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Three-dimensional convection in a binary mixture in a porous medium heated from
below is studied. For negative separation ratios steady spatially localized convection
patterns are expected. Such patterns, spatially localized in two dimensions, are
computed and numerical continuation is used to examine their growth and proliferation
as parameters are varied. The patterns studied have the form of a core region with four
extended side-branches and can be stable. A physical mechanism behind the formation
of these unusual structures is suggested.
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1. Introduction

Stationary spatially localized states are of great interest in the theory of pattern
formation. Recently two-dimensional states of this type, localized in one dimension,
have been found in several different types of convection, including binary-fluid
convection (Batiste & Knobloch 2005; Batiste et al. 2006), convection in an imposed
magnetic field (Blanchflower 1999; Lo Jacono, Bergeon & Knobloch 2011) and
natural doubly diffusive convection (Ghorayeb & Mojtabi 1997; Bergeon & Knobloch
2008; Bergeon et al. 2008). Similar states, localized in the cross-stream direction,
have been identified in plane Couette flow (Schneider, Gibson & Burke 2010a). In
these systems, localized states occur inside the region of coexistence between a
spatially homogeneous state and a spatially periodic state, in a parameter interval
called the snaking or pinning region (Burke & Knobloch 2007). This region also
contains multipulse states resembling bound states of single-pulse localized states,
as demonstrated recently in the context of binary-fluid convection with a negative
separation ratio (Lo Jacono, Bergeon & Knobloch 2010; Mercader et al. 2011). The
(1 + 1)-dimensional Swift–Hohenberg equation provides a convenient model equation
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that sheds much light on the origin and properties of the pinning region in these
systems (Burke & Knobloch 2007).

It is natural to consider the existence of three-dimensional structures that are
localized in two spatial dimensions. Structures of this type were originally found
in magnetoconvection (Blanchflower & Weiss 2002) but attempts to find stable states
of this type in binary-fluid convection failed, although meandering structures with
slow but complex time-dependence were identified (Alonso et al. 2007). Related but
highly anisotropic structures resembling turbulent puffs were recently computed for
plane Couette flow (Duguet, Schlatter & Henningson 2009; Schneider, Marinc &
Eckhardt 2010b). However, the Swift–Hohenberg equation (hereafter SH23 or SH35,
depending on the nonlinear terms (Burke & Knobloch 2007)) does not suffer from
these difficulties. This equation has variational structure in any number of dimensions
and consequently evolves to steady states corresponding to local minima of the free
energy. In 2 + 1 dimensions these minima may correspond to structures that are fully
localized in two dimensions (Lloyd et al. 2008; Avitabile et al. 2010). These structures
can take the form of spatially localized patches of hexagons or spatially localized
patches of rolls that have been called ‘worms’, depending on the symmetry properties
of the nonlinear terms (Lloyd et al. 2008; Avitabile et al. 2010). Localized target
patterns can also be found as can localized spots. Of these the hexagons, worms
and targets are all found in the subcritical regime where a periodic pattern, be it
hexagons or rolls, coexists with the trivial solution. As in one dimension, all these
patterns ‘snake’, at least initially, as the structure is followed in parameter space
and grows by nucleating additional cells or rings along its periphery (Lloyd et al.
2008; Lloyd & Sandstede 2009). Spot-like states differ in that they are present even
in the supercritical regime (Lloyd & Sandstede 2009), and related states have been
observed in non-variational systems, such as reaction–diffusion equations (Coullet,
Riera & Tresser 2000) or the equations arising in nonlinear optics (McSloy et al. 2002;
Vladimirov et al. 2002), as well as in ferrofluids (Richter & Barashenkov 2005) and an
optical light valve experiment (Bortolozzo, Clerc & Residori 2009).

In this paper we select binary convection in a porous medium to study three-
dimensional localized structures and their growth properties. For this purpose the
mixture is required to have a negative separation ratio. The resulting system is
convenient for a study of this complexity since the Darcy equation of motion
determines the flow instantaneously in terms of the contributions to the buoyancy
force. The dimensionless equations describing this system are

u=−∇p+ Ra(T + SC)ez, ∇ ·u= 0, (1.1)

∂T

∂t
=−(u ·∇)T +∇2T, (1.2)

ε
∂C

∂t
=−(u ·∇)C + τ∇2(C − T), (1.3)

where u = (u, v,w) and ∇ ≡ (∂x, ∂y, ∂z) in (x, y, z) coordinates, with (x, y) in the
horizontal direction and z in the vertical; T is the temperature and C is the
concentration of the heavier component of the mixture. The (inverse) Lewis number τ ,
the Rayleigh number Ra and the separation ratio S are defined by

τ = D

κ
, Ra= g|ρT |1Th

λκ
, S=−SSoret

ρC

ρT
< 0, (1.4)
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where λ is the Darcy friction coefficient, κ is the thermal diffusivity, D is the solute
diffusivity, SSoret < 0 is the Soret coefficient, g is the gravitational acceleration and
h is the depth of the layer. The parameter ε denotes the porosity. In writing these
equations we have used the layer depth h as a unit of length and the vertical thermal
diffusion time h2/κ as the unit of time, together with the linearized equation of state,
ρ(T,C) = ρ0 + ρT(T − T0) + ρC(C − C0), where ρT < 0, ρC > 0 and the subscript
zero indicates reference values. We suppose that a temperature difference 1T > 0 is
imposed across the system with the lower boundary hotter than the upper boundary;
in response the system develops a concentration difference 1C = |S|1T with C larger
at the bottom than at the top. We use 1T and 1C as units of temperature and
concentration.

Since the mass flux is proportional to the gradient of C − T the boundary conditions
read

at z= 0 : w= T − 1= (C − T)z = 0, at z= 1 : w= T = (C − T)z = 0, (1.5)

together with periodic boundary conditions with dimensionless period Γ in the (x, y)
directions. Note that because of the Darcy friction law we cannot impose boundary
conditions on (u, v) at z= 0, 1. Thus the velocity boundary conditions are ‘stress-free’.
This property of the system is beneficial for numerical continuation; the absence of
nonlinear terms in the equation of motion (the effective Prandtl number in the medium
is infinite) also helps.

In the following we write T = 1− z+Θ , C = 1− z+Σ and examine the properties
of the equations for u, v, w, Θ and Σ , all of which vanish in the conduction state.
These equations are equivariant under translations in (x, y) modulo the period Γ . In
addition, they are equivariant under the reflection (x, y)→ (−x, y) and the 90◦ rotation
(x, y)→ (−y, x). Together these symmetries generate the symmetry group D4 +̇ T2,
where D4 is the symmetry of a square, T2 denotes a two-torus of translations and
the symbol +̇ indicates the semidirect product (Silber & Knobloch 1988). Finally,
with the boundary conditions (1.5) the equations are also equivariant with respect
to the midplane reflection z→ 1 − z. The latter symmetry favours roll-like patterns
(Golubitsky, Swift & Knobloch 1984; Umla et al. 2010) and therefore plays an
essential role in the observed patterns.

We solve (1.1)–(1.3) with the boundary conditions (1.5) on a square domain of size
Γ = 18λc × 18λc where λc denotes the critical wavelength at onset of steady-state
instability (we use λc = 2π/kc with kc = 3.75, as appropriate for the representative
parameter values ε = 1, τ = 0.5, S = −0.1 employed below). We use numerical
continuation to follow steady states from small-amplitude states present close to
the primary instability. The spectral element method used favours solutions with
square symmetry close to onset (Assemat, Bergeon & Knobloch 2007). There are
two types of such solutions, both invariant with respect to the pair of reflections
(x, y)→ (−x, y) and (x, y)→ (x,−y). The first is also invariant with respect to
reflections in the diagonal, (x, y)→ (y, x), and is therefore D4-symmetric. The second
breaks the symmetry (x, y)→ (y, x) and is therefore D2-symmetric (more precisely,
D2 × Z2-symmetric, where the symmetry Z2 refers to reflection in the midplane).
In the following we refer to the former as even and the latter as odd (based
on their symmetry with respect to the diagonal) and use red and black colours to
distinguish between them in the bifurcation diagrams that follow. Because of the above
symmetries all our calculations are performed in a quarter-domain of size 9λc × 9λc

and then reflected appropriately in the axes to generate a structure with four-fold
symmetry. The continuation method used is described by Lo Jacono et al. (2010) but
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FIGURE 1. (a) Bifurcation diagram showing the kinetic energy E as a function of the Rayleigh
number Ra for D4-symmetric solutions (red curve) and D2-symmetric solutions (black curve),
showing snaking behaviour associated with growth of the nucleus (large excursions) with small
superposed oscillations associated with the growth of the arms via nucleation of new rolls at
the tip. (b,c) Localized states along the branch of D4-symmetric solutions (b) and D2-symmetric
solutions (c) at Ra= 60.66783 and Ra= 60.61625, respectively.

employs three-dimensional spectral element spatial discretization similar to that used
by Assemat et al. (2007), and takes advantage of full tensorization of the Helmholtz
and Poisson operators in the three spatial directions. We mention that periodic D4- and
D2-symmetric states both set in at Ra = Rac ≈ 66.657. This critical value is smaller
than the critical Rayleigh number for the onset of convection in two dimensions,
Rac ≈ 66.75 (Lo Jacono et al. 2010), i.e. for the appearance of straight rolls. As in two
dimensions the three-dimensional localized states are created in secondary bifurcations
from these periodic states (not shown).

2. Results

Figure 1(a) shows the resulting bifurcation diagram. It shows the volume integral of
the kinetic energy, E , for the even and odd states as a function of the Rayleigh number
Ra. The continuation shows that close to onset the D4-symmetric spatially extended
eigenfunction present at Ra = 66.657 self-localizes into a target pattern. Figure 1(b)
shows such a pattern at Ra= 60.66783. When this state is continued to smaller values
of Ra it becomes more and more localized but by Ra= 56.25 the circular symmetry of
the pattern is conspicuously broken, resulting in a finger-like state with D4 symmetry.
Figure 2(a) shows the subsequent evolution of this state in terms of the midplane
vertical velocity w(x, y, z = 1/2) at successive left saddle-nodes (folds) of the red
branch in figure 1(a). The figure reveals a broad pattern: the large excursions in the
branch correspond to mergers of the rolls at the base of each finger into successive
concentric rings around the centre of the structure. In contrast, the smaller wiggles
along the branch correspond to the nucleation of new rolls at the tips of the fingers.
Thus the large excursions are associated with the growth of the core or nucleus of the
structure while the small oscillations reflect the elongation of the arms.
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(a) (b)

FIGURE 2. The vertical velocity w(x, y, 1/2) in the layer midplane at the four leftmost saddle-
nodes on the branch of (a) the D4-symmetric solutions, and (b) the D2-symmetric solutions. Red
(blue) indicates upward (downward) flow. The figures are labelled following the saddle-node
labels in figure 1. The sidepanels show Θ(0, y, 1/2) (left plots) and Σ(0, y, 1/2) (right plots)
both scaled to lie between ±1.

Beyond the region shown the structure becomes so large that it reaches the domain
boundary and interacts with its mirror images. At this point the structure stops being
fully localized and the subsequent behaviour of the solution branch is dominated by
the interaction with adjacent structures (not shown).

Figure 1(c) shows a different type of target-like structure obtained at Ra= 60.61625
from the D2-symmetric eigenfunction at Rac ≈ 66.657. This solution is strongly
spatially localized but D2-symmetric. As one follows this state to larger amplitude
(black curve in figure 1a) it sends out four arms in the principal directions (figure 2b).
Once again the large excursions reflect the growth of the nucleus of the structure while
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FIGURE 3. Detail of the central portion of figure 1. Heavy (light) line segments indicate stable
(unstable) solutions.

the smaller oscillations superposed on them are a consequence of the nucleation of
additional rolls at the tips of the four arms whereby the arms elongate.

It is noteworthy that in both cases the solution branches do not grow monotonically
in amplitude. Thus some of the small oscillations correspond to the nucleation of
new rolls while others reflect roll destruction. In addition, while the large excursions
governing the growth of the core are more or less vertically aligned as expected of
homoclinic snaking of target-like structures in simpler systems (Lloyd & Sandstede
2009) the small superposed oscillations are not (figure 3). This is indicative of
the fact that the nucleus and the arms tend to grow simultaneously. We also note
that the amplitude of the solutions at the folds of the large excursions is generally
substantially lower on the left than further to the right. This is a consequence of strong
Ra-dependent wavelength selection: the wavelength along the arms shrinks as Ra
decreases, leading to a shrinkage of the arms (including the elimination of some rolls
at the tips; these rolls are restored above the leftmost folds as the arms start to grow
again and the wavelength increases). Figure 4 shows this process in greater detail. The
figure shows a series of snapshots of the midplane vertical velocity w(x, y, z = 1/2)
along the portion of the D4-symmetric branch (figure 4a) and the D2-symmetric branch
(figure 4b) between the second and third leftmost folds on these branches at the
locations indicated in figure 3. A careful examination shows that both localized states
add a central ring during this process, while the arms initially grow by adding rolls
and then shrink again. However, despite the incorporation of the rolls at the base of
each arm into the nucleus, at the end of this process both arms are longer than at the
beginning. Moreover, as a consequence of the Ra-dependence of the wavelength the
arms at the left saddle-node are long and skinny while those at the next saddle-node
on the right are relatively short and fat.

Each arm of the localized state individually resembles a state that has been called a
‘worm’, i.e. a roll-like structure, spatially localized in two dimensions (Joets & Ribotta
1988; Dennin, Ahlers & Cannell 1996). Related states have also been seen in the
Faraday instability in domains with flexible boundaries (Pucci et al. 2011). Although
stationary solutions of this type occur in simple variational models such as SH35
in 2 + 1 dimensions (Avitabile et al. 2010) the appearance of strongly non-convex
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(a) (b)

FIGURE 4. As for figure 2 but showing the midplane vertical velocity w(x, y, 1/2) at four
locations between the second and third leftmost saddle-nodes on the branch of (a) D4-
symmetric solutions, and (b) D2-symmetric solutions, labelled as in figure 3. The sidepanels
show Θ(0, y, 1/2) (left plots) and Σ(0, y, 1/2) (right plots) both scaled to lie between ±1.

structures such as those found here demands explanation. For this purpose we show
alongside each planform the profiles of the midplane temperature Θ(0, y, 1/2) (left
sidepanels) and concentration Σ(0, y, 1/2) (right sidepanels) along the x= 0 slice. The
concentration profiles demonstrate that in the present system the growth of the arms
in the longitudinal direction is opposed not only by the pinning of the advancing front
to the rolls behind it (as occurs, for example, in the two-dimensional SH35 (Avitabile
et al. 2010)) but in addition by the concentration bump generated in front of the arms
by longitudinal pumping of concentration (Mercader et al. 2009). The localization in
the transverse direction is more subtle since here the front is (almost) parallel to the
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(a) (b) (c)

FIGURE 5. The midplane vertical velocity w(x, y, z = 1/2) and line contours of the
concentration Σ(x, y, z = 1/2) for even and odd solutions at the locations 1±, 2± and 3± in
figure 1. Red (blue) indicates upward (downward) flow. Only part of the domain is shown.

roll wavevector and pinning is dramatically reduced. Nonetheless, studies of SH35
reveal that stationary worms do localize in this direction as well, and Avitabile et al.
(2010) conjecture that this is due to the wavenumber gradient near the boundary of the
structure. However, in the present case the concentration field again plays an essential
role. Figure 5 shows contours of constant concentration superposed on the midplane
vertical velocity. The figure reveals that the concentration (and temperature) are in
phase in the nucleus and along the centreline of each arm: rising flow carries higher
concentration (and temperature) upwards. However, the figure also reveals that along
the lateral boundary of each arm the expulsion of concentration from the structure
generates a concentration ‘moat’ that traps the structure, much as occurs in one spatial
dimension (Riecke 1992; Alonso et al. 2010). We believe that this is the fundamental
reason why binary-fluid convection in a porous medium generates the remarkable
spatially localized structures shown in the preceding figures.

In order to determine the stability properties of the solutions we have found we
solved the linear stability problem in the quarter-domain with imposed symmetry
(antisymmetry) in the diagonal as appropriate. The results are in all cases in agreement
with the intuition developed from SH35. Specifically, every segment in figure 3
with positive slope corresponds to stable solutions (heavy line segments) with the
remaining solutions unstable (thin line segments). The midplane reflection symmetry
plays an important role in these stability results; without it the rolls are unstable to
hexagonal structures as described by SH23. In bulk binary mixtures, in contrast, no
stable spatially localized two-dimensional stationary states have hitherto been found
(Alonso et al. 2007). We have not examined the stability of the structures with respect
to infinitesimal perturbations on larger domains or with respect to asymmetric or
finite-amplitude perturbations.
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FIGURE 6. Continuation of time-independent worms in SH35 with b3 = 2.46 reveals that the
curvature of the worm boundary near its tips changes along the solution branch: the sign of the
curvature of the localized patterns in panels 3 and 6 near the tips differs from those in the other
panels. From Avitabile et al. (2010).

3. Discussion

From the above pictures we abstract two basic principles. The localized structure
grows continuously in area, with qualitative changes in the bifurcation diagram
associated with interactions with the domain. However, the amplitude of the solution,
here measured by the total kinetic energy E , does not increase monotonically. This
is because the arms of the structure shrink transversally as the Rayleigh number
decreases and swell as it increases. Indeed, we find that for Ra . 54.6 the arms thin
with distance from the core but thicken with distance for Ra & 54.6, with Ra ≈ 54.6
playing the role of a Maxwell point at which the energy along the arms of the
structure is independent of the distance from the core. Similar behaviour is also
observed in individual worms as described by the Swift–Hohenberg equation SH35,

ut =−µu− (∇2 + 1)
2
u+ b3u3 − u5, (3.1)

where b3 is a positive constant that determines the extent of bistability between the
trivial state u = 0 representing the conduction state and a periodic state u(x, y), here
a roll pattern, representing convection. The symmetry u→−u of (3.1) plays the role
of the midplane reflection symmetry of (1.1)–(1.3) when the boundary conditions (1.5)
are used. Equation (3.1) exhibits worm-like states that are fully localized in two spatial
dimensions; these worms snake when continued in µ, at least initially, where µ is to
be identified with Rac − Ra. Moreover, multiple disconnected branches of worms are
present (Avitabile et al. 2010). Figure 6, a reproduction of figure 33 from Avitabile
et al. (2010), reveals a strong selection between skinny worms at the right of the
snaking region (larger µ) and pudgy worms at the left of the snaking region (smaller
µ). Additional rolls start to nucleate in the middle of the associated snaking region and
do so simultaneously at both tips (head and tail) of the worm. The increased radius
of curvature of the worm demands a smaller wavenumber along the periphery and
this change of wavenumber is enough to pin the front between the roll state and the
homogeneous state and maintain a steady state. Note that the worm-like appendages
at the right of the pinning region are concave near the tip implying that they are
confined by more than surface energy, i.e. both the curvature of the rolls inside the
structure and the wavenumber along the periphery determine jointly the pinning of
the bounding fronts to the roll structure within. In contrast, the worms at the left
edge of the pinning region are convex and look as if they are held together by an
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effective surface tension. The solutions described in the present paper share some of
the properties of these worm states but the growth of the highly non-convex arms
appears to be a consequence of localization by the expelled concentration field. This
localization process is somewhat similar to that leading to localized structures in phase
field crystal models where the growth of the solid phase uses up nearby ‘mass’ thereby
stabilizing the structure (Tegze et al. 2011); finger-like states are favoured since new
’mass’ reaches the tips of the fingers via diffusion more easily than other parts.
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