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ABSTRACT

Actuarial risk classification studies are typically confined to univariate, policy-
based analyses: Individual claim frequencies are modelled for a single product,
without accounting for the interactions between the different coverages bought
by the members of the same household. Now that large amounts of data are
available and that the customer’s value is at the heart of insurers’ strategies, it be-
comes essential to develop multivariate risk models combining all the products
subscribed by the members of the household in order to capture the correlation
effects. This paper aims to supplement the standard actuarial policy-based ap-
proach with a household-based approach. This makes the actuarial model more
complex but also increases the volume of available information which eases and
refines forecasting. Possible cross-selling opportunities can also be identified.
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1. INTRODUCTION AND MOTIVATION

Actuaries now routinely analyse insurance data with the help of Generalized
Linear Models (GLMs) and Generalized Additive Models (GAMs), including
their mixed model extensions with random effects capturing unexplained het-
erogeneity: risk selection, a priori classification, experience rating, lapse predic-
tion, etc. can be achieved with these tools. See, e.g., Denuit et al. (2007) for a
comprehensive account of these regression techniques in non-life insurance.

However, actuarial risk classification studies are typically confined to uni-
variate, policy-based analyses: Individual claim frequencies are modelled for
a single product, without accounting for the interactions between the dif-
ferent coverages bought by the members of the same household. We aim
here to move from such marginal, policy-based actuarial analyses to joint,
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household-based risk assessment. By proper inclusion of mixed effects in Pois-
son model for claim frequencies, the unexplained heterogeneity as well as the
dynamic nature of insurance panel data collected for all products issued to the
members of the household is accounted for, allowing for periodic revaluations
based on previous claim experience.

These latent factors can then be combined using multiline credibility mod-
els so that the correlation existing between the different products owned by the
members of the same household can be exploited for a posteriori corrections.
The proposedmultivariate credibility models allow the actuary to gain access to
the entire predictive loss distribution. The conditional distribution of the latent
factors, given past claims history of every member of the household produces
risk predictions, so that each member’s predicted claim frequency depends on
the numbers of claims filed by the other members of the household. Of course,
we mean here technical revaluations, not necessarily commercial ones (such
mechanisms may even be prohibited by law in some jurisdictions).

This is not the first proposal for amultivariate credibility model.We refer the
reader to the book by Bühlmann and Gisler (2005) for a comprehensive presen-
tation of this topic and its development up to the early 2000s. Since then, this
topic has been further studied by several authors, who provided convincing ap-
plications of the multivariate credibility models. Englund et al. (2008) included
claim history for more than one line of business in insurance pricing. They suc-
cessfully applied their approach to data from two lines of business in a portfo-
lio of a Danish insurance company. See also Englund et al. (2009), Frees et al.
(2010) and Antonio et al. (2011). Thuring et al. (2012) proposed to use a multi-
line credibility model to identify prospects for cross-selling insurance products.
This global approach allows the insurer to target customers who are expected
to report fewer claims with respect to a not yet owned insurance coverage and
cross-sell them that specific coverage. Besides correlated latent factors in mul-
tiline credibility models, there are other approaches to account for the correla-
tion existing between the different products owned by the household. See, for
instance, Shi (2016), Shi and Valdez (2014) and Shi et al. (2016) for alternative
approaches based on copulamodelling. Let us alsomention the similarities with
credibility models developed for fleets of vehicles. See, e.g., Fardilha et al. (2016)
and the references therein.

So far, the literature about multivariate credibility models has mostly con-
centrated on different business lines. In this paper, we consider the same in-
surance products issued to several members of a household and we investigate
the correlation structure of the respective numbers of claims. Barseghyan et al.
(2016) also considered households, but assessed the dependence structure be-
tween the claim experience in motor and home insurance. In their study, the
numbers of claims in motor insurance were aggregated over households, and
paired with the number of claims in home insurance. Also, Shi et al. (2016) con-
sidered the Tweedie model for the claim costs (to accommodate the massive ze-
ros) related to different coverages comprised in motor insurance and employed
the Gaussian copula to jointly analyse the semi-continuous claim costs in a
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multilevel context. In particular, they accounted for the correlation among
claims from multiple vehicles within the same household (all covered by the
same policy in the data studied by these authors).

In the present paper, we restrict our analysis to the compulsory third-party
liability motor insurance and study the dependencies between the numbers of
claims filed by each member of the household, parents and children. The model
proposed for the respective numbers of claims filed by each householdmember is
not new in itself. Following the literature devoted to the multivariate credibility
models, we use multivariate Poisson mixtures, with correlated Gamma or Log-
Normal random effects (see, e.g., Chapter 2 in Denuit et al., 2007). The main
contribution of this paper is more on the application side. The present study
is conducted on the motor insurance portfolio of a major insurance company
operating in the EU, with more than 1 million insured drivers. This extensive
data set allows us to accurately analyse the correlation structure existing be-
tween the numbers of claims inside the same household. Contrary to Shi et al.
(2016), let us notice that each policy of the current dataset is linked to a single
car. This means that in case a household owns multiple cars (all insured by the
company under consideration), then the dataset records for this household a
separate policy for each vehicle. The same Gaussian copula is used, but here to
jointly model Poisson mixing (latent) factors, whereas Shi et al. (2016) applied
it to the observed claim costs.

Our approach can be decomposed as follows. First, we perform a marginal
analysis to account for individual risk profiles. Based on a Poisson GAM re-
gression, we predict the expected number of claims for each member of the
household using information about the policyholder, his or her vehicle and the
characteristics of the contract. In a second stage, we include information about
the number of claims reported by the other members of the same household. To
this end, we use a multivariate Poisson mixture model with the correlated latent
factors inducing the correlation between individual claim histories. It turns out
that the association of these latent factors is quite strong on the database used
to illustrate this paper. As a consequence, the predictive distributions appear to
be sensitive to the claim histories of the other members of the same household:
The knowledge of the claim experience at the household level thus refines the
prediction of future losses for each member.

The remainder of this paper is organized as follows. In Section 2, we intro-
duce the dataset and define four subpopulations that represent policyholders
that are typically encountered in the households: parents and young drivers.
In Section 3, we start with a justification for the multivariate modelling before
introducing the bivariate model which allows a joint modelling of the parents’
number of claims. In Section 4, we generalize the bivariate model to a multi-
variate model that can capture the main households effects. In Section 5, the
parameters of the models are estimated and then used in the applications such
as premium corrections, detection of cross-selling opportunities and determina-
tion of underwriting rules for young drivers. The final Section 6 briefly concludes
the paper. Some technical details are gathered in the appendix.
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2. COMPOSITION OF THE HOUSEHOLDS AND DESCRIPTION OF THE DATASET

Let us briefly describe the dataset that will be used to support our analysis. Data
relate to a European motor third-party liability insurance portfolio observed
during calendar years 2011 to 2013. For each policyholder, age, gender and place
of residence are available. We also know the power and use of the car (recall that
each policy covers a single vehicle and is associated with a main driver). Finally,
we also have at our disposal information about the contract: whether premium
payment has been splitted (premiums paid annually, semi-annually, quarterly
or monthly) and whether material damages are covered in addition to motor
TPL. The database also contains the number of claims observed during the three
different years and a litigation variable, indicating whether the policyholder has
had a failure to pay the premium in due time. Finally, a household code allows
us to identify the policyholders belonging to the same household.

In a first step, we account for this information by running a Poisson GAM
regression using all the available covariates, with the logarithm of the coverage
period as offset. The effect of the continuous covariates age and power, as well
as the geographic effect, are captured by splines (with an interaction between
gender and age). For more information about this kind of modelling approach,
we refer the reader, e.g., to Denuit and Lang (2004).

Even if we know that several policyholders belong to the same household,
we do not know the relationship between them (except that they live under the
same roof). Notice that only individuals covered by the insurance company are
included in the database. No information is available about individuals in the
household who have not subscribed an insurance contract with this company.
Therefore, the number of kids at home and their respective ages are not neces-
sarily known, nor the presence of a partner, husband or wife. As a consequence,
we are not sure about the actual household composition. The only information
available is whether different policyholders belong to the same household.

Some assumptions weremade to establish the position in the household each
policyholder holds.Henceforth, a “kid” is defined as a policyholder aged atmost
23 and living with at least one policyholder who is at least 40 years older. The
threshold age 23 has been selected to ensure that kids have relative risk of at
least 120% compared to the reference level 100% corresponding to age 25, as it
can be seen from Figure 1. Restricting to young drivers below age 23 ensures
that they report significantly more claims compared to older ages. It is also in
line with market practice considering the first 5 years of the driving history as
the most dangerous period. The cut-off point for ages corresponding to “kids”
has thus been chosen graphically based on Figure 1, as from age 24, the claim
frequency tends to become more stable.

A “parent” is defined as a policyholder aged between 40 and 56, referring to
the typical age range with children at home possessing a driving license. As it
can be seen in Figure 2, the majority of adult policyholders living with a “kid”
(as defined previously) are aged between 40 and 56 years. This explains why we
have selected this age range for defining the parents. Ages between 40 and 56
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FIGURE 1: Relative impact of age on claim frequencies in a Poisson GAM regression including all covariates.
Vertical line at age 23. Left: Males. Right: Females.

also typically correspond to contracts comprising an exclusive driver clause, as
it can be seen from Figure 3. By virtue of this clause, the only authorized drivers
of the insured vehicle are the policyholder and his or her spouse. This prevents
children to drive their parents’ car. Parents selecting this clause are rewarded by
a significant premium discount.

Figure 3 shows a marked hump around age 45. We suspect this increase in
claim frequency to be due to young people driving their parents’ car. Integrating
the effects of all covariates except age in the offset, we can estimate the impact of
age on the claim frequency separately for the policyholders with exclusive driver
clause, and for those without this clause. The resulting estimates are shown in
Figure 3. Note that in order to avoid side effects at the limiting ages 40 and 56,
we included policyholders aged from 38 to 60 in the analysis. Figure 3 shows
that inserting the exclusive driver clause in the policy conditions decreases the
claim frequency at ages at which the accident hump was visible.

In Figure 3, we also see that female policyholders with an exclusive driver
clause aged between 38 and 60 appear to have lower claim frequencies compared
to those without the clause. This suggests that the increase in estimated claim
frequencies when the exclusive driver clause is absent comes from other drivers
that are not the spouse using the policyholder’s car, as for instance, young drivers
who do not own a car yet and borrow their parents’ one.

Since the aim of this paper is to present a household modelling, we define
four subpopulations that correspond to the most typical members of house-
holds. More specifically, throughout this paper,

- P1 corresponds to “fathers”, i.e., men aged between 40 and 56 years com-
prised in the portfolio;

- P2 corresponds to “mothers”, i.e., women aged between 40 and 56 years in
the portfolio;

- P3 corresponds to “sons”, i.e., young male drivers, aged at most 23, living
with a policyholder from P1 and/or P2;
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FIGURE 2: Number of male (left)/female (right) policyholders aged a least 35 years in a household
comprising at least one policyholder (male or female) aged up to 23 years.
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FIGURE 3: Top: Impact of age on claim frequency (on the score scale), for exclusive drivers and for
non-exclusive drivers (Left: Male, Right: Female), point estimates and 95% confidence intervals (in lighter
lines). Bottom: Distribution of the policyholders’ age for exclusive driver (resp. non-exclusive driver) by

gender.
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- P4 corresponds to “daughters”, i.e., young female drivers, aged at most 23,
living with a policyholder from P1 and/or P2.

3. JOINT MODELLING OF PARENTS’ CLAIM FREQUENCIES

Let H1 (resp. H2) denote the set of all households comprising a member in P1
(resp. P2), i.e., with husband/father (resp. mother/wife) insured. Then, H12 =
H1 ∩ H2 corresponds to the set of all households with both husband and wife
insured. In addition, define the set H1\2 = H1 \ H2 of all households with hus-
band insured, but not his wife, and the setH2\1 = H2\H1 of all households with
wife insured, but not her husband. Notice that we freely use the terms husband
and wife for the ease of exposition, whereas there are now many other forms
of cohabitation in addition to marriage, including registered partnership, for
instance.

For h ∈ H1 (resp. h ∈ H2), let NP1
ht (resp. NP2

ht ) be the number of claims
filed by husband (resp. wife) during year t. Data are available for years t =
1, 2, . . . ,T, with T = 3 in our database. For households h ∈ H12, we observe
both NP1

ht and NP2
ht so that we can study the correlation structure of the spouses’

claim frequencies. This is precisely the aim of this section.
Before introducing a joint model for the pairs (NP1

ht , NP2
ht ), let us first estab-

lish the presence of correlation between these two claim counts. To this end, we
work on the basis of the contingency table displayed in Table 1 where we can
read the proportions of couples inH12 in each product of risk classes. These risk
classes have been created based on quantiles 1/3 and 2/3 on the a priori claim
frequencies. We see that the majority of insured couples concentrate along the
diagonal (more than 60% of the portfolio), whereas the extreme cases pairing
low and high claim frequencies appear to be less common (about 40% of the
portfolio). This was expected as the majority of husbands and wives are about
the same age and share many characteristics included in the insurance price list.

Using a likelihood ratio test of independence, we clearly reject independence
(p-value < 0.001 and G2 = 55301.14). Based on a mixed Poisson construc-
tion (see below for a formal definition), we can isolate the correlation not pro-
duced by similar observable characteristics. The non-parametric moment esti-
mate for the covariance of the random effects is 0.275956 with confidence inter-
val [0.135659; 0.432074].

Hence, in the following, we use a multivariate Poisson mixture. For more
details, we refer the reader, e.g., to Chapters 2 and 6 in Denuit et al. (2007). This
model is based on the following assumptions (where T denotes the number of
observation periods):

1. For j ∈ {1, 2}, given �
Pj
h = θ , the random variables NPj

h1 , NPj
h2 , . . . , NPj

hT
are independent, Poisson distributed with respective means
λ
Pj
h1 θ, λ

Pj
h2 θ, . . . , λ

Pj
hTθ .
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TABLE 1

PERCENTAGE OF TOTAL PORTFOLIO EXPOSURE BY RISK PROFILE OF MALE (ROWS) AND FEMALE (COLUMNS)
PARENTS.

�������λP1
λP2

Low Medium High

Low 0.2369 0.0828 0.0171
Medium 0.0834 0.1715 0.0828
High 0.0155 0.0829 0.2271

Computed using only households with exactly one male
(P1) and one female (P2), regardless if there are any
young drivers.

2. Given (�P1
h , �P2

h ), the random variables NP1
h1 , NP1

h2 , . . . , NP1
hT and

NP2
h1 , NP2

h2 , . . . , NP2
hT are independent.

3. The pairs (�P1
h , �P2

h ) are independent and identically distributed, with com-
mon joint probability density function f�, E[�

Pj
h ] = 1 for j ∈ {1, 2} and

variance–covariance matrix

�� =
(

(σ P1
� )2 σ P:P

�

σ P:P
� (σ P2

� )2

)
.

In the remainder of this paper, we also use the correlation coefficient ρP:P
� =

σ P:P
�

σ P1
� σ P2

�

in addition to the covariance σ P:P
� .

3.1. Bivariate Poisson-LogNormal model

Let us assume that (log�P1
h , log�P2

h ) obeys the bivariate Normal distribution

with mean vectorμ and variance–covariance matrix�log�, whereμ j = − (σ
Pj
� )2

2 ,
j ∈ {1, 2}, so that both �P1

h and �P2
h have unit mean and where

�log� =
(

(σ P1
log�)2 σ P:P

log�

σ P:P
log� (σ P2

log�)2

)
.

Let us also introduce the correlation between log�P1
h and log�P2

h , namely

ρP:P
log� =

σ P:P
log�

σ P1
log�σ P2

log�

.
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This implies the following variance–covariance matrix for the random effects
(�P1

h , �P2
h )

�� =
(
exp(σ P1

log�)2 − 1 exp σ P:P
log� − 1

exp σ P:P
log� − 1 exp(σ P2

log�)2 − 1

)
.

Also, the correlation between the random effects can be reexpressed as

ρP:P
� =

exp σ P:P
log� − 1√

(exp(σ P1
log�)2 − 1)(exp(σ P2

log�)2 − 1)
.

As the model is fully specified, we can rely on the maximum likelihood ap-
proach to estimate both variances and the correlation coefficient which define
the variance–covariance matrix of (log�P1

h , log�P2
h ) from which we can there-

after deduce the variance–covariance matrix of (�P1
h , �P2

h ). Henceforth, let us
denote as nPjht the realization of NPj

ht recorded in the database and f�Pj the prob-
ability density function of �

Pj
h . The likelihood can be written as

L(�) = L1 × L2 × L3,

where

L1 =
∏
h∈H12

P
[
NPj
ht = nPjht , t = 1, 2, . . . ,T, j ∈ {1, 2}]

=
∏
h∈H12

∫ ∞

0

∫ ∞

0

T∏
t=1

(
exp(−λP1ht θ1)

(λP1ht θ1)
nP1ht

nP1ht !
exp(−λP2ht θ2)

(λP2ht θ2)
nP2ht

nP2ht !

)
× f�(θ1, θ2)dθ1dθ2,

L2 =
∏

h∈H1\2

P
[
NP1
ht = nP1ht , t = 1, 2, . . . ,T

]

=
∏

h∈H1\2

∫ ∞

0

T∏
t=1

exp(−λP1ht θ1)
(λP1ht θ1)

nP1ht

nP1ht !
f�P1(θ1)dθ1,

L3 =
∏

h∈H2\1

P
[
NP2
ht = nP2ht , t = 1, 2, . . . ,T

]

=
∏

h∈H2\1

∫ ∞

0

T∏
t=1

exp(−λP2ht θ2)
(λP2ht θ2)

nP2ht

nP2ht !
f�P2(θ2)dθ2.

Let flog�P1
h
(resp. flog�P2

h
) be the probability density function of the Normal

distribution with mean −(σ P1
log�)2/2 (resp. −(σ P2

log�)2/2) and variance (σ P1
log�)2
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(resp. (σ P2
log�)2). It is then easy to see that L1, L2 and L3 are proportional to

L1 ∝
∏
h∈H12

∫ ∞

−∞

∫ ∞

−∞
e−λP1h• e

u−λP2h• e
v+unP1h• +vnP2h• f(log�P1

h ,log�P2
h )(u, v)dudv,

L2 ∝
∏

h∈H1\2

∫ ∞

−∞
e−λP1h• e

u+unP1h• flog�P1
h

(u)du,

L3 ∝
∏

h∈H2\1

∫ ∞

−∞
e−λP2h• e

v+vnP2h• flog�P2
h

(v)dv,

where λ
Pj
h• =

T∑
t=1

λ
Pj
ht and n

Pj
h• =

T∑
t=1

nPjht for j ∈ {1, 2}.

In order to compute the double integrals involved in the log-
likelihood, we rely on the Gauss–Hermite quadrature, using the R
package MultiGHQuad contributed by Kroeze (2016). The Gauss–
Hermite quadrature allows to approximate the integrals of the form∫ ∞
−∞ e−x2 f (x)dx by linear combinations

∑m
j=1 ω j f (xj ) computed over a

grid of m = k (or kd when the integration is multiple over a domain of
dimension d) nodes. The integral thus collapses to a weighted average of
m terms. The maximum likelihood estimators can then be found using an
optimization algorithm, using as starting values, for instance, the moment
estimators. The number of nodes used to approximate these integrals is
discussed in Appendix A.1. In the application, we have selected m = 25 for
H1\2 andH2\1 and m = 252 forH12.

3.2. Bivariate Poisson–Gamma model

In order to challenge the LogNormal assumption, we also consider a different
distribution for the random effects. Specifically, we assume here that the random
effects �P1

h and �P2
h are distributed according to the Gamma distributions with

unit mean and variances V[�P1
h ] = aP1 and V[�P2

h ] = aP2. The dependence
between�P1

h and�P2
h is introduced bymeans of aGaussian bivariate copula cR,

with correlation parameter R. See, e.g.,Denuit et al. (2005) formore information
about copulas, including theGaussian one, and associated inference procedures.
In case the household consists in only one policyholder, the Poisson–Gamma
reduces to the Negative Binomial distribution.

The three variance–covariance parameters are estimated by the maximum
likelihood. In the bivariate Poisson–Gamma model with Gaussian copula, the
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likelihood is proportional to

L(R, aP1, aP2)

∝
∏
h∈H12

∫ ∞

0

∫ ∞

0
exp

( − λP1h• θ1 − λP2h• θ2
)
θ
nP1h•
1 θ

nP2h•
2 cR(F�P1

h
(θ1),

F�P2
h

(θ2)) f�P1
h

(θ1) f�P2
h

(θ2)dθ1dθ2

×
∏

h∈H1\2

(
1/aP1 + nP1h• − 1

nP1h•

)(
λP1h•

1/aP1 + λP1h•

)nP1h• (
1/aP1

1/aP1 + λP1h•

)1/aP1

×
∏

h∈H2\1

(
1/aP2 + nP2h• − 1

nP2h•

)(
λP2h•

1/aP2 + λP2h•

)nP2h• (
1/aP2

1/aP2 + λP2h•

)1/aP2

.

The numerical evaluation of the double integrals in the log-likelihood can be
achieved again by quadrature. However, since the domain of integration is dif-
ferent than in the Poisson-LogNormal case, we will use this time the Gauss–
Legendre quadrature, which allows to approximate integrals on the unit inter-
val with the help of the R package mvQuad contributed by Weiser (2016). So,
in order to use this quadrature, the double integral is cut into four integrals,
which can be reparameterized such that the domain of integration of each of
these integrals is [0, 1]× [0, 1]. The Gauss–Legendre quadrature is then applied
on each of these four double integrals, with 552 = 3, 025 nodes.

3.3. Results

The estimations obtained for both models are displayed in Table 2. Confidence
intervals are computed by means of the DeltaMethod. The nonparametric mo-
ment estimates (given e.g., in Denuit et al., 2007, Section 6.2.7) are also given,
for the sake of comparison. These estimates have been used as starting values
for numerical optimization of the Poisson-LogNormal and Poisson–Gamma
likelihoods. The sensitivity of the maximum likelihood estimates with respect to
the number of nodes per dimension in the numerical integration is discussed in
Appendix A.2.

To choose between the two models, we rely on the Vuong test to assess
whether the Poisson-LogNormal model outperforms the Poisson–Gamma one.
See Denuit et al. (2007) for more details about the Vuong test statistic. The com-
putation of the test statistic yields 12.777 leading to a p-value<0.001.We hereby
conclude that the Poisson-LogNormalmodel outperforms the Poisson–Gamma
model. In the following, we continue our analysis with the Poisson-LogNormal
specification and we include the children in the household.
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TABLE 2

SUMMARY OF THE ESTIMATES ALONG WITH 95% CONFIDENCE INTERVALS.

V̂[�P1] V̂[�P2] ρ̂P:P
�

Moment Estimates, Aggregated Data 0.603 0.526 0.490
Moment Estimates, Yearly Data 0.676 0.612 0.370
Bivariate LogNormal Random Effect 0.722 0.670 0.411
95% Confidence Interval 0.718 0.727 0.645 0.695 0.392 0.430

V̂[�P1] V̂[�P2] R
Bivariate Gamma Random Effect 0.663 0.588 0.435
95% Confidence Interval 0.661 0.665 0.586 0.591 0.414 0.456

4. INCLUDING CHILDREN IN HOUSEHOLDS

Letmh,3 (resp.mh,4) be the number of policyholders from P3 (resp. P4) in house-
hold h, i.e., the number of sons (resp. daughters) having their own vehicle in-
sured by the company, so that they appear in the database. Further, let NP3: j

ht ,
j = 1, . . . ,mh,3 (resp. N

P4: j
ht , j = 1, . . . ,mh,4) be the number of claims filed by

the j th son (resp. daughter) in household h. Notice that we only have informa-
tion about the individuals who are in the dataset, that is, about those covered by
a policy sold by the insurer having providing us with the database. If a person
in a household has his or her insurance policy at another insurance company or
has no policy, we do not know anything about him or her and hence this person
is not considered in the present analysis.

Let us now supplement the model for the numbers of claims filed by the
parents with additional assumptions to include the claims filed by their children.

1. For k ∈ {3, 4} and j ∈ {1, . . . ,mh,k}, given �
Pk: j
h = θ , the random variables

NPk: j
h1 , NPk: j

h2 , . . . , NPk: j
hT are independent, Poisson distributed with respec-

tive means λ
Pk: j
h1 θ, λ

Pk: j
h2 θ, . . . , λ

Pk: j
hT θ .

2. Given �
Pk: j
h , k ∈ {3, 4} and j ∈ {1, . . . ,mh,k}, the sequences

(NPk: j
h1 , NPk: j

h2 , . . . , NPk: j
hT ) are independent for different values of k and j .

3. The random effects �
Pk: j
h are LogNormally distributed with the unit mean,

and independent for different values of h.
4. Given parents’ and children’s random effects, the corresponding sequences

of yearly numbers of claims are independent.

The dimension of the random effects distribution is equal to the size of the
household. More specifically, we denote the variances of the log of the random
effects specific to each subpopulation by

V[log�Pk
h ] = (σ Pk

log�)2 for k ∈ {1, 2}
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and
V[log�

Pk: j
h ] = (σ Pk

log�)2 for k ∈ {3, 4} and j ∈ {1, . . . ,mh,k}.
This implies that the variances of the random effects specific to each subpopu-
lation are given by

V[�Pk
h ] = exp((σ Pk

log�)2) − 1 := (σ Pk
� )2 for k ∈ {1, 2}

and

V[�Pk: j
h ] = exp((σ Pk

log�)2) − 1 := (σ Pk
� )2 for k ∈ {3, 4} and j ∈ {1, . . . ,mh,k}.

Moreover, the correlation matrix between the log of the random effects is as-
sumed to be of the form

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρP−P
log� ρP−CH

log� ρP−CH
log� . . . ρP−CH

log�

ρP−P
log� 1 ρP−CH

log� ρP−CH
log� . . . ρP−CH

log�

ρP−CH
log� ρP−CH

log� 1 ρCH−CH
log� . . . ρCH−CH

log�

ρP−CH
log� ρP−CH

log� ρCH−CH
log� 1 . . . ρCH−CH

log�

. . . . . . . . . . . . ρCH−CH
log�

ρP−CH
log� ρP−CH

log� ρCH−CH
log� ρCH−CH

log� 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where ρP−P
log� is the correlation between the log of the two parents’ random ef-

fects, ρCH−CH
log� is the correlation between the log of the two children’s random

effects and ρP−CH
log� is the correlation between the log of a child and a parent’s

random effects. The size of this matrix adapts itself to every household, i.e., this
matrix will be sized such that each policyholder has a corresponding row (resp.
column).

The estimation will be done on the parameters of the multivariate Normal
random vector, i.e., on the log scale. Then, we will deduce estimators for the ran-
dom effects’ variance–covariance matrix. In the results hereafter, we will show
the estimators of the variance–covariance matrix of the random effects them-
selves.

There are three parameters to be estimated for the first parents’ bloc (one
variance for each gender and one correlation), three for the children’s bloc (one
variance of each gender and one correlation) and one for the parents–children’s
bloc (one correlation), which sums up to a total of seven parameters.

The log-likelihood is reparameterized so as to change the domain of each
parameter to R. In that goal, we take the logarithm of the standard deviations
and the logit for the correlations. Then, we proceed along the following three
steps:

1. Estimate the “parents’ bloc” parameters σ P1
log�, σ P2

log�, ρP−P
log� .
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2. Estimate the “children’s bloc” parameters σ P3
log�, σ P4

log�, ρCH−CH
log� .

3. Estimate the final parameter ρP−CH
log� .

The first step has already been treated previously. The second step only involves
policyholders from P3 and P4. Finally, the two previous steps provide initial
values for the optimization problem involving the seven parameters.

Let us describe the results obtained for steps 2 and 3. In step 2, both
variances are first estimated using moment estimators. These estimates are
used as starting values for the maximum likelihood optimization on the
children’s bloc, along with a correlation coefficient of 0. The optimization
run several times with different correlation coefficients as starting value.
The following results were found regardless of the starting value for the
correlation coefficient: V̂[�P3] = 0.5173634 with 95% confidence interval
[0.4751354, 0.5595914], V̂[�P4] = 0.1428524 with 95% confidence interval
[0.07621682, 0.20948802] and Ĉorr[�P3, �P4] = 0.1727096 with 95% confi-
dence interval [−1.0257746, 1.3711937]. The latter result shows that the corre-
lation coefficient between children’s random effects is not significantly different
from 0, so that we set it equal to zero in the following step. Note that the con-
fidence interval is larger than the [−1, 1] interval, which comes from the use
of the Delta Method to compute it. In the third step, different starting values
were considered for the correlation coefficient ρP−CH

� , ranging from−0.5 to 0.5.
The optimization found that the maximum of the likelihood was achieved for
ρ̂P−CH
log� = 0.229569.
Finally, the optimization run again with all seven parameters, with as ini-

tial values the estimates from steps 1–3. The seven parameters characterize the
variance–covariance matrix of the logarithm of the random effects (i.e., param-
eterize the underlying multivariate Normal distribution). Using formulas from
Proposition 4.1 given below, we can compute the variance–covariance matrix
of the corresponding multivariate LogNormal distribution. Since the correla-
tion between two LogNormally distributed random variables depends on the
variances of the underlying Normally distributed random variables, we obtain
different correlations for each of the four pairs of parent–child.

Proposition 4.1. Let X = (X1, . . . , Xq) be a random vector obeying themultivari-
ate Normal distribution with variances V[Xi ] = σ 2

i , correlations Corr[Xi,Xj] =
ρij (with ρi i = 1) and mean vector μ = (− σ 2

1
2 , . . . , − σ 2

q

2 ). Define Yi = exp Xi .
Then, Y obeys the multivariate LogNormal distribution with mean vector 1,

V[Yi ] = exp(σ 2
i ) − 1 and Corr[Yi,Yj] = exp(ρijσiσj) − 1√

(exp(σ 2
i ) − 1)(exp(σ 2

j ) − 1)
.

The final results are shown in Table 3. Let us notice that these results may
differ from the previous ones as all the estimators are computed simultane-
ously. Considering the confidence intervals reported in Table 3, we see that the
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TABLE 3

ESTIMATED VARIANCE–COVARIANCE PARAMETERS OF THE RANDOM EFFECTS IN THE FINAL MODEL.

Estimated Variance Quant. 2.5% Quant. 97.5%

�P1 0.720 0.718 0.723
�P2 0.611 0.607 0.615
�P3 0.516 0.481 0.551
�P4 0.163 0.111 0.216

Pair Estimated Correlation Quant. 2.5% Quant. 97.5%

(�P1,�P2) 0.430 0.409 0.451

(�P1,�P3) 0.209 0.175 0.243
(�P1,�P4) 0.218 0.183 0.254
(�P2,�P3) 0.212 0.177 0.246
(�P2,�P4) 0.222 0.185 0.258

(�P3,�P4) 0

variances of the random effects significantly differ between the four populations
P1–P4. Also, the correlation between husband and wife is significantly larger
compared to the correlation between parents and children. The correlations be-
tween each pair parent–child now differ because the correlation coefficients not
only involve the common Normal correlation but also the marginal variances
of the corresponding random effects. They remain nevertheless rather close, in
the range 20%–22% in all cases. Notice that the correlation between P3 and
P4 has been set to zero. The number of households with at least two young
policyholders is too low in our dataset (only 464 households contain multiple
young drivers) to be able to estimate the possible existing correlation. However,
because we found a 95% confidence interval covering the whole interval [−1, 1],
we could have assigned any other value than zero. Because of this limitation of
the database, we do not consider examples involving multiple children in the
same household in the remainder of this paper.

5. INSURANCE APPLICATIONS

The multivariate modelling inside a household can be useful for various pur-
poses. As we will see, we can use all information about the household’s claims
to adapt each policyholder’s (technical) expected claim frequency. This means
that any claim in TPL in the household will change the TPL insurance premium
for every member of the household.

Moreover, even in the case where some members of the household do not
have an insurance policy with the company, using the multivariate model may
help finding interesting cross-selling opportunities. Indeed, themodel allows the
actuary to find candidates that would appear to be in average less risky than the
a priori claim frequency would suggest.
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Finally, one can also use the household’s past claims to establish some con-
dition of acceptance for young drivers ensuring that in average the new young
policyholders are profitable. This demonstrates the importance of having mul-
tiple policyholders from the same household in the portfolio.

5.1. A posteriori corrections

We aim to show how the multivariate model can be used to adapt each indi-
vidual expected claim frequency using all the household’s information. We will
start with an example of a household with only two adult policyholders (as in
Section 3). The case of a broader household that includes kids (as in Section 4)
is considered in the next sections.

We differentiate between three different risk profiles corresponding to the a
priori estimated claim frequency: low, medium and high. For P1 and P2, let us
make three classes of estimated claim frequencies (on a yearly basis, i.e., as if
exposure is 1 year) based on the quantiles 1/3 and 2/3. The claim frequencies
labelled as “low”, “medium” and “high” will correspond to the quantiles 1/6,
1/2 and 5/6, respectively, which are the medians of each of the three classes.
Due to similar characteristics (for example, age, ZIP code), the estimated claim
frequencies are related to each other as already noticed in Table 1. This confirms
our preliminary analysis conducted on that table.

For the ease of exposition, we assume that this a priori claim frequency is
stable for the next 5 years for each policyholder. We also suppose the indepen-
dence between both random effects, meaning that no correction is applied when
the spouse has a claim.

Let us compute the correction to apply to P1, given past claim information
of P1 and P2. We get

E
[
�P1
h |NP1

h• = nP1h• , NP2
h• = nP2h•

]
=

∫ ∞
0

∫ ∞
0 θ P1 exp(−λP1• θ P1 − λP2• θ P2)

(λP1• θ P1)n
P1•

nP1• !
(λP2• θ P2)n

P2•
nP2• ! f�(θ P1, θ P2)dθ P1dθ P2∫ ∞

0

∫ ∞
0 exp(−λP1• θ P1 − λP2• θ P2)

(λP1• θ P1)n
P1•

nP1• !
(λP2• θ P2)n

P2•
nP2• ! f�(θ P1, θ P2)dθ P1dθ P2

.

(5.1)

Again, the integrals appearing in (5.1) can be computed using the Gauss–
Hermite quadrature. Of course, the correction to apply to P2 is computed in
a similar way. As we can see on Figure 4, the a posteriori expected claim fre-
quency of P1 decreases faster than under the independence assumption when
both spouses have had no claims. Moreover, in such a case, the decay is even
faster when the wife had a higher risk profile. One can also observe that a
claim of the wife has consequences on the correction to apply to the husband,
even though he had no claim. Finally, when only the husband had a claim, the
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FIGURE 4: Correction to apply to the expected claim frequencies of the husband (low risk profile). Different
risk profiles for the wife are assumed (low, medium and high). Four cases are considered: no claim for both
spouses, one claim for the wife, one claim for the husband himself and one claim for each spouse. Time is

measured in years.

correction is smaller than under the independence hypothesis, followed by a
more rapid decay of this correction in the years following the claim.

5.2. Finding cross-selling opportunities

Insurance companies can take advantage of multivariate modelling to find in-
teresting cross-selling opportunities. Since the information about current policy-
holders inside a household is connected to the potential customers living under
that same roof, the company can use that information to compute a (technical)
expected claim frequency that can be used to assess the profitability of new cus-
tomers. This premium, or equivalently the expected cost of the potential future
policyholder, may then be used to establish whether this customer would be
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TABLE 4

EXPECTED VALUE OF �P2
h CONDITIONAL TO NP1

h• = nP1h• , THE NUMBER OF CLAIMS OF THE HUSBAND.

nP1• 0 1 2 3 4

0.9861 1.2578 1.5950 2.0052 2.4911

profitable. So the multivariate model would help finding cross-selling opportu-
nities. Hereafter, we present two different examples.

5.2.1. Cross-selling in a household with two adults. Let us first start with an ex-
ample with at most two adult policyholders (as in Section 3). The only customer
of the household is a 45-year old male who has been in the portfolio for the past
5 years. In the absence of information about past claims recorded by the wife,
we can use her husband’s past claims to compute her expected claim frequency.
Indeed, we can compute the expected value of her random effect, conditional
to the information available about her husband’s past claims:

E
[
�P2
h |NP1

h• = nP1h•
]

=
∫ ∞
0

∫ ∞
0 θ P2 exp(−λP1• θ P1)

(λP1• θ P1)n
P1•

nP1• ! f�(θ P1, θ P2)dθ P1dθ P2∫ ∞
0 exp(−λP1• θ P1)

(λP1• θ P1)n
P1•

nP1• ! f P1� (θ P1)dθ P1
. (5.2)

Furthermore, let us assume that the husband’s estimated claim frequency cor-
responds to a medium risk profile. Table 4 displays (5.2) for different values of
nP1• , i.e., the aggregated number of claims for the husband over the past 5 years.
An estimate below 1 indicates that the wife’s expected claim frequency is, in av-
erage, below the one estimated with the a priori model. Hence, such a potential
customer could be targeted by the company.

In case the company can access the information about the number of claims
nP2h• of the wife during the last past TP2 years, the estimated claim frequency can
be computed by using the a priori model aggregated over the past TP2 years. In
that situation, the conditional expectation is computed as in (5.1). For instance,
let us assume that the wife has had an insurance policy during the last 3 years.
We assume that similarly to her husband, she has had a medium risk profile in
the a priori classification. In that case, Table 5 gives the expected value of �P2

h
for different different values of nP1h• and nP2h• . We can see that when the wife has
had no claim in the past 3 years, the estimate of �P2

h varies by 25% whether her
husband has had none or one claim over the past 5 years. Also, we notice that
the a posteriori expected claim frequency is, in average, below the one estimated
with the a priori model only in the case where both spouses have had no claim.
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TABLE 5

EXPECTED VALUE OF �P2
h CONDITIONAL TO NP1

h• = nP1h• , THE NUMBER OF CLAIMS OF THE HUSBAND AND TO

NP2
h• = nP2h• , THE NUMBER OF CLAIMS OF THE WIFE.

�������nP1h•

nP2h• 0 1 2 3 4

0 0.9549 1.5557 2.5045 3.9645 6.1365
1 1.2079 1.9546 3.1177 4.8768 7.4402
2 1.5169 2.4334 3.8389 5.9241 8.8972
3 1.8856 2.9937 4.6631 7.0900 10.4750
4 2.3135 3.6292 5.5744 8.3449 12.1280

5.3. Underwriting rule for young drivers

The multivariate model can also be used for young drivers in a similar way that
the one presented in the cross-selling section. In this section, we assume that a
young driver wants to get an insurance cover from his or her parents’ company.
We aim to compare two situations: one in which we only have information about
one parent, and the other situation in which we have information about both
parents.

Similarly to the cross-selling, we can compute the correction to apply to the
young driver, conditional to the claim information of his or her parent(s). We
assume that the young driver is a young male (P3). Computations for a young
female (P4) are of course similar. Furthermore, both parents are assumed to
have a medium risk profile.

When both parents are in the portfolio, we use

E
[
�P3
h |NP1

h• = nP1h• , NP2
h• = nP2h•

]

=
∫ ∞
0

∫ ∞
0

∫ ∞
0 θ P3 exp(−λP1• θ P1 − λP2• θ P2)

(λP1• θ P1)n
P1•

nP1• !
(λP2• θ P2)n

P2•
nP2• !

f�(θ P1, θ P2, θ P3)dθ P1dθ P2dθ P3∫ ∞
0

∫ ∞
0 exp(−λP1• θ P1 − λP2• θ P2)

(λP1• θ P1)n
P1•

nP1• !
(λP2• θ P2)n

P2•
nP2• !

f�(θ P1, θ P2)dθ P1dθ P2
,

whereas when only the husband ( j = 1) or the wife ( j = 2) is in the portfolio,
we use

E
[
�P3
h |NPj

h• = nPjh•
]
=

∫ ∞
0

∫ ∞
0 θ P3 exp(−λPj• θ Pj )

(λPj• θ Pj )n
Pj•

nPj• !
f�(θ Pj , θ P3)dθ Pjdθ P3∫ ∞

0 exp(−λ
Pj
• θ Pj ) (λ

Pj
• θ Pj )n

Pj•
nPj• !

f�(θ Pj )dθ Pj
.

In Figure 5, we can see the conditional expectation of �P3 in both situations for
different past claim scenarios.
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FIGURE 5: Expectation of �P3 conditional to the number of claims of the father(top)/mother(bottom) (green
circle) and of both parents (orange square) throughout time (in years).
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As we can see, the decay of the estimate of �P3 is faster when both parents
are in the portfolio. We also observe (top-left) that getting an estimate below
0.95 takes 5 years with no claim for both parents, while it takes 10 years with no
claim when only the husband is in the portfolio. In addition, we see (top-right
and bottom-left) that we need nine claim-free years for both parents for coming
back to a level of 1 when a claim occurred while we need more time when only
the husband or the wife is in the portfolio (computations show that 20 claim-free
years are required).

To sum up, an underwriting rule that would require an a posteriori correc-
tion below one would imply no claim for both parents in the observation period
or at most one claim in 10 years for both of them.When only one parent is in the
portfolio, this rule would require no claim for the parent during the observation
period or at most one claim in 21 years.

6. DISCUSSION

In this paper, we have presented an approach that allows to take into account
the dependence of the claims’ frequency in motor third-party liability insur-
ance of the various policyholders inside a household. It has been shown that
the unexplained residual heterogeneity is not independent for members of the
same household. The multivariate model is flexible in the sense that it can take
into account most households (one or two adult policyholders, with or without
young drivers).

The main discovery of this paper is the strength of the positive dependence
between policyholders from the same household, showing that a claim from
any member of the household will increase in average the estimated a posteri-
ori expected claim frequency for all members of the household. Conversely, for
claim-free households, this implies an even lower estimate of the a posteriori
claim frequency than in a univariate model.

As this was shown in Section 5, the presented model can be used in practice
to use the household’s information so as to find cross-selling opportunities, per-
form underwriting rules for young policyholders or even to correct the expected
claim frequencies of policyholders.

From a computational point of view, we note that in order to fasten up
the maximum likelihood estimation, one may use a Cholesky decomposition
of the multivariate Normal random vector to reparameterize the multiple in-
tegrals. Indeed, this will mean that although at each optimization step, the
reparameterization is different, the integrand will always include the same
density of a centred and reduce multivariate Normal random vector. In this
case, it is possible to rely on only one grid in the Gauss quadrature for
the whole estimation, instead of computing one grid at each optimization
step.
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Of course, the results obtained in this paper refer to the particular data set
under study. But as the latter is rather typical for EU markets, we can imagine
that similar conclusions would be drawn for other portfolios.
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APPENDIX

A.1 Numerical integration

Let us discuss the numerical integration of the bivariate integrals that appear in the likeli-
hood in the bivariate case (i.e., with only parents considered) considered in Section 3.1. We
can choose the number of nodes to use, by comparing the Gauss–Hermite approximation
with the results obtained with the adaptive multidimensional integration from the R package
cubature contributed by Narasimhan (2016). To compute the integral using cubature, the
domain R2 was cut into nine rectangles, on which the integrand was reparameterized so as
to have a definite integral on each of the nine subdomains. We then compare the value of
the integral to the one obtained with the Gauss–Hermite quadrature for different number of
nodes k per dimension. The accuracy of the approximation for the different factors entering
the likelihood to be maximized is illustrated on Figure A1, as a function of k and typical
values for a priori expected claim frequencies. We can see there that as soon as k reaches
15, the difference between the Gauss–Hermite approximation and the exact value becomes
negligible.
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FIGURE A1: Difference between the probabilities approximated by Gauss–Hermite quadrature (denoted as
gh) and calculated exactly with adaptive multidimensional integration (denoted as cubInt). From left to right:
Number of claims for male varies from 0 to 2. From top to bottom: Number of claims for female varies from 0
to 2. Other parameters were fixed as following: λP1h• = 0.45, λP2h• = 0.36, σ P1

� = 0.8, σ P2
� = 0.7, σ P:P

� = 0.45.

A.2 Impact of the number of nodes

Let us assess the impact of the number of nodes in the LogNormal and Gamma bivariate
cases on the maximum likelihood estimates. To this end, the optimization, in the bivariate
case (i.e., with only parents considered) was computed multiple times using 4 to 30 nodes in
the LogNormal case, and 10 to 90 by steps of five nodes in the Gamma case. On Figure A2,
the estimations of the three parameters are displayed in function of the number of nodes per
dimension used to approximate the integral using the Gauss–Hermite quadrature.

It can be seen that there is a very rapid convergence, with stable estimates starting from
only 13 nodes. In the Gamma case, Figure A3 displays the estimations as functions of the
number of nodes per dimension used to approximate the integral using the Gauss–Legendre
quadrature. The graph shows a convergence that appears however to be slower, with stable
estimates starting from 55 nodes.
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FIGURE A2: Maximum likelihood estimates for the variance of the LogNormal random effects and their
correlation in the bivariate LogNormal case for different number of nodes in the Gauss–Hermite quadrature.
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FIGURE A3: MLE for the variance of the Gamma random effects and the dependence parameter R entering
the Gaussian copula CR in the bivariate Gamma case for different number of nodes in

the Gauss–Legendre quadrature.
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