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SUMMARY

This paper reports the design of sliding-mode control laws
for controlling multiple small-sized autonomous helicopters
in arbitrary formations. Two control schemes, which are
required for defining arbitrary three-dimensional formation
meshes, are discussed. In the presented leader–follower
formation control schemes, each helicopter only needs to
receive motion information from at most two neighboring
helicopters. A nonlinear six-degree-of-freedom dynamic
model has been used for each helicopter. Four control inputs,
the main and the tail rotor thrusts, and the roll and pitch
moments, are assumed. Parameter uncertainty in the dynamic
model and wind disturbance are considered in designing the
controllers. The effectiveness and robustness of these control
laws in the presence of parameter uncertainty in the dynamic
model and wind disturbances are demonstrated by computer
simulations.

KEYWORDS: Formation control, Autonomous aerial
vehicle, Unmanned helicopter, Leader–follower, Sliding
mode control.

1. Introduction

Coordinating the behavior of multiple robots, aircrafts,
spacecrafts, underwater vessels, and surface vehicles
has been studied by many researchers. Application of
coordinating the behavior of these vehicles is different,
however, the fundamental approaches are similar. In all of
these applications, the goal is to coordinate multiple agents to
accomplish an objective. The approaches used by researchers
to achieve this goal can be roughly categorized under
either leader–follower, behavior-based, or virtual structure
approaches.

The basic idea of the leader–follower approaches is that
a vehicle is designated to track the position and orientation
of another vehicle with some prescribed offset, which can
be time varying. Numerous variations of this theme exist,
including forming a chain (vehicle i follows vehicle i − 1),
defining multiple leaders, and tree topologies. The positive
point of the leader–follower approaches is that specifying
a single quantity, the leader’s motion, directs the group
behavior. The weakness, however, is that the leader is a single
point of failure for the formation. Also, there is no explicit
feedback to the formation. Therefore, the leader cannot be
informed if it is moving too fast for the follower vehicles to
track.
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The mobile robotics community have utilized the leader–
follower approach for different purposes, to control a
group of robots to move a box,1 to control the change
of formation for multiple robots in environments with
obstacles via feedback linearization,2 to capture/enclose a
target by mobile robots via forming troop formationsm,3

and to investigate the platoon problem in intelligent
highways.4 Both holonomic and nonholonomic kinematic
models have been used for controller design. There have
been a number of leader–follower studies by spacecraft
researchers. In ref. [5], different leader–follower techniques
are discussed. Based on this approach, several control laws
are derived that keep the formation and the relative attitude
of a spacecraft with respect to its nearest neighbor. In
other researches, actuator saturation6 and common space
disturbances7 are considered in designing leader–follower
formation controllers. In ref. [8], the leader–follower
approach to satellite formation keeping in earth orbit is
described.

In behavior-based approaches, several desired behaviors
are prescribed for each agent including formation keeping,
goal seeking, and obstacle avoidance. The control action
of each agent is a weighted average of the control for
each behavior. Behavior-based approaches lend themselves
to a decentralized implementation and deal with multiple
competing objectives very well. However, most of these
approaches cannot explicitly define the group behavior.
Because of the lack of an explicit definition of the group
behavior, it is difficult to guarantee some characteristics of the
formation (e.g., stability). For some nonstochastic behavior-
based approaches in which the behaviors are defined based
on virtual forces that are motivated by natural physics laws,
behavioral constraints can be proved.9

A behavior-based approach to formation control for mobile
robots is derived based on averaging competing behaviors
including collision avoidance, formation keeping, and goal
seeking.12 Unpredicted behaviors may occur due to the
fact that the competing behaviors are averaged. Creating
line and circle formations by mobile robots is investigated
using behavior-based approaches.11 The different behaviors
are usually defined by potential field functions. Some
researchers have used the potential field method exclusively
for formation control.12 The problem of maintaining a
constellation of satellites in an equally distributed ring
formation in earth orbit has been addressed by the behavior-
based approach.13 Ref. [14] also applies this approach to
aircraft flying in formation by mimicking group behavior of
birds and fish. In ref. [15], a biologically inspired behavior-
based method is applied to formation control of unmanned
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underwater vehicles (UUV) with the goal of minimizing
outside guidance.

Another formation control scheme is the virtual structure
approach, in which a group of vehicles acts as a single
rigid body.16 The desired dynamics of the group as a rigid
body is defined. Then, the motion of each agent is derived
from the trajectory of a corresponding point on the assumed
rigid body. Finally, a tracking controller is designed for each
agent to track its corresponding trajectory. In this approach,
prescribing a coordinated behavior for the group is fairly easy.
However, the class of potential applications of this approach
is limited because the formation acts as a virtual structure.

In ref. [17], the application of the virtual structure
approach to formations of mobile robots is described. This
approach was also applied to formations of spacecraft in
free space.18 The virtual structure approach was utilized by
naval researchers to design decentralized formation control
schemes for a fleet of vessels with a small amount of
intervessel communication.19 An individual parameterized
path for each vessel is constructed so that when the
parameterization variables are synchronized, the vessels are
in formation.

Recently, the research in the area of autonomous
aerial vehicles has moved beyond considering a single
vehicle. Researchers have considered aerial pursuit/evasion
games in three dimensions on a fixed-wing aircraft by
implementing and testing a nonlinear model-predictive
tracking controller.20 The pursuit/evasion games has been
extended to heterogeneous teams of autonomous agents, in
which the problem of having a team of agents pursue a second
team of evaders while building a map of the environment has
been considered.21 Another aspect of formation control is
formation planning. In formation planning, the initial and
final configurations are given for a group of autonomous
vehicles, and the nominal input trajectory for each vehicle
is determined such that the group can start from the
initial configuration and reach its final configuration at a
specified time.22 Another approach to formation control is
to introduce carefully designed interagent coupling terms
in each performance index of a nonlinear model-predictive
controller for the vehicles.23

The objective of the current paper is to introduce
a new approach for formation control of autonomous
helicopters. Formation control of helicopters shares
the same challenges with that of other types of
vehicles. The need for decentralized controllers, minimum
communication, and scalability are among these challenges.
The nonlinear dynamics, parameter and model uncertainty,
and disturbances add to the common formation control
problem difficulties. The current paper contributes to the low-
level formation control design for autonomous helicopters,
while addressing these difficulties.

The problem of control and coordination for small
helicopters moving in a formation is investigated by
introducing a leader–follower approach. The overall motion
plan for a single virtual lead helicopter is assumed. This
motion plan defines the gross motion of the formation. A six-
degree-of-freedom (DOF) dynamic model of the helicopters
is considered for designing the controllers. It is assumed that
four independent actuators control the four control inputs:

the main and the tail rotor thrust, and the roll and pitch
moments. Two nonlinear decentralized control schemes are
required to define a unique three-dimensional formation. In
the first scheme, one helicopter controls its relative distance
and orientation with respect to a neighboring helicopter. In
the second scheme, a helicopter maintains its position in
the formation by maintaining specified distances from two
neighboring helicopters.

The proposed control schemes only use the state
information of the neighboring helicopters. The sliding mode
method is used. It is shown that the relative distances and
orientations of the helicopters are stabilized even in the
presence of wind disturbance. Numerical simulations are
presented to demonstrate the efficiency of these techniques.

2. Dynamic Model of a Small Helicopter

This section presents the dynamic model of a helicopter,
shown in Fig. 1. Two frames are defined for this dynamic
model; the inertial frame {0}, and the helicopter body frame
{B} with an origin at the center of mass. Six degrees of
freedom are assumed for each helicopter. Three translational
degrees of freedom, the surge, sway, and bounce of the
center of mass, are expressed in the inertial frame {0} and
are denoted by (x(0), y(0), z(0)). Three rotational degrees of
freedom are represented by the yaw-pitch-roll (ZYX) Euler
angles (ψ, θ, φ). These Euler angles define the orientation of
the body frame with respect to the inertial frame through the
following transformation matrix:24

R0B =

⎡
⎢⎢⎢⎣

cψ cθ
(− sψ cφ

+ cψ sθ sφ)
( sψ sφ

+ cψ sθ cφ)

sψ cθ
( cψ cφ

+ sψ sθ sφ)
(− cψ sφ

+ sψ sθ cφ)
− sθ cθ sφ cθ cφ

⎤
⎥⎥⎥⎦ (1)

where c = cos and s = sin. The rate of change of the
Euler angles are related to the inertial angular velocity
vector of the helicopter expressed in the body frame ω(B) =
[ω(B)

x , ω(B)
y , ω(B)

z ]T

[
φ̇

θ̇

ψ̇

]
=

[ 1 sin φ tan θ cos φ tan θ

0 cos φ − sin φ

0 sin φ sec θ cos φ sec θ

]
ω(B). (2)

Although this representation is singular at θ = ±π/2, the
helicopter is not expected to operate in that orientation
(pointing straight up or down).

The external force and torque expressed in the body
frame are F(B) and M(B). The external force includes the
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Fig. 1. A six-DOF dynamic model of a helicopter.
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aerodynamic drag force vector D(B), the main and tail rotor
thrust T and TT, and the gravitational force mg

F(B) = D(B) +
[ 0

−TT

−T

]
+ RT

0B

[ 0
0

mg

]
. (3)

The external torque includes the three main directional
torques Mφ , Mθ , and TTlt as well as a torque T lr due to
the offset of the rotor hinge with respect to the body z-axis,
and the motor torque τm

M(B) =
[

Mφ

Mθ + T lr
TTlt + τm

]
. (4)

Usually, τm is assumed to be proportional to the main rotor
thrust, T . That is τm = KmT . The translational and rotational
equations of motion of the helicopter can be written as

m

[
ẍ(0)

ÿ(0)

z̈(0)

]
= R0B

[ 0
−TT

−T

]
+ R0BD(B) +

[ 0
0

mg

]
(5)

I

⎡
⎢⎢⎣

ω̇(B)
x

ω̇(B)
y

ω̇(B)
x

⎤
⎥⎥⎦ =

⎡
⎢⎣

Mφ

Mθ + T lr

TTlt + τm

⎤
⎥⎦ − ω(B) × Iω(B) (6)

where m is the helicopter mass and I is:

I =
[

Ixx 0 0
0 Iyy 0
0 0 Izz

]
. (7)

The independent inputs that control the helicopter’s motion
are organized in a column vector

u = [ T Mφ Mθ TT ]T . (8)

If the control input u is known, one can find the trajectory of
the helicopter’s motion by integrating Eqs. (2), (5), and (6).
Our goal is to find a control law that determines u such that
the helicopter follows other helicopters with desired three-
dimensional relative distances.

3. Formation Control Schemes

The bulk motion of the group of helicopters can be
characterized by trajectory planning and obstacle avoidance
algorithms, for example, the method of artificial potential
fields. It is assumed that a virtual helicopter as a group leader
adapts the bulk motion of the group as its planned trajectory.
Other helicopters of the group follow either the virtual
group leader or their neighboring helicopters. Therefore, our
attention is focused on controlling the internal geometry
of the formation. Two types of feedback controllers are
introduced for controlling the internal geometry.

The first feedback controller is called the l–α controller. It
controls the relative distance and view angle of a helicopter

Formation reference 

           point

l - α

l - l
l - l

l - α

l
2

3
4

Fig. 2. General formation control configuration.

with respect to a neighboring helicopter. This controller is
used for helicopters marching in a single file (for example
in a line formation) or at an edge of the formation geometry.
Note that when the l–α controller is used, a follower can only
be related to one leader, which may not be very safe for the
formations in which each helicopter is surrounded by more
than one helicopter (for example, a rectangular formation).
In these situations, forming a triangular formation mesh
(Fig. 2) is desirable. The mesh generates a more dense
interconnection between the helicopters, which is safer and
more robust. To complete a triangular formation mesh, a
second controller is needed to control the three-dimensional
distances of the helicopter from two neighboring helicopters.
This controller is called the l–l controller.

These two local control schemes can be used to define a
solid general formation (Fig. 2). Usually the helicopters at an
edge of the formation geometry control their distance with
their immediate front helicopter using the l–α controller. The
other helicopters control their distances to their immediate
front and side helicopters using the l–l controller. This
is necessary so that a helicopter can also avoid its side
helicopter.

The sliding mode control method is used for deriving
low-level control laws for each of the mentioned schemes.
Designing a sliding mode control law requires the input–
output description of the control system, whereas the
equations of motion of the helicopter have been written in
state-space form in the previous section. In the next two
subsections, the control outputs of the two formation control
schemes are defined and the input–output descriptions are
derived for the two control systems.

Fig. 3. l–α control configuration. Frames 1 and 2 correspond to the
leader and the follower, respectively. The helicopters’ centres of
mass are denoted by c and their control points are denoted by p.
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3.1. Input–output description for the l–α control scheme
In Fig. 3, a system of two neighboring helicopters in the
formation is shown. The helicopters are separated by a
vectorial distance l12 + z12 between an arbitrary control
point, p1, on helicopter 1 (the leader) and the control point,
p2, on helicopter 2 (the follower). The control point has a
fixed distance d with the helicopter center of mass along
the negative z-direction of the helicopter’s body frame.
Note that the helicopters are not physically coupled in
any way. A feedback control law for control inputs u =
[T , Mφ, Mθ, TT ]T must be determined to control helicopter
2 such that the desired distance ld12, view angle αd

12, height
offset zd

12, all defined in body frame {1}, to helicopter 1 are
maintained, while the yaw angle of helicopter 2, ψd

2 , follows
the yaw angle of helicopter 1. Therefore, the outputs of the
control system are: y = [l12, α12, z12, ψ2]T.

Here, the input–output description of the control system
is derived, which relates the output y to the input u directly.
First, through a kinematic analysis, the state variables of
helicopter 2, which are

q2 = [
x

(0)
2 , y

(0)
2 , z

(0)
2 , ẋ

(0)
2 , ẏ

(0)
2 , ż

(0)
2 , φ2, θ2, ψ2, ω

(2)
2x , ω

(2)
2y , ω

(2)
2x

]T

(9)

are related to the output y. Then, the equations of motion,
containing u are substituted in the resulting equations to give
the input–output relations. The details follow.

3.1.1. Kinematic analysis. Let us consider the moving body
frames of helicopters 1 and 2 (Fig. 3). We assume two
coincident points; point p′

2, attached to frame {1}, and
point p2, attached to frame {2}, both coincident with the
instantaneous location of the follower’s control point. If v

(1)
p2/1

and a
(1)
p2/1 are the apparent velocity and acceleration of point

p2 as seen by an observer at point p′
2 attached to frame {1}

expressed in {1}, one can write

v
(1)
p2/1 = (l̇12 + ż12) (10)

a
(1)
p2/1 = (l̈12 + z̈12). (11)

If a
c(1)
p2/1 is the Coriolis acceleration of the point p2 as seen by

an observer at point p′
2 expressed in {1}, one can write

a
(1)
p2 = a

(1)
p′2 + a

c(1)
p2/1 + a

(1)
p2/1 (12)

where

a
(1)
p′2 = a

(1)
p1 + ω̇

(1)
1 × (l12 + z12) + ω

(1)
1

× (
ω

(1)
1 × (l12 + z12)

)
(13)

a
(1)
p1 = RT

01

(
ẍ

(0)
1 î0 + ÿ

(0)
1 ĵ0 + z̈

(0)
1 k̂0

) + ω
(1)
1 × d(1) (14)

a
c(1)
p2/1 = 2ω

(1)
1 × v

(1)
p2/1. (15)

After combining these relations, the absolute acceleration of
the control point p2 becomes

a
(1)
p2 = RT

01a
(0)
p1 + ω̇

(1)
1 × (l12 + z12)

+ ω
(1)
1 × (

ω
(1)
1 × (l12 + z12)

)
+ 2ω

(1)
1 × v

(1)
p2/1 + (l̈12 + z̈12). (16)

On the other hand, the acceleration of the same point p2

can be calculated in terms of the absolute acceleration of the
center of mass of helicopter 2 as

a
(1)
p2 = RT

01R02
(
a

(2)
c2 + ω̇

(2)
2 × d(2) + ω

(2)
2 × (

ω
(2)
2 × d(2)))

(17)
where

a
(2)
c2 = RT

02

(
ẍ

(0)
2 î0 + ÿ

(0)
2 ĵ0 + z̈

(0)
2 k̂0

)
(18)

d(2) = −dk̂2. (19)

The absolute acceleration of point p2 must be the same,
independent of how it is calculated. Therefore, one can equate
Eqs. (16) and (17). By solving the resulting vectorial equation
for l̈12 + z̈12, one can obtain the following vectorial kinematic
equation:

(l̈12 + z̈12) = RT
01

[
a

(0)
c2 + R02

(
ω̇

(2)
2 × d(2))] + B0 (20)

where

B0 = RT
01

[ − a
(0)
p1 + R02

(
ω

(2)
2 × (

ω
(2)
2 × d(2)))]

− ω̇
(1)
1 × (l12 + z12) − ω

(1)
1 × (

ω
(1)
1 × (l12 + z12)

)
− 2ω

(1)
1 × (l̇12 + ż12). (21)

Since l12 + z12 = [l12 cα12, l12 sα12, z12]T, the left-hand side
of Eq. (20) can be expanded as

(l̈12 + z̈12) = A1ÿ1 + B1 (22)

in which

A1 =

⎡
⎢⎣

cα12 −l12 sα12 0

sα12 l12 cα12 0

0 0 1

⎤
⎥⎦ , y1 =

⎡
⎢⎣

l12

α12

z12

⎤
⎥⎦ ,

B1 =

⎡
⎢⎣

−2l̇12α̇12sα12 − l12α̇
2
12 cα12

2l̇12α̇12 cα12 − l12α̇
2
12 sα12

0

⎤
⎥⎦ . (23)

By combining Eqs. (20) and (22), one can arrive at an
equation that relates a subset of the output vector, y1, to
the state variables of the helicopters

ÿ1 = A−1
1

[
RT

01

[
a

(0)
c2 + R02

(
ω̇

(2)
2 × d(2))] + B0 − B1

]
. (24)

Note that A1 is invertible as long as l12 �= 0, which can be
easily avoided by defining an appropriate desired formation.
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3.1.2. Input–output equations. The linear and angular
accelerations of helicopter 2, the follower, appear in Eq. (24).
In this subsection, first, these accelerations are substituted by
the dynamic equations of helicopter 2, which include the
inputs, to give a subset of the input–output equations. Then,
the input–output equations are completed by including the
dynamics of the follower’s yaw-degree-of-freedom, ψ2.

The translational dynamic equation (5) is customized for
helicopter 2 by adding an index 2 to the variables and
noting that the body-frame notation {B} is replaced by notion
{2}. The resulting dynamic equation can be rearranged and
written in the following matrix form

a
(0)
c2 = C1u + D1 + W1 (25)

where

C1 = 1

m
R02

⎡
⎢⎣

0 0 0 0

0 0 0 −1

−1 0 0 0

⎤
⎥⎦ ,

D1 = 1

m
R02D(2), W1 =

⎡
⎢⎣

0

0

g

⎤
⎥⎦ . (26)

Also, the term (ω̇(2)
2 × d(2)) is derived by customizing the

rotational equation of motion (6) for helicopter 2 and
calculating the cross product. This results in

ω̇
(2)
2 × d(2) = C2u + D2 (27)

where

C2 =

⎡
⎢⎢⎣

− dlr
Iyy

0 − d
Iyy

0

0 d
Ixx

0 0

0 0 0 0

⎤
⎥⎥⎦

D2 = −[
I−1(ω(2)

2 × Iω
(2)
2

)] × d(2). (28)

Now, a subset of the required input–output equations can be
obtained by substituting Eqs. (25) and (27) into Eq. (24)

ÿ1 = f1 + b1u (29)

where

f1 = A−1
1

[
RT

01(W1 + R02D2) + B0 − B1 + RT
01D1

]
b1 = A−1

1

[
RT

01(C1 + R02C2)
]
. (30)

Note that the yaw angle of helicopter 2 (ψ2) as the last
output component is missing from this subset of input–output
equations, because y1 contains only the three outputs l12, α12,
and z12. This component must also be included in the input–
output equations. The dynamics of the yaw angle is derived
by differentiating the third component of Eq. (2). The result
of this differentiation takes the following standard matrix

form:

ψ̈2 = f2 + b2u (31)

where

f2 = (φ̇2 cos φ2 sec θ2 + θ̇2 sin φ2 sec θ2 tan θ2)ω(2)
2y

+ (−φ̇2 sin φ2 sec θ2 + θ̇2 cos φ2 sec θ2 tan θ2)ω(2)
2z

+ (sin φ2 sec θ2)
(
(Izz − Ixx)ω(2)

2x ω
(2)
2z

/
Iyy

)
+ (cos φ2 sec θ2)

(
(Ixx − Iyy)ω(2)

2x ω
(2)
2y

/
Izz

)
(32)

b2 =
[

sin φ2 sec θ2lr

Iyy

− cos φ2 sec θ2Km

Izz

, 0,

sin φ2 sec θ2

Iyy

,
cos φ2 sec θ2

Izz

]
(33)

The full set of input–output equations are obtained by
combining Eqs. (29) and (31) into a single matrix form:

⎡
⎢⎢⎣

l̈12

α̈12

z̈12

ψ̈2

⎤
⎥⎥⎦ =

[
f1(3×1)

f2

]
+

[
b1(3×4)

b2(1×4)

]⎡
⎢⎣

T

Mφ

Mθ

TT

⎤
⎥⎦ (34)

or in a more concise form

ÿ = f + bu. (35)

3.2. Input–output description for the l–l control scheme
In Fig. 4, a system of three neighboring helicopters in
the formation is shown. The control point of the follower
helicopter, p3, is separated from the control points of leader
1 and leader 2, p1 and p2, by two three-dimensional vectorial
distances l13 and l23, respectively. The formation plane
p1p2p3 makes an angle of β123 with a reference direction
(Fig. 5). Note that the helicopters are not physically coupled
in any way. A feedback control law for control inputs

Fig. 4. l–l control configuration. Frames 1–3 correspond to the
first leader, the second leader, and the follower, respectively. The
helicopters’ centres of mass are denoted by c and their control
points are denoted by p.
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Fig. 5. Definition of the formation frame for the l–l control scheme.
The three helicopters’ control points are denoted by p1–p3. Unit
vector n1 points from p1 to p2. Unit vector n3 is perpendicular to
the formation plane p1p2p3. Unit vector n2 lies in the formation
plane and makes a right-hand frame {f } with n1 and n3. The frame
{f } is called the formation frame. Unit vector nr lies in the global
horizontal plane and is perpendicular to n1. When the formation
plane is horizontal, β123 = π

2 .

u = [T , Mφ, Mθ, TT]T must be determined to control
helicopter 3 such that the desired distances ld13, ld23, and angle
βd

123 are maintained, while the yaw angle of helicopter 3,
ψ3, follows a desired trajectory. With these definitions, the
outputs of the control system are: y = [l13, l23, β123, ψ3]T.

Here, the input–output description of the control system
are derived, which relate the output y to the input u directly.
First, through a kinematic analysis, the state variables of
helicopter 3

q3 = [
x

(0)
3 , y

(0)
3 , z

(0)
3 , ẋ

(0)
3 , ẏ

(0)
3 , ż

(0)
3 φ3, θ3, ψ3, ω

(3)
3x , ω

(3)
3y , ω

(3)
3x

]T

(36)

are related to the output y. Then, the equations of motion,
containing u are substituted in the resulting equations to give
the input–output relations. The details follow.

3.2.1. Kinematic analysis. The control points of the three
helicopters in an l–l scheme form a three-dimensional plane
(the formation plane). The plane of formation p1p2p3 and
its local coordinate frame {f } are shown in Fig. 5. Since the
unit vectors of the coordinate frame {f } are defined based on
the location of the three helicopters, this frame moves and
rotates when the three helicopters move. The angular velocity
and acceleration of this frame is required for calculating the
rate of change of the formation parameters (control outputs)
defined in the previous section. In the following, first, the
formation frame is defined. Then, the angular velocity and
acceleration of this frame are determined. And finally, the
rate of change of the formation parameters (control outputs)
are calculated.

The mutually perpendicular unit vectors of the formation
frame {f }, whose origin is at p1, are defined as

n1 = l12

|l12| , n3 = l12 × l13

|l12 × l13| , n2 = n3 × n1. (37)

A reference nr for rotation of the formation plane about l12 is
needed to define the formation parameter β123. This reference
unit vector is assumed to lie in the global horizontal plane
and be perpendicular to l12. It is calculated as

nr = l12 × k0

|l12 × k0| . (38)

Now, the rotation of the formation plane about l12 in reference
to nr, which is one of the formation parameters, is defined as

β123 = arccos(nr · n3). (39)

The angular velocity of the formation frame is defined as

ω
(f )
f = β̇123n1 + ωf 2n2 + ωf 3n3. (40)

The second and third components of ω
(f )
f can be found by

observing the relative velocity of points p1 and p2

v
(f )
p2 = v

(f )
p1 + ω

(f )
f × l

(f )
12 + l̇

(f )
12 (41)

where l
(f )
12 = l12n1 and l̇

(f )
12 = l̇12n1. Two of the three

components of ω
(f )
f can be obtained by rearranging Eq. (41)

as ⎡
⎢⎣

l̇12

l12ωf 3

−l12ωf 2

⎤
⎥⎦ = RT

0f

(
v

(0)
p2 − v

(0)
p1

)
. (42)

The first component of ω
(f )
f is found by writing a relative

velocity equation between points p1 and p3

v
(f )
p3 = v

(f )
p1 + ω

(f )
f × l

(f )
13 + l̇

(f )
13 (43)

where l
(f )
13 = l13(cos γ13n1 + sin γ13n2) and l̇

(f )
13 = l̇13(cos γ13

n1 + sin γ13n2), as concluded from Fig. 5. β̇123 can be found
by simplifying the third component of Eq. (43)

β̇123 = v
(f )
p3z − v

(f )
p1z + ωf 2l13 cos γ13

l13 sin γ13
. (44)

β̇123 can be calculated as long as l13 and γ13 are nonzero.
These situations can be avoided when defining the desired
formation parameters. ld13 = 0 means that the helicopters are
coincident, which is physically impossible, and must not be
used. γ d

13 = 0 corresponds to the situation when the three
helicopters’ control points are on the same line. In this
situation, two l–α schemes must be used to define the desired
formation. Note that if the control points p2 and p3 are used
for finding the rate β̇123, the same result will be obtained
(Appendix A1).

The angular acceleration of the formation frame, ω̇
(f )
f , is

also required for deriving the input–output equations of the
l–l control scheme. Two components of this acceleration can
be obtained by observing the relative acceleration of points

https://doi.org/10.1017/S0263574707003670 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574707003670


Full formation control 149

p1 and p2

a
(f )
p2 = a

(f )
p1 + ω̇

(f )
f × l

(f )
12 + ω

(f )
f × (

ω
(f )
f × l

(f )
12

)
+ 2ω

(f )
f × l̇

(f )
12 + l̈

(f )
12 (45)

where l̈
(f )
12 = l̈12n1 and ω̇

(f )
f = β̈123n1 + αf 2n2 + αf 3n3. The

second and third components of the formation-frame angular
acceleration are obtained by rearranging Eq. (45)

⎡
⎢⎣

l̈12

l12αf 3

−l12αf 2

⎤
⎥⎦ = RT

0f

(
a

(0)
p2 − a

(0)
p1

) − ω
(f )
f

× (
ω

(f )
f × l

(f )
12

) − 2ω
(f )
f × l̇

(f )
12 . (46)

After the angular motion of the formation frame is known,
the rate of change of the formation parameters l13, l23, and
β123 can be determined by investigating the relative motion
of point p3 with respect to points p1 and p2 separately. This
is first shown by considering the relative motion of point p3

with respect to p1 to obtain l̈13 and β̈123. Then, the results
are simply extended for l̈23. The acceleration of p3 can be
formulated as

a
(f )
p3 = a

(f )
p1 + ω̇

(f )
f × l

(f )
13 + ω

(f )
f × (

ω
(f )
f × l

(f )
13

)
+ 2ω

(f )
f × l̇

(f )
13 + l̈

(f )
13 . (47)

On the other hand, the same acceleration can be derived with
respect to the follower’s center of mass c3.

a
(f )
p3 = a

(f )
c3 + ω̇

(f )
3 × d(f ) + ω

(f )
3 × (

ω
(f )
3 × d(f )). (48)

Combining Eqs. (47) and (48) and defining the terms

N1 = ω
(f )
3 × (

ω
(f )
3 × d(f )) − a

(f )
p1 − ω

(f )
f

× (
ω

(f )
f × l

(f )
12

) − 2ω
(f )
f × l̇

(f )
12 (49)

M1 = [ 0 0 −αf 2l13 cos γ13 ]T (50)

results in

⎡
⎢⎢⎣

l̈13 cos γ13 − αf 3l13 sin γ13

l̈13 sin γ13 + αf 3l13 cos γ13

β̈123l13 sin γ13

⎤
⎥⎥⎦=a

(f )
c3 +ω̇

(f )
3 ×d(f )+N1−M1.

(51)

Equation (51) can be further simplified to obtain l̈13 and β̈123

⎡
⎢⎣

l̈13

l13αf 3

β̈123

⎤
⎥⎦ = A−1

3

(
a

(f )
c3 + ω̇

(f )
3 × d(f ) + N1 − M1

)
(52)

where

A3 =
[ cos γ13 − sin γ13 0

sin γ13 cos γ13 0
0 0 l13 sin γ13

]
. (53)

This matrix is invertible as long as l13 and γ13 are nonzero.
The rate of change for l23 can be obtained with the same

procedure as mentioned earlier. The result is

⎡
⎢⎣

l̈23

l23αf 3

β̈123

⎤
⎥⎦ = A−1

4

(
a

(f )
c3 + ω̇

(f )
3 × d(f ) + N2 − M2

)
(54)

where

A4 =
⎡
⎣ cos γ23 − sin γ23 0

sin γ23 cos γ23 0

0 0 l23 sin γ23

⎤
⎦ (55)

N2 = ω
(f )
3 × (

ω
(f )
3 × d(f )) − a

(f )
p2 − ω

(f )
f × (

ω
(f )
f × l

(f )
23

)
− 2ω

(f )
f × l̇

(f )
23 (56)

M2 = [ 0 0 −αf 2l23 cos γ23 ]T. (57)

A4 can be inverted as long as l23 and γ23 are nonzero. These
situations can be avoided when defining the desired formation
parameters. ld23 = 0 means that the helicopters are coincident,
which is physically impossible and must not be used. γ d

23 =
0 corresponds to the situation when the three helicopters’
control points are on the same line. In this situation, two l–α

schemes must be used to define the desired formation.
It can be shown that the result for β̈123 from Eq. (54)

is equal to the result obtained in Eq. (52) (Appendix A2).
Now, a subset of the output vector y2 = [l13, l23, β123]T can
be formed by combining Eqs. (52) and (54) as follows

ÿ2 =
⎡
⎣ l̈13

l̈23

β̈123

⎤
⎦ = C3

⎡
⎣ l̈13

l13αf 3

β̈123

⎤
⎦ + C4

⎡
⎣ l̈23

l23αf 3

β̈123

⎤
⎦ (58)

where

C3 =
[ 1 0 0

0 0 0
0 0 1

]
C4 =

[ 0 0 0
1 0 0
0 0 0

]
. (59)

3.2.2. Input–output equations. Part of the input–output
description of the l–l control scheme is derived by
substituting Eqs. (52) and (54) into Eq. (58)

ÿ2 = (
C3A−1

3 + C4A−1
4

)(
a

(f )
c3 + ω̇

(f )
3 × d(f ))

+ C3A−1
3 (N1 − M1) + C4A−1

4 (N2 − M2). (60)
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This part of the input–output description is completed by
using frame conversions

a
(f )
c3 = RT

0f a
(0)
c3 , ω̇

(f )
3 × d(f ) = RT

0f R03
(
ω̇

(3)
3 × d(3)) (61)

and substituting for a
(0)
c3 and ω̇

(3)
3 × d(3) using equations

similar to Eqs. (25) and (27) for the dynamics of the follower.
The result can be rearranged as

ÿ2 = f3 + b3u (62)

where

b3 = (
C3A−1

3 + C4A−1
4

)(
RT

0f C1 + RT
0f R03C2

)
(63)

f3 = (
C3A−1

3 + C4A−1
4

)(
RT

0f (D1 + W1) + RT
0f R03D2

)
+ C3A−1

3 (N1 − M1) + C4A−1
4 (N2 − M2) (64)

The full set of input–output equations are obtained by
augmenting the yaw dynamics ψ̈3 of the follower as the
fourth formation parameter with Eq. (62). Relations similar
to Eqs. (31)–(33) can be used, in which the subscript 2 for
the follower states is replaced by 3 indicating the use of the
follower 3 states.

ψ̈3 = f4 + b4u. (65)

This results in a single-matrix form for the l–l input–output
description

⎡
⎢⎢⎣

l̈13

l̈23

β̈123

ψ̈3

⎤
⎥⎥⎦ =

[
f3(3×1)

f4

]
+

[
b3(3×4)

b4(1×4)

] ⎡
⎢⎣

T

Mφ

Mθ

TT

⎤
⎥⎦ (66)

or in a more concise form

ÿ = f + bu. (67)

4. Designing the Sliding-Mode Control Law

In the previous sections, the input–output description for both
the l–α and l–l control schemes were derived. They were
written in a similar general matrix form [Eqs. (35) and (67)]
to simplify the control law development. The sliding-mode
control method is used to design a controller based on the
matrix form of the input–output equations. In this method,
four first-order asymptotically stable surface functions are
assumed25

s = (ẏ − ẏd ) + λ(y − yd ) (68)

where λ = diag(λ1, λ2, λ3, λ4), and all λ’s are positive.
Equation (68) is written in the following form for
convenience

s = ẏ − sr (69)

where

sr = ẏd − λ(y − yd ). (70)

If the trajectory of the system can be controlled such that
s approaches zero and remains zero at all times, since the
surface (68) is asymptotically stable, it is guaranteed that
the output y converges to its desired value. Therefore, the
sliding-mode controller design reduces to finding a control
law that brings and keeps the output of the system on the
sliding surface. The following Lyaponuv function is defined
for the components of s

ṡi · si ≤ 0, i = 1, . . . , 4 (71)

If the dynamics of s is selected as

ṡi = −ki sgn(si), i = 1, . . . , 4 (72)

where ki > 0, the Lyaponuv function (71) is satisfied and
it is guaranteed that the trajectory of the outputs approach
the surface s and remain on the surface. After selecting
the dynamics of s, the control inputs must be determined
such that they actually create this dynamics. This is done
by differentiating Eq. (69), substituting the input–output
description (67) for ÿ in the result, and solving for the control
input u

u = b̂−1(−f̂ + ṡr − k sgn(s)) (73)

where k = diag(k1, k2, k3, k4) and (.̂) indicates that the
matrices in Eq. (67) are evaluated for the nominal values
of the system parameters and zero wind disturbance.

Note that the term sgn(s) is discontinuous at s = 0, which
causes chatter of the output trajectory about the surface. To
avoid this situation, this term is replaced by a saturation
function, which is continuous. The modified control input
becomes

u = b̂−1
(
−f̂ + ṡr − k sat

( s

�

))
(74)

where

k sat
( s

�

)
=

⎡
⎢⎢⎣

k1 sat(s1/δ1)

k2 sat(s2/δ2)

k3 sat(s3/δ3)

k4 sat(s4/δ4)

⎤
⎥⎥⎦ (75)

and δ1–δ4 are called the boundary layers of the surfaces.
When there is no uncertainty in the input–output

description and no external disturbance, the Lyaponuv
function (71) is satisfied by any positive ki (i = 1, . . . , 4).
In the presence of uncertainty and disturbance, ki’s must be
large enough such that a new Lyaponuv function is satisfied.
The new function is defined as

si .ṡi ≤ −ηi |si |, ηi > 0, i = 1, . . . , 4 (76)

where ηi > 0 determines the convergence speed to the
surface. To satisfy Eq. (76), ki’s must be calculated using
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the following relation25

(1 − �ii)ki +
4∑

j �=i

�ij kj = Fi + ηi

+
4∑

j=1

�ij | − f̂j + ṡrj |, i = 1, . . , 4 (77)

in which the following bounds are assumed for the parameter
uncertainties and disturbances in order to determine the
controller nonlinearity gains

|f − f̂| ≤ F (78)

b = (I + δ)b̂, |δij | ≤ �ij , i, j = 1, . . , 4 (79)

When ki’s satisfy Eq. (77), it is guaranteed that the
outputs reach the surfaces despite the existence of parameter
uncertainties and disturbances defined in Eqs. (78) and (79).
After the outputs are on their corresponding surfaces, s1–s4

are zero. Therefore, the outputs slide on the surface to their
desired values as is observed from Eq. (68).

Note that the control law (74) requires the formation
parameters, their first-order derivatives, and the states of
the leader(s) and the follower helicopter at any given time.
The states of the leader helicopter(s), especially their Euler
angles and angular velocities are difficult to measure using
vision sensors on the follower helicopter. Therefore, it is
assumed that the leader(s) communicate their states with the
follower. Once the follower is aware of the states of the
leader(s), it can calculate the formation parameters based on
the leader(s)’ and its own positions, and the rate of formation
parameters based on the leader(s)’ and its own linear and
angular velocities. The required communication bandwith is
bounded and is not a function of the number of helicopters
in the formation because the controllers are decentralized.
Each helicopter has to receive information from at most two
helicopters and send information to at most two helicopters.

5. Simulations

Numerical simulations show the effectiveness of the
controller design. Three sets of simulations are presented
in this section. In these simulations, all the controller
parameters, λi’s (i = 1, . . . , 4) are selected to be 0.3 for
both the l–α and the l–l controllers. For this application, the
boundary layers for the length outputs l12, l13, l23, and z12

are assumed to be 0.1 m/s, whereas the boundary layer for
the angular outputs α12, β123, ψ2, and ψ3 are selected to be
π/40 rad/s. These boundary layers minimize the chatter
about the surface. The controller nonlinearity gains are set
to ki = 100 for both the controllers. The numerical values
of the nominal dynamic parameters of the helicopters are
corresponding to the Ikarus ECO small electric helicopter,
which have been determined by experimental parameter
identification26

m̂ = 1.36 kg; Îxx = 0.137 kg.m2,

Îyy = 0.221 kg.m2, Îzz = 0.0323 kg.m2;

l̂r = 0.1 m, l̂t = 0.635 m, d = 1.0 m. (80)

Also, in the simulation where the wind disturbance is
included, the direction of the wind is assumed to be along
the negative y-axis of the inertial frame. The shape of the
helicopter fuselage is approximated by a box to estimate the
wind forces, where L is the length, and H is the height of
the helicopter fuselage. Also, ρ is the air density, and vw is
the wind velocity. The following numerical values are used:

L = 0.3 m, H = 0.2 m,

ρ = 1.2 kg/m3, vw = 10 m/s. (81)

This wind results in an approximate force of Fw =
1
2ρv2

wHL = 3.6 N, which is 27% of the helicopter’s weight
(or main rotor’s thrust at hovering condition). The maximum
rotor’s thrust for this helicopter is about 30 N. These data
have been used with the dynamic model when the effect of
the wind on the helicopter’s performance is to be shown. Note
that the formation controllers are not aware of the presence
of the wind forces and do not directly compensate for them.

5.1. The l–α control scheme
The first simulation set confirms the robustness of the l–
α controller. The control law (74) calculates the required
inputs u without being aware of the presence or absence of
the wind. These control commands are directly applied to
the equations of motion of the follower helicopter. In the
no-wind simulation case, the equations of motion as listed in
Section 2 are used for integration. In the case where wind is
present, a force term representing the wind force is added to
the translational equations of motion of the follower.

Figure 6 shows the paths of the motion for the two cases.
Two coincident lines show the specified motion of the leader
helicopter in no-wind and lateral wind situations. The leader
is moving in a straight line with a constant speed of 1 m/s.
Note that the steady state roll angle of the lead helicopter
is different when the lateral wind is or is not blowing.
This fact is reflected in the figure, in which pairs of leader
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Fig. 6. Path of the motion for the l–α scheme. The follower robustly
follows the leader with a given relative position despite a 10 m/s
lateral wind. The effect of the wind on the path of the follower is
negligible.
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Fig. 7. Position trajectories for the l–α scheme. The follower’s
position trajectories in the presence and the absence of the wind
disturbance are fairly close. The difference in the y component is
because the follower tries to reach a steady state roll angle to resist
the lateral wind force when the wind is present.

helicopter icons are coincident while they have a different roll
orientation. The follower is initially at rest at point (0, 10, 5)
m with zero orientation angles. At time zero, helicopter
2 receives a command to follow the leader with a lateral
distance of ld12 = 10 m, a view angle of αd

12 = π/2 rad, a
vertical distance of zd

12 = 0 m, and a yaw angle of ψd
2 = 0 rad.

The simulation is run for 30 s. As seen in the figure, there is
not much difference in the steady-state path of the follower in
the two cases. The transient portion of the paths are somehow
different, because the follower has to reach a larger roll-angle
equilibrium position when there is wind.

Figure 7 shows the global position components of the
follower helicopter. It can be seen that the x and z components
of motion are not affected by the presence of the lateral wind.
Only the y component is initially disturbed because of the
wind. However, the controller is successful in rejecting the
disturbances and bringing the y component to the desired
equilibrium state.

Figure 8 shows the orientation of the follower helicopter.
The pitch and yaw motions are minimally affected by the
wind force. The roll angle reaches 1.6◦ at the steady state
when there is no wind. This small angle is necessary such
that the lateral components of the main rotor and the tail
rotor forces reach an equilibrium, which is necessary for
the helicopter to move on a straight line. The steady-state
roll angle is larger (16.7◦) when a lateral wind is blowing.
In such a situation, the helicopter has to lean against the
wind direction to equalize the wind force with the lateral
component of the main rotor thrust.

Figure 9 shows the four l–α formation parameters or
the control outputs. Once again, it is seen that the effect
of the wind on these outputs is minimal. The steady-state
values of the formation parameters do not experience any
offsets. The values approach the desired values despite the
wind disturbance. The control points of the leader and the
follower helicopters keep a distance of 10 m (l12 = 10 m).
The helicopters move side by side (α12 = 90◦) and at the
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Fig. 8. Orientation trajectories for the l–α scheme. The follower’s
orientation trajectories in the presence and the absence of the wind
disturbance are fairly close, except for the roll angle. The steady
state roll angle is larger when wind is present, because the follower
tries to counteract the lateral wind force.

same height (z12 = 0 m). And the follower helicopter faces
straight ahead (ψ2 = 0◦).

Figure 10 shows the four helicopter control inputs. The
thrust force T is higher when the wind blows, because it
has to provide a lateral component to counterbalance the
lateral wind force. The larger roll angle in the wind situation
allows for this component. Since the main rotor axis does not
pass through the helicopter’s center of mass, the main rotor’s
thrust generates a moment about this point. This moment is
counterbalanced by the pitch moment. An increased thrust
requires a higher pitch moment. This fact is reflected in the
Mθ plot. The tail-rotor thrust also has to equalize the reaction
torque on the fuselage caused by T . Hence, a higher tail-rotor
thrust TT is required when the wind is present.
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Fig. 9. Output trajectories for the l–α scheme. The formation
parameters’ steady-state values are not significantly affected by the
lateral wind. The initial disturbance in l12 is because the follower
tries to reach an equilibrium roll angle to counteract the lateral wind
force.
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Fig. 10. Input history for the l–α scheme. The required thrust T
when wind exists is higher than that of the no-wind situation.
Other control inputs are also higher in the presence of wind to
counterbalance the higher thrust force, except Mφ . This is because
T does not produce a moment about the helicopter’s roll axis.

5.2. The l–l control scheme
In this section, the robustness of the l–l controller is shown
by simulations. It is assumed that two leaders are flying on
parallel straight lines and a follower is assigned to follow
them. This scenario is simulated for two different cases, one
with and one without a lateral wind. The presence or absence
of the wind is not known to the controller. However, a force
term representing the wind force is added to the translational
equations of motion of the follower during the numerical
integration.

The paths of the motion of the leaders and the follower
are shown in Fig. 11 for the two cases. A straight line
motion with a speed of 1 m/s is defined for the leaders.
The follower is initially at rest at point (−5, 0, 5) m with
zero orientation angles. At time zero, helicopter 3 receives a
command to follow the leaders with equal distance of ld13 =
ld23 = 5 m, while the desired formation plane is horizontal
(βd

123 = π/2 rad). The desired yaw angle of the follower is
ψd

3 = 0 rad. The simulation is run for 30 s. The figure shows
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Fig. 11. Path of the motion for the l–l scheme. The effect of the
wind on the path of the follower is negligible. Despite a 10 m/s
lateral wind, the follower robustly follows the leaders with a given
relative position.
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Fig. 12. Position trajectories for the l–l scheme. The follower’s
position trajectories for the zero and nonzero wind force situations
are very similar. The difference in the y component is because the
follower tries to reach a larger steady-state roll angle at which it
can resist the lateral wind force when the wind is present.

a minimal difference in the steady-state path of the follower
in the two cases.

The global position components of the follower helicopter
are plotted in Fig. 12. The lateral wind does not affect x and z

components of motion, whereas the y component is initially
disturbed. However, the controller successfully brings the y

component to the desired equilibrium state.
The orientation of the follower helicopter can be seen in

Fig. 13. Once again, the steady-state equilibrium of the roll
angles are 1.6 and 16.7◦ for the with and without wind cases,
respectively. These values are equal to the result of the l–α

controller, because the equilibrium roll angle is inherent in
the dynamics of the helicopter.
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Fig. 13. Orientation trajectories for the l–l scheme. Except for the
roll angle, the follower’s orientation trajectories in the presence
and the absence of the wind disturbance are fairly close. Since the
follower tries to counteract the lateral wind force, the steady-state
roll angle is larger when wind is present.
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Fig. 14. Output trajectories for the l–l scheme. The formation
parameters’ steady-state values are not significantly affected by
the lateral wind. The difference between the output trajectories for
the two wind conditions is negligible.

The four l–l formation parameters or the control outputs
are, presented in Fig. 14. The steady-state values of the
formation parameters do not experience any offsets in any
case. The control points of the follower stay at a distance
of 5 m with the control points of both the leaders during
the motion (l13 = l23 = 5 m). The follower helicopter moves
at the same height of the two leaders (β123 = 90◦). And
the follower helicopter faces straight ahead as instructed
(ψ3 = 0◦).

The four helicopter control inputs are shown in Fig. 15.
The control forces are, in general, similar to that of the l–
α controller. However, the inputs show more chatter. The
chatter can be reduced by fine tuning the controller-gain
nonlinearity and the boundary layer for the l–l controller.
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Fig. 15. Input history for the l–l scheme. The required thrust T
when wind exists is higher than that of the no-wind situation.
Other control inputs are also higher in the presence of wind to
counterbalance the higher thrust force, except Mφ . This is because
T does not produce a moment about the helicopter’s roll axis.
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Fig. 16. Eight helicopters in a planar rectangular formation.
Helicopter 1 is the group leader. Helicopter 2 follows 1 using the
l–α scheme. Helicopter 3 follows 2 and 1 using the l–l scheme.
Helicopter 4 follows 3 and 1 using the l–l scheme. Helicopters 5,
6, 7, and 8 follow 1, 2, 4, and 3, respectively, using the l–α scheme.

5.3. General three-dimensional formation
The developed formation control schemes can be used as
building blocks to define any three-dimensional formation for
groups of autonomous helicopters. By changing the desired
formation parameters, the user can change the formation
structure of the group. This concept is shown by simulation.

In this section, the formation flight of eight helicopters
is simulated as an example to show the configurability of
a formation structure built using the developed l–α and l–l

schemes. Eight helicopters are interconnected as shown in
Fig. 16. They initially make a rectangular formation with
a grid size of 5 m while moving forward with a constant
speed of 1 m/s. At time zero, they are commanded to form a
spatial cubic formation with a 5 m dimension as presented in
Fig. 17. This is equivalent to defining a new set of formation
parameters for helicopters 5–8.

The described change of formation is simulated for two
different cases to show the robustness of the controllers in
the presence of parameter uncertainty. In both the cases, the
control law is calculated based on the helicopters’ nominal
parameters listed in Eq. (80). However, the inertia parameters
used with the dynamic model to simulate the response of the
helicopters are different for the two cases. In the first case,
the nominal mass and moment of inertia are used. In the
second case, the helicopters’ mass and moment of inertia are
assumed to be 20% higher than the nominal values.

Figure 18 shows the 35 s motion of the helicopters for the
two cases. The curves that show the path of the motion of
each helicopter for the two different cases are either very
close or completely coincident with each other. This shows
the robustness of the formation controllers to parameter
uncertainty. Furthermore, while the helicopters start their
change of formation, a lateral wind starts to blow. The wind

14

3 2
5

6

8

7

Fig. 17. Eight helicopters in a spatial cubic formation. The
formation structure of these eight helicopters is the same as that
of the group shown in Fig. 16. However, the desired formation
parameters for the helicopters 5–8 are different than that of the
planar configuration of Fig. 16.
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Fig. 18. Formation change of a group of eight helicopters with and
without model-inertia uncertainty. The helicopters are initially in
a planar rectangular formation as defined in Fig. 16. They change
formation while continuing their maneuver after a new set of desired
formation parameters are defined. The curves showing the path of
the helicopters for the cases of 0% and +20% inertia uncertainty
are either very close or coincident.

reaches its peak speed of 10 m/s at 17.5 s, and vanishes
gradually after that, until it totally vanishes at 35 s. The roll
angle of the helicopters (shown at middle of the path at 17.5 s)
reflects the effect of the wind. The helicopters successfully
achieve the new desired formation after 35 s despite the wind
and inertia uncertainties.

6. Conclusions

The formation control problem for small autonomous
helicopters was considered. Two decentralized three-
dimensional formation control schemes were introduced
for a general formation control. The controller design was
based on a six-degree-of-freedom dynamic model with forces
and moments as the actuation means. Sliding-mode control
method was used due to its robustness in the presence of
disturbances. The effectiveness of the controllers was shown
via simulations. It was shown that by using the two formation-
control schemes, any spatial formation can be defined for a
number of helicopters. The helicopters are able to achieve
the defined formations even in the presence of rather high
environmental disturbances and up to 20% uncertainty in the
mass and moment of inertia.
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Appendix: Details of the Kinematic Analysis for the l–l
Control Scheme

A.1. Velocity
The rate of change of the direction parameter of the l–l

formation plane, β123, as defined in Fig. 5, can be calculated
via two different approaches. In one approach, as shown
in the body of the paper [Section 3.2.1, Eqs. (43) and (44)],
the relative velocity control of points p1 and p3 can be used.
The second approach can be formulated based on the relative
velocity of the control points p2 and p3. Both approaches lead
to the same result for β̇123, although the two mathematical
descriptions of β̇123 look different. Here, it is shown that the
two descriptions are equivalent.

If the second approach is taken, an equation similar to
Eq. (43) can be written

v
(f )
p3 = v

(f )
p2 + ω

(f )
f × l

(f )
23 + l̇

(f )
23 . (A1)

β̇123 can be found by simplifying the third component of
Eq. (A1)

β̇123 = v
(f )
p3z − v

(f )
p2z + ωf 2l23 cos γ23

l23 sin γ23
. (A2)

The third component of Eq. (42) indicated that

v
(f )
p2z = v

(f )
p1z − ωf 2l12. (A3)

Substituting Eq. (A3) into (A2) results in

β̇123 = v
(f )
p3z − v

(f )
p1z + ωf 2(l12 + l23 cos γ23)

l23 sin γ23
. (A4)

According to Fig. 4, one can write l
(f )
12 + l

(f )
23 = l

(f )
13 . In

component notation, this can be expressed as

l12 + l23 cos γ23 = l13 cos γ13 (A5)

l23 sin γ23 = l13 sin γ13. (A6)

Substituting Eqs. (A5) and (A6) into (A4) results in

β̇123 = v
(f )
p3z − v

(f )
p1z + ωf 2l13 cos γ13

l13 sin γ13
(A7)

which is identical to Eq. (44).

A.2. Acceleration
The second derivative of the direction parameter of the l–l

formation plane, β123 appeared in two different equations,
as shown in the body of the paper [Section 3.2.1, Eqs. (52)
and (54)]. Although the two mathematical descriptions in
Eqs. (52) and (54) for β̈123 look different, they are actually
equivalent. Here, it is shown that the two descriptions are
equivalent.

Equation (51) is repeated here for reference.

⎡
⎣ l̈13 cos γ13 − αf 3l13 sin γ13

l̈13 sin γ13 + αf 3l13 cos γ13

β̈123l13 sin γ13

⎤
⎦=a

(f )
c3 +ω

(f )
3 ×d(f )+N1−M1.

(A8)

Equation (54) can be rearranged in the form of Eq. (51) as

⎡
⎣ l̈23 cos γ23 − αf 3l23 sin γ23

l̈23 sin γ23 + αf 3l23 cos γ23

β̈123l23 sin γ23

⎤
⎦=a

(f )
c3 +ω

(f )
3 ×d(f )+N2−M2.

(A9)

Since l23 sin γ23 = l13 sin γ13 (A6), the coefficient of β̈123 on
the right-hand side of Eqs. (A8) and (A9) are equal. If it can
be shown that the third components of the left-hand side of
these equations are also equal, it can be concluded that they
result in the same β̈123. The difference of the third component
of the left-hand sides of Eqs. (A8) and (A9) is [see Eqs. (49),
(50), (56), and (57)]

(N1 − N2)z − (M1 − M2)z = [(
a

(f )
p2 − a

(f )
p1

) − ω
(f )
f

× (
ω

(f )
f × (

l
(f )
13 − l

(f )
23

)) − 2ω
(f )
f × (

l̇
(f )
13 − l̇

(f )
23

)]
z

− [−αf 2(l13 cos γ13 − l23 cos γ23)]. (A10)

Since l
(f )
13 − l

(f )
23 = l

(f )
12 (Fig. 4) and according to Eq. (A5), the

previous equation can be simplified as

(N1 − N2)z − (M1 − M2)z = [(
a

(f )
p2 − a

(f )
p1

) − ω
(f )
f

× (
ω

(f )
f × l

(f )
12

) − 2ω
(f )
f × l̇

(f )
12

]
z
− [−αf 2l12]. (A11)

The right-hand side of the previous equation is zero according
to Eq. (46)

(N1 − N2)z − (M1 − M2)z = 0. (A12)

This means that the third components of the right-hand side
of Eqs. (A8) and (A9) are equal and they result in the same
values for β̈123.

https://doi.org/10.1017/S0263574707003670 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574707003670

