds number is

Rλ ≡ U∗∞λ
∗

ν∗∞
� 1. (2.5)

Only the components of the free-stream disturbance with kx�1 are considered as they
have been shown in experiments to be the ones that can penetrate the most into the
boundary layer to form streaks.

According to the result of Leib et al. (1999), the velocity perturbation is maximum
when x=O(k−1

x ). The following scaling is thus introduced:

x̄≡ kxx=O(1). (2.6)

As a measure of the ratio between the boundary-layer thickness δ∗ and the spanwise
length scale λ∗ at x̄=O(1), a scaled spanwise wavenumber is defined as

κ ≡ 1
λ∗

√
λ∗xν∗∞

2πU∗∞
= kz√

kxRλ
. (2.7)

The interest is in the downstream viscous region where δ∗ = O(λ∗) so that viscous
diffusion effects in the spanwise and wall-normal directions are comparable. This
occurs at streamwise locations x∗ = O(λ∗Rλ), which, together with (2.6), leads to
kx = O(R−1

λ ), or, equivalently, κ = O(1). As shown by Leib et al. (1999), O(ε)
free-stream disturbances can produce O(ε/kx) fluctuations of the streamwise velocity
component within the boundary layer. Nonlinear effects become of leading order
when ε/kx =O(1), i.e. when the turbulent Reynolds number

rt ≡ εRλ =O(1), (2.8)
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Free-stream
convected

gusts

Inner
region

Outer
region

FIGURE 1. Sketch of the flow configuration representing the asymptotic regions (adapted
from Leib et al. 1999).

since kx = O(R−1
λ ). A schematic illustration of the flow domain and its asymptotic

structure is shown in figure 1.

2.2. The inner region: nonlinear unsteady compressible streaks
In the boundary layer the solution is expressed as the superimposition of the unsteady
perturbation on the steady laminar compressible boundary layer. The velocities and
temperature of the Blasius flow have the similarity solution (Stewartson 1964)

{U, V} =
{

F′(η),
T(ηcF′ − F)√

2xRλ

}
, T = T(η), (2.9a,b)

where the prime indicates differentiation with respect to the similarity variable η,

η≡
√

Rλ
2x

∫ y

0
ρ(x, y̌) dy̌, (2.10)

and ηc = T−1
∫ η

0 T(η̌) dη̌. The x-momentum and the energy equations are:

FF′′ +
(µ

T
F′′
)′ = 0, (2.11a)(

µT ′

T

)′
+ PrFT ′ + Pr(γ − 1)M2

∞
µ

T
F′′2 = 0, (2.11b)
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where the Prandtl number Pr = 0.7. The system is subject to the boundary
conditions,

F(0)= F′(0)= 0, T(0)= Tw, (2.12a,b)

F′→ 1, T→ 1 as η→∞, (2.13a,b)

where Tw is the imposed wall temperature (isothermal condition). For η� 1, F→ η̄≡
η− βc, where βc depends on M∞. Using the equation of state, the density ρ is given
by

ρ = 1
T
. (2.14)

The viscosity µ=µ(T) is assumed to follow a power law,

µ= Tω with ω= 0.76. (2.15)

This relation has been proved to be more appropriate than the linear Chapman law
(ω= 1) in the Mach number range of interest M∞ < 4 (Stewartson 1964).

The total boundary-layer flow is decomposed as the sum of the Blasius flow and
the perturbation induced by the free-stream disturbance, namely,

{utot, vtot,wtot, ptot, τtot} =
{

U, V, 0,−1
2
, T
}
+ rt

{
ū(x̄, η, z, t),

√
2x̄kx

Rλ
v̄(x̄, η, z, t),

kx

kz
w̄(x̄, η, z, t),

kx

Rλ
p̄(x̄, η, z, t), τ̄ (x̄, η, z, t)

}
, (2.16)

where τtot stands for the temperature. The Blasius flow does not correspond to the
mean flow; the latter also consists of the time-independent components generated
by the nonlinear interactions, which are included in the perturbation. The scaling
(2.8) and the decomposition (2.16) indicate that for low-frequency free-stream
disturbances with spanwise wavelength comparable with the boundary-layer thickness
and streamwise wavelength of O(λ∗Rλ), the streamwise velocity and the temperature
of the induced streaks acquire an amplitude of O(εRλ), which is much larger than
O(ε) transverse velocity components (and the intensity of free-stream disturbances).
The boundary-layer signature therefore bears all hallmarks of streaks observed in
experiments. For the assumed simple composition of free-stream disturbance, the
seeded oblique-mode pair would be dominant in the earlier stage, and is expected to
remain the most significant in the nonlinear stage downstream. However, nonlinear
interactions generate harmonics and the mean-flow distortion. The disturbance can be
expressed as a Fourier series in time and z,

{ū, v̄, w̄, p̄, τ̄ } =
∑
m,n

{
ûm,n, v̂m,n, ŵm,n, p̂m,n, τ̂m,n

}
eimkxt+inkzz, (2.17)

where {ûm,n, v̂m,n, ŵm,n, p̂m,n, τ̂m,n} are functions of x̄ and η. Unless otherwise specified,
hereinafter the upper and lower limits of the summations are ±∞. As the physical
quantities are real, the Fourier coefficients are Hermitian,

q̂−m,−n = q̂?m,n, (2.18)

where q̂ indicates any of {û, v̂, ŵ, p̂, τ̂ } and the symbol ? denotes the complex
conjugate. The total density is decomposed as ρtot = ρ + rtρ̄, where ρ is given
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by (2.14). Substituting the total flow into the equation of state, one finds

ρ̄ = γM2
∞kx

TRλ
p̄− τ̄

T2
− rt

ρ̄τ̄

T
. (2.19)

It follows that the total density is:

ρtot = 1
T
+ rt

(
γM2

∞kx

TRλ
p̄− τ̄

T2

)
− r2

t
ρ̄τ̄

T
. (2.20)

The total viscosity is expressed by applying (2.15) to the total flow and by expanding
it using the binomial formula as

µtot = (T + rtτ̄ )
ω =

∞∑
j=0

(ω)j

j! Tω−jr j
t τ̄

j =µ+ rtµ
′τ̄ + r 2

t µ̄, (2.21)

where (ω)j=ω(ω− 1)(ω− 2) . . . (ω− j+ 1), µ′= dµ/dT and µ̄ is the nonlinear part
of the viscosity perturbation, which is decomposed as

µ̄=
∑
m,n

µ̂m,n(x̄, η)eimkxt+inkzz. (2.22)

The nonlinearity of the viscosity comes from the power law exponent ω 6= 1 and the
turbulent Reynolds number rt=O(1). The nonlinear part µ̄ is null when either (i) ω=
1 ∀ rt or (ii) rt = 0 ∀ω in (2.21). As long as |rtτ̄ |< 1, which applies to all the cases
considered, the series in (2.21) is absolutely convergent.

By inserting (2.16) and (2.17) into the continuity, momentum and energy equations,
using (2.20)–(2.22), and taking the limits kx � kz, Rλ � 1 with kxRλ = O(1), the
nonlinear unsteady compressible boundary-region equations are found as follows.

The continuity equation

ηc

2x̄
T ′

T
ûm,n + ∂ ûm,n

∂ x̄
− ηc

2x̄
∂ ûm,n

∂η
− T ′

T2
v̂m,n + 1

T
∂v̂m,n

∂η
+ inŵm,n −

(
im
T
+ FT ′

2x̄T2

)
τ̂m,n

− F′

T
∂τ̂m,n

∂ x̄
+ F

2x̄T
∂τ̂m,n

∂η
= rtĈm,n, (2.23)

the x-momentum equation(
im− ηc

2x̄
F′′ + κ2n2Tµ

)
ûm,n + F′

∂ ûm,n

∂ x̄
− 1

2x̄

(
F+ µ

′T ′

T
− µT ′

T2

)
∂ ûm,n

∂η
− µ

2x̄T
∂2ûm,n

∂η2

+ F′′

T
v̂m,n +

(
FF′′ −µ′F′′′ −µ′′F′′T ′

2x̄T
+ µ

′T ′F′′

2x̄T2

)
τ̂m,n − µ

′F′′

2x̄T
∂τ̂m,n

∂η
= rtX̂m,n, (2.24)

the y-momentum equation

1
4x̄2

[
FT + ηc(FT ′ − TF′)− η2

cF′′T
]

ûm,n + µ
′T ′

3x̄
∂ ûm,n

∂ x̄
− µ

6x̄
∂2ûm,n

∂η∂ x̄

+ 1
12x̄2

(
µ+ ηcT ′µ′ − µT ′ηc

T

)
∂ ûm,n

∂η
+ ηcµ

12x̄2

∂2ûm,n

∂η2
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+
(

im+ ηc

2x̄
F′′ + F′

2x̄
− FT ′

2x̄T
+ κ2n2µT

)
v̂m,n + F′

∂v̂m,n

∂ x̄

− 1
x̄

(
F
2
+ 2µ′T ′

3T
− 2µT ′

3T2

)
∂v̂m,n

∂η
− 2µ

3x̄T
∂2v̂m,n

∂η2
+ in

µ′T ′

3x̄
ŵm,n − in

µ

6x̄
∂ŵm,n

∂η

+ 1
4x̄2

[
ηc

(
(FF′)′ − T

(
µ′F′′

T

)′)
− FF′ − F2T ′

T
−µ′F′′ + 4

3

(
µ′T ′F

T

)′]
τ̂m,n

− µ
′F′′

2x̄
∂τ̂m,n

∂ x̄
+
(
µ′T ′F
3x̄2T

− ηcµ
′F′′

4x̄2

)
∂τ̂m,n

∂η
+ 1

2x̄
∂ p̂m,n

∂η
= rtŶm,n, (2.25)

the z-momentum equation

inκ2 ηcµ
′T ′T

2x̄
ûm,n − inκ2µT

3
∂ ûm,n

∂ x̄
+ inκ2 ηcµT

6x̄
∂ ûm,n

∂η
− inκ2µ′T ′v̂m,m − inκ2µ

3
∂v̂m,n

∂η

+
(

im+ 4n2κ2µT
3

)
ŵm,n + F′

∂ŵm,n

∂ x̄
− 1

2x̄

(
F+ µ

′T ′

T
− µT ′

T2

)
∂ŵm,n

∂η

− µ

2x̄T
∂2ŵm,n

∂η2
− inκ2FT ′µ′

3x̄
τ̂m,n + inκ2Tp̂m,n = rtẐm,n, (2.26)

and the energy equation

−ηcT ′

2x̄
ûm,n − M2

∞(γ − 1)µF′′

x̄T
∂ ûm,n

∂η
+ T ′

T
v̂m,n

+
[

im+ FT ′

2x̄T
− 1

2Prx̄

(
µ′T ′

T

)′
− M2

∞(γ − 1)µ′(F′′)2

2x̄T
+ µn2κ2T

Pr

]
τ̂m,n

+F′
∂τ̂m,n

∂ x̄
− 1

2x̄

(
F+ 2µ′T ′

PrT
− µT ′

PrT2

)
∂τ̂m,n

∂η
− µ

2Prx̄T
∂2τ̂m,n

∂η2
= rtÊm,n, (2.27)

where the terms Ĉm,n, X̂m,n, Ŷm,n, Ẑm,n, Êm,n arise due to nonlinearity and are given
in appendix A. The right-hand sides of (2.23)–(2.27), where the nonlinear terms are
collected, vanish as rt → 0 so that the linearized compressible unsteady boundary-
region equations of Ricco & Wu (2007) are recovered. Note that the above fully
nonlinear equations are to be used to predict the entire development of streaks even
though the disturbance evolves through a linear stage near the leading edge.

2.3. The outer flow
The outer-flow dynamics is influenced by the displacement of the underlying
boundary-layer flow. The displacement effect becomes of leading order at downstream
distances where x̄ = O(1) and the streamwise velocity fluctuations acquire an O(1)
amplitude. The disturbance in the outer region consists of the three-dimensional
vortical perturbation convected from upstream and of the two-dimensional disturbance
arising from the boundary-layer displacement effect due to the nonlinear interactions
in the boundary layer. The two-dimensional component attenuates over a wall-normal
distance O(λ∗Rλ), and thus depends on the relatively slow wall-normal variable
ȳ = kxy = O(1). The three-dimensional component depends on y and, a priori, also
on ȳ because its governing equations involve the two-dimensional component as we
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will discuss later. Following the approach of Wundrow & Goldstein (2001) and Ricco
et al. (2011), the outer-region solution is expanded as:

{uout, vout,wout, pout, τout} =Q+ εq̄0(x̄, ȳ, t̄)+ εq0(x̄, y, ȳ, z, t̄)+ ε2q1(x̄, y, ȳ, z, t̄)+ · · · ,
(2.28)

where t̄≡ kxt=O(1), Q is the uniform mean flow, and q̄0 and qi (i= 0, 1, . . .) indicate
the two-dimensional and three-dimensional disturbances, respectively.

2.3.1. Linearized inviscid subsonic and supersonic flows
The two-dimensional inviscid part of the perturbation is considered first: the

subsonic and supersonic regimes are analysed by extending the approach of Ricco
et al. (2011) to take compressibility into account. The transonic case is however
beyond the scope of the present analysis. The two-dimensional terms {ū0, v̄0, p̄0, τ̄0, ρ̄0}
satisfy the linearized unsteady compressible Euler equations:

∂ ū0

∂ x̄
+ ∂v̄0

∂ ȳ
+M2

∞

(
∂ p̄0

∂ t̄
+ ∂ p̄0

∂ x̄

)
= 0,

∂ ū0

∂ t̄
+ ∂ ū0

∂ x̄
+ ∂ p̄0

∂ x̄
= 0,

∂v̄0

∂ t̄
+ ∂v̄0

∂ x̄
+ ∂ p̄0

∂ ȳ
= 0,

(2.29a−c)
where the density has been eliminated from the continuity equation by using the
energy equation and the equation of state,

∂τ̄0

∂ t̄
+ ∂τ̄0

∂ x̄
− (γ − 1)M2

∞

(
∂ p̄0

∂ t̄
+ ∂ p̄0

∂ x̄

)
= 0, ρ̄0 = γM2

∞p̄0 − τ̄0. (2.30a,b)

The displacement effect is associated with the transpiration velocity, i.e. the
spanwise-averaged wall-normal velocity component at the boundary-layer outer edge.
The continuity equation,

∂ρtot

∂t
+ ∂(ρtotutot)

∂x
+ ∂(ρtotvtot)

∂y
+ ∂(ρtotwtot)

∂z
= 0, (2.31)

is integrated first with respect to z over a spanwise period λz= 2π/kz and with respect
to y from 0 to ∞. For the term ∂(ρtotwtot)/∂z a change in the order of integration is
performed. At supersonic speeds this step is justified by the assumption that shock
waves, if present, are of infinitesimal strength and therefore the flow remains smooth
and isentropic. It follows that

1
λz

∫ λz

0
(ρtotvtot)|y→∞ dz=− kx

λz

[∫ λz

0

∫ ∞
0

∂(ρtotutot)

∂ x̄
dy dz+

∫ λz

0

∫ ∞
0

∂ρtot

∂ t̄
dy dz

]
.

(2.32)
The first term on the right-hand side of (2.32) represents the derivative with respect
to x̄ of the spanwise-averaged boundary-layer displacement thickness, defined as

δ̄(x̄, t̄)= 1
λz

∫ λz

0

∫ ∞
0

[1− (ρtotutot)] dy dz. (2.33)

The second term on the right-hand side of (2.32) is due to compressibility effects and
is not present in Ricco et al. (2011). It can be written as the derivative with respect
to t̄ of a spanwise-averaged boundary-layer thickness δ̄c defined as

δ̄c(x̄, t̄)= 1
λz

∫ λz

0

∫ ∞
0
(1− ρtot) dy dz. (2.34)
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Matching the left-hand side of (2.32) with the outer flow gives

1
λz

∫ λz

0
(ρtotvtot)|y→∞ dz= 1

λz

∫ λz

0
(ρoutvout)|ȳ→0 dz= εv̄0, (2.35)

where the terms O(ε2) have been neglected. Therefore, equation (2.32) leads to

v̄0 = kx

ε

(
∂δ̄

∂ x̄
+ ∂δ̄

c

∂ t̄

)
as ȳ→ 0, (2.36)

where the compressibility effects appear in the definition of the displacement thickness
δ̄ and in the additional term δ̄c. Equation (2.36) is used as a boundary condition on
the system (2.29).

The proof employed by Ricco et al. (2011) to show the irrotationality of the
two-dimensional flow holds for the compressible case as long as the flow remains
isentropic (i.e. shock waves are absent or, if present, their effect is negligible).
Therefore, the potential φ̄0 is introduced such that ∇x̄ȳφ̄0 = {ū0, v̄0}, where ∇x̄ȳ

denotes the gradient operator in the x̄–ȳ plane. By rewriting (2.29) in terms of φ̄0 and
eliminating the pressure from the continuity equation with the aid of the momentum
equations, a single equation for the potential is derived,

∂2φ̄0

∂ ȳ2
+ (1−M2

∞)
∂2φ̄0

∂ x̄2
− 2M2

∞
∂2φ̄0

∂ x̄∂ t̄
−M2

∞
∂2φ̄0

∂ t̄2
= 0, M∞ 6= 1, (2.37)

which is a wave (i.e. hyperbolic) equation, indicating the acoustic nature of the
perturbation. It is interesting that streaks emit sound waves spontaneously during
their nonlinear evolution. Equation (2.37) is of the same form as the linearized
perturbation velocity potential equation governing the flow over a thin airfoil
performing small unsteady (periodic) oscillations in the transverse direction (refer to
Landahl 1989, equation (1.7)). The small thickness of the airfoil is represented here
by the boundary-layer displacement thickness, the equivalent body being semi-infinite
rather than finite and closed (i.e. with null thickness at both ends of the body).

The problem of the flow over a thin oscillating airfoil has been widely studied
in aeroelasticity because of the loads and vibrations occurring on the wing. Thanks
to the linearization, two separated cases are distinguished: the thickness problem
(symmetrical) and the lifting problem (anti-symmetrical). Aeroelasticians are usually
interested in the latter because of the contribution to the lift experienced by the wing
(Dowell 2014). Here it suffices to state that the analogy between the boundary-layer
displacement effect and the thin airfoil theory only concerns the thickness problem,
as circulatory flow is absent. This analogy was first suggested by Lighthill (1958) for
incompressible flows and its use in the study of steady flows outside boundary layers
has been well established (Van Dyke 1975). However, to the best of our knowledge,
this analogy has never been considered for unsteady boundary layers.

By employing Fourier decomposition in time,

φ̄0(x̄, ȳ, t̄)=
∑

m

φ̂m(x̄, ȳ)eimt̄, (2.38)

equation (2.37) is recast into a generalized Helmholtz differential equation (i.e.
telegraph equation) for the Fourier coefficients φ̂m(x̄, ȳ):

∂2φ̂m

∂ ȳ2
+ (1−M2

∞)
∂2φ̂m

∂ x̄2
− 2imM2

∞
∂φ̂m

∂ x̄
+m2M2

∞φ̂m = 0. (2.39)
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Performing the change φ̂m→ Φ̂m, where

φ̂m(x̄, ȳ)= Φ̂m(x̄, ȳ)e−bx̄/2 with b≡ 2imM2
∞

M2∞ − 1
, M∞ 6= 1, (2.40)

the telegraph equation (2.39) is reduced to either the Helmholtz equation if M∞ < 1
or the Klein–Gordon equation if M∞ > 1:

|1−M2
∞|
∂2Φ̂m

∂ x̄2
± ∂

2Φ̂m

∂ ȳ2
+ m2M2

∞
|1−M2∞|

Φ̂m = 0, (2.41)

where the + or − sign correspond to the subsonic or supersonic case, respectively.
The appropriate boundary conditions for (2.41) are:

∂Φ̂m

∂ ȳ
=


kx

ε
(δ̂′m + imδ̂c

m)e
bx̄/2, ȳ= 0, x̄ > 0,

0, ȳ= 0, x̄< 0;
(2.42a)

∂Φ̂m

∂ x̄
,
∂Φ̂m

∂ ȳ
finite, x̄2 + ȳ2→∞, (2.42b)

where δ̂m(x̄) and δ̂c
m(x̄) are the Fourier coefficients of δ̄(x̄, t̄), and δ̄c(x̄, t̄) and the

prime represents differentiation with respect to x̄. Equation (2.42a) corresponds to the
tangency (i.e. no penetration) condition imposed on a thin airfoil, according to which
the velocity component normal to the body is fixed by the airfoil motion. This analogy
has given rise to the well-known interpretation of the boundary-layer displacement
effect as a surface distribution of sources (Lighthill 1958). The far-field boundary
condition (2.42b) requires that the displacement-induced velocity field remains finite
as the distance from the plate increases.

In the supersonic case it is convenient to solve for φ̂m directly. The fluid ahead of
the body remains undisturbed and so the Laplace transform in the x̄ direction can be
employed,

φ̃m(s, ȳ)=
∫ ∞

0
φ̂m(x̄, ȳ)e−sx̄ dx̄. (2.43)

The telegraph equation (2.39) and the boundary condition (2.42a) for x̄ > 0 become:

∂2φ̃m

∂ ȳ2
= c2φ̃m,

∂φ̃m

∂ ȳ
(s, 0)= ṽm(s, 0), (2.44a,b)

where c2 = s2(M2
∞ − 1)+mM2

∞(2is−m) and ṽm(s, 0) indicates the Laplace transform
of ∂φ̂m/∂ ȳ at ȳ= 0. The solution to (2.44) is

φ̃m(s, ȳ)=− ṽm(s, 0)
c

e−cȳ, ȳ > 0. (2.45)

Inverting (2.45) and using the convolution theorem, one finds

φ̂m(x̄, ȳ;M∞ > 1) = − kx

ε
√

M2∞ − 1

∫ x̄−ȳ
√

M2∞−1

0

[
δ̂′m(x̄0)+ imδ̂c

m(x̄0)
]

e−(imM2∞/(M2∞−1))(x̄−x̄0)

× J0

[
mM∞

M2∞ − 1

√
(x̄− x̄0)

2 − (M2∞ − 1
)

ȳ2

]
dx̄0, (2.46)
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where J0 is the zeroth-order Bessel function of the first kind (Abramowitz & Stegun
1964). The procedure to derive (2.46) closely follows the theory proposed by
Stewartson (1950) for harmonically oscillating thin airfoils in supersonic flows.

In the subsonic case, the disturbance is felt in all directions and so the use of the
Laplace transform in x̄ is not appropriate. The Fourier transform is instead employed
and the analytic continuation of the Neumann boundary condition (2.42a) to the
complex plane ξ̄ = x̄+ iȳ is considered. The solution reads

φ̂m(x̄, ȳ;M∞ < 1) = − ikx

2ε
√

1−M2∞

∫ x̄+iȳ
√

1−M2∞

x̄−iȳ
√

1−M2∞

[
δ̂′m(ξ̄ )+ imδ̂c

m(ξ̄ )
]

e(imM2∞/(1−M2∞))(x̄−ξ̄ )

× J0

[
mM∞

1−M2∞

√(
x̄− ξ̄)2 + (1−M2∞

)
ȳ2

]
dξ̄ . (2.47)

The solution can also be expressed in terms of the Green’s function by modelling
the boundary-layer thickness as a distribution of pulsating sources as suggested by
Lighthill’s theory. The free-space Green’s function associated with the Helmholtz
equation (2.41) is given by Dragos (2004) on p. 33 for a single source located in the
origin. Considering a line distribution of these sources at the point (x̄0, 0), where x̄0
spans the x̄ axis, and using the method of images to include the boundary ȳ= 0, we
obtain

φ̂m(x̄, ȳ;M∞ < 1) = ikx

2ε
√

1−M2∞

∫ ∞
0

[
δ̂′m(x̄0)+ imδ̂c

m(x̄0)
]

e(imM2∞/(1−M2∞))(x̄−x̄0)

×H(2)
0

[
mM∞

1−M2∞

√
(x̄− x̄0)

2 + (1−M2∞
)

ȳ2

]
dx̄0, (2.48)

where H(2)
0 is the zeroth-order Hankel function of the second kind (Abramowitz &

Stegun 1964). The solution with H(2)
0 has been chosen instead of that with H(1)

0 to
ensure outgoing waves radiating from the source. As M∞→0, equation (2.47) matches
the solution obtained in the incompressible case (Ricco et al. 2011):

lim
M∞→0

φ̂m(x̄, ȳ;M∞ < 1) = − ikx

2ε

∫ x̄+iȳ

x̄−iȳ
δ̂′m(ξ) dξ =− ikx

2ε
[δ̂m(x̄+ iȳ)− δ̂m(x̄− iȳ)]

= kx

ε
Im[δ̂m(x̄+ iȳ)], (2.49)

where Im indicates the imaginary part and use has been made of the property of
holomorphic functions, δ̂m(ξ̄

?)= δ̂m(ξ̄ )
?. The limit M∞→∞ is not considered because

for very large hypersonic Mach numbers the Blasius boundary-layer assumption of
negligible wall-normal pressure gradient is invalid (refer to Anderson 2006, p. 275).

The pressure is obtained from the y-momentum equation (2.29) as

p̄0 =−
(
∂φ̄0

∂ t̄
+ ∂φ̄0

∂ x̄

)
, (2.50)

or, in Fourier space,

p̂m =−
(

imφ̂m + ∂φ̂m

∂ x̄

)
. (2.51)
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From substitution of the supersonic and subsonic expressions for the potential,
equations (2.46) and (2.48), into (2.51), it follows that

p̂m(x̄, ȳ;M∞ > 1)= kx

ε
√

M2∞ − 1

{∫ x̄−ȳ
√

M2∞−1

0
f (x̄0, x̄, ȳ) dx̄0

−
[
δ̂′m(x̄− ȳ

√
M2∞ − 1)+ imδ̂c

m(x̄− ȳ
√

M2∞ − 1)
]

e−(imM2∞/
√

M2∞−1)ȳ

}
(2.52)

in the supersonic case, where

f =
[
δ̂′m(x̄0)+ imδ̂c

m(x̄0)
]

e−(imM2∞/(M2∞−1))(x̄−x̄0)

×
{

im
M2∞ − 1

J0

[
mM∞

M2∞ − 1

√
(x̄− x̄0)

2 − (M2∞ − 1
)

ȳ2

]

+ mM∞(x̄− x̄0)

(M2∞ − 1)
√
(x̄− x̄0)2 − (M2∞ − 1)ȳ2

J1

[
mM∞

M2∞ − 1

√
(x̄− x̄0)

2 − (M2∞ − 1
)

ȳ2

]}
(2.53)

and J1 is the first-order Bessel function of the first kind (Abramowitz & Stegun 1964),
and in the subsonic case

p̂m(x̄, ȳ;M∞ < 1) = ikx

2ε
√

1−M2∞

∫ ∞
0

g(x̄0, x̄, ȳ) dx̄0, (2.54)

where

g =
[
δ̂′m(x̄0)+ imδ̂c

m(x̄0)
]

e(imM2∞/(1−M2∞))(x̄−x̄0)

×
{

im
1−M2∞

H(2)
0

[
mM∞

1−M2∞

√
(x̄− x̄0)

2 + (1−M2∞
)

ȳ2

]
− mM∞ (x̄− x̄0)

(1−M2∞)
√
(x̄− x̄0)2 + (1−M2∞)ȳ2

×H(2)
1

[
mM∞

1−M2∞

√
(x̄− x̄0)2 + (1−M2∞)ȳ2

]}
, (2.55)

and H(2)
1 is the first-order Hankel function of the second kind (Abramowitz & Stegun

1964). The temperature is found from the energy equation (2.30) as

τ̄0 = (γ − 1)M2
∞p̄0. (2.56)

2.3.2. Viscous three-dimensional flow
By substituting the expansion (2.28) into the Navier–Stokes equations and

subtracting the equations (2.29) and (2.30) for the displacement-induced disturbance,
the leading-order three-dimensional part of the perturbation is found to satisfy the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

88
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2017.88


Nonlinear unsteady streaks in a compressible boundary layer 95

equations:
∂v0

∂y
+ ∂w0

∂z
= 0, (2.57)

{
∂

∂ t̄
+ ∂

∂ x̄
+ ε

kx

[
(v̄0 + v0)

∂

∂y
+w0

∂

∂z

]}
u0
v0
w0
τ0

=− εkx


0

∂p1/∂y
∂p1/∂z

0

+ κ2∇2
yz


u0
v0
w0

Pr−1τ0

 ,
(2.58)

where p0 = 0 without loss of generality and ∇yz is the gradient operator in the y–z
plane.

The three-dimensional part of the perturbation in (2.57) and (2.58) does not directly
depend on the slow variable ȳ at the leading order, but the momentum equations
(2.58) include the inviscid wall-normal velocity component v̄0, which depends on ȳ.
Therefore, the dependence of the leading-order three-dimensional disturbance upon ȳ is
parametric. The aim of the following analysis is to decouple (2.58) from v̄0 to obtain
a system of equations in the only unknowns {u0, v0,w0, τ0, p1}. This is accomplished
by introducing the Prandtl transformation, ŷ= y− Re[∆(ξ̄ , t̄)], where Re denotes the
real part and ∆ is suitably chosen to eliminate the coupling between {u0, v0,w0, τ0, p1}
and v̄0 from (2.58). The new variable ŷ is written in this form for consistency with the
previous analyses of Wundrow & Goldstein (2001) and Ricco et al. (2011), although
it will turn out that only the dependence of ∆ on the real variables x̄ and t̄ is relevant
since we are interested in the matching at ȳ=0. Written in terms of ŷ, equations (2.57)
and (2.58) become

∂v0

∂ ŷ
+ ∂w0

∂z
= 0, (2.59)

N


u0
v0
w0
τ0

=− εkx


0

∂p1/∂ ŷ
∂p1/∂z

0

+ κ2∇2
ŷz


u0
v0
w0

Pr−1τ0

 , (2.60)

where ∇ŷz is the gradient operator in the ŷ–z plane and N is the differential operator:

N = ∂

∂ t̄
+ ∂

∂ x̄
+ ε

kx

(
v0
∂

∂ ŷ
+w0

∂

∂z

)
−
(

Re
[
∂∆

∂ t̄
+ ∂∆
∂ξ̄

]
− ε

kx
v̄0

)
∂

∂ ŷ
. (2.61)

The dependence on v̄0 is removed by choosing ∆ to satisfy (Ricco et al. 2011)

Re
[
∂∆

∂ t̄
+ ∂∆
∂ξ̄

]
= ε

kx
v̄0, (2.62)

which, in view of (2.36), becomes

∂∆

∂ t̄
+ ∂∆
∂ x̄
= ∂δ̄
∂ x̄
+ ∂δ̄

c

∂ t̄
at ȳ= 0. (2.63)

Decomposing ∆ into Fourier series as

∆
(
x̄, t̄
)=∑

m

∆̂m(x̄)e−im(x̄−t̄) at ȳ= 0, (2.64)
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and using the time Fourier series of δ̄ and δ̄c, we obtain the expression for ∆̂m,

∆̂m(x̄)= δ̂m(x̄)eimx̄ + im
∫ x̄

0

[
δ̂m(x̌)− δ̂c

m(x̌)
]

eimx̌ dx̌, at ȳ= 0, (2.65)

where the condition ∆(0, t̄)= 0, ∀t̄> 0 has been employed.
Equation (2.60) shows that the streamwise velocity u0 and the temperature τ0 are

decoupled from the transverse velocities {v0,w0} and from the pressure p1. At leading
order, only {v0,w0, p1} enter the matching with the boundary-layer solution, while the
matching of {u0, τ0} needs to be considered when a solution with an order of accuracy
higher than O(R−1

λ ) is sought.
In view of the continuity equation (2.59), the streamfunction ψ0(x̄, ŷ, z, t̄) is

introduced such that ∇ŷzψ0= {−w0, v0}. In terms of the streamfunction the transverse
momentum equations are recast into a transport equation for the longitudinal vorticity
∇2

ŷzψ0, [
∂

∂ t̄
+ ∂

∂ x̄
+ ε

kx

(
∂ψ0

∂z
∂

∂ ŷ
− ∂ψ0

∂ ŷ
∂

∂ ẑ

)]
∇2

ŷzψ0 = κ2∇4
ŷzψ0, (2.66)

along with the Poisson equation for the pressure,

∇2
ŷzp1 = 2

[
∂2ψ0

∂ ŷ2

∂2ψ0

∂z2
−
(
∂2ψ0

∂ ŷ∂z

)2
]
. (2.67)

In the general case of a full spectrum of free-stream vortical disturbances, the
streamfunction is decomposed as:

ψ0
(
x̄, ŷ, z, t̄

)=∑
m,n,j

ψ̂ ( j)
m,n(x̄)e

i(mt̄+jky ŷ+nkzz). (2.68)

By substituting (2.68) into (2.66) and expanding the resulting equation for a pair of
oblique forcing modes, the nonlinear terms cancel out and (2.66) reduces to(

im+ ∂

∂ x̄

)
ψ̂ ( j)

m,n =−κ2
(

j2k2
y + n2k2

z

)
ψ̂ ( j)

m,n, (2.69)

with {m, j, n} = {1,−1,±1}. The solution is:

ψ̂
(−1)
1,±1 =∓ic∞e−ix̄−κ2(k2

y+k2
z )x̄ + c.c., (2.70)

where c∞ = 1/ky is chosen to normalize the amplitude of the free-stream spanwise
velocity to unity. From (2.68) and (2.70) it follows that

ψ0
(
x̄, ŷ, z, t̄

)=−2ic∞ cos(x̄− t̄+ kyŷ)e−κ
2(k2

y+k2
z )x̄+ikzz + c.c.. (2.71)

The transverse velocities are obtained as

{v0,w0} = 2c∞
{

kz cos(x̄− t̄+ kyŷ),−iky sin(x̄− t̄+ kyŷ)
}

e−κ
2(k2

y+k2
z )x̄+ikzz + c.c.. (2.72)

By inserting (2.71) into (2.67), the pressure is found to be

p1 = 2k2
yc2
∞e−2κ2(k2

y+k2
z )x̄+2ikzz − 2k2

z c2
∞e−2κ2(k2

y+k2
z )x̄ cos(2x̄− 2t̄+ 2kyŷ)+ c.c.. (2.73)
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At ȳ= 0, the expression ŷ= y−∆(x̄, t̄) is substituted into (2.71)–(2.73), and the time-
dependent terms are expanded into Fourier series,

eit̄+iky∆(x̄,t̄) =
∑

m

χ̂m(x̄)eimt̄, e2it̄+2iky∆(x̄,t̄) =
∑

m

π̂m(x̄)eimt̄. (2.74a,b)

Rewriting (2.72) and (2.73) with the aid of (2.74), the outer-flow solution for y=O(1)
is obtained as

{v0,w0, p1} =
∑
m,n

{
v†

m,n,w†
m,n, p†

m,n

}
eimt̄+inkzz, (2.75)

with

v
†
m,±1 = kzc∞e−κ

2(k2
y+k2

z )x̄
[
χ̂me−i(x̄+kyy) + χ̂ ?−mei(x̄+kyy)

]
, (2.76a)

w†
m,±1 =±kyc∞e−κ

2(k2
y+k2

z )x̄
[
χ̂me−i(x̄+kyy) − χ̂ ?−mei(x̄+kyy)

]
, (2.76b)

p†
0,±2 = 2k2

yc2
∞e−2κ2(k2

y+k2
z )x̄, (2.76c)

p†
m,0 =−2k2

z c2
∞e−2κ2(k2

y+k2
z )x̄
[
π̂me−2i(x̄+kyy) + π̂?

−me2i(x̄+kyy)
]
. (2.76d)

The other components v†
m,n, w†

m,n with n 6= ±1 and p†
m,n with n 6= 0, ±2 are null.

Although the upstream flow is forced only by a pair of oblique modes with
opposite spanwise wavenumbers, further downstream the disturbance is composed
of all the temporal harmonics. These are generated by nonlinear interactions in
the boundary layer and transmitted to the outer flow via the displacement effect.
Although the Fourier components (2.76) are of the same form as those obtained in
the incompressible case (refer to Ricco et al. 2011, equation (2.28)), the coefficients
χ̂m and π̂m defined in (2.74) now include the compressible effects, the function ∆(x̄, t̄)
being related to δ and δc through (2.65).

2.4. Initial and boundary conditions
As the boundary-region equations (2.23)–(2.27) constitute a parabolic system in the
streamwise direction, initial conditions are needed for x̄� 1. Since the velocity and
temperature fluctuations are of small amplitude near the leading edge, their governing
equations become linear. This was elucidated by Ricco et al. (2011), who showed
that the full nonlinear regime develops gradually from the initial linear stage in the
upstream region corresponding to R−1

λ � x̄� 1. The initial conditions for the forced
modes (m, n)= (1,±1) are thus the same as those in Ricco & Wu (2007).

The upstream conditions are found by first seeking the power series solution for
η=O(1) and x̄� 1,

{ū, v̄, w̄, τ̄ , p̄} =
∞∑

n=0

(2x̄)n/2
{

2x̄Un(η), Vn(η),Wn(η), 2x̄Tn(η), (2x̄)−1/2Pn(η)
}
, (2.77)

and by constructing a composite solution that is valid for x̄� 1 and ∀η:

{û, v̂, ŵ, τ̂ , p̂}−1,±1→± iκ2

kz
uz,w,± {Uin, Vin,∓iWin, Tin, Pin} , (2.78)

where {Uin, Vin, Win, Tin, Pin} are equal to the right-hand sides of equations (4.12)–
(4.16) in Ricco & Wu (2007). The term uz,w,± represents the spanwise slip velocity at
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the surface of the plate (refer to Leib et al. 1999, equation (3.14)). In the case of a
pair of oblique modes, it is given by

uz,w,± =∓1± ikz√
k2

x + k2
z

û∞y,±. (2.79)

For all the other harmonics generated by nonlinear effects, null initial velocity,
temperature and pressure profiles are imposed.

The velocity fluctuations are required to vanish at the wall (no-slip condition).
Two types of different thermal boundary conditions at the wall may be imposed: the
Dirichlet boundary condition, τ̄ (0) = 0, which was also employed by Ricco & Wu
(2007), and the Neumann boundary condition, ∂τ̄/∂η|η=0= 0. The condition τ̄ (0)= 0
is used herein as Ricco et al. (2009) showed that there is no substantial difference
in the development of the Klebanoff modes.

As η→∞, the boundary-region solution must match to the limit ȳ→ 0 of the outer
flow. On taking into account the decomposition (2.16) and (2.17) within the boundary
layer, the matching with the outer solution (2.75) requires that

{
ûm,n, v̂m,n, ŵm,n, p̂m,n, τ̂m,n

}→{
0,

κ√
2x̄
v†

m,n, κ
2w†

m,n,
ε

kx
p†

m,n, 0
}

as η→∞ (2.80)

for x̄ = O(1), where the condition on v̂m,n holds only for n 6= 0. In the spanwise-
averaged equations (n = 0) the pressure only appears in the y-momentum equation.
The velocities and the temperature are calculated by solving the continuity, x- and
z-momentum and the energy equations. The condition on v̂m,0 as η→∞ is not needed
because the order of the system has decreased. As an a posteriori check, the free-
stream value of v̂m,0 is obtained from the large-η limit of the continuity equation,

v̂m,0 = kx

ε

κ√
2x̄

(
dδ̂m

dx̄
− dδbl

dx̄
+ imδ̂c

m

)
(2.81)

= −
∫ ∞

0

(
∂ ûm,0

∂ x̄
+ ûm,0

2x̄

)
dη+

∫ ∞
0

F′

T

(
∂τ̂m,0

∂ x̄
+ τ̂m,0

2x̄

)
dη+

∫ ∞
0

im
T
τ̂m,0dη

− rt

∫ ∞
0

T

(
∂̂̄ρūm,0

∂ x̄
+
̂̄ρūm,0

2x̄

)
dη+ rt

∫ ∞
0

im
T
̂̄ρτ̄m,0 dη

+ rt

∫ ∞
0

F′
(
∂ ̂̄ρτ̄m,0

∂ x̄
+
̂̄ρτ̄m,0

2x̄

)
dη as η→∞, (2.82)

where δbl is the compressible Blasius displacement thickness,

δbl =
∫ ∞

0

[
1− F′(η)

T(η)

]
dy=

√
2x̄

kxRλ
(γc + βc), (2.83)

and γc = ηc − η as η→∞. In the limit M∞→ 0 the result of Ricco et al. (2011) is
recovered:

v̂m,0 = kx

ε

κ√
2x̄

(
dδ̂m

dx̄
− dδbl

dx̄

)
=−

∫ ∞
0

(
∂ ûm,0

∂ x̄
+ ûm,0

2x̄

)
dη as η→∞, (2.84)
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where δbl=
∫∞

0 [1−F′(η)] dy= β√2x̄/kxRλ is the incompressible Blasius displacement
thickness and β= 1.2168. In the compressible case the additional term related to δ̄c in
(2.81) is present or absent depending on the motion being unsteady or steady, while in
the incompressible case the transpiration velocity is not affected by unsteady effects.

3. Numerical procedures
The Fourier coefficients {ûm,n, v̂m,n, ŵm,n, τ̂m,n, p̂m,n} are obtained by solving the

boundary-region equations (2.23)–(2.27) with the initial conditions (2.78) and the
boundary conditions (2.80). The wall-normal domain extends to ηmax = 60 and 2000
grid points are used in this direction. The typical step size in the marching direction
is 1x̄= 10−3. The resulting block tri-diagonal system is solved using a standard block
elimination algorithm. In order to avoid the pressure decoupling phenomenon, the
pressure is computed on a grid that is staggered in the η direction with respect to
the grid for the velocity and temperature. The nonlinear terms are evaluated using the
pseudo-spectral method (Canuto et al. 1988). Dealiasing is performed by following
the so-called 3/2-rule, which prevents the spurious cascade from the unresolved
higher-frequency modes into the resolved low-frequency modes (Canuto et al. 1988).

The density fluctuations are calculated using (2.19), where the first term is neglected
with respect to the other two because kx/Rλ � 1. The viscosity fluctuations are
evaluated using (2.21) and by excluding the mean flow and the linear part of the
disturbance from (2.21). The following steps are performed to obtain ρ̂m,n and µ̂m,n.

(1) The temperature fluctuation τ̂m,n is transformed from the spectral to the physical
space to calculate τ̄ .

(2) The fluctuations of density and viscosity are evaluated as follows

ρ̄ =− τ̄

T(T + rtτ̄ )
, µ̄=

∞∑
j=2

(ωj)

j! Tω−jr j−2
t τ̄ j. (3.1a,b)

(3) The latter are transformed back to the spectral space to obtain ρ̂m,n and µ̂m,n.

A second-order predictor–corrector scheme is used to calculate the nonlinear terms
while marching downstream. Extensive resolution checks have been carried out to
verify the accuracy of the code. The amplitudes of the truncated Fourier series are six
or seven orders of magnitude smaller than that of the forcing modes and so they do
not significantly affect the flow dynamics. Use of Nt =Nz = 9 is sufficient to capture
the nonlinear effects in the case rt= 2, while for rt= 4 an accuracy of the same order
is obtained with Nt =Nz = 13.

To calculate the outer-flow field in the subsonic case, we solve the Helmholtz
equation (2.41) numerically with M∞ < 1 to obtain Φ̂m(x̄, ȳ), and the Fourier
coefficients φ̂m(x̄, ȳ) are then retrieved from (2.40). The computational domain
for x̄ > 0 extends sufficiently downstream for the forcing at ȳ = 0 to vanish. The
symmetry about ȳ = 0 implies that the homogeneous Neumann boundary condition
∂Φ̂m/∂ ȳ= 0 is used at ȳ= 0 and x̄< 0. Careful resolution checks have been performed
to ensure that the solution is independent of the size of the computational domain.
The Helmholtz equation is discretized with a second-order finite difference scheme
in x̄ and ȳ. The resulting block tri-diagonal matrix is solved at each point using
the generalized minimum residual method (Saad & Schultz 1986) with diagonal
preconditioner implemented in the iterative methods library, IML++ (Dongarra et al.
2006).
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FIGURE 2. Large-η limit of v̂m,0 for M∞ = 0.69 (a) and M∞ = 3 (b).

4. Results for the outer flow

The solution for the irrotational part of the outer flow q̄0(x̄, ȳ, t̄) (refer to (2.28))
is studied in this section. The streamwise and wall-normal velocity components,
ū0(x̄, ȳ, t̄) and v̄0(x̄, ȳ, t̄), are calculated for two different flow regimes: a subsonic
case with {M∞, Rλ, rt, κ} = {0.69, 600, 3.6, 1.3} and a supersonic case with
{M∞, Rλ, rt, κ} = {3, 1000, 3.6, 1.12}.

The displacement-induced transverse velocity v̂m,0 given in (2.82) represents, after
multiplication by

√
2x̄/κ , the Neumann boundary condition at ȳ = 0 for φ̂m and

is shown for the subsonic and supersonic cases in figure 2. Only the real part of
the modes with |m| = 0, 2, 4 is considered, as the imaginary part is similar to the
real part and higher harmonics are negligible. Physically, the terms v̂m,0(x̄, η � 1)
represent the harmonics of a spanwise-averaged time-periodic modulation which is
superimposed onto the slope of the Blasius displacement thickness. In the light of
the thin airfoil theory analogy, this modulation is interpreted as the strength of the
pulse source distribution.

In the subsonic case, due to the difficulty in calculating the integral in (2.47),
the solution is obtained numerically, as explained in § 3. In the supersonic case, the
solution (2.46) is employed to calculate the Fourier coefficients φ̂m(x̄, ȳ), from which
ū0(x̄, ȳ, t̄) and v̄0(x̄, ȳ, t̄) are obtained. The pressure p̄0(x̄, ȳ, t̄) is derived from (2.50).

Contours of ū0, v̄0 and p̄0 in the x̄–ȳ plane, which represent the acoustic field
emitted by streaks, are shown in figures 3 and 4 at two different times t̄ for the
subsonic and supersonic cases, respectively. According to (2.56) the temperature τ̄0

differs from p̄0 by a factor (γ − 1)M2
∞, which is equal to 0.19 and 3.6 in the two

flow regimes. The scale for the temperature τ̄0 is thus reported together with that for
the pressure.

In the subsonic case, the influence of the boundary-layer thickness pulsation
propagates in all directions from the plate and gradually diminishes as the distance
from the body increases. The streamwise modulation of the solution is caused by the
oscillatory forcing at ȳ= 0, which corresponds to a sequence of sources with positive
and negative strength (refer to figure 2). The apparent ‘wavelength’ of modulation is
1x̄≈ 0.5. The outer-flow solution shows the most intense peaks for 0.5< x̄< 2, i.e.
where the forcing is strongest.
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FIGURE 3. Contours of the streamwise and wall-normal velocity components, ū0 and v̄0,
the pressure p̄0 and the temperature τ̄0 in x̄–ȳ plane, at different times t̄ for M∞ = 0.69.

The supersonic solution, shown in figure 4, is non-zero only inside the Mach
dihedron delimited by the Mach line ȳ = x̄/

√
M2∞ − 1, as in the thin airfoil theory

(Dragos 2004, p. 32). The magnitude of the disturbance is constant along the Mach
line and thus the perturbations do not vanish as ȳ→∞.

5. Results for the boundary-layer streaks

The parameters for the numerical results are selected to be representative of two
possible applications: subsonic turbomachinery and supersonic flight conditions. The
former is characterized by a relatively low Mach number and an intense turbulence
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0.01–0.03–0.07 0.06 0.10

0.04–0.11–0.25 0.22 0.36

FIGURE 4. Contours of the streamwise and wall-normal velocity components, ū0 and v̄0,
the pressure p̄0 and the temperature τ̄0 in the x̄–ȳ plane, at different times t̄ for M∞ = 3.
The dashed lines represent the Mach line ȳ= x̄/

√
M2∞ − 1.

level, while the latter features a higher Mach number and a quieter disturbance
environment. An idealized case of a supersonic wind tunnel flow with no acoustic
modes is also considered. In all the cases, the scaled amplitudes of the free-stream
turbulence velocity components are: û∞x,±= û∞y,±= 1 and û∞z,±=∓1. Through continuity
(2.4), this leads to the following relation for the wavenumbers: kx + ky − 1= 0.

In the following, the parameters employed for the three sets of calculations are
presented and the relevant results are shown. The reader may skip § 5.1 without loss
of clarity.
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5.1. Choice of parameters
5.1.1. Turbomachinery applications

With a reference to typical experimental works on turbomachinery applications (e.g.
Camci & Arts 1990) the following parameters are adopted: unit Reynolds number
R∗1∞ = U∗∞/ν

∗
∞ = 8 × 106 m−1, chord length `∗ = 8 cm, free-stream temperature

T∗∞= 500 K and kinematic viscosity of air ν∗∞= 3.9× 10−5 m2 s−1, free-stream Mach
number M∞ = 0.69 and turbulence level Tu= 0.8− 5.2 %. Although we have chosen
our flow parameters to be as close as possible to the experimental ones, important
extra factors are present in real experimental and technological flow systems, such
as acoustic free-stream forcing, surface curvature, pressure gradient and wall cooling.
These can be taken into account by suitable extensions of the present framework.
For example, the boundary-region equation approach has been extended to study
the generation and development of Görtler vortices in the incompressible boundary
layer over a concave wall (Wu, Zhao & Luo 2011). With further progress, precise
quantitative comparisons with experiments and applications to practical situations
would be possible. Presently, the results are of qualitative value as far as their
relevance to turbomachinery is concerned. The adiabatic wall temperature is calculated
using the following relation valid for a perfect gas,

T∗ad = T∗∞

(
1+Ct

γ − 1
2

M2
∞

)
, (5.1)

where Ct =
√

Pr is the recovery factor for a laminar boundary layer over a flat plate.
The resulting adiabatic wall temperature, T∗ad = 540.5 K, is in the range of typical
turbine rotor applications. The ratio of the wall temperature to the adiabatic wall
temperature T∗w/T

∗
ad = 0.7 is chosen to mimic realistic aero-engine conditions (Zhang

& He 2014), where blade cooling is most often applied to avoid excessive surface
temperature. The resulting non-dimensional wall temperature is Tw = 0.75.

As the relevant length scales and spectra of the free-stream turbulence are not
documented in the experiments, we choose to assume that the ratio of the streamwise
integral scale to the chord is equal to 1.5. It follows that λ∗x = 0.12 m and the
frequency f ∗ = U∗∞/λ

∗
x = 2.5 kHz. At downstream locations where x∗ = O(λ∗Rλ),

the boundary-layer thickness is comparable with the spanwise length scale λ∗. The
laminar boundary-layer thickness is proportional to

√
ν∗∞x∗/U∗∞, and it is estimated

that transition occurs at x∗T/`
∗ = 0.67 (i.e. x∗T = 5.36 cm), which corresponds to

a critical Reynolds number of 5 × 105 (Schlichting & Gersten 2000). It follows
that the boundary-layer thickness δ∗99, defined as the wall-normal location where
U = 0.99, is 0.41 mm, and the displacement thickness is δ∗ = 0.14 mm. The latter
value is taken as the reference length scale λ∗. The Reynolds number Rλ and the
scaled streamwise wavenumber κ are worked out by use of (2.5) and (2.7). The
free-stream disturbance intensity is defined as Tu = 2ε

√
(û∞x,+)2 + (û∞x,−)2. For our

choice of û∞x,± = 1, Tu = 2
√

2ε. Given ε and Rλ, the turbulence Reynolds number rt

is calculated from (2.8). The influence of nonlinear effects is investigated by varying
the turbulence level (i.e. ε) with all the other parameters kept constant, as shown in
table 1(a). Two different values of λ∗x/`

∗ = 0.77, 3.1 are considered in order to study
the effect of the streamwise wavenumber (refer to table 1(b)). The relation between
λ∗z , shown in table 1, and λ∗ is λ∗z = 2πλ∗.
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U∗∞ ν∗∞ T∗∞ λ∗z λ∗x δ∗99 f ∗ M∞ Rλ kx κ Tu rt

(m s−1) (m2 s−1) (K) (m) (m) (m) (kHz)
(×104) (×103) (×103) (×103) (%)

Turbomachinery
(a) 309 0.39 500 0.89 0.12 0.41 2.5 0.69 1 124 7.3 0.35 0.7 2.7

309 0.39 500 0.89 0.12 0.41 2.5 0.69 1 124 7.3 0.35 2 7.9
(b) 309 0.39 500 0.89 0.25 0.41 1.25 0.69 1 124 3.6 0.5 1.3 5.3

309 0.39 500 0.89 0.06 0.41 5 0.69 1 124 14.2 0.25 1.3 5.3
Flight

(c) 592 2.67 218 9.4 2.5 2.6 0.24 2 3 343 3.85 0.28 0.41 4.8
1776 2.67 218 9.4 7.4 3.8 0.24 6 10 029 1.28 0.28 0.14 4.8

(d) 888 2.67 218 9.4 3.68 2.8 0.24 3 5 014 2.6 0.28 0.19 3.37
888 2.67 218 9.4 3.68 2.8 0.24 3 5 014 2.6 0.28 0.35 6.25

Wind tunnel
(e) 646 0.37 115.4 2 1.3 1.2 0.5 3 5 400 1.55 0.34 0.11 2.1

646 0.37 115.4 2 1.3 1.2 0.5 3 5 400 1.55 0.34 0.23 4.4
646 0.37 115.4 2 1.3 1.2 0.5 3 5 400 1.55 0.34 0.31 6

TABLE 1. Choice of the parameters for the turbomachinery, flight and wind tunnel cases.

5.1.2. Flight conditions
The data reported in Schneider (1999) are analysed to infer typical parameters

for supersonic flight conditions. The following values are adopted: free-stream Mach
number M∞ = 3, unit Reynolds number R∗1∞ = 3.33× 106 m−1 and wall temperature
ratio T∗w/T

∗
ad = 0.5. The latter value is in the typical range of high supersonic flight

speeds, where, in addition to aerodynamic heating, radiative cooling also occurs
due to the solid wall of the body radiating energy from the surface (Fedorov &
Khokhlov 2001). A free-stream temperature T∗∞ = 218 K is assumed at a typical
altitude for supersonic flight of 20 km (Wilson, Love & Larson 1971). It follows that
the velocity and the kinematic viscosity of air in the free stream are U∗∞ = 888 ms−1

and ν∗∞= 2.67× 10−4 m2 s−1. From (5.1) the adiabatic wall temperature T∗ad = 548 K
is obtained. It follows that T∗w = 274 K. The boundary-layer thickness δ∗ at high
Mach number is assumed to grow as x∗M2

∞/
√

Rx, where Rx is the local Reynolds
number at the edge of the boundary layer (refer to Anderson 2006, equation (7.9)).
At the transition-onset location x∗T = 0.1 m (Schneider 1999) and δ∗= 1.5 mm, which
is taken as the reference length scale, i.e. λ∗ = δ∗.

Considering the data reported in figure 6 of Wilson et al. (1971) and figure 1
of Hocking (1985) on the atmospheric turbulence power spectra and scales, a
streamwise wavelength λ∗x = 3.68 m is chosen. The corresponding frequency is
f ∗= 240.8 Hz. In-flight measurements by Riedel & Sitzmann (1998) and Saric (2008)
indicate that the turbulence level in subsonic flight for the quiescent air atmosphere
is 0.05 %–0.06 %. For the high-altitude environment of a supersonic aircraft, Coleman
& Steiner (1960) and Ehernberger & Love (1975) report even lower turbulence
intensities. However, close to inversion layers (i.e. areas where the usual trend of
decrease in air temperature with increasing altitude is reversed) or within clouds,
large turbulence levels in the range 0.1 % < Tu < 1 % or more may occur (Zanin
1985). The turbulence levels for our simulations are chosen as representative of these
atmospheric conditions (0.1 %< Tu< 0.3 %).
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The influence of compressibility is investigated by varying M∞. It is assumed
that the variation of M∞ is only due to a variation of the free-stream velocity U∗∞,
while the free-stream temperature T∗∞ is unchanged. Therefore, a∗∞ and ν∗∞ are also
constant. The wall temperature is the same in all the cases, while T∗ad varies according
to (5.1) for different Mach numbers. The dimensional amplitude of the gust is kept
fixed at 2.39 m s−1. It follows that the turbulence level decreases as the free-stream
velocity increases, but the turbulence Reynolds number, which is defined by (2.8),
does not change because Rλ increases linearly with U∗∞. The dimensional frequency
is kept constant and it corresponds to different λ∗x depending on U∗∞, as presented
in table 1(c). In order to analyse the effect of nonlinearity at supersonic speeds, two
different turbulence levels, Tu= 0.19 % and 0.35 %, are considered for M∞= 3 (refer
to table 1(d)).

5.1.3. Wind tunnel conditions
The following parameters are chosen as representative of typical supersonic wind

tunnel experiments (Beckwith & Miller 1990; Graziosi & Brown 2002; Fedorov et al.
2003): M∞= 3, U∗∞= 646 m s−1, ν∗∞= 3.7× 10−5 m2 s−1, T∗∞= 115.4 K, f ∗= 500 Hz,
kx = 1.55 × 10−3, Rλ = 5400 and κ = 0.34. The calculations are performed for three
different turbulence levels, Tu= 0.11 %, 0.23 %, 0.31 %, which correspond to rt = 2.1,
4.4, 6 (refer to table 1(e)). The representation is idealized since acoustic disturbances
are excluded.

For these cases the ratio between the wall temperature and the adiabatic wall
temperature provided by Graziosi & Brown (2002), T∗w/T

∗
ad = 1.1, is employed. The

results for this hot-wall condition will be compared with those obtained with the
adiabatic condition T∗w = T∗ad and with the cold-wall condition employed by Fedorov
et al. (2003), where T∗w/T

∗
ad = 0.8.

5.2. Evolution of nonlinear compressible streaks
As anticipated on the basis of the linear analysis by Ricco & Wu (2007), free-stream
disturbances of the hydrodynamic kind (i.e. convected gusts) generate thermal
fluctuations inside the boundary layer due to the velocity–temperature coupling.
Just as the temperature profile affects the stability of a two-dimensional flow (Lees
1947; Mack 1975), thermal streaks are bound to influence the secondary instability
of the streaky boundary layer. We will therefore focus on the fluctuations of the
streamwise velocity and temperature inside the boundary layer.

The overall intensity of the streak signature, which comprises all the harmonics in
the nonlinear regime, is measured by the root-mean-square (r.m.s. hereinafter) of the
fluctuating quantity, defined as

qrms ≡ rt

√√√√√ N̄t∑
m=−N̄t

N̄z∑
n=−N̄z

|q̂m,n|2, m 6= 0, (5.2)

where q may stand for the streamwise velocity or the temperature and N̄t= (Nt− 1)/2,
N̄z = (Nz − 1)/2. The downstream development of the maximum qrms along η,

qrms,max(x̄)=max
η

qrms(x̄, η), (5.3)
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FIGURE 5. Evolution of the maximum r.m.s. of the streamwise velocity (a) and the
temperature (b) for different values of the turbulence Reynolds number: rt = 2.7 (solid
lines), rt = 7.9 (dashed lines) at M∞ = 0.69 (refer to table 1(a)). Thick lines: nonlinear
solutions, thin lines: linearized solution.

is shown in figures 5 (turbomachinery case), 6 (flight case) and 7 (wind tunnel
case), where the nonlinear solutions are compared with the corresponding linearized
approximations for different values of Tu. In the linear case, the peak of the r.m.s. is
given by

qrms,max = ε
√

2(kz/kx)
√
|uz,w,+|2 + |uz,w,−|2 max

η
|q̄l(x̄, η)|, (5.4)

where q̄l represents the solution provided by Ricco & Wu (2007). Since |uz,w,+| =
|uz,w,−| = |uz,w|, (5.4) simplifies to:

qrms,max = 2ε(kz/kx)|uz,w|max
η
|q̄l(x̄, η)|. (5.5)

Sufficiently upstream, the linear and nonlinear solutions overlap as the influence
of nonlinearity is still weak. Due to the continued amplification of the disturbance,
the streak signature becomes stronger and the linear and nonlinear solutions start
diverging for moderate rt. In the case with the lowest rt for all the three scenarios
considered, the linear and nonlinear curves are almost indistinguishable. In the cases
with higher rt, a stabilizing effect of nonlinearity is observed on the streamwise
velocity and temperature and, as the turbulence intensity increases, the attenuation
of the disturbances is enhanced. The higher the turbulence level, the slower and
the weaker the disturbance growth becomes, and the farther upstream the nonlinear
effects start asserting their influence. The stabilizing effect of nonlinearity was
already observed by Ricco et al. (2011) in the incompressible regime for high
turbulence levels. Here, it is shown that nonlinear effects play the same role on
thermal (temperature) streaks.

For the turbomachinery case (figure 5), the attenuation of the streaks is more
pronounced than in flight conditions as the turbulence levels are higher, and the
deviation of the kinematic and thermal streaks from the linearized solution is
of similar magnitude. The kinematic fluctuations are approximately one order of
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Flight(a) (b)
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FIGURE 6. Evolution of the maximum r.m.s. of the streamwise velocity (a) and the
temperature (b) for different values of the turbulence Reynolds number: rt = 3.37 (solid
line), rt = 6.25 (dashed lines) at M∞ = 3 (refer to table 1(d)). Thick lines: nonlinear
solutions, thin lines: linearized solutions.
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(a) (b)Wind tunnel

FIGURE 7. Evolution of the maximum r.m.s. of the streamwise velocity (a) and
temperature (b) for different values of the turbulence Reynolds number: rt = 2.1
(dashed-dotted lines), rt = 4.4 (dashed lines), rt = 6 (solid lines) at M∞ = 3 (refer to
table 1(e)). Thick lines: nonlinear solutions, thin lines: linearized solutions.

magnitude higher than the thermal streaks relatively to the correspondent free-stream
mean velocity and temperature.

In flight conditions (figure 6), because of a higher Mach number, the temperature
fluctuation acquires a large intensity, which is comparable with that of the velocity
fluctuation. Although the influence of Tu on the streamwise velocity is quite weak
even in the highest turbulence intensity case, rt = 6.25, appreciable attenuation of
the nonlinear thermal streaks with respect to the linearized ones is observed. The
stabilizing effect is more marked on the temperature than on the streamwise velocity.
The nonlinear and linear r.m.s. of the temperature streaks diverge farther upstream than
the r.m.s. of the streamwise velocity. Even for a low-disturbance environment such
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FIGURE 8. Evolution of the maximum r.m.s. of the streamwise velocity (a) and the
temperature (b) for different streamwise wavenumber: kx = 0.0036 (solid lines) and kx =
0.0142 (dashed lines) at M∞ = 0.69 (refer to table 1(b)). Thick lines: nonlinear solutions,
thin lines: linearized solutions.

as free flight, it seems necessary to describe the formation and amplification of the
streaks correctly by taking into account the nonlinear interactions inside the boundary
layer.

In the wind tunnel case shown in figure 7, a peculiar behaviour of the nonlinear
curve for the highest turbulence level case is observed. A sharp deviation of the
nonlinear solution from the linear one occurs at x̄ ≈ 0.5, which corresponds to a
physical downstream position of x∗ ≈ 10 cm. This phenomenon was not observed
in the incompressible cases studied by Ricco et al. (2011). The parameters used
in this case are very similar to those of the flight case with highest rt (refer to
tables 1(d) and 1(e)), except that kx is approximately half of that in the flight case.
As a consequence, the effect of nonlinearity is stronger. The streamwise wavenumber
of the wind tunnel case is comparable with that of the flight case with M∞= 6 (refer
to table 1(c)) but rt is smaller and M∞ is higher in the latter, thus resulting in weaker
nonlinear effects. Additional calculations suggest that this abrupt change occurs when
a sufficiently small streamwise wavenumber is employed, i.e. kx 6 1.5× 10−3, together
with a high turbulence Reynolds number, rt > 6, at supersonic speed. In the subsonic
regime no such sharp deviation was observed, even at high rt.

The effect of the frequency is displayed in figure 8, where the downstream
evolutions of urms,max and τrms,max are plotted for different values of kx in the
turbomachinery case (refer to table 1(b)). The fluctuations of the streamwise velocity
and temperature are higher for smaller kx, but the dependence of the stabilizing effect
of nonlinearity on the frequency is very weak and it is the same for the streamwise
velocity component and the temperature. For kx > 0.01 the amplitude saturates at an
almost constant value before decaying farther downstream.

Figure 9 displays the signature of the streamwise velocity and temperature for
different Mach numbers in the flight case (refer to table 1(c)). The variation of
M∞ is only due to a variation of U∗∞, while T∗∞ is constant. As the Mach number
increases the r.m.s. of the streamwise velocity is attenuated while the temperature
fluctuations are intensified. For M∞= 6, the latter acquire an intensity as large as 26 %
of T∗∞, whereas the velocity fluctuations merely reach 5 % of U∗∞. The result suggests
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FIGURE 9. Evolution of the maximum r.m.s. of the streamwise velocity (a) and the
temperature (b) for different free-stream Mach numbers: M∞ = 2 (dashed lines), M∞ = 6
(solid lines). The turbulence Reynolds number is rt= 4.8 (refer to table 1(c)). Thick lines:
nonlinear solutions, thin lines: linearized solutions.

that thermal streaks are likely to be the primary cause of secondary instability in
high speed flows. Figure 9 also shows that the attenuation effect on the velocity is
stronger than the enhancement of the temperature. For example, tripling the Mach
number from 2 to 6 results in a decrease of more than three times in the r.m.s.
of the streamwise velocity and an increase of twice in the temperature signature at
x= 600. Despite rt being the same, for higher M∞ the stabilizing effect of nonlinearity
becomes less pronounced and this is more evident for the streamwise velocity r.m.s.,
whose nonlinear evolution is indistinguishable from the linearized curve in the highest
M∞ case. This behaviour is attributed to the turbulence level being smaller for higher
values of the free-stream velocity, although rt is the same in all the cases.

In figure 10 the results obtained in the wind tunnel case with rt = 6 for the hot-
wall condition T∗w/T

∗
ad = 1.1 are compared with those relative to a cold-wall condition

T∗w/T
∗
ad = 0.8 and an adiabatic temperature at the wall T∗w= T∗ad. As the wall heat flux

increases from negative (heating), to zero (adiabatic) and to positive (cooling), the
signature of the streamwise velocity is enhanced while the temperature disturbance
is attenuated. The position where the abrupt deviation occurs moves from x̄ ≈ 0.5
in the hot-wall case to x̄ ≈ 0.7 in the cold-wall case. Therefore the wall heat flux
influences the position where the onset of the stabilizing effect due to nonlinearity
occurs. This suggests that the employment of the adiabatic wall condition in wind
tunnel experiments may lead to an inaccurate prediction of the transition location for
high Mach number supersonic flight conditions, where wall cooling usually needs to
be employed for thermal protection.

5.3. Wall-normal profiles of the perturbation for flight condition
The wall-normal profiles of the streamwise velocity and the temperature are now
examined for flight conditions with M∞ = 3 and rt = 4.8, as this case features
significant effects of nonlinearity and compressibility, whereas in the turbomachinery
case compressible effects are weak. The parameters correspond to case (d) in table 1,
except that Tu = 0.27 % and rt = 4.8. The flow is symmetric with respect to the z
direction because the Fourier forcing modes have opposite spanwise wavenumbers
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FIGURE 10. Evolution of the maximum r.m.s. of the streamwise velocity (a) and the
temperature (b) for different wall temperature conditions: hot wall (h.w.), adiabatic wall
(a.w.) and cold wall (c.w.) at M∞ = 3.

but equal amplitude. Therefore, results will only be presented for modes with n > 0,
since modes (m, n) and (m,−n) have the same amplitude and shape.

Figure 11 shows the profiles of the spanwise-uniform time-averaged flow distortion
(0,0), the forcing mode (−1,1), and the second and third harmonics with |m|= |n|, i.e.
(−2, 2) and (−3, 3), at x̄= 0.5 and 1.2. As expected, the forcing mode has a higher
amplitude than the other components. The mean-flow distortion makes a significant
contribution to the overall flow. The magnitude of the higher harmonics decreases
so quickly that the third harmonic becomes almost negligible. The profiles of the
temperature perturbation are similar to those of the streamwise velocity and evolve
in a similar manner, but the amplitude of the thermal fluctuations is slightly higher
than those of the streamwise velocity (relatively to the free-stream values).

The streamwise velocity and temperature of the seeded modes attain their respective
maxima at η = 1.5 and η = 2. The most pronounced peak of the second harmonic
occurs at a larger wall-normal distance, η = 3. The mean-flow distortion of the
streamwise velocity is positive near the wall and negative for η > 2, while the
temperature profile (0, 0) is negative close to the plate (excluding a small positive
region at η < 0.5) and positive in the outer layer. The (0, 0) components of the
streamwise velocity and temperature grow significantly with the downstream distance
and their amplitudes become greater than that of the seeded modes in the outer portion
of the boundary layer, η>4. The difference between the maximum values of the linear
and nonlinear profiles is larger for the temperature than for the streamwise velocity.
This confirms the stronger effect of nonlinearity on temperature for high-speed flows,
which was already observed in figure 6. At x̄= 0.5 the linear solution of rt|û−1,1| and
rt|τ̂−1,1| are almost indistinguishable from their nonlinear counterparts. At x̄= 1.2 the
peaks of rt|û−1,1| and rt|τ̂−1,1| in the nonlinear case have moved closer to the wall
and have decreased in comparison to the linear case. After reaching their maxima,
the nonlinear solutions decay more slowly and become larger than the linearized
approximations in the outer region of the boundary layer. The mean-flow distortion
acquires an amplitude comparable with that of the seeded modes. Therefore, the
effect of nonlinearity is to move the location of the disturbance peaks nearer to the
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FIGURE 11. Profiles of the streamwise velocity (a,b) and the temperature (c,d) of the
mean-flow distortion and harmonics with |m| = |n| = 1, 2, 3 at x̄ = 0.5 (a,c) and x̄ = 1.2
(b,d). The parameters correspond to the flight case with M∞ = 3 and rt = 4.8.

wall, to weaken the fluctuations in the core of the boundary layer while enhancing
them close to the free stream, and most notably to generate significant mean-flow
distortion.

As was pointed out by Ricco (2006), the nonlinear interactions generate only
Fourier modes with m = n when the flow is forced by a single free-stream mode,
while in the case of a pair of oblique free-stream modes additional components with
m 6= n are induced. The nonlinearly generated modes are those with |m| + |n| equal
to an even integer, i.e. they are arranged as a checkerboard in spectral space. Those
generated at the second and third orders are displayed in figure 12 at the downstream
locations x̄= 0.5 and 1.2. The amplitudes of the components (−2, 0) and (0, 2) are
comparable with each other but approximately three times smaller than that of the
mean-flow distortion (0, 0). At x̄= 0.5, the peak positions and the magnitudes of the
modes (−2, 0) and (0, 2) are very similar (or almost identical for η > 2), while at
x̄ = 1.2 the first peak of the mode (−2, 0) becomes much higher than that of the
component (0, 2) and the second peak moves further from the wall. The third-order
harmonics feature two or three humps, with the first or second peak being coincident
with the valley of the second-order components. Profiles with three peaks were not
observed in the incompressible case (Ricco et al. 2011) and they are more evident
in the temperature streaks.
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FIGURE 12. Profiles of the streamwise velocity (a,b) and the temperature (c,d) of
harmonics with m 6= n at x̄ = 0.5 (a,c) and x̄ = 1.2 (b,d). The parameters correspond to
the flight case with M∞ = 3 and rt = 4.8.

The profiles of the cross-flow velocity components and of the pressure are displayed
in figure 13. No mean spanwise velocity component is generated because the
disturbances are symmetric with respect to the plane z = 0. The profiles of v̂m,0

asymptotically approach a constant value (with respect to η) in the free stream,
as the right-hand side of (2.82) is a function of x̄ only. The amplitudes of the
wall-normal and spanwise velocity components are much smaller than that of the
streamwise velocity, as

√
kx/Rλ =O(10−4) and kx/kz =O(10−3).

The pressure fluctuations at the wall are analysed in order to show that these do
not represent an aeroelasticity problem. The root-mean-square of the wall pressure
is calculated and transformed in dimensional terms by multiplying it by ρ∗∞U∗2∞ ,
where U∗∞ = 888 m s−1 (table 1(d)) and ρ∗∞ = 0.09 kg m−3 at 20 km altitude
(Champion, Cole & Kantor 1985). The value obtained p∗rms = 0.055 Pa is compared
to the pressure difference on the wing. The latter is derived from the lift coefficient
Cl, which is evaluated using the supersonic linearized theory (refer to Anderson
2007, equation (12.23)) and assuming an angle of attack equal to 10◦. The resulting
pressure difference 1p∗ = 4200 Pa is five orders of magnitude higher than the
pressure oscillations obtained in our calculations. A comparison is also performed
with the wall pressure oscillations in a turbulent boundary layer for the same set of
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FIGURE 13. Profiles of the wall-normal velocity (a,b), spanwise velocity (c,d) and the
pressure (e, f ) of the mean-flow distortion and harmonics at x̄ = 1.2. The parameters
correspond to the flight case with M∞ = 3 and rt = 4.8.

parameters. The experimental data provided by Tsuji et al. (2007), who measured
the r.m.s. of the wall pressure at different friction Reynolds number Rτ , are used to
evaluate the prms at the wall at the current friction Reynolds number Rτ = u∗τx

∗/ν∗∞,
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where u∗τ is the friction velocity and x∗ is the distance from the leading edge. From
our calculations we obtain u∗τ = 13 m s−1 and we choose x∗ = 0.7 m corresponding
to x̄ = 1.2. It follows that Rτ = 3.4 × 104. The relation proposed by Farabee &
Casarella (1991) (p+rms)

2 = 6.5+ 1.86 ln(Rτ/333) is employed to extrapolate the wall
pressure r.m.s. p+rms scaled with inner viscous units. The experiments of Tsuji et al.
(2007) refer to an incompressible boundary layer and therefore the effect of the
Mach number on the wall pressure needs to be included in our calculations. As
a first estimate, the effect of compressibility on the skin-friction coefficient Cf is
evaluated by means of figure 19.1 of Schlichting & Gersten (2000) and the same
ratio Cf (M∞ = 3)/Cf (M∞ = 0)= 0.6 is assumed to be valid for the wall pressure. It
follows that p∗rms = 35 Pa and therefore the ratio between the wall pressure turbulent
and pre-transitional fluctuations is approximately 6× 102.

The total time-averaged (m= 0) streaks of the streamwise velocity and temperature,
which will be referred to as ustr and τstr, are defined as

{ustr(x̄, η, z), τstr(x̄, η, z)} = rt

N̄z∑
n=−N̄z

{
û0,n, τ̂0,n

}
einkzz, (5.6)

in which only modes with n = 0, 2, 4, . . . provide a non-zero contribution, but the
component (0, 4) is almost negligible. They represent a time-averaged spanwise
modulation superimposed onto the Blasius boundary layer.

Figure 14 shows the contours of the time-averaged streamwise velocity and the
temperature streaks plotted in the η–z plane at different downstream locations. A
positive value of the contours means that the mean flow is higher than the local
Blasius solution, while a negative value means that it is lower. Therefore, near the
wall the flow is accelerated and cooled, while close to the free stream it is decelerated
and heated. The mean-flow distortion of the streamwise velocity has been interpreted
as an increase of the mean wall shear stress and backward jets at the edge of the
boundary layer, both of which have been observed in experiments (Ricco et al. 2011).

6. Summary and conclusions
The present work investigated the nonlinear response of a compressible boundary

layer to free-stream unsteady vortical fluctuations of the convected-gust type. Attention
is focused on the low-frequency and long streamwise components of the disturbances
because these penetrate the most into the core of the boundary layer to form
kinematic and thermal streaks (or Klebanoff modes). Thanks to this assumption,
the mathematical framework of the compressible boundary-region equations (i.e.
the Navier–Stokes equations with the streamwise derivative being neglected in the
pressure and viscous terms) can be employed. The free-stream perturbation is assumed
to be sufficiently strong that the amplitude of the induced streaks is comparable with
the mean flow. Nonlinear effects must therefore be taken into account. The previous
works by Ricco & Wu (2007) and Ricco et al. (2011) were extended to take into
account both compressibility and nonlinear effects.

The boundary-layer displacement effect influences the outer-flow solution at
leading order, that is, nonlinear interactions within the boundary layer generate a
spanwise-independent flow, which drives an unsteady two-dimensional flow of acoustic
nature in the outer inviscid region. The analysis shows that the displacement-induced
part of the outer perturbation assumes different forms depending on the regime being
subsonic or supersonic. Thanks to the well-known analogy with the flow over a thin
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FIGURE 14. Contours of the time-averaged streamwise velocity streaks ustr (a,b) and the
temperature streaks τstr (c,d) in the η–z plane, at different downstream locations: x̄= 0.5
(a,c), x̄= 1.2 (b,d). The parameters correspond to the flight case with M∞= 3 and rt= 4.8.

oscillating airfoil, analytical linearized solutions in the subsonic and supersonic cases
are derived. This analogy is used here for the first time to study unsteady boundary
layers. In the subsonic regime the disturbances propagate in all directions from the
plate, while at supersonic speeds the fluid ahead of the body remains undisturbed
and the perturbations are confined within the Mach dihedron.

An initial boundary-value problem, comprising the nonlinear unsteady compressible
boundary-region equations and appropriate upstream and far-field conditions, is
presented to study the formation and evolution of the streaks. The initial boundary-
value problem is solved for the case where the convected gust consists of a pair of
oblique modes with the same frequency but opposite spanwise wavenumbers. It is
shown that nonlinear interactions inside the boundary layer generate higher harmonics
and a mean-flow distortion. Kinematic and thermal streaks arise, which represent an
unsteady spanwise modulation of the velocity and temperature superimposed onto
the Blasius boundary layer. Nonlinearity attenuates the fluctuations of the streamwise
velocity and a similar stabilizing effect on the temperature is identified. Near the
wall the new mean streamwise velocity is higher than the local Blasius value, while
the temperature profile exhibits a deficit with respect to the Blasius solution. At the
edge of the boundary layer the flow is instead decelerated and heated. The effect
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of the free-stream Mach number is also investigated: as the Mach number increases,
the streamwise velocity fluctuations are inhibited, while the temperature ones are
enhanced.

For the first time we have constructed the unsteady and three-dimensional base
flow generated by the free-stream forcing and by the nonlinear interactions inside
the boundary layer. This is the first step towards the formulation of the secondary
instability problem, which, in the compressible case, must account for both the
velocity and thermal streaks. Furthermore, by combining the present methodology
and solutions, which pertain to very low-frequency disturbances, with the analytical
results of Wu & Dong (2016) for components of O(1) or higher frequency, it is now
possible, for given broadband free-stream disturbances, to specify the appropriate inlet
perturbations required by DNS of bypass transition in compressible boundary layers.
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Appendix A. Nonlinear terms of the boundary-region equations

The nonlinear terms Ĉm,n, X̂m,n, Ŷm,n, Ẑm,n, Êm,n of (2.23)–(2.27) are:

Ĉm,n =
{
−T

∂̂̄ρū
∂ x̄
+ ηcT

2x̄
∂̂̄ρū
∂η
− ∂

̂̄ρv̄
∂η
− inT ̂̄ρw̄+ im̂̄ρτ̄ + F′

∂ ̂̄ρτ̄
∂ x̄
− F

2x̄
∂ ̂̄ρτ̄
∂η

}
m,n

, (A 1)

X̂m,n =
{(
−imT + ηcT

2x̄
F′′ + FT ′

2x̄

) ̂̄ρū− F′T
∂̂̄ρū
∂ x̄
+ FT

2x̄
∂̂̄ρū
∂η
− ηc

2x̄
T ′

T
̂̄u ū− ∂

̂̄u ū
∂ x̄

+ ηc

2x̄
∂ ̂̄u ū
∂η
− rtT

∂̂̄ρūū
∂ x̄
+ rt

ηcT
2x̄

∂̂̄ρūū
∂η
− F′′̂̄ρv̄ + T ′

T2
̂̄uv̄ − 1

T
∂̂̄uv̄
∂η
− rt

∂̂̄ρūv̄
∂η

− in̂̄uw̄− rtinT ̂̄ρūw̄− FF′′

2x̄
̂̄ρτ̄ + 1

2x̄

(
µ′

T

)′ ̂̄
τ
∂ ū
∂η
+ µ′

2x̄T
∂

∂η

(̂̄
τ
∂ ū
∂η

)

+ inκ2Tµ′
̂̄
τ
∂ ū
∂ ẑ
+ 1

2x̄

(
F′′

T

)′
µ̂+ F′′

2x̄T
∂µ̂

∂η
− rtT ′

2x̄T2
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µ
∂ ū
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+ rt
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∂η
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µ
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)

+ rtinTκ2
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µ
∂ ū
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}
m,n

, (A 2)
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Ŷm,n =
{
− T

4x̄2

[
FT + ηc(FT ′ − TF′)− η2

cF′′T
] ̂̄ρū

−
(

imT + ηcTF′′ + F′T
2x̄

− FT ′

x̄
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−F′T
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∂ x̄
+ FT

2x̄
∂̂̄ρv̄
∂η
− 1

2x̄

(
1+ ηcT ′

T
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∂η

)

+ 2
3x̄

(
µ′

T

)′ ̂̄
τ
∂v̄

∂η
+ 2µ′

3x̄T
∂

∂η

(̂̄
τ
∂v̄

∂η

)
+ inκ2Tµ′

̂̄
τ
∂v̄

∂ ẑ
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Ẑm,n =
{(
−imT + FT ′

2x̄

) ̂̄ρw̄− F′T
∂ ̂̄ρw̄
∂ x̄
+ FT

2x̄
∂ ̂̄ρw̄
∂η
− ηcT ′

2x̄T
̂̄uw̄− ∂

̂̄uw̄
∂ x̄
+ ηc

2x̄
∂ ̂̄uw̄
∂η

− rtT
∂ ̂̄ρūw̄
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, (A 5)

where ẑ= kzz.
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