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Abstract

It is known that wherever there is human interaction, there is social influence. Here, we refer
to more influential individuals as “influencers”, who drive team processes for better or worst.
Social influence gives rise to social learning, the propensity of humans to mimic the most
influential individuals. As individual learning is affected by the presence of an influencer,
so is an individual’s idea generation . Examining this phenomenon through a series of
human studies would require an enormous amount of time to study both individual and
team behaviors that affect design outcomes. Hence, this paper provides an agent-based
approach to study the effect of influencers during idea generation. This model is supported
by the results of two empirical experiments which validate the assumptions and sustain the
logic implemented in the model. The results of the model simulation make it possible to
examine the impact of influencers on design outcomes, assessed in the form of exploration
of design solution space and quality of the solution. The results show that teams with a
few prominent influencers generate solutions with limited diversity. Moreover, during idea
generation, the behavior of the teams with uniform distribution of influence is regulated by
their team members’ self-efficacy.

List of symbols

f(x) A multi-dimension function that computationally represents the design
problem, where each dimension denotes a design variable “x” is an
n-dimensional array (x1, x2, x3,…, xn).

M The size of a matrix (in this case 2D) that represents asolution space.
D The distance between the random point (x1,x2) and the nearest best solutions

on a solution space.
O(z′) An agent’s energy to explore solution space, where z′ is the normalized

length of the session.
σ The shape parameter that affects the overall shape of the curve that governs

an agent’s energy to explore solution space.
c The energy value when the session starts
S(d′) The magnitude of the learning vector from a positive event, where d′ is the

normalized value of the similarity between the recalled and current agent’s
solution. .

α Position of the peak when learning from the positive experience
E Agent domain-expertise level
τ The height of the peak when learning from the positive experience
Δt The difference between the sessions when the recalled event occurred and the

current session
n The current session number of an agent
Sn The session when the recalled success occurred
N’ The given number of sessions in a project
�vs The learning from positive experience vector
�vk The initial knowledge state vector of an agent
�vn The resultant learning vector from the �vs and the �vk
I The Influence value
SE The self-efficacy of an agent
ΔSE The difference in the self-efficacies of the two agents
T Trust between the two agents
w1, w2, w3,
w4, and w5

The weights that were decided after the empirical studies
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R The reputation of an agent
Na The number of solutions of an agent that

wereaccepted by the controller agent
Np The total number of the solutions proposed

by an agent
f The familiarity between the two agents
�vI The total amount of learning by an agent

from its peers
�vn′ The amount of learning an agent does

while generating solutions
EI Exploration index
solnslowr The unique number of solutions explored

on a reduced resolution of the solution space
Arealowr The reduced resolution solution space area
EQI Exploration quality index
t Threshold taken to determine EQI
solnsr The number of solutions generated that are

greater than t on a reduced resolution
solutionspace

totSolnr The total number of solutions that are
present in the solution space that are
greater than t

Introduction

Many companies and organizations rely on collaborative work for
better project outcomes, and there is a need for workers to have
adequate knowledge and skills related to design team collabora-
tion that will give them a competitive edge. Several factors at
the individual, project, or organizational level act as barriers in
design team collaboration (Kleinsmann and Valkenburg, 2008).
More and more emphasis is being given to study the design pro-
cess at an individual level, and how social and cognitive factors
could contribute to the final design output. One such social factor,
social influence, gives rise to influencers who affect the cognition
of other individuals during a collaborative activity. Thus, the
study explores the impact of these influencers on design
outcomes.

Often in teams where there are no appointed leaders, the
“charismatic” individuals can make others follow them in their
decisions, opinions, and judgements. Social influence is responsi-
ble for the imitation nature in humans or, in other words, humans
learn from social experiences; in this paper, this is referred to as
social learning. Though there are a variety of different types of
social learning, the paper focuses only on imitation type
(Whiten et al., 2009). According to social learning theory, people
learn from their social environment through interactions
(Bandura, 1977a), while in social cognitive theory, they learn pas-
sively from the social environment by observing others (Bandura,
1986). Since both, the above-mentioned phenomena are consid-
ered for the study, social learning is used interchangeably with
social influence (as an individual imitates and learns most from
those who influence them most).

Collaborative design teams can be viewed as social networks,
but the role of influencers in small teams is still underexplored.
While it is important to study the interactions in such collabora-
tive teams (Paulus, 2000) and it requires a tremendous amount of
time and effort (Becattini et al., 2019). Therefore, the current
work investigates the effect of influencers on design outcomes
through agent-based modeling. Specifically, the current work
deals with an agent-based approach for simulating idea genera-
tion in collaborative design teams (flat teams where participants

contribute as equals without an overt hierarchical structure).
Besides investigating the effect of influencers on individual think-
ing during idea generation, it also provides a novel approach to
simulate learning in multi-agent systems. The effect of influencers
in design teams has not been studied in past, thus the work could
provide initial steps toward team management strategies to project
managers, leaders, scrum masters, and others in similar roles.

The structure of the paper consists of the introduction section
comprising the related work, identified research questions, and
related hypotheses followed by the contribution of the current
work. The section is followed by the model description along
with the past theories and work on which the model is grounded
are mentioned. The empirical study section briefly describes the
real-world experiments and the results obtained from them,
used for further tuning the model. The results from the model
simulation show and discuss how influencers affect design out-
come in terms of quality and exploration of ideas. The paper
ends with a conclusion that provides a summary of the paper
along with the limitations and future goals.

Background

Interaction between individuals in a collaborative activity gives
rise to social influence (Myers, 1982). Social influence is the pro-
cess where individuals change their behavior, attitudes, and opi-
nions in the presence of social interaction. It is already known
that social influence affects group brainstorming (Paulus and
Dzindolet, 1993) and the magnitude of social influence is not
evenly distributed across members of a team (Brown and
Pehrson, 2019). In social network research, “influencers” is
defined as “key individuals who have many people following
them, they promote companies’ product and are motivated to
adopt new information or product” (More and Lingam, 2019).
Similarly, in the context of the paper, influencers are individuals
who have more capacity to influence their teammates than others
(Aries et al., 1983).

Cognitive processes occurring during brainstorming are
known to be affected by social influence (Paulus and Dzindolet,
1993). Nowak et al. (1990) simulated a population of individuals
having different opinions. These simulated individuals affect each
other (based on social impact theory) and at the end of the simu-
lation, a stable configuration of opinion was obtained. Another
dynamic model of social factors in brainstorming was presented
by Brown and Paulus (1996), where the model was based on
idea generation, idea memory and idea output, taking into
account the effects that group member exerts on each other’s
idea generation. Moreover, it was found that individuals tend to
mimic the performance of their co-workers due to social compar-
ison (Paulus and Dzindolet, 2008). Though it is clear that social
influence affects creativity, the effect of the unequal distribution
of social influence observed in practice is still unclear.

The dynamic nature of the influence arising from the interac-
tion among individuals in a collaborative activity can be challeng-
ing to study using traditional human subject research.
Agent-based modeling has been used in many other domains to
infer and predict the behavior of complex systems as in the
domains of social sciences, biology, air traffic, and many more
(Abar et al., 2017). Therefore, one of the broader contributions
of this agent-based model would be to assist future researchers
by providing a faster approach to study the design collaboration
process. The use of agent-based modeling in the design team
domain is a relatively new computational approach to model
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the dynamic phenomenon. It is used to model human behavior
and interactions quickly and conveniently, where each agent mod-
els a human being, and they exhibit characteristics such as mem-
ory, learning, and adaptation (Bonabeau, 2002). The agents in the
model behave according to the pre-defined rules to fulfill the pur-
pose of the model. Simulating artificial humans in a collaborative
idea generation session involves many parameters (Salas et al.,
2005). Considering all the parameters may be costly (in terms
of computational time and resources) and complicates the
model, therefore researchers in the past including the current
work (Singh et al., 2019) have considered the ones that contribute
directly to their goals. While some authors focused their compu-
tational models on the conceptual design phase (Green, 1997;
Cvetković and Parmee, 2002; Ehrich and Haymaker, 2012), others
created models to study distributed team coordination (Carley,
1996; Carley and Gasser, 1999; Lee and Lee, 2002) and multidisci-
plinary teams (Maher et al., 2007; Hulse et al., 2019). Researchers
have studied and simulated specific aspects of design activity, such
as problem-solving (McComb et al., 2015, 2017) and team-related
attributes (Gero and Kannengiesser, 2004; Singh et al., 2011;
Perišić et al., 2018). Although many studies have considered indi-
vidual attributes, such as the choice of partners or cognitive style
(Hinds et al., 2000; Lapp et al., 2019) and social attributes like
mental models have been modeled in the past (Singh, 2009),
the effect of social influence on idea generation outcomes has
not been explored.

Unlike the current trend toward studying the influencers in
social media, the aspect of influence that occurs during design
team collaboration has not been given much attention. Though
the effect of social influence on brainstorming has been studied,
its uneven distributed nature in the teams where some individuals
tend to be more influenced or influential than others is still not
explored. The study in this paper would investigate how the mag-
nitude and distribution of influence affect idea generation out-
comes. Specifically, the workseek to answer this research question:

What is the effect of influencer(s) on idea generation outcomes (explora-
tion and quality)?

The idea generation outcomes include the quality (i.e., utility
or usefulness) of the solutions (Shah et al., 2003) and exploration
(i.e., the number of unique alternative solutions agents generate
before communicating to others in the team) of the design
space (Ball et al., 2001; Dorst and Cross, 2001). The explored val-
ues are also evaluated based on the diversity in them, referred to
as variety, and explored solution quality called the exploration
quality index (these metrics are explained more in the section
“Model results and discussion”).

However, before addressing the research question, it is first
crucial to determine what makes an influencer. Although
researchers have studied the characteristics of social media influ-
encers, little is known about the characteristics of influencers in
design teams. The work examined the past studies on group
behavior, leadership studies, and team dynamics, to hypothesize
some underlying influencer characteristics. Baker (2015) claimed
that individuals’ personality, skills, and communication could
result in such a phenomenon. Since communication is often influ-
enced by one’s confidence state, self-efficacy was one of the indi-
vidual attributes that were considered. This assumption was made
based on the common observation where the more confident
individuals are the ones governing the team (Bandura 1977b). It
is known that self-efficacy is one of the important factors that

are responsible for transformational leadership improving team
performance (Pillai and Williams, 2004), it is unclear how it
might affect the degree of influence in teams. The other intraper-
sonal attribute that was chosen was trust, which arises from how
well the two individuals have known each other previously that
could also contribute to influencing power (Granovetter, 1973).
Therefore, for this investigation, it was believed that self-efficacy
(an individual’s belief in his or her capacity to achieve goals)
and trust could contribute to the influencer effect. Considering
these two factors (self-efficacy and trust), an assumption was
made to identify the influencers to address the above research
question.

Assumption: Self-efficacy and trust are characteristics that determine how
individuals’ perceived degree of influence by others in the team.

To summarize, the main contribution of the work lies in the
attempt to build a computational framework that could simulate
social influence in collaborative design activities. Besides, provid-
ing insights into the popular approach of collaborative group
design, the work would also assist researchers and practitioners
with a faster method to study collaborative processes. Moreover,
the uneven distribution of social influence that gives rise to influ-
encers in the design team has been studied neither empirically nor
computationally before. The characteristics and qualities, which
give rise to the influencer effect in design teams, are investigated
here. Additionally, the work provides a novel approach in stimu-
lating learning in design teams (by considering appropriate model
features such as design task, learning from past experience and
influencer) is described in the next section. Lastly, the work also
presents fresh a way to measure artificial creativity (especially in
terms of exploration as explained in the “Model results” section).

The flow of the research is provided in Figure 1. The empirical
studies were done after the initial model development was com-
pleted based on literature and assumptions. The computational
model approximates the real-world system due to which it
needs verification and validation. The empirical study section pro-
vides an overview of how some of the logics used in the model
were verified as well as the assumption was validated. From the
results of the empirical studies, the general idea of the results clar-
ifying the assumptions and variable relationships were imple-
mented in the model and not the exact coefficients (since the
experiments were done in different settings, implementing exact
results would not be appropriate).

Model description

The design project schema used in this paper is shown in Figure 2
(Singh et al., 2019). As shown in Figure 2, a design collaboration
activity starts in the form of a project. Each project has a set of
design agents and a controller agent (analogous to a project
leader, manager, or others in a similar role) who is responsible
for assigning the task, evaluating the solution quality and provid-
ing feedback to the team. The project consists of several sessions
of idea generation and idea selection before receiving feedback on
their proposed solution from the controller agent for that session.
Each idea generation event consists of several cognitive steps
before proposing a solution to the team. These steps are analogical
to the designer exploring alternative solutions (Ball et al., 2001):
moving from one point (solution) to another on a design space
forms a step. Inspired by this notion, the work in this paper
focuses on idea generation.
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The design task

The definition of the design task is critical as it drives many
aspects of the simulation while having a resemblance to the real
world. Design teams are often not immediately aware of the qual-
ity of their solution and proceed by trial and error; this is espe-
cially true when the designers start working and they have no
past experience. In this aspect, design tends to resemble a search
task with a fixed design space and variables rather than a mathe-
matical optimization problem. A design task typically has a cer-
tain number of design variables for which values are selected
and combined to generate unique solutions. Furthermore, it is
often the case that the quality of these solutions varies with
changes to the constituent variable values. Generally, there are
many below-average solutions with a few solutions that have the
highest value. These characteristics of real-world design tasks
were emulated in the construction of the computational design
task solved within the model. Agents interact with the task
through trial and error, searching for a solution with high quality.
The design variables are continuous in nature and result in a con-
tinuous definition of solution quality.

The computational representation of a design problem has
been adopted in many design research (Green, 1997; Cvetković
and Parmee, 2002; Gero and Kannengiesser, 2004; Ehrich and
Haymaker, 2012; McComb et al., 2015). Some of the design
tasks used in previous work are represented as binary functions
(Schreiber et al., 2004). Design tasks that are represented as binary

functions often have extreme solution values (i.e., immediately
next to the best solution, there is the worst solution). This is an
inaccurate representation of the more stable design tasks seen in
the real world. This was taken into account while mathematically
representing the solution space for this work. The design solution
space is modeled in such a way that there is a gradual slope
between the best and worst solutions, hence the subtle decrease
in the hues around the best solution values (examples can be
seen from Fig. 3). Similar to the real-world design problems,
some noise was added to the objective function so that the prob-
ability of having the best and the worst solution next to each other
is not completely eliminated and the design problem could have
multiple best solution. The design problem can be computation-
ally represented in multi-dimension that is composed of a land-
scape function f (x) [see Eq. (1)] and the given number of best
solutions (maxima or peaks). The landscape function draws the
desired shape around the given number of maxima. Here, x in f
(x) is an n-dimensional array (x1, x2, x3,…, xn) of design variables.
The landscape function f(x) constructs the slopes around the
given number of peaks. The following general assumptions were
made regarding the design solution space for this model.

• There is a limited number of n design variables each ranging
within a definite interval (unknown to the agents). The design
space is represented by all the combination of values of these n
variables. For initiation, simplification, and visualization

Fig. 1. Research workflow.

Fig. 2. The focus of the study is shown in the green box.
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purposes, two variables (n = 2) are chosen to represent the
design problem. However, for future work, it could be extended
to multiple dimensions.

• Each point on the n-dimensional surface defines a potential
solution to the design problem and can be evaluated to yield
a quality value. The agents do not know the values of f(x) for
any solution of the design space before the start of the project;
however, they are aware of the limits of the solution space.

The design space could be changed with relatively small effort
based on the shape (gradient around the maxima), the number of
peaks (number of maxima), and the distance between the peaks.
The results of the design outcome presented in the paper are related
to five peaks. The design solution space has a maximum value of 1
(lightest hue) and a minimum of 0 (darkest hue), as shown in an
example in Figure 3 with several local maxima and minima.

f (x) = 1

1+ e 1/
��
M

√( )D−2( )( ) , (1)

where M is the size given to represent the solution space in a 2D
matrix. In this case, M= 100, such that the solution space was rep-
resented as a 100 × 100 matrix. D represents the distance between
the random point (x1,x2) and the nearest best solutions. The num-
ber of best solution or the peaks are specified at the beginning of the
simulation.

A similar design problem representation was used by Lapp
et al. (2019) when simulating teamwork based on a different cog-
nitive style where the amplitude of their objective function (peaks)
affected exploration. Other studies in problem-solving like Dionne
et al. (2010) and Sayama et al. (2010) also used a similar 1D and
2D representation of the problem with peaks and valleys.

Generating solutions

In order to simulate artificial humans, learning is an important
feature to implement in the model. For example, studies have
been done where agents learn collectively (Wu and Duffy,
2004), socially using mental models (Singh, 2009), or to simulate
curiously in agents (Saunders and Gero, 2004). Most of the mod-
els described in the literature deal with some form of learning in
their agents to accomplish the purpose of their work. The most
common logic implemented in many models listed above is in
the form of learning from experience (McComb, 2016; Lapp
et al., 2019). However, while simulating learning it is often
assumed that the agents are aware of the design solution space
and they thrive for the optimal solution (McComb et al., 2017).

This works perfectly when the goal of the model is to find the
optimal solution depending on the configuration of its parame-
ters. On the other hand, the model presented in this paper aims
at mimicking a collaborative idea generation session where the
design solution space is unknown to the agents in a way that is
similar to a real brainstorming scenario, but at the same time,
the individuals (agents in the model) are aware of the boundary
conditions. To model thinking in design teams, the authors
have taken inspiration from Stempfle and Badke-Schaub (2002),
where the basic thinking model consisted of exploration, genera-
tion, comparison, and selection. Keeping this in mind, the design
agents explore the design space, generate solutions, compare it
with the solutions they generated in the past and eventually select
one to propose to the team. When an agent moves from one point
to another in a design solution space, it is analogous to an indi-
vidual formulating consequent thought during idea generation.
The trajectory formed by connecting these points (thoughts)
represents the overall process followed by an agent.

In order to learn, the agents explore the design solution space.
Every time an agent stops at a point on the design solution space,
that point is treated as the agent’s selected solution. As mentioned
before, the paper only deals with the results related to individual
thinking during idea generation in design teams, however, the team
interaction (proposing ideas, combining, and decision-making)
that are occurring in the backend are not described in the paper
and do not impact the results presented here. Idea generation is
simulated in agents based on the following features, each of
which is explained in more detail in the subsequent sections:

• Agent’sway to explore solution space
• Memory to store past experiences
• Recall capability
• Ability to learn from failure and successful past experience
• Influence of the influencer(s) (as explained in the “Background”
section)

Exploring the solution space
The way agents explore the solution space in the model depends
on their energy because individuals during the initial ideation
phase are slower in exploring the solutions as they get warmed
up in the beginning by triggering memory search. This is followed
by more exploration by recalling past solutions from their mem-
ory. However, at some point, this recalling process becomes tiring,
and the rate of exploration of the solution space drops toward the
end of the session (Goucher-Lambert et al., 2019) (illustrated in
Fig. 4). This behavior is modeled mathematically as shown in
Eq. (2). Changing the shape parameter of the curve (σ) makes
it possible to generate different energy curves, hence different

Fig. 3. Examples of design solution space with a different number of best solutions (peaks in lighter hue) and a side bar showing solution values. The last image
shows an example of a 3D projection of a design space with five peaks.
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exploration styles could be assigned to agents. The curve is perso-
nalized and kept constant for an agent throughout a session. It
does not change with respect to other team member nor depends
on factors such as motivation to solve a problem.

O(z′) = 1

s
����
2p

√ e(−ln(z′)/2s2) + c. (2)

The exploration of the solution space depends on the length of
the idea generation session (i.e., the number of the steps), in the
given Eq. (2), z′ is the normalized length of the session. The value
of σ lies between 0 < σ ≤ 1, it represents the shape parameter that
affects the overall shape of the curve. c is the energy value when
the session starts where 0.0 < c < 0.5 is randomly assigned to
the agents as it was assumed that there is a certain amount of
energy in individuals when the session starts (maximum energy
was 1 and minimum was 0) .

Memory
Taking inspiration from the constructive memory concept (Liew
and Gero, 2004), the model constructed here implements a sim-
plified version of memories in agents where memory is created
based on design agents’ past experience.

Different agents have different memory storage and store expe-
rience after working on the design task at the end of a session.
These experiences are in the form of feedback from the controller
agent. The experiences that are not utilized in the agent’s current
situation and are not recalled for a long time are forgotten from
the memory. The forgetting in agents is based on the Decay

Theory, which suggests that “If there was no attempt to recall
an event, the greater the time since the event, the more likely it
would be to forget the event” (Oberauer and Lewandowsky,
2008). Accordingly, agents in the model exhibit the behavior
that suggests that memories are not permanent.

Recall capability
Recalling here refers to the act of bringing a past event back into
one’s mind. When an agent is unable to recall, it does not mean
that the information is permanently removed from its memory
but rather that it is unable to be retrieved from its memory for
that situation. An individual in real situations might not be able
to recall any similar experience from the past while approaching
a problem in its current situation. Similarly, in the model, an
agent has its feedback from the controller agent stored in its
memory. This feedback is in the form of positive (successful
experiences) or negative (failed experiences) events, but an
agent might not be able to recall them while solving the problem.

An agent could recall the stored events in any order and the
recalled events from the past alter the way it approaches the solu-
tion (Murdock, 1962). The recalling ability in agents depends on
the intensity of the solution value and the time of recall as
explained by Banaji (1986) and varies from agent to agent.
Identical to the real-world situation where individuals recall
their worst and best events results more clearly than their med-
iocre outcomes, this phenomenon of recency and primacy effect
is simulated in the model as given by Murdock (1962). This
means that the events that are either first or most recent are
recalled more often than the events in-between. Likewise, the
events that are extreme (i.e., best and the worst) are more easily
recalled. An example of the events being recalled is shown in
Figure 5. The red path is the trajectory that each agent takes
before selecting the final solution. This red path is made of several
steps that are analogous to a designer moving from one solution
to another in a design space during an idea generation session.
The set of recalled memories (shown as R in Fig. 5) could be of
a positive (gray cross) or a negative event (orange cross).

Learning from experience
The most common form of simulating learning in agents is in the
form of reinforcement learning, where the agents use feedback
from the environment to determine their action for the current
state (Eliassi-Rad and Shavlik, 2003; Hulse et al., 2019) (seen as

Fig. 4. An example plot of an agent’s energy to explore solution space.

Fig. 5. An example showing an agent recalling events while exploring solutions.
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arrow 2 in Fig. 6). Similarly, in the model, agents learn about the
solutions space gradually as they receive feedback from the con-
troller agent present in their environment. The behavior resem-
bles the one described by Cagan and Kotovsky (1997), where
the agents move randomly when they start their search but
become more regulated as they learn about their problem.
According to the feedback (a numerical value) received by an
agent at the end of a session, the event is broadly classified as pos-
itive (successful) and negative (failure) which are stored in its
memory. The event is said to be in a positive category when the
feedback value is above a certain threshold and in a negative cat-
egory when it is below, it could be seen from the example shown
in Figure 5 (as black and orange crosses). The learning from the
past, which could be positive or negative experience, is different
and have a different impact on the current situation (Wimmer
and Shohamy, 2012) are described below:

Learning from a positive experience (�vs) and how it affects an
agent on its current solution depends on threefactors (Fig. 7):

• The magnitude of learning from the positive experience (|vs| = S
(d′)) depends on the similarity between an agent’s current solu-
tion in “mind” and the recalled positive event (Read and
Grushka-Cockayne, 2010). If the recalled event is similar (closer
on solution space) to the solution “in mind”, the agent is more
influenced by its previous experience than those that are far in
distance (not so similar) (Gentner, 1989). On the other hand, if

the recalled positive event is too similar (i.e., too close) as the
solution in mind, the agent’s learning is less influenced by it.
This assumed that an individual will not apply the exact same
(or slightly different) knowledge from the past event to their
current situation, hence compelling it to produce different solu-
tions. The similarity is represented as the distance between the
recalled and current agent position (d).

• The amount of learning from a positive experience also depends
on the expertise level of an agent. It means that when an agent
has a lower domain-expertise level, it will learn slower therefore
a less steep slope than the agent who is more expertise (Ball
et al., 2004). It is seen in Figure 7 as the position of the peak
of the learning curve. This is represented in Eq. (3.1), as α
that depends on an agent’s expertise (E) level, where E was ran-
domly assigned to the agents when the session starts.

• Lastly, learning from a positive experience depends on the time
when the recalled event occurred (Δt). It is shown as the height
of the learning curve in Figure 7 where more is the height;
greater is the learning when the positive experience is recent.
Its height is represented in Eqs (3.2) and (3.3) where τ is the
adjusted value of Δt so that the value of the curve in Eq. (3)
is normalized.

The amount of learning from the positive experience recalled
(magnitude of the learning vector as shown in Fig. 8) can be rep-
resented by S(d′) and is given in the following equation:

S(d′) = t

1

d′a
���
2p

√ e(−((ln (d′))/2a2))

0.7

⎛
⎜⎝

⎞
⎟⎠, (3)

d′ = 4.0 ⋅ d + 0.1. Here, d′ is the adjusted value of d such that 0≤ S
(d′)≤ 1.

In computational terms, d is the distance between the current
agent (solution) position in session n and recalled success (solu-
tion) position of session Sn. d is the similarity between the current
design task and recalled positive experienced as explained above

Fig. 6. An agent learning (explained more in the sections “Learning from experience”
and “Effect of the influencers”).

Fig. 7. Different amount of learning from one’s own positive experience. Fig. 8. The updated position on an agent after learning from a positive experience.
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that similarity is one of the factors on which learning magnitude
depends. In Eq. (3), S(d′) is divided by 0.7 to normalize it. The
other variables in the above equation (on which learning magni-
tude depends) are explained as follows:

a = 0.8–(0.2 · E), (3.1)

t = 1–(0.7 · Dt), (3.2)

Dt = n–
Sn
N ′ , (3.3)

where n is the current session number of an agent and Sn is the
session when the recalled success occurred. N is the number of
sessions in the equation 3.3.

The learning from positive experience vector, �vs, is summed to
the initial knowledge state vector of an agent �vk to get the resul-
tant learning vector (�vn) from the two learning states (arrows 1
and 2 shown in Fig. 6) for an idea generation session given as
Eq. (4).

�vn =
∑N
i=1

�vsi + �vk, (4)

where in the equation 4, N is the number of positive experiences
recalled in a session n and i is the initial starting index.

Learning for a negative experience is different from a positive
experience as humans try to avoid the failures they have com-
mitted in the past and tend to follow the path that led to previous
success (Wimmer and Shohamy, 2012). Similarly, learning from
negative experiences is done in the form of avoiding the areas
where previous failures have occurred. An agent avoids the
negative experiences by forming a circle around the point where
the recalled failure had occurred. Like the real scenario where
an individual remembers the failure zones on the solution space
while exploring new solutions. The radius of this circle differs
from agent to agent and depends on the severity of the recalled
negative event (Fig. 9). The maximum failure radius is chosen
to be five units for a 100 × 100. The radius or the size of the circle
denotes the learning capacity from a failure of an agent, and it will
avoid the circle area around the recalled failure (Fig. 10).

Effect of the influencers
To investigate the factors that could give rise to the influencer
effect in design teams, self-efficacy and trust (resulting from the
mutual knowledge of each other) were chosen as initial parame-
ters to begin the investigation. Self-efficacy is implemented in
the model as a dynamic feature in agents that changes based on
its intrinsic and extrinsic motivation (Ryan and Deci, 2000).
Like self-efficacy, trust also changes throughout the simulation
as in real situations where it depends on the interacting indi-
vidual’s familiarity and reputation (Mui et al., 2002; Costa,
2003). To model the “influencing effect”, each agent has an influ-
encing value from other agents in the team and it depends on the
factors shown in Figure 11. The influence value I (same magni-
tude of the social learning vector |�vI |), for an agent i of agent j
is computed as Eq. (5) (an example in Fig. 12). Here, j varies
until the total number of agents present in a team and j≠ i.

Iji(DSE, SE, T) = w1(DSEi−j)
1.5 + w2(SE

j)+ w3(T
j
i ), (5)

ΔSE in the equation 5 is the difference in self-efficacy of agent i and
agent j, T is the degree of trust of agent i has on agent j. SE is the
self-efficacy of an agent j. The weights w1, w2, and w3 were decided
in after the empirical studies, presented in the next section.

T(R, f )ji = w4(R
j)+ w5( f

j
i ). (5.1)

The amount of trust an agent i has an agent j depends on R
and f (Costa, 2003). R is the reputation of an agent j and f is
the familiarity (i.e., how well does an agent i knows agent j).
Familiarity, f between two agents, is calculated as the number of
sessions agent i and j have worked together, therefore familiar
with each other. Reputation, on the other hand, is given as Eq.
(5.2), where Na is the number of solutions that are accepted by
the controller agent and Np is the total number of the solutions
proposed by an agent. Familiarity and reputation, in reality,
may not be fully independent but here they are modeled as
mutually independent parameters (Hinds et al., 2000). In the
model, familiarity between the two agent increases with the num-
ber of idea generation sessions they have in common, as the agents
at this point are not being shuffled (replaced, removed, or added),
the familiarity is the same for all of them. Thus, familiarity being
constant, reputation is the only factor that is affecting trust.

The weights in Eqs (5) and (5.1), w1, w2, w3, w4, and w5 were
decided after the empirical studies presented in the next section.

R = Na

Np
, (5.2)

�vn′ =
∑N
i=1

�vIi + �vn, (6)

where �vIi is the total amount of learning by an agent i from its
peers (arrow 3 as shown in Fig. 6) given in Eq. (6.1) and �vn is
as calculated in Eq. (4). The resultant vector �vn′ is the total
amount of learning an agent does while generating solutions to
the design problem.

�vIi =
∑N

j = 1
j = i

Iji, (6.1)
Fig. 9. Failure radius depends on the value of the recalled failure (where five units are
the max radius for a 100 × 100 units of solution space).
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In the equation 6.1,N is the number of agents in a session n with
the agent i and j is the initial starting index for its peers.

Studies show that an individual proposes more ideas when the
team accepts their ideas and high self-efficacy individuals get les-
ser change in their self-efficacies (increase and decrease) than the
ones with lower self-efficacies (Pearson ρ =−0.717, p-value <
0.001) (Singh et al., 2020). Similarly, an agent’s change in its self-
efficacy is simulated in the model. Figure 11 also shows that self-
efficacy depends on an individual’s motivation, which is impacted
by an appreciation by team members or rewards (in terms of pos-
itive feedback) given by the superiors. Computationally, apprecia-
tion based motivation happens for an agent when other agents
select its solution and reward-based when the controller agent
provides good feedback (Ryan and Deci, 2000). Both of these
forms of motivation contribute to the individual’s change in self-
efficacy. Despite the fact that these two phenomena have different
mechanisms, they are modeled similarly.

Empirical studies

The development of the model presented in the previous section
was guided by phenomena demonstrated in the psychology,
sociology, and design literature. This section presents empirical
studies that were conducted to improve the model in several ways:

Fig. 10. An example where an agent (in red) encounters a
failure at session n−k, which is being recalled in session n,
an area around the failure is avoided.

Fig. 11. Determining influence value.

Fig. 12. The updated position on an agent is the sum of the vectors of its resultant
learning vector from recalled success and the influence value vector.
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• Validate the assumption: The work assumes that self-efficacy
and trust could be the individual characteristics responsible
for the influencer effect. Due to insufficient work done in the
past to reveal the qualities of an influencer(s) in design teams,
the experiments were conducted to get some initial insights.

• Determining the weights of the model equations: The additional
insights were gained regarding the relationship among the
model parameters that were used to estimate weights (w1, w2,
w3, w4, and w5) for Eqs (5) and (5.1) (given in the above
section).

• Verify the model logic: The model logic such as the lower self-
efficacy agents perceiving a greater number of influencers than
higher self-efficacy was verified by the empirical study.

These two experiments presented here were observational in
nature. Data collection from these experiments was done mainly
through survey questionnaires. It was not mandatory for the par-
ticipants to take part in the surveys.

Observation Experiment 1

Data collection
The experiment was set up to monitor design teams working on
semester-long design task given by a company for a master’s
degree course of Methods and Tools for Systematic Innovation.
There were 10 teams with 4–5 mechanical engineering graduate
students in each of them.

The data werecollected twice in the form of online surveys (the
link to the sample questionnaires is provided in Appendix B).
Initial data collection was conducted when the course started
and was related to collecting information about their self-efficacy
(Carberry et al., 2010) and problem-solving attitudes. The ques-
tions for determining self-efficacy were taken from Carberry
et al. (2010), but the scale was changed from 10 to 4-point to
match the scale of problem-solving questions. The questions
related to the problem-solving attitude aimed to capture an indi-
vidual’s approach when handling a design problem. The same set
of questions were used by Becattini and Cascini (2016) to assess
characteristics of creative instruments for problem-solving in stu-
dents. The questionnaire and the scales employed here have
already been validated and used by other researchers in the past
(Carberry et al., 2010; Becattini and Cascini, 2016). The second
data collection was conducted after the students had started work-
ing in their respective teams on the given task. In order to map
the difference in their problem-solving attitudes and self-efficacy,
the questions used in the initial data collection survey were repea-
ted besides some additional questions related to trust, familiarity
and influencers on a 5-point Likert scales (5 being maximum)
where Ohland et al. (2012) was used as a reference.

Results obtained
It was found that the difference in an individual’s self-efficacy
with respect to their peers could be responsible for perceived
degree of influence from its peers . In other words, a positive cor-
relation was found between the difference in the self-efficacy of an
individual and its team member at the beginning of the experi-
ment and the perceived influence value entered by the individual
after they started working in teams (Pearson ρ = 0.41, p-value =
0.014).This means that individuals with low self-efficacy have
more tendency to be influenced by others with higher self-
efficacies. The impact of the difference in individuals’ self-efficacy
is not new as studies have shown that it affects team’s social

attributes like group identification and conflicts (Desivilya and
Eizen, 2005). Secondly, it was validated that trust plays an impor-
tant role in determining influencers. It was found that trust
between an individual and other individual team member after
they started working in teams was positively correlated with its
perceived degree of influence (Kendall τ = 0.6, p-value < 0.001).
Thus, it conforms to the studies that have stated that trust affects
individual relationships and team processes (Costa, 2003). The
linear regressions between the perceived degree of influence and
the difference in self-efficacies and trust could be seen in
Figures 13 and 14 where the data set was shuffled and divided
into training (67%) and test set (33%). Hence, the results of obser-
vation experiment 1 helped in supporting the assumption. As the
data was collected using 4- and 5-point Likert scale, plots in
Figures 13 and 14 show normalized values and show many over-
lapping data points.

Observation Experiment 2

Data collection
The second experiment was conducted to collect information
related to decision-making during idea selection, but a minor por-
tion of the experiment aimed at finding out the number of per-
ceived influencers in a team. The experiment was set up during
the EU’s Erasmus+ project called ELPID,1 where five teams of
eight students from four different universities worked on a design
task for a period of 3 days. The workshop was a sprint to intro-
duce students to ideation techniques.

Though the teams were under observation throughout the
workshop, the data collection was only performed on the second
day of the workshop. The collection was done in the form of a
short survey where the question related to their self-efficacy (sim-
ilar to the one given in Appendix B) was measured on a 5-point
Likert scale (5 being very self-confident in doing the engineering
design activity). The question related to identifying the perceived
number of influencers in a team was open-ended. The other ques-
tions that are out of the scope of this paper were mainly related to
decision making during idea selection.

Fig. 13. Linear regression between delta self-efficacy and influence. Regression coef-
ficient: 0.41. Mean squared error: 0.04. Variance score: 0.30.

1ELPID: E-learning Platform for Innovative Product Development. Available at: http://
www.elpid.org/.
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Results obtained
A slightly negative correlation (Kendall τ = −0.3, p-value = 0.03)
was found between the individuals’ self-efficacy and the number
of perceive influencers in their team. The low correlation could
be because individuals with high self-efficacy are more likely to
perceive others with high self-efficacy as influencers. This could
be supported by the other findings such as the relationship
between individuals’ self-efficacy and the degree of influence by
them. A positive correlation (Kendall τ = 0.32, p-value = 0.013)
was found between the individuals’ self-efficacies and their degree
of influence as perceived by others. This means that those who
had high self-efficacy were also perceived to have more influence
value. Similar results were obtained by Singh et al. (2020), where
individuals who had high self-efficacy, also perceived high influence
from the influencers (Pearson ρ = 0.55, p-value < 0.001). Hence,
further supporting that perceived influence could depend on self-
efficacy and the difference in self-efficacy of two individuals.

Implementation of the empirical results

A summary of outcomes from the two observation experiments
presented in this paper is given in Table 1.

Model results and discussion

The model, which has now been verified through two empirical
studies, is now used to conduct several computational experi-
ments. Specifically, to test the effect of influencers on design
thinking during idea generation, a few parameters were varied
while keeping the others constant. In this case, the self-efficacy
of each agent was allotted at the beginning of the simulation to
control the number of influencers in the team. Trust, which is
the other parameter to determine influencer(s), depends on the
reputation of an agentsand was dynamic as itchanged with each
session. Familiarity, at the beginning of the simulation was
same for all the agents and was increased with every sessions
that agents had in common. Other parameters, which could be
relevant, such as team size, design task, the number of idea gen-
eration sessions, and the length of the session, were kept constant.
All the agents begin without any previous experience of working on
the same task. The detailed table of the status of the model param-
eters could be found in Appendix A. To check the functionality of
the model, two scenarios were framed and tested. The first scenario
tested the situation when the team has a high variationin the self-
efficacy of its agents. Three subscenarios here were:

1. One agent with high self-efficacy and others with low (1
influencer)

2. Two agents with high self-efficacy and others with low (2
influencers)

3. Three agents with high self-efficacy and others with low (3
influencers)

The second scenario tested the situation when the team has low
variationin the self-efficacy of its agents (i.e., all agents either have
high or low self-efficacy initially). Two sub-scenarios here were:

1. All with low self-efficacy (i.e., no influencer)
2. All with high self-efficacy (i.e., all influencers)

This was done to understand the effect of influencers on
design output due to the presence of an unequal distribution of
influence in design teams. To see the functionality of the
model, some of the findings are related to (1) difference in

Fig. 14. Linear regression between trust and influence. Regression coefficients: 0.61.
Mean squared error: 0.01. Variance score: 0.62.

Table 1. Insights from the observation experiments that were used in the model

Observation Experiment 1 Observation Experiment 2

Validating the
assumption

Difference in an individual’s self-efficacy with respect to its
teammates is responsible for its perceived degree of
influence. I ∝ ΔSE (I is the perceived degree of influence and
ΔSE is the difference between the self-efficacies), hence
further supporting the validation of the assumption.

High self-efficacy individuals also had an influence on other
high self-efficacy individuals hence, it conforms to Singh
et al. (2020). It further supports the assumption that
self-efficacy could be one of the factors affecting the I ∝ SE.

The amount of trust between two individuals is also
responsible for the influence they perceive from each other.
I ∝ T (I is the perceived degree of influence and T is the Trust),
validating the assumption.

Determining the weights
of the model equations

The correlation between the parameters showed that the
relationship between trust and influence is stronger than
self-efficacy and difference in self-efficacies. Therefore, from
Eq. (5), w1 = 0.3, w2 = 0.3, and w3 = 0.4. The relationship
between trust and familiarity was weaker than originally
thought, hence in Eq. (5.1), w4 = 0.7 and w5 = 0.3.

Verify the model logic Individuals with high self-efficacy perceive fewer influencers
than those with lower.
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learning are presented while the other findings answer the
research question are related to (2) quality of the solutions
(Shah et al., 2003) and (3) exploration of design space (Dorst
and Cross, 2001). As defined earlier in the “Model Description”
section that the quality of the solution is the value of a point
on a design solution space. The exploration of the agents is quan-
tified in three different ways as given below. These three different
measures were chosen as it would be useful to see how much the
agents explore the design space while considering the quality and
diversity of these explored solutions.

Exploration index (EI) is the number of points (solutions)
explored when generating solutions on a lower resolution solution
space (solnlowr) to the area of this lower resolution space
(Arealowr) [Eq. (7)]. The lower resolution of solution space
means that the original solution space (100 × 100 units) is
decreased in size by a factor (5 in this case) so that the resultant
is a smaller space (20 × 20 units). This means that if an agent
explores solutions within five units of neighboring cells, it is
counted as one unit of exploration. This simplification was
done to avoid potential logical inconsistencies which could arise
when an agent explores immediate neighbor cells to an agent
exploring five cells at a larger unit distance.

EI = solnlowr
Arealowr

. (7)

Exploration quality index (EQI) is the ratio of the number of
solutions explored on a lower resolution solution space (solnsr)
with solution quality above a certain threshold, t (in this case, t
is above 0.5, where 0 is a minimum and 1 is a maximum solution
quality value) to the total number of solutions (totSolnr) available
on the design solution space greater than the threshold value [Eq.
(8)]. This means that if an agent explores solutions within five

units of neighbouring cells, the EQI will be the mean of the solu-
tion values of these 5 cells. Similar to EI, this simplification helped
in evaluating the quality of the explored solutions while avoiding
the inconsistencies which could arise when an agent explores
immediate neighbour cells to an agent exploring five cells at a
larger unit distance.

EQI = solns r

totSolnr
. (8)

Spread is the dispersion of the solutions from the centroid of
the solutions. The spread of the solutions obtained was calculated
to see how different the solutions were from each other (i.e., vari-
ety of the solutions).

The agent idea generation results are related to the exploration
and quality of the solution. The results are from five peak design
space (i.e., five best solutions) to get an insight into how different
compositions of influencer(s) affect idea generation in this design
task setting. The results are calculated based on the Monte Carlo
logic to reduce the effect of randomness; hence, the results below
are based on 200 simulations.

The results related to different learning styles:
Figure 15b shows how low and high self-efficacy agents behave

during idea generation based on Figure 15a shows the flowchart of
the extraction of the required data from the simulation. The figure
shows the distance between the solutions of a low and high self-
efficacy agent with respect to an influencer (here the maximum
sessions were 20). It could be inferred that a high self-efficacy
agent (but lesser than the self-efficacy of an influencer) explores
solutions differently than an Influencer, while a low self-efficacy
agent (is the one with the lowest self-efficacy in the team) gener-
ates solutions closer to that of an influencer. This aligns with
expectations on the nature of influence in design teams and

Fig. 15. (a) A flowchart showing the steps taken to plot 15b. (b) An example showing the distance between the low and high self-efficacy agents from the influencer
(for maximum sessions = 20).
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corresponds to Brown and Pehrson (2019), where it was stated
that some individuals are more influenced by the influencer(s)
than others.

The learning modeled in this work could be associated with
Associative Learning that states that ideas and experiences rein-
force each other and can be mentally linked to one another
(Paivio, 1969). This type of learning is a form of conditional
learning that is based on the theory, which states that an indi-
vidual’s behavior could be modified or learned based on a stimu-
lus and a response (Paivio, 1969). For example, if an agent’s
solution was bad (i.e., it got poor feedback from the controller
agent) (stimulus), it will not produce similar solutions (response)
(i.e., avoiding that area on the solution space). Based on the rela-
tionship between the two stimuli (current and recalled events),
associative memory can be called (Paivio, 1969). The agent uses
both the positive and negative reinforcers (stimuli used to change
behavior), to modify the way they generate their current solution.
Figures 16 and 17 show agents with the lowest self-efficacy in
teams with a varying number of influencers learn from their suc-
cesses and failures for a design task with five best solutions.
Learning from success and failure has been explained in the
Model description, where agents avoid the failures they have com-
mitted in the past and tend to follow the path that led to previous
success. The curves obtained in the results shown in Figure 16 are
similar to the learning curves described in Leibowitz et al. (2010).
There is not much difference in the success learning curves
(Fig. 16), with the lowestself-efficacy agents in teams of all influ-
encers learning slightly more from their success than other team
combinations. The failure learning results shown in Figure 17 are
more divergent and agents in the teams when all agents start at
high self-efficacy (all influencers) have the least ability to learn
from failure than the other combinations tested. Concerning
learning from failure, all the lowest self-efficacy agents in the
team with no influencer, 1 influencer, and 3 influencers, learn
more from their failures toward the end of a project. In general,
it could be seen from Figure 17 that the learning from failure
becomes steady toward the end of a project. The slope of the fail-
ure learning curves (failure rate) exhibit somewhat similar behav-
ior to the “early failure” phase (widely used in reliability
engineering) (Wilkins, 2002), where the rate of failure decreases
with time, hence the system improves (Proschan, 2012).

Social influence, which leads to the imitation in individuals to
modify opinions, attitudes, and behavior similar to the others they

are interacting with, is referred to as social learning. As it could be
seen from Figure 18, the influence of individuals is unevenly
distributed in a team, consequently, is social learning. The
amount of social learning in the teams where the ratio of influen-
cers to non-influencers (i.e., low self-efficacy agents) was half and
agents in teams with all influencers, social learning could be seen
high throughout the project, while minimum when all agents have
low self-efficacy when they start working (Fig. 18). Social learning
curves are similar to the ones obtained in other domains of study
such as online gaming (Landfried et al., 2019) or during diffusion
of innovation (O’Brien and Bentley, 2011).

The results related to the quality of the solutions:
The results related to design quality for a 5-peak configuration

of a design task with respect to different influencer/non-
influencer team compositions could be seen in Figure 19
(ANOVA F = 34.02, p < 0.001). The pairwise ( post hoc T-test)
comparisons of the generated solution quality were also statisti-
cally significant for all the cases except two (i.e., teams with 1
and 2 influencers, and teams with 1 and 3 influencers solution
quality). Agents in the all influencer team, on average had better
solution quality than other team compositions. In general, the
quality of solutions increases with the idea generation sessions
with minor divergence. This shows that all agents in the model
are learning (from different modes as shown in Fig. 6). One pos-
sible reason for this could be because the individuals in teams

Fig. 16. Learning from success.

Fig. 17. Learning from failure.

Fig. 18. Social learning.
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compare their performance with the others in the teams, hence
converge in their solution quality (Larey and Paulus, 1999).
They are storing the events in their memory and recalling the
ones associated with their current situation (explained in the
“Model description” section). Recalling these events and associat-
ing them to the current situation enhanced idea generation
(Dugosh and Paulus, 2005). The quality results of the model are
consistent with the study done by Brown et al. (1998) and
Paulus (2000), where it was shown that exposure to others’
ideas may increase the quality of ideas generated. By narrowing
down, one could observe that agents in the teams of no influencer
produced better quality ideas after the second half of the project
while the opposite could be seen in teams of all influencers.
Figure 20 shows the quality of solutions of the lowest self-efficacy
agent in different team compositions (Kruskal–Wallis H = 4.75, p
= 0.31). It shows that agents with the lowest self-efficacy in teams
behave similarly when generating solutions, irrespective of the
influencer team composition.

The results related to exploration values:
In general, it can be seen from Figure 21(top) that the teams

with well-defined influencers and all influencers have a lesser
exploration index (EI) than no influencer teams. The exploration
of solutions on the design space by all the teams differs

significantly (Kruskal–Wallis H = 18.70, p < 0.001). The pairwise
comparison ( post hoc Conover’s test) further confirmed that
agents in all and well-defined influencer teams behave signifi-
cantly different from no influencer team composition. This
could mean that due to a lesser number of influential agents,
agents in the team keep exploring new areas on the design solu-
tion space. The quality of solutions explored (EQI) by the individ-
ual agents during idea generation could also be seen in Figure 21
(middle). Even though it seems that few influencer teams (like 1
and 2 influencers) had better EQI, the compositions did not differ
significantly in their EQI values (ANOVA F = 1.53, p = 0.19).
Teams with or without well-defined influencers had similar
EQI. A weak positive correlation was found between EI and
EQI (Kendall τ = 0.2, p-value < 0.001), which suggests that as
the agents explore more, they have a better chance of generating
an above-average solution. This model behavior does not expli-
citly contradict the studies that state that exploring a greater per-
centage of design space does not explicitly guarantee to find better
alternatives (Ehrich and Haymaker, 2012; McComb et al., 2015).
As well as it does not explicitly, conforms to the studies that state
that larger exploration has more possibility to have high quality
solutions (Danes et al., 2020). One main reason could be the con-
figuration of the design space with five peaks. As the number of
best solution peaks were more, hence a greater probability of find-
ing higher quality solutions on exploring.

The diversity in the generated solutions as seen from Figure 21
(bottom) in all the cases differs significantly (Kruskal–Wallis H =
84.78, p < 0.001). After conducting a pairwise comparison ( post
hoc Conover’s test), it was found that agents in the teams with
few well-defined influencers (1 and 2 influencers) behave sim-
ilarly when generating solution (i.e., follow the influencer).
Agents with all low self-efficacy (no influencer) also behaved sim-
ilar to the 1 and 2 influencer team agents. While agents in teams
with half influencers and all agents with high self-efficacy gener-
ate more diversity in the solutions as seen from Figure 15b that
high self-efficacy agents are not afraid to explore on their own.
Social influence is a dynamic in nature, as the influencers influ-
ence others in the team, they become is influential and the former
start becoming more influential (Brown and Pehrson, 2019), this
phenomenon is more prominent in the teams of no influencer as
they had least variety. It could be inferred that fewer influencers
influence others in the team to imitate them in their solution.
One influencer means exploring the solutions close to that influ-
encer, this increases when the influencers become 2 and so on. As
all agents have low self-efficacy, so when an influencer emerges
among them, they blindly explore areas near the influencer,
thus low spread. Paulus and Dzindolet (2008) stated that due to
social comparison, individuals tend to move toward the direction
of the social comparison referent (influencer(s)) and mimic the
performance of their co-workers. As there are fewer influencers
(either intentionally assigned or emerge) in 1 influencer and no
influencer teams, the other noninfluencers follow one agent,
hence lesser spread than the other team compositions. The
other explanation could be that the EI value that gives an idea
about the exploration while spread shows the dispersion of the
solutions from the centroid of the solutions. This could mean
that the agents in the no influencer teams explored more the
design space while the explored solutions were at a somewhat
equal distance from the centroid, hence low dispersion value. In
the case of all influencers, agents have high self-efficacy hence
more capability to explore other than the solutions of an
“emerged influencer(s)”. A general trend in the exploration (EI)

Fig. 19. Mean solution quality for all the agents in a team.

Fig. 20. Mean solution quality for the lowest self-efficacy agent in a team.
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and diversity in the generated solution could be seen where higher
exploration was correlated to higher diversity in the generated
solutions (Kendall τ = 0.4, p-value < 0.001).

The behavior of teams without well-defined influencers (i.e.,
no and all influencers) differed from each other, as in no influen-
cer team behavior tended toward teams with a few defined influ-
encers (like 1 or 2 influencers). The influencer(s) might have
emerged in the no influence team as the team moved from one
session to another. Since there were fewer influencers (either
intentionally assigned or emerge) in 1, 2, and no influencer
team, the other non-influencers follow them, hence lesser spread
than the other team compositions with more influencers (like 3)
or all with high self-efficacy (all influencer). In the case of all
influencers, agents have high self-efficacy hence more capability
to explore than no influencer team where an influencer might
have emerged, and agents had low self-efficacy.

The exploration rate, which is the number of solutions in a
design space explored during a session, without considering the
ones in the previous session could be seen in Figure 22. In general,
the exploration rate during sessions three to five is lower than in
other sessions in teams of no to a few prominent influencers. This
could suggest that the effect of the influencers on exploration is
maximum somewhat in the early middle of the project, as it is
known from Agars et al. (2008) where group-creativity is a “func-
tion of the extent to which social influences affect individuals
within the group at earlier stages”. On the contrary teams with
all influencers, which have the least exploration rate initially, dra-
matically increase their exploration rate than other teams after
four to five sessions.

Summary

Like any other collaborative design session, the simulation starts
with a design task given to a team of agents who must produce
solutions. Agents generated solutions based on the learning

rules assigned to them. The effect of the influencers on idea gen-
eration was simulated and the results were discussed as the
answers to the research question. However, before investigating
the research question, it was crucial to gain insights into the char-
acteristics that give rise to an influencer in a design team, there-
fore an assumption was made that self-efficacy and trust are
characteristics that determine how individuals perceive the degree
of influence by others in the team.

The assumption was validated by the results from the empiri-
cal studies where it was found that self-efficacy and trust could be
some of the characteristics resulting in the perceived degree of
influence in design teams. It was found that if an individual
had lesser self-efficacy than the other, the difference in their self-
efficacies was responsible for the perceived degree of influence by
the individual with less self-efficacy. Trust between the two indi-
viduals was highly positively correlated to the perceived degree of

Fig. 21. Exploration values (EI, EQI, and spread).

Fig. 22. Session-wise exploration rate.
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influence. This means that if an individual trusts the other, they
also perceive the other individual as influential. Lastly, individuals
with high self-efficacy might perceive fewer influencers than those
with lower.

The insights for the empirical studies were used to tune the
model, and subsequently, a series of simulations were used to
explore the relationship between influence distribution and design
outcomes. The simulation results show that both low and high
self-efficacy agents were affected by influencers. A low self-
efficacy agent explored solutions closer to that of an influencer
than a high self-efficacy agent. Agents also learnt from past pos-
itive or negative events throughout the project. As learning from
positive experience increased, learning from the negative events
became stable. The quality of the solutions increased with the
number of idea generation sessions as the agents learnt from
their past events and others in the team. The generated solution
quality values of teams with well-defined influencers differed sig-
nificantly from the teams without well-defined influencers. This
shows that the agents in the teams are affected by the presence
of influencers in teams when generating solutions. Teams with
one prominent influencer have a similar effect on their team
agents’ solution quality as of teams with multiple influencers
(in this case 2 or 3 influencers). Despite the second half of the
project where agents in no influencer teams produced better qual-
ity ideas, all influencers on average had better quality than all the
team compositions.

Agents in teams with well-defined influencers and all with
similar high self-efficacy (all influencers) had lesser exploration
(EI) than teams where all agents had low similar self-efficacy
(no influencer). The quality of the explored solutions (EQI) by
individual agents during idea generation was not affected by the
presence of influencers. However, the dispersion of the solutions
(spread) or variety in the generated solution was lesser for the
teams with no or few defined influencers than teams with more
influence (3 and all influencers). The exploration rate was lower
during the first few sessions in the teams of no influencers and a
few prominent influencer teams. Agents in teams with one prom-
inent influencer had less exploration rate toward the end of a pro-
ject. Overall, all high self-efficacy agents (all influencers) start
exploring more and more somewhat after the middle of the project.
The impact of the influencers on session-wise exploration was
found to be stronger somewhat in the early middle of the project.

Conclusion

Many factors could affect the outcomes of collaborative design
activity. Here, a computational model was constructed to facilitate
the study of these factors. Specifically, this model was capable of
exploring the effect of social influence in the team. Social influ-
ence (which give rise to imitation behavior called social learning)
is known to affect brainstorming and hence design outcomes like
quality and exploration values but has not been studied in detail.
The initial model was constructed from the existing literature. The
results are thought-provoking and could be used to deduce pat-
terns in individual and team behavior due to the unequal distri-
bution of influence in design teams. They help in recognizing
individuals’ and team outcomes, which would assist in taking
appropriate action and thus more control over managing design
activity for better results. The results clearly demonstrate that
the presence of a few prominent influencers affects design out-
come by limiting variety (spread) and enhancing quality (espe-
cially when all the agents have low self-efficacy), thus

addressing the research question that is, what is the effect of influ-
encer(s) on idea generation outcomes (exploration and quality)?
The social influence or in other words individuals with high social
influence called influencers positively or negatively influence
brainstorming of others in the team, depends on the cognitive
state of the brainstormer (Brown et al., 1998) (i.e., the self-efficacy
levels of the team members) as well as on the desired nature of
design output (i.e., whether the higher variety is required or qual-
ity). However, the results mentioned above should be considered
as insights instead of actual understandings, as they would vary
with the complexity of the task modeled, the number of agents
and learning rules. Although authors have also analyzed results
related to 1, 3, and 12 peaks design space configuration, to
enhance clarity and space limitation, the results presented here
are confined to 5 peaks. Although the strength of this research
is the simplification of the experimental scenarios, it is important
to be explicit on how far one can take the results presented in the
model. Although the results are applicable in their respective set-
tings, they still need validation from the real experiments. They
are not indicating the exact behavior of influences, but rather
they could be interpreted as indications of how influencers are
affecting design teams. Undoubtedly, more work needs to be
done to see how influencers in the design team affect team and
organization creativity. This includes (1) the assumed relationship
between trust, self-efficacy, and influence, (2) the mutual relation-
ship between trust and familiarity, (3) the design space represen-
tation, (4) a richer representation of communication and
collaboration, (5) a more nuanced model for the effect of influ-
ence based on agent traits, and (6) the representation of the
other forms of social learning.

The adherence of many of the results from the simulation to
patterns shown in the literature provides partial validation of
the model. However, further validation using additional empirical
experiments should be a major focus of future work. The wider
purpose of the work is to provide a computational approach
that focuses on representing the collaborative process, underlying
its results on project outcomes. The key advantage of this compu-
tational approach lies in providing suggestions on patterns
(related to design outcome) of design team activity. This model
may provide useful insights for building suitable strategies for
team building and team performance.
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Appendix A

Table A1

Table A1. The values of model parameters that were assigned when an idea generation activity starts

Model parameter Value Status

Number of agents 6 Constant

Agent self-efficacies Low self-efficacies between 0.1 and 0.2

Changes (increases or decreases) with the sessions

High self-efficacies between 0.4 and 0.5

Agent expertise level 1–10 Increases with sessions

Agent work experience 0 Constant

Familiarity 0 Increases with sessions (as the same team of
agents are working together in all the sessions)

Number of design peaks 5 Constant

Number of sessions 10 Constant

Number of steps taken to generate the final solution
(or the length of idea generation activity)

10 Constant

Number simulations 200 Constant
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Appendix B

Link to the questionnaires:
Part 1: https://forms.office.com/Pages/ResponsePage.aspx?id=K3EXCvNtX

UKAjjCd8ope6-5WK7zPMwFMqdi9F2m40mJUMTdYWE1QRjI3VVNJVDZ
LWloyNDJTN1lMVy4u

Part 2 additional: https://forms.office.com/Pages/ResponsePage.aspx?id=
K3EXCvNtXUKAjjCd8ope6-5WK7zPMwFMqdi9F2m40mJUOEdTVEpZTlJK
SkgyM1o1NkVRQVJVNFBPMC4u
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