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We present a new adaptive control strategy to isolate and stabilize turbulent states in
transitional, stably stratified plane Couette flow in which the gravitational acceleration
(non-dimensionalized as the bulk Richardson number Ri) is adjusted in time to
maintain the turbulent kinetic energy (TKE) of the flow. We demonstrate that applying
this method at various stages of decaying stratified turbulence halts the decay process
and allows a succession of intermediate turbulent states of decreasing energy to be
isolated and stabilized. Once the energy of the initial flow becomes small enough,
we identify a single minimal turbulent spot, and lower-energy states decay to laminar
flow. Interestingly, the turbulent states which emerge from this process have very
similar time-averaged Ri, but TKE levels different by an order of magnitude. The
more energetic states consist of several turbulent spots, each qualitatively similar to
the minimal turbulent spot. This suggests that the minimal turbulent spot may well
be the lowest-energy turbulent state which forms a basic building block of stratified
plane Couette flow. The fact that a minimal spot of turbulence can be stabilized, so
that it neither decays nor grows, opens up exciting opportunities for further study of
spatiotemporally intermittent stratified turbulence.
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1. Introduction

It is well known that fluid flows with a linearly stable laminar state can still undergo
a subcritical transition to turbulence and display a wealth of interesting, complex
spatiotemporal dynamics which continues to defy understanding. For example, in
plane Couette flow where a constant-density fluid of kinematic viscosity ν is sheared
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between two parallel boundaries a distance 2h apart moving at velocity ±U, there is
a Reynolds number, Re=Uh/ν=Reg' 323, below which the laminar flow is a global
attractor but turbulent spots can be triggered transiently (Bottin, Dauchot & Daviaud
1997; Duguet, Schlatter & Henningson 2010). For Re>Reg, the flow can permanently
support spatiotemporal intermittency with coexistence of regions of turbulent and
laminar flow (Lundbladh & Johansson 1991; Tillmark & Alfredsson 1992; Dauchot
& Daviaud 1995). The volume fraction occupied by turbulence increases with Re
until it fills the whole domain for Re > Ret ' 400 (Duguet et al. 2010). Close to
but above Reg, there is a patterned regime where the turbulence arranges itself
into regular stripes or bands obliquely oriented to the mean flow and separated by
laminar regions (Prigent et al. 2002; Barkley & Tuckerman 2005; Duguet et al. 2010;
Philip & Manneville 2011; Manneville 2012; Duguet & Schlatter 2013). This general
picture is repeated across other shear flows undergoing a finite-amplitude transition:
for example, certain regimes of Taylor–Couette flow (Coles 1965; Van Atta 1966;
Prigent et al. 2002) and channel flow (Carlson, Widnall & Peeters 1982; Alavyoon,
Henningson & Alfredsson 1986; Fukudome, Iida & Nagano 2009; Tsukahara et al.
2005). It also persists under the addition of extra physics such as rotation, Lorentz
forces and stratification (Brethouwer, Duguet & Schlatter 2012; Deusebio et al. 2014).

Underpinning all this behaviour is the basic phenomenon of a localized finite-
amplitude disturbance triggering the growth of a turbulent spot. These spots are
never stable, either eventually decaying away if the underlying shear is too low
(Re< Reg) or developing into a spatially extended turbulent state such as a turbulent
strip (Reg < Re< Ret) or indeed the whole flow domain (Re> Ret). Observations and
numerical calculations indicate that the evolution of a turbulent spot quickly takes on
a universal structure independent of the initial disturbance. As a result, much work
has been done to try to unravel the dynamics of this growth even though the very fact
that the spot is continually evolving has made this difficult (Emmons 1951; Carlson
et al. 1982; Alavyoon et al. 1986; Henningson, Spalart & Kim 1987; Klingmann &
Alfredsson 1990; Schumacher & Eckhardt 2001).

Stratification introduces additional parameters, the Richardson number, Ri, which
quantifies the relative importance of buoyancy compared to shear, and the Prandtl (or
Schmidt) number, Pr = ν/κ , the ratio of the fluid viscosity to the scalar diffusivity.
Here, we will consider only Pr = 0.7, characteristic of the diffusion of heat in
air, while varying Ri. Stable density stratification is common in geophysical flows.
Despite the very high Re associated with geophysical flows, turbulence is often
highly intermittent, as the de-stabilizing influence of vertical shear competes against
the stabilizing influence of stratification (e.g. Mahrt 1999). Previous studies have
examined the laminar–turbulent transition and intermittency in wall-bounded stratified
shear flows (Flores & Riley 2010; García-Villalba & del Álamo 2011; Brethouwer
et al. 2012; Deusebio et al. 2014; Deusebio, Caulfield & Taylor 2015). Figure 1
summarizes the simulations reported in Deusebio et al. (2015), with blue circles used
to indicate simulations with spatiotemporal intermittency and red squares used to
indicate fully turbulent flow.

Motivated by this, we use Ri as a control parameter to study spatiotemporal
intermittency using direct numerical simulations (DNS) of stratified plane Couette
flow. For simplicity, we consider a single Re, which is nearly three times larger
than the critical value for unstratified plane Couette flow, and Ri ∈ [0.02, 0.2]: the
baseline simulation with Ri= 0.02 is indicated by a filled blue circle in figure 1. In
the absence of stratification, flow at this Re would be in the ‘featureless’ turbulence
regime. However, stable stratification retards the transition process and the flow
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FIGURE 1. Flow regimes in stratified plane Couette flow as a function of Reynolds
number, Re, and Richardson number, Ri. All simulations use a Prandtl number Pr = 0.7.
The simulations reported in Deusebio et al. (2015) are indicated with symbols. Blue
circles denote simulations with spatiotemporal intermittency and red squares denote fully
turbulent simulations. The solid blue circle is the baseline simulation described below
in § 2.1. Arrows indicate an abrupt increase in Ri at the start of each decay simulation
described in § 2.2, and the green bar indicates the approximate range of Ri seen in the
adaptive simulations B, C and D, described in § 2.3.

exhibits spatiotemporal intermittency in the form of patterned turbulence which will
be described below. Note that most of the other simulations from Deusebio et al.
(2015) used a relatively small box size and were unable to distinguish between
patterned and irregular intermittent turbulence.

The paper is organized as follows. In § 2.1, we briefly describe the numerical
set-up and revisit one of the simulations reported in Deusebio et al. (2015) in an
intermittent regime, which we use as a baseline simulation. In § 2.2, we describe a
series of decay simulations, each of which starts from an initial condition taken from
the baseline simulation at Ri = 0.02. The decay simulations differ only in the new
value of Ri> 0.02 subsequently imposed. Section 2.3 then describes a novel strategy
to isolate and stabilize a turbulent spot by turning on the dynamic adaptation of Ri in
the decay simulation for Ri= 0.05. The adaptive control procedure allows us to halt
the decay process and isolate stripes and spots that characterize intermittent flows
with a supercritical transition. Finally, we end with a brief summary and discussion
in § 3.

2. Results

2.1. Set-up
Stratified plane Couette flow is bounded at the top and bottom by flat, rigid plates
separated by a distance 2h. Here, x, y and z will be used to denote the streamwise,
wall-normal and spanwise directions, respectively, following the standard convention
for Couette and channel flow. The plates move in opposite directions with constant
velocity u = ±Ux̂. The walls are held at a fixed temperature, θ , such that the
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temperature of the upper wall is 2T higher than the temperature of the lower wall.
Here, we consider the following non-dimensional incompressible Boussinesq equations
with a linear equation of state:

∂u
∂t
+ u · ∇u=−∇p+ Riθ ŷ+ 1

Re
∇2u, (2.1)

∂θ

∂t
+ u · ∇θ = 1

RePr
∇2θ, (2.2)

∇ · u= 0, (2.3)

where
Re :=Uh/ν, Ri := |g|αTh/U2, Pr := ν/κ, (2.4a−c)

g = −g ŷ is the acceleration due to gravity which acts in the −y direction, ν is the
kinematic viscosity, κ is the thermal diffusivity, α is the thermal expansion coefficient,
and p is the non-dimensional pressure.

Periodic boundary conditions are applied in x and z. The numerical code uses a
pseudo-spectral method in x and z and second-order finite differences to calculate
derivatives in the y direction. The time stepping algorithm is a mixed implicit/explicit
scheme using the third-order Runge–Kutta and Crank–Nicolson methods. Further
details of the problem configuration and numerical method can be found in Deusebio
et al. (2015).

One of the simulations reported by Deusebio et al. (2015) is chosen as our
‘baseline’ simulation (filled blue circle in figure 1). This simulation has Re = 865,
Ri = 0.02 and Pr = 0.7. Although Re is among the lowest considered by Deusebio
et al. (2015), it is still sufficiently high to be in the ‘fully turbulent’ regime for
unstratified plane Couette flow (Re & 400) (Duguet et al. 2010). This case was
chosen as our baseline since the modest resolution allows us to use a very large
domain in the streamwise and spanwise directions, with Lx = 64πh and Lz = 32πh.
The simulation uses 1024 gridpoints in the x and z directions and 64 points in y,
with gridpoints clustered near both walls. As discussed by Deusebio et al. (2015),
the large domain size reduces temporal intermittency of the flow and provides robust
statistics.

Figure 2(b) shows the streamwise velocity at y=−0.5h, the horizontal plane half-
way between the lower wall and the centreline. Turbulent and laminar regions develop
in inclined bands reminiscent of those seen at lower Reynolds numbers in transitional
plane Couette flow (Prigent et al. 2002). Deusebio et al. (2015) described a method
for identifying local turbulent and laminar regions and defined the ‘turbulent fraction’,
γ , as the fraction of the total domain occupied by turbulent flow. For sufficiently large
Re and small Ri, the flow is fully turbulent with γ = 1 (red squares in figure 1). For
sufficiently small Re and large Ri, intermittent flow is seen with 0<γ <1 (blue circles
in figure 1). For the baseline simulation, γ = 0.64 (solid circle in figure 1).

2.2. Decay simulations
In the first set of simulations, we varied the strength of the stable stratification by
abruptly increasing Ri. Each simulation was initialized from the baseline simulation
described above with Re = 865 and Ri = 0.02 with a state obtained at statistical
equilibrium. The decay simulations are indicated in figure 1 as vertical arrows
ending at the new Richardson number. For convenience, t= 0 will correspond to the
time when Ri is abruptly increased. Since Ri multiplies the buoyancy term in the
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FIGURE 2. (a) Time series of the turbulent kinetic energy (TKE) in the decay simulations.
Each simulation starts from the same initial state labelled 1. The Richardson number in
each simulation is labelled. (b)–(e) Horizontal slices of the streamwise velocity at y =
−0.5h at various times in the simulation with Ri = 0.05. The corresponding times are
indicated with dots and numbered in panel (a). The first time (b) shows the velocity in
the baseline simulation that was used to initialize the decay simulations. In this simulation
spatiotemporal intermittency takes the form of a repeating pattern of bands (or stripes) of
turbulence inclined with respect to the spanwise direction.

non-dimensional vertical momentum equation, increasing Ri is equivalent to increasing
the gravitational acceleration, i.e. heavy fluid becomes heavier and light fluid becomes
lighter.

Figure 2(a) shows the time evolution of the turbulent kinetic energy, TKE := 〈u′ ·
u′〉/2, where 〈·〉 denotes a volume average and primes denote a departure from this
average, i.e. u′ := u−〈u〉. In four cases with Ri> 0.05, the TKE decays in time at an
approximately exponential rate, and the rate of decay increases with Ri. Eventually all
simulations with Ri> 0.05 reach a fully laminar state. When Ri= 0.03 and Ri= 0.04,
the TKE decays during a transient period and partially recovers, but remains below
the initial value. For comparison, a continuation of the baseline case with Ri= 0.02
is also shown.

The decay process does not proceed uniformly in space, but instead turbulence
persists in localized ‘pockets’ contained within receding turbulent bands, qualitatively
similar to what has been seen in previous simulations of decaying unstratified
turbulence (Manneville 2011). Figure 2(b)–(e) shows four snapshots of the streamwise
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velocity at y=−0.5h in the decay simulation with Ri= 0.05. The corresponding times
are indicated using dots in figure 2(a). Highly localized patches of turbulence can be
seen at times labelled 3 and 4, while the rest of the flow is nearly laminar.

2.3. Adaptive Ri simulations
In order to examine further the influence of stratification on the flow near the laminar–
turbulent transition, we have developed a procedure using the Richardson number, Ri,
as an adaptive control parameter. To our knowledge, this is the first time that Ri has
been used to control the level of turbulence in a stratified flow. The procedure allows
us to isolate turbulent states progressively closer to the relaminarization boundary. The
adaptive procedure changes Ri based on the rate of change of TKE. Let t0 correspond
to the time M time steps before the current time, t, and let TKE(t0) and TKE(t) be
the TKE at these times. The TKE decay time scale, τ , between times t0 and t is

τ := −(t− t0)

ln
(

TKE(t)
TKE(t0)

) (2.5)

and the Richardson number, Ri(t), is then set as

Ri(t) := Ri(t0)− c
t− t0

τ
, (2.6)

where Ri(t0) was the previous value at t0, and c is a control parameter that will be
discussed later. The adaptive Ri procedure acts to maintain a roughly constant value
of the TKE. The turbulent fraction and TKE level are sensitive to Ri (Deusebio et al.
2015). During periods where TKE decreases in time (τ > 0), the adaptive procedure
will decrease Ri, which has the ultimate effect of increasing the TKE, thus leading
to the possibility of ‘controlling’ the turbulence at a non-trivial level. Mathematically,
if Ri was adjusted every time step, equations (2.5) and (2.6) are a finite difference
approximation to imposing the extra dynamical constraint

d
dt

[
Ri(t)+ c ln

(
TKE
TKE0

)]
= 0, (2.7)

to the Boussinesq equations and TKE0 is an arbitrary constant energy. Note that c= 0
recovers the Boussinesq equations with constant Ri.

In the adaptive Ri simulations, we updated Ri using (2.6) every M= 20 time steps
and set c= 0.1. The value of M was chosen to reduce the computational cost of this
procedure while ensuring that Ri is adjusted sufficiently often to keep pace with any
change in the TKE decay rate. In practice, the time between Ri adjustment steps is
always less than one advective unit, t − t0 < h/U. The sensitivity of the results to
the choice of c will be examined later. We have used the adaptive Ri procedure to
isolate turbulent states during various stages of the decay process. We saved three-
dimensional flow fields at various times during the decay simulation with Ri= 0.05,
indicated by dots in figure 3(a). Each of these was then used as an initial condition
for an adaptive Ri simulation. To ensure continuity, Ri was initialized to 0.05 in the
adaptive Ri simulations.

Time series of the TKE from the adaptive Ri simulations are shown in dashed lines
in figure 3(a). The decay simulation with Ri= 0.05 is shown for reference (solid line).
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FIGURE 3. (a) Time series of the turbulent kinetic energy (TKE) in the adaptive Ri
simulations. The simulations are initialized from various times in the Ri = 0.05 decay
simulations as indicated by coloured dots. (b) Time series of the Richardson number, Ri,
for each of the adaptive Ri simulations using the control scheme described in the text.
The solid red line indicates Ri= 0.05 from the decay simulation. The start time of each
simulation is indicated with a coloured dot, and the colours and labels are the same as
in panel (a).

The simulations with adaptive Ri are each labelled with a letter (A–G). In simulations
labelled A–D, the TKE continues to decrease at the start of the adaptive simulation,
but soon reaches a quasi-steady state. Simulations initialized later in the decay process
have quasi-steady states with lower TKE. Time series of Ri in the adaptive simulations
are shown in figure 3(b). In all cases Ri reaches a quasi-steady state after an initial
drop – mirroring the TKE. Interestingly, the quasi-steady value of Ri in cases B, C
and D falls in the same range, Ri ' 0.05–0.06, despite very different values of the
TKE in these simulations. Simulation A has a smaller quasi-steady value of Ri' 0.03.
For context, the approximate range of Ri in the quasi-steady state for simulations B,
C and D is indicated as a green band in figure 1.

Simulation D is the lowest level of TKE that we have been able to reach using this
procedure. In simulations E–G, the flow nearly relaminarizes during the adaptive Ri
simulation. In this regime, Ri oscillates and eventually becomes negative (figure 3b),
while the flow develops into a series of streamwise-independent rolls (not shown)
corresponding closely to slightly supercritical, sheared Rayleigh–Bénard convection
(Clever, Busse & Kelly 1977; Kelly 1977). There are dramatic differences in the
character of the flow and the value of the steady-state Ri in simulations D and E,
implying that the flow in simulation D is close to the relaminarization boundary.

The streamwise velocity at y = −0.5h is shown for four adaptive Ri simulations
in figure 4. Each snapshot corresponds to the end of the adaptive Ri simulation,
as labelled in figure 3(a). Simulation A was initialized directly from the baseline
simulation (magenta dot) with Ri= 0.05 and the TKE decreases slightly at the start
of the simulation. Turbulent/laminar bands are still prominent features of simulation A,
and the laminar regions are more coherent than in the baseline simulation (compare
figure 2b and figure 4 simulation A). In the other extreme, simulation D has a
single turbulent spot. This spot persists throughout the adaptive Ri simulation, slowly
migrating around the domain. Simulations B and C have multiple turbulent spots
resembling the one seen in simulation D. In simulation B some of the spots appear
to join together, with some indications of short inclined bands of turbulence.
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FIGURE 4. Horizontal slices of the streamwise velocity at y = −0.5h at the end of the
adaptive Ri simulations. Labels are the same as in figure 3.
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FIGURE 5. Non-dimensional temperature (θ/T) on vertical slices passing through z= 60h
for simulations A (a) and D (b). The simulation names are the same as in figures 3 and 4.

The turbulent structures in the isolated turbulent spot are qualitatively similar to the
structures in the turbulent stripes. Figure 5 shows vertical slices of the temperature
field from simulations A and D illustrating these two regimes. Turbulence in the
stripes and spot spans the gap between the lower and upper plates, and is inclined
in the direction of plate motion. Small regions with an unstable density arrangement
(heavy over light) occur in the turbulent patch. Features reminiscent of developing
Kelvin–Helmholtz billows appear on the flanks of the turbulent patches, for example
between 60 6 x/h 6 80 in simulation A and 150 6 x/h 6 170 in simulation D (note
that the aspect ratio is highly stretched).

To examine the sensitivity of our results to details of the adaptive Ri procedure, we
continued simulation D (exhibiting a single turbulent spot) with various values of the
adjustment coefficient, c, including a case with c = 0 when Ri is held fixed. Time
series of the TKE and Ri are shown in figure 6. When c= 1, the TKE remains close
to constant in time, but Ri exhibits large, high-frequency oscillations. In contrast, when
Ri is held fixed (c= 0), the TKE undergoes large low-frequency oscillations in time.
In this uncontrolled simulation the turbulent spot first grows, splits into two spots, and
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FIGURE 6. Dependence of the TKE (a) and Richardson number (b) on the choice of
the coefficient, c, in (2.6). Each simulation is started from the end of simulation D with
a single controlled turbulent spot. (c) Visualizations of the streamwise velocity from an
uncontrolled simulation (c= 0) are shown for the times indicated in blue dots in panel (a).

one of these spots decays (figure 6c). The remaining spot looks remarkably similar to
the controlled spot from which the simulation was started, more than 400 advective
time units earlier (compare times labelled I and III). This suggests that the controlled
spot is at least qualitatively representative of the uncontrolled system. The intermediate
values, c= 0.1 and c= 0.01, represent a trade-off between larger oscillations in Ri and
TKE, respectively.

A natural question to ask is whether the captured turbulent spot obtained using
the adaptive control procedure is sensitive to the initial conditions. That is, does
the flow retain some ‘memory’ of the simulation with decaying stratified turbulence
from which it was started? To address this question, we ran an additional simulation
initialized with a localized ‘seed’ following the procedure of Lagha & Manneville
(2007). Specifically, we started with the velocity from a simulation of unstratified
plane Couette flow at the same Reynolds number in the featureless turbulence regime.
The initial velocity was then formed by multiplying the unstratified velocity field by
a Gaussian function of x and z,

u(x, t= 0)= uRi=0(x)e−(x
2+z2)/S, (2.8)

where S= 2h2. Note that this seed is significantly smaller than the turbulent spot seen
in simulation D. The seed was allowed to develop with Ri= 0 for 35 advective time
units, after which point, the adaptive procedure was started with c = 0.1. Although
the Richardson number was started from Ri= 0, it converged towards approximately
the same value seen in simulations B, C and D, and the flow developed into a single
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turbulent spot that appeared extremely similar in structure to the one in simulation D.
This result implies that the turbulent spot is not sensitive to the initialization procedure.
When the adaptive procedure was started without first allowing the seed to grow, the
increase in stratification caused the flow to relaminarize. This supports the idea that
the turbulent spot captured in simulation D is close to the minimal energy turbulent
attractor, the lowest-energy turbulent state that can be maintained using the adaptive
Ri procedure.

3. Discussion

We have examined intermittent stratified plane Couette flow using direct numerical
simulations. While the Reynolds number was kept fixed, the Richardson number, Ri,
was used as a control parameter, allowing us to probe the dynamics of intermittent
stratified turbulence in this geometry. We have considered two sets of simulations. In
the first set of simulations, Ri is abruptly increased relative to a control simulation. For
sufficiently large values of Ri, the flow relaminarizes. However, in these simulations,
localized patches of turbulence persist into the decay period until the flow becomes
fully laminar. This result is qualitatively similar to Manneville (2011), who found
breakup of turbulent bands in decaying unstratified plane Couette flow.

Next, we describe a new method to isolate flow structures at very low turbulent
energy using Ri as an adaptive control parameter. The method adjusts Ri based on
the time rate of change in the turbulent kinetic energy (TKE), increasing Ri when the
TKE is increasing and lowering Ri when the TKE is decreasing. The adaptive control
procedure acts to stabilize the flow close to the initial energy level. By starting
the adaptive procedure at various times during a simulation of decaying stratified
turbulence, we are able to isolate a variety of low-energy flow structures, including
spots and short stripes of turbulence.

When the Richardson number changes through the control procedure introduced
here, the buoyancy of the fluid changes everywhere in the domain instantaneously.
It is difficult to imagine a means to change the density of a real fluid in a similar
way by changing its temperature or salinity. However, a change in buoyancy could
be interpreted as a change in the gravitational acceleration. An analogue laboratory
experiment would measure the change in TKE within a given time window and
accelerate the entire Couette flow apparatus up or down so as to change the fluid
buoyancy instantaneously everywhere throughout the flow. Although it would be
difficult to implement this system in a practical laboratory experiment, it provides a
physical interpretation of the control procedure.

The lowest-energy turbulent structure that we are able to identify using the adaptive
control procedure consists of a single isolated turbulent spot in an otherwise laminar
flow. Qualitatively, this stabilized spot is very similar to the spots seen previously in
unstratified transitional flows, and it seems reasonable to assume that they are closely
related. Studying this stabilized spot then offers an exciting opportunity to probe the
dynamics seen. However, confirming a connection is not as simple as examining the
c→ 0 limit, because the fluctuations in energy become larger as c decreases, until
eventually the spot becomes uncontrollable at some small but finite c (see figure 6).

The scheme to adapt Ri based on the time rate of change of TKE is somewhat
arbitrary, and other choices could be made. For example, it might be possible
to control a turbulent spot in unstratified flow using the Reynolds number as a
control parameter. One could use this technique to explore the dynamics of multiple
interacting controlled spots. For example, if a simulation were initialized with several
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isolated turbulent spots, would they coalesce into stripes and eventually form patterns?
If so, do the properties of the turbulent spot provide insight into properties of
patterned turbulence such as the width of the turbulent bands?

Another interesting issue is how the stabilized spot in the controlled system – the
Boussinesq equations augmented by the constraint (2.7)) with Ri(t) now a dynamic
variable – is related to the laminar–turbulent boundary or ‘edge’ (Itano & Toh 2001;
Skufca, Yorke & Eckhardt 2006) in the uncontrolled Boussinesq equations with,
say, the required fixed value of Ri defined as Ri, the long-time average of Ri(t) (a
reasonable but not unique choice to link the controlled system with variable Ri(t) and
the uncontrolled system with fixed Ri). In the controlled system, the spot is a stable
low-energy state and must therefore sit ‘above’ the edge (i.e. not in the laminar basin
of attraction) but presumably still close to it. The edge for the controlled system has
an extra dimension in phase space compared to that for the uncontrolled system due
to Ri(t) being an extra dynamic variable. Projecting the edge in the controlled system
down onto the hyperplane with fixed Ri = Ri(t) might produce a good estimate for
the edge in the uncontrolled system provided the fluctuations in Ri(t) are not too
large compared to Ri(t). However, it is unclear where the projected stabilized spot
solution will land in phase space relative to the uncontrolled system edge: i.e. it
could be inside, outside or even on it, and so the control procedure is not a direct
competitor to bisection-based edge tracking (Itano & Toh 2001; Skufca et al. 2006),
which endeavours to work on the edge.

In this paper we have only considered a single Reynolds number, Re=Uh/ν= 865.
Although this Reynolds number is large enough to support fully developed turbulence
in the unstratified limit, it is much smaller than typical values in geophysical and
industrial flows. One consequence of the moderate Reynolds number is that the
Richardson number associated with intermittent flow is also modest. Deusebio et al.
(2015) found intermittent behaviour at much higher Reynolds numbers for sufficiently
large Richardson number, which is also consistent with previous work (e.g. Flores &
Riley 2010; García-Villalba & del Álamo 2011; Brethouwer et al. 2012). The fate of
the laminar–turbulent transition boundary in the limit as Re→∞ is one of the most
important open problems in stratified turbulence. Knowing whether there is a finite
‘critical’ value of Ri above which turbulence cannot persist as Re→∞ would be of
great use in parameterizing turbulence and mixing in ocean, atmosphere, and climate
models.

One of the difficulties with answering this question is the rapid increase in
computational cost with increasing Re. Very close to the transition boundary, where
stratification suppresses energetic turbulence and localizes turbulent patches, the
flow might be more accessible to DNS. However, this accessible region narrows in
parameter space as Re→∞ (Deusebio et al. 2015), making it difficult to locate the
transition boundary. Here, too, our adaptive control technique might be helpful, since
the long-time average of Ri(t) needed to maintain a low perturbation energy level as
Re increases should be a good predictor for this boundary.
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