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Fluctuations in the gas-phase velocity can contribute significantly to the total
gas-phase kinetic energy even in laminar gas–solid flows as shown by Mehrabadi et al.
(J. Fluid Mech., vol. 770, 2015, pp. 210–246), and these pseudo-turbulent fluctuations
can also enhance heat transfer in gas–solid flow. In this work, the pseudo-turbulent
heat flux arising from temperature–velocity covariance, and average fluid-phase
conduction during convective heat transfer in a gas–solid flow are quantified and
modelled over a wide range of mean slip Reynolds number and solid volume
fraction using particle-resolved direct numerical simulations (PR-DNS) of steady
flow through a random assembly of fixed isothermal monodisperse spherical particles.
A thermal self-similarity condition on the local excess temperature developed by
Tenneti et al. (Intl J. Heat Mass Transfer, vol. 58, 2013, pp. 471–479) is used to
guarantee thermally fully developed flow. The average gas–solid heat transfer rate
for this flow has been reported elsewhere by Sun et al. (Intl J. Heat Mass Transfer,
vol. 86, 2015, pp. 898–913). Although the mean velocity field is homogeneous, the
mean temperature field in this thermally fully developed flow is inhomogeneous in
the streamwise coordinate. An exponential decay model for the average bulk fluid
temperature is proposed. The pseudo-turbulent heat flux that is usually neglected
in two-fluid models of the average fluid temperature equation is computed using
PR-DNS data. It is found that the transport term in the average fluid temperature
equation corresponding to the pseudo-turbulent heat flux is significant when compared
to the average gas–solid heat transfer over a significant range of solid volume
fraction and mean slip Reynolds number that was simulated. For this flow set-up
a gradient-diffusion model for the pseudo-turbulent heat flux is found to perform
well. The Péclet number dependence of the effective thermal diffusivity implied by
this model is explained using a scaling analysis. Axial conduction in the fluid phase,
which is often neglected in existing one-dimensional models, is also quantified. As
expected, it is found to be important only for low Péclet number flows. Using the
exponential decay model for the average bulk fluid temperature, a model for average
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axial conduction is developed that verifies standard assumptions in the literature.
These models can be used in two-fluid simulations of heat transfer in fixed beds.
A budget analysis of the mean fluid temperature equation provides insight into the
variation of the relative magnitude of the various terms over the parameter space.

Key words: convection, fluidized beds, multiphase and particle-laden flows

1. Introduction

An improved understanding of gas–solid heat transfer is crucial for design and
scale-up of process equipment in many industries, such as biomass fast pyrolysis
(Brown 2011), chemical looping combustion (Shen et al. 2008) and CO2 capture
(Abanades et al. 2004; Yi et al. 2007). Instead of conducting expensive experiments,
multiphase computational fluid dynamics (CFD) (Syamlal, Rogers & O’Brien 1993;
Kashiwa & Gaffney 2003; Sun, Battaglia & Subramaniam 2007) is increasingly being
used for reactor scale-up from laboratory to pilot and full-scale plants, and also
for evaluation of different design options (Halvorsen, Guenther & O’Brien 2003).
Device-scale multiphase CFD simulations are usually based on the Eulerian–Eulerian
two-fluid model (Anderson & Jackson 1967; Drew & Passman 1998) in which
averaged equations for conservation of mass, momentum and energy are given for
each phase, with coupling terms representing the interphase interactions. These
equations contain unclosed terms that need to be modelled accurately, since the
predictive capability of multiphase CFD simulations depends on the accuracy of
models for interphase exchange of species, momentum and heat.

In the absence of mass transfer between phases, the average fluid temperature
equation from two-fluid theory (Syamlal et al. 1993; Garg 2009) reads as follows:

∂

∂t
{ρf εf cpf 〈T ( f )〉}︸ ︷︷ ︸

unsteady term

+ ∂

∂xj
{ρf εf cpf 〈u( f )

j 〉〈T ( f )〉}︸ ︷︷ ︸
mean flow convection

=
〈
∂If

∂xj
qj

〉
︸ ︷︷ ︸

(1) average gas–solid
heat transfer

− ∂

∂xj
〈If qj〉︸ ︷︷ ︸

(2) average conduction
in the fluid phase

− ∂

∂xj
{ρf cpf 〈If u

′′( f )
j T ′′( f )〉}︸ ︷︷ ︸

(3) pseudo-turbulent
heat flux term

, (1.1)

and it contains the following unclosed terms:

(1) average gas–solid heat transfer;
(2) average conduction in the fluid phase; and
(3) transport term involving the pseudo-turbulent heat flux ρf cpf 〈If u

′′( f )
j T ′′( f )〉 arising

from temperature–velocity covariance.

In (1.1), ρf and cpf are the density and specific heat of the fluid phase, respectively,
qj=−kf ∂T/∂xj is the heat flux vector and εf = 〈If 〉 is the average volume fraction of
the fluid phase, where If (x, t) is the fluid-phase indicator function that is unity if the
point x lies on the fluid phase at time t, and zero otherwise. If ψ(x, t) is any field
(velocity or temperature), then its phasic average 〈ψ ( f )〉(x, t) (e.g. the average fluid
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velocity 〈u( f )
j 〉 and average fluid temperature 〈T ( f )〉) is its average value conditional

on being in the fluid phase, which is defined as:

〈ψ ( f )〉(x, t)= 〈If (x, t)ψ(x, t)〉
〈If (x, t)〉 . (1.2)

We use angle brackets to denote ensemble averaging of random fields over all particle
configurations and an overbar to indicate spatial averages (in this problem these spatial
averages appear either as a cross-sectional average of a random field that depends
on the particle configuration, or as a streamwise average of an inhomogeneous
ensemble-averaged field.) Using the phasic average, the fluctuating components of
the fluid velocity and temperature in (1.1) are defined as u′′( f )

j = uj − 〈u( f )
j 〉 and

T ′′( f ) = T − 〈T ( f )〉, where these fluctuations depend on spatial location and time,
although for brevity this dependence is not explicitly shown. The average fluid
velocity is obtained by solving the averaged momentum and mass conservation
equations. In order to solve (1.1) for the average fluid temperature, closure models
are needed for terms (1)–(3). In a typical two-fluid simulation of gas–solid flow, this
equation is coupled to a similar averaged temperature equation for the solid phase
(Hrenya & Morris 2014), but this work only focuses on models for the unclosed
terms in the average fluid temperature equation. In a recent study (Sun, Tenneti
& Subramaniam 2015) the average gas–solid heat transfer term was quantified and
modelled. This study focuses on quantification and modelling of the pseudo-turbulent
heat flux that arises from the temperature–velocity covariance, and average conduction
in the fluid phase.

The transport term (3) in the average fluid temperature equation (1.1) arises
from correlation of gas-phase velocity and temperature fluctuations that result in a
pseudo-turbulent heat flux, and it is typically neglected in CFD simulations. These
gas-phase velocity fluctuations can arise from turbulence inherent in the gas phase,
or they can be generated by wakes resulting from the interaction of particles with
the mean slip velocity between the gas and solid phases. The second mechanism
can generate gas-phase velocity fluctuations even in laminar gas–solid flow and these
are termed pseudo-turbulent velocity fluctuations. They arise due to spatio-temporal
fluctuations in the fluid velocity, and in steady flows their primary contribution is
from the spatial variation of fluid velocity due to the presence of particles in a
flow with a non-zero mean slip velocity. The kinetic energy associated with these
fluctuations is called the pseudo-turbulent kinetic energy (PTKE). Mehrabadi, Tenneti
& Subramaniam (2015) have quantified PTKE in fixed particle assemblies and
freely evolving suspensions, and have shown that the level of PTKE is a significant
fraction of the kinetic energy associated with the mean slip velocity. Similarly, the
temperature–velocity covariance results in a pseudo-turbulent heat flux (PTHF), which
needs to be quantified in non-isothermal gas–solid flow.

The study of pseudo-turbulent heat flux in fixed bed heat transfer is closely related
to the mass transfer problem of a solute dispersing in a porous medium or a bed of
particles. Together these may be termed the passive scalar transport problem provided
the effects of free convection can be neglected. There are several theoretical studies
related to hydrodynamic dispersion in a random fixed bed of particles (Koch & Brady
1985, 1987a,b) or a periodic porous medium (Brenner & Gaydos 1977; Brenner 1980;
Edwards et al. 1991) in Stokes or low Reynolds number flow.

Koch & Brady (1985) solved the convection–diffusion equation for mass transfer in
Stokes flow through fixed beds using an asymptotic analysis that is valid in the dilute
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limit (low solid volume fraction). In their analysis, Koch & Brady (1985) assumed a
linear concentration profile that varies slowly (on the length scale of the one-particle
problem) in the axial direction. Koch & Brady (1985) decompose the mean flux as
the sum of a mean convective term and an effective diffusive flux, which includes
the covariance of concentration and velocity (the analogue of PTHF). They obtained
the dependence of the effective diffusivity Deff on the Péclet number (Pe = Ua/Df ),
which characterizes the ratio of convective effects to diffusive effects. Here U is the
superficial fluid velocity, a is the particle diameter and Df is the molecular diffusivity
of the solute. At low Péclet number (Pe=Ua/Df < 1) they obtained a Pe2 dependence,
whereas at high Péclet number they obtained terms proportional to Pe and Pe ln(Pe).
The linear dependence is attributed to the mechanical dispersion mechanism while
the Pe ln(Pe) dependency is attributed to a non-mechanical dispersion mechanism that
arises from the no-slip boundary condition (obtained from a boundary layer analysis).
Koch’s work provides early evidence that in fixed particle beds the presence of bulk
convective motion induces fluid velocity fluctuations (mechanical dispersion) because
of the presence of particles, and this is an important factor affecting macrotransport.

Hydrodynamic dispersion as described by Brenner and others treats the dispersion of
solute particles through periodic porous media (Brenner 1980; Lowe & Frenkel 1996;
Manz, Gladden & Warren 1999; Capuani, Frenkel & Lowe 2003; Mostaghimi, Bijeljic
& Blunt 2012) or randomly placed particles (Maier et al. 2000, 2003). Brenner (1980)
showed that by considering the evolution equation of the transition probability density
P(R, t|R′, t = 0) for the spatial position of solute molecules, one can formally arrive
at the convection–diffusion equation governing the instantaneous concentration c(R, t)
(or solute number density) field, which is nothing but the unnormalized probability
density of solute molecule position P(R, t). It has been established by several authors
(Brenner 1980; Pope 1998) that the mean squared displacement of solute molecules,
which Brenner showed can be obtained from moments of the transition probability
density of the solute particles, is related to the effective diffusivity. The moments of
the transition probability density lead to the B–field in periodic porous media.

Thermal dispersion in fixed beds or porous media defined by Whitaker (1999) and
Kaviany (2012) based on temperature–velocity covariance and a gradient-diffusion
model were studied experimentally (Yagi, Kunii & Wakao 1960; Özgümüş, Mobedi,
Özkol & Nakayama 2013) and numerically (Kuwahara, Nakayama & Koyama
1996; Pedras & de Lemos 2008; Jeong & Choi 2011). In the above experimental
and numerical works, local thermal equilibrium between solid and fluid phases is
assumed to be valid and the solid surface temperature evolves identically to the fluid
temperature in time. Several numerical studies (Kuwahara et al. 1996; Pedras & de
Lemos 2008; Jeong & Choi 2011) that simulated flow past a two-dimensional (2-D)
or three-dimensional (3-D) ordered array of objects with interphase heat transfer in a
periodic media at high Péclet number found a Pen scaling of the thermal dispersion,
where n is close to 2. Acrivos, Hinch & Jeffrey (1980) theoretically analysed Stokes
flow past a fixed bed of spheres with interphase heat transfer and studied the case of
arbitrary conductivities in the fluid and solid phases without assuming local thermal
equilibrium. One of the key differences between their study and the thermal dispersion
studies is that they did not assume local thermal equilibrium between the solid and
fluid phases. They considered interphase heat transfer at low Reynolds number and
low Péclet number and found that it is important to account for the effect of heat
transfer on the mean temperature field. Assuming a locally linear mean temperature
field they only focused on the analysis of mean temperature conditional on particle
location for Péclet number far less than unity.
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The present study considers a similar scalar transport problem as Koch & Brady
(1985), but for heat transfer in flow through a random arrangement of isothermal
particles over a wide range of Reynolds number and solid volume fraction. The
assumption of isothermal particles with non-zero interphase transfer precludes a
direct comparison with the findings of Koch & Brady (1985), even if the scaling
of effective diffusivity with Péclet number were to hold outside the Stokes flow
regime. The problem in our study is formulated in an Eulerian frame and the
pseudo-turbulent heat flux is directly obtained by statistically averaging the product
of the instantaneous Eulerian velocity and concentration/temperature fields. Our
formulation accounts for the finite size of particles and resolves the fluid–particle
interface, without resorting to drag models as in White & Nepf (2003). Essentially, we
generate the microtransport fields in the presence of interphase transfer, which when
averaged manifest as macrotransport. We also do not assume the spatial variation
of the mean fluid temperature field. In fact, we show that the need to account for
fluid heating (Acrivos et al. 1980) automatically results in a mean fluid temperature
variation that is naturally obtained as part of the solution by assuming a thermally
fully developed flow. This fluid heating resulting from the interphase heat transfer is
also absent in the studies of Brenner and others who assumed a linear concentration
gradient with zero interphase mass transfer (Brenner 1980; Lowe & Frenkel 1996;
Manz et al. 1999; Maier et al. 2000, 2003; Capuani et al. 2003; Mostaghimi et al.
2012). The effect of the interphase transfer on transport can be quantified by the
product of Damköhler number and Péclet number (Bekri, Thovert & Adler 1995)
which is the Nusselt number in our set-up.

The term corresponding to average conduction in the fluid phase in the average
fluid temperature equation is often neglected, or modelled using one-dimensional
(1-D) models. These 1-D models for axial conduction are in fact used to interpret
experimental data (Littman, Barile & Pulsifer 1968; Gunn & Desouza 1974; Wakao,
Kaguei & Funazkri 1979; Wakao & Kaguei 1982). In these 1-D models (Littman
et al. 1968; Gunn & Desouza 1974; Wakao et al. 1979; Wakao & Kaguei 1982),
axial conduction in the fluid phase (average conduction is denoted axial conduction in
the 1-D context) is calculated in terms of the second derivative of the average fluid
temperature, and the axial (fluid) thermal dispersion coefficient which is obtained
from experimental measurements. Although it is to be expected that the relative
magnitude of average conduction in the fluid phase compared to interphase gas–solid
heat transfer will decrease with increasing Péclet number (PeD = RemPr= |〈W〉|D/αf ,
where the Reynolds number is based on the mean slip velocity between the phases
and particle diameter D, with αf being the thermal diffusivity in the fluid phase),
there is a lack of quantitative data on average conduction in the fluid phase in flow
through fixed or fluidized beds, and its variation with Reynolds number and volume
fraction. Owing to this lack of quantitative data, the 1-D model for axial conduction
has also not been verified.

Although theoretical analyses and experimental measurements have been used to
study dispersion in fixed beds, it is difficult to develop models for the unclosed terms
corresponding to the PTHF and average fluid-phase conduction that are valid over
a wide range of solid volume fraction and mean slip Reynolds number using these
approaches. At finite Reynolds number, the nonlinearity of the governing equations
and the randomness in particle positions and velocities pose significant obstacles to
theoretical analysis. Experimental measurement of gas–solid heat or mass transfer is
also challenging because of limited optical access. Various experimental techniques
such as frequency response or a pulse input that are reviewed by Delgado (2006)
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have been used to measure longitudinal (axial) dispersion in porous media for
gas–solid flow. Early experimental measurements of gas–solid heat transfer (Kunii &
Smith 1961; Handley & Heggs 1968; Littman et al. 1968; Gunn & Desouza 1974;
Wakao, Tanisho & Shiozawa 1977; Shen, Kaguei & Wakao 1981) used point-wise
temperature measurements using simplified 1-D models of heat transfer that are
based on assumptions such as the neglect of axial conduction in the fluid phase.
Therefore, such measurements cannot be used to quantify the average axial conduction.
Measurement of the temperature–velocity covariance requires simultaneous field
measurements of velocity and temperature in a gas–solid flow. While such planar
measurements are possible using laser-based techniques such as simultaneous particle
image velocimetry (PIV) (Adrian 1991, 2005) and planar laser-induced fluorescence
(PLIF) (Van Cruyningen, Lozano & Hanson 1990; Crimaldi 2008), these are difficult
to deploy in dense gas–solid flow.

In order to overcome these difficulties in theoretical analysis and experimental
measurements of gas–solid heat transfer, we use a particle-resolved direct numerical
simulation (PR-DNS) approach to quantify unclosed terms and develop models for
them. The PR-DNS methodology can be used to accurately quantify the unclosed
terms in (1.1), since these unclosed terms can be directly calculated from the
instantaneous 3-D velocity and temperature fields. In recent years, the average
interphase momentum transfer in gas–solid flow has been quantified by simulating
steady flow past statistically homogeneous fixed assemblies of spherical particles
(Hill, Koch & Ladd 2001a,b; van der Hoef, Beetstra & Kuipers 2005; Beetstra, van
der Hoef & Kuipers 2007; Yin & Sundaresan 2009; Tenneti, Garg & Subramaniam
2011) using PR-DNS. More recently, heat transfer in gas–solid flow (Yu, Shao &
Wachs 2006; Feng & Michaelides 2009; Deen et al. 2012; Haeri & Shrimpton 2013;
Tavassoli et al. 2013; Deen et al. 2014) has also been reported using PR-DNS
approaches. However, these studies did not quantify all the unclosed terms in the
average fluid temperature equation (1.1).

In order to quantify and model unclosed terms in the average fluid temperature
equation (1.1), Tenneti et al. (2013) have developed 3-D PR-DNS of thermally fully
developed flow in periodic domains using a thermal self-similarity condition that
accounts for fluid heating by the particles. The role of fluid heating by particles
and the Nusselt number for gas–solid heat transfer were reported for a limited range
of Reynolds number Rem and solid volume fraction εs. Sun et al. (2015) used the
same PR-DNS of thermally fully developed flow past fixed particle of assemblies
to develop an improved model for the average gas–solid heat transfer rate (see the
term (1) in (1.1)). In that work, a new Nusselt number correlation corresponding
to average gas–solid heat transfer was proposed over a range of Reynolds numbers
1 6 Rem 6 100 and volume fractions 0.1 6 εs 6 0.5. Following the same methodology
of Tenneti et al. (2013) and Sun et al. (2015), we consider gas–solid heat transfer in
steady flow past a homogeneous fixed assembly of monodisperse spherical particles
to quantify and model the pseudo-turbulent heat flux and average conduction in the
fluid phase in (1.1).

The rest of the paper is organized as follows. In § 2, we describe the heat transfer
problem in a fixed particle assembly and discuss the assumptions used to simplify this
problem. In § 3, the PR-DNS approach that is used to solve this heat transfer problem
is briefly described. In § 4, we quantify and model the axial variation of the mean fluid
temperature using PR-DNS data. In § 5, the PTHF arising from temperature–velocity
covariance is quantified and a model for the PTHF is proposed by using a scaling
analysis. In § 6, we quantify the average fluid-phase conduction term from PR-DNS
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FIGURE 1. (Colour online) Contours of the steady (a) axial velocity and (b) temperature
field (see (2.7)) in flow past a fixed particle assembly. The corresponding (c) average axial
fluid velocity (see (1.2)) and (d) average non-dimensional fluid temperature along the axial
location x‖ (see (1.2) and (2.7)) are shown in the bottom panel. In this figure 〈W〉 is the
mean slip velocity between the solid and fluid phase, Tf is the fluid temperature, 〈u( f )

‖ 〉 is
the average axial fluid velocity, 〈T ( f )〉 is the average fluid temperature at the axial location
x‖, 〈T (s)〉 is the average solid temperature and Tm,in is the inlet bulk fluid temperature. At
particle surfaces the no-slip and no-penetration boundary conditions are imposed on the
fluid velocity and the isothermal boundary condition is imposed on the fluid temperature.
Periodic boundary conditions are imposed on the fluctuating velocity and pressure fields
at domain boundaries, and the self-similarity boundary condition is used for the fluid
temperature (see (2.11)).

data and verify its model. We also perform a budget analysis of the average fluid
temperature equation (1.1) and discuss the relative magnitude of terms at steady state
as a function of solid volume fraction and mean slip Reynolds number in § 7. Finally,
the principal findings of this work are summarized in § 8.

2. Problem description
A canonical problem that is useful for understanding the physical mechanisms in

heat transfer as well as for developing models for the unclosed terms is steady flow
past a homogeneous assembly of monodisperse spherical particles. As figure 1 shows,
in this gas–solid heat transfer set-up the fluid is heated up or cooled down by the
difference between the solid- and gas-phase temperature. The directional nature of the
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flow (the mean fluid velocity is anisotropic) implies that although the hydrodynamic
problem is homogeneous, the average fluid temperature cannot be assumed to be
uniform. Due to this heating or cooling of fluid by particles, the thermal problem
becomes statistically inhomogeneous in the streamwise direction. This feature of heat
transfer in gas–solid flows is well established (Acrivos et al. 1980).

The inhomogeneity of the fluid temperature in a fixed particle assembly has
implications for the quantification of unclosed terms in the average fluid temperature
equation (1.1). Specifically, if statistics calculated at the gas–solid interface, such as
the average gas–solid heat transfer, vary along the streamwise coordinate, then these
need to be extracted from spatially varying surface statistics. Xu & Subramaniam
(2010) noted that spatially varying surface statistics converge slowly even with a large
number of realizations, where each realization corresponds to a different particle
configuration with the same solid volume fraction and pair correlation function.
However, Tenneti et al. (2013) and Sun et al. (2015) showed that if the flow is
thermally fully developed, then the Nusselt number is statistically homogeneous even
though the average fluid temperature and average gas–solid heat transfer vary in the
streamwise direction. A statistically homogeneous Nusselt number can be computed
by volume averaging and this yields fast convergence with even a few realizations.
For this reason, Tenneti et al. (2013) developed a thermal self-similarity condition for
gas–solid heat transfer in steady flow past a statistically homogeneous fixed assembly
of particles that results in a thermally fully developed flow. The same boundary
condition has also been used by Tyagi & Acharya (2005) for simulating heat transfer
in duct flow. We briefly summarize Tenneti et al.’s (Tenneti et al. 2013) formulation
of thermally fully developed gas–solid flow here.

The following assumptions are used to simplify this heat transfer problem. Particles
are assumed to be isothermal with a single spatially uniform temperature for all
particles that is constant in time. Radiation and free convection effects are neglected.
A detailed justification for these assumptions can be found in Tenneti et al. (2013).
Under these conditions, the fluid temperature field T(x, t) obeys the following
convection–diffusion equation:

∂T
∂t
+ ∂(ujT)

∂xj
= αf

∂2T
∂xj∂xj

, (2.1)

where αf = kf /ρf cPf is the thermal diffusivity in the fluid phase and kf is the thermal
conductivity in the fluid phase. Note that the above gas properties are assumed
to be constant for this heat transfer problem. This equation needs to be solved
in conjunction with the Dirichlet boundary condition T = Ts at the surface of the
particles, where Ts is the uniform temperature for all the particles. If the flow is
thermally fully developed (as in internal pipe flow, see Incropera et al. (2006) for
example), then the locally scaled excess fluid temperature field θ , defined as:

θ(x, t)= T(x, t)− Ts

〈Tm〉(x‖, t)− Ts
, (2.2)

does not vary in the streamwise or axial direction x‖ at steady state (Tenneti et al.
2013), i.e.

∂θ

∂x‖
= ∂

∂x‖

(
T(x)− Ts

〈Tm〉(x‖)− Ts

)
= 0. (2.3)

This thermal self-similarity condition also ensures that the θ field is statistically
homogeneous at steady state. For simplicity θ is later referred to as simply the
scaled fluid temperature. In the above definition, 〈Tm〉(x‖, t) is the ensemble-averaged
bulk fluid temperature, which is defined as the average of the bulk fluid temperature
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on each realization ω (corresponding to a particle configuration, which occurs with
probability dPω), such that

〈Tm〉(x‖, t)=
∫
ω∈Ω

Tm(x‖, t;ω) dPω, (2.4)

where the bulk fluid temperature on each realization is

Tm(x‖, t;ω)=

∫
Af

(uT) · e‖ dA∫
Af

u · e‖ dA
, (2.5)

where e‖ is the unit vector along the streamwise direction and Af is the area occupied
by the fluid in a plane perpendicular to the streamwise direction. In general, for any
function Q(x‖, t;ω) that is defined for a realization ω, we define the ensemble average
as

〈Q〉(x‖, t)=
∫
ω∈Ω

Q(x‖, t;ω) dPω. (2.6)

The thermally fully developed condition implies that at steady state the local wall heat
flux scaled by the temperature difference (〈Tm〉(x‖)− Ts) is constant. The advantage
of establishing a thermally fully developed flow is that there are no entrance length
effects. Note that the entrance length region can contribute very high Nusselt number
values that can contaminate the true Nusselt number in a gas–solid flow. Thermally
fully developed flow is accomplished by implementing the thermal self-similarity
condition (cf. (2.3)), which requires periodic boundary conditions on the scaled fluid
temperature (Tenneti et al. 2013).

For reasons detailed in Tenneti et al. (2013), it is easier to transform the periodic
boundary conditions on θ to obtain similarity conditions on the temperature
field T(x, t) and solve (2.1) for T(x, t). Simplification of the thermal similarity
conditions and homogenization of the boundary conditions on the particle surfaces is
accomplished by defining a non-dimensional excess temperature field (for simplicity
this quantity is referred to as the non-dimensional temperature) φ(x, t) as follows:

φ(x, t)= T(x, t)− Ts

〈Tm,in〉 − Ts
, (2.7)

where 〈Tm,in〉 is the average inlet bulk fluid temperature that is defined by (2.4) in
terms of the inlet bulk fluid temperature Tm,in, which is given by (2.5) evaluated at
x‖= 0. Using this definition of the non-dimensional temperature, the non-dimensional
bulk fluid temperature φm(x‖, t;ω) on a realization ω is defined as,

φm(x‖, t;ω)= Tm(x‖, t;ω)− Ts

〈Tm,in〉 − Ts
, (2.8)

and the average non-dimensional bulk fluid temperature 〈φm〉 has a similar definition:

〈φm〉(x‖, t)= 〈Tm〉(x‖, t)− Ts

〈Tm,in〉 − Ts
. (2.9)

We solve the governing equation for the non-dimensional temperature derived by
substituting (2.7) in (2.1) as:

∂φ

∂t
+ ∂(ujφ)

∂xj
= αf

∂2φ

∂x2
j
. (2.10)
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In this non-dimensional temperature equation, the isothermal boundary conditions on
the particle surface reduce to φ = 0. The periodic boundary conditions on φ appear
in a very simple form:

φ(0, y, z)= rhφ(L, y, z),
φ(x‖, 0, z)= φ(x‖, L, z),
φ(x‖, y, 0)= φ(x‖, y, L),

 (2.11)

where rh is the heat ratio, which is defined as:

rh = 〈Tm,in〉 − Ts

〈Tm,out〉 − Ts
. (2.12)

In the definition of the heat ratio, 〈Tm,out〉 is the average bulk fluid temperature at
x‖=L, where L is the length of the box. The heat ratio quantifies by how much a fluid
particle heats up when it leaves the box and so this quantity depends solely on the
flow structure and the interphase heat transfer in the domain. Note that the heat ratio,
or the amount by which the fluid gets heated up (or cooled down) when it reaches
the end of the box, is an unknown quantity and is obtained as a part of the solution.

3. Numerical method
The gas–solid heat transfer problem described in § 2 can be solved using our

PR-DNS approach, which is called the Particle-resolved Uncontaminated-fluid
Reconcilable Immersed Boundary Method (PUReIBM) (Garg et al. 2010; Tenneti
et al. 2011; Tenneti 2013; Tenneti & Subramaniam 2014). The gas-phase velocity
and pressure fields in the gas–solid heat transfer problem are solved using the
following conservation equations for mass and momentum:

∂ui

∂xi
= 0, (3.1)

∂ui

∂t
+ ∂(uiuj)

∂xj
=− 1

ρf
gi + νf

∂2ui

∂xj∂xj
+ Is fu,i, (3.2)

where νf is the fluid-phase kinetic viscosity, gi represents the pressure gradient and fu,i
is the additional immersed boundary (IB) direct forcing term. Complete details of the
PUReIBM hydrodynamic solver are discussed by Garg et al. (2010) and Tenneti et al.
(2010, 2011, 2013), while the scalar solver is discussed in Tenneti et al. (2013). Here,
we briefly review the numerical approach to solve the gas–solid heat transfer problem
for steady flow past a fixed assembly of isothermal spherical particles.

It is worth noting that the equations in § 2 are formulated in terms of the
ensemble-averaged bulk fluid temperature (see (2.7) and (2.12)). The solution to
these equations can be accomplished by simultaneously solving (2.10) in parallel for
several different particle configurations subject to the boundary condition in (2.11)
on a parallel computer. In this set-up each particle configuration and corresponding
fluid temperature field is stored on a node and the ensemble-averaged bulk fluid
temperature is communicated to all nodes at the end of each time step. However, it
turns out that the statistical variability of the bulk fluid temperature and heating ratio
in different particle configurations is small, provided the computational domains are
sufficiently large. Therefore, the ensemble-averaged bulk fluid temperature is replaced
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by the bulk fluid temperature in that realization in our approach. In this case the
scaled fluid temperature for each realization is rewritten as

θ(x, t;ω)= T(x, t;ω)− Ts

Tm(x‖, t;ω)− Ts
, (3.3)

and the non-dimensional temperature is rewritten as

φ(x, t;ω)= T(x, t;ω)− Ts

Tm,in(ω)− Ts
. (3.4)

This effectively decouples the temperature solution in different particle configurations
and allows the solution in each realization to proceed independently. Ensemble-
averaged quantities (see (2.6)) are computed from the individual steady temperature
fields corresponding to each realization, as described in §§ 5 and 6. The small
statistical variability in the bulk fluid temperature from one realization to another
justifies this decoupling approach (Tenneti et al. 2013).

In PUReIBM the following non-dimensional fluid temperature equation is solved at
all grid nodes

ρf cpf

[
∂φ

∂t
+ ∂(ujφ)

∂xj

]
=−∂qφj

∂xj
+ Isfφ, (3.5)

where qφj = −kf ∂φ/∂xj is the heat flux per unit temperature difference, Is is the
solid-phase indicator function and fφ is the scalar IB direct forcing in the solid
phase (Tenneti et al. 2013). The scalar IB forcing fφ is computed only at grid points
located inside the solid particles. This ensures that the fluid temperature field is not
contaminated by the scalar IB forcing fφ . The scalar IB forcing at the (n + 1)th
time step f n+1

φ is specified to cancel the remaining terms in the governing equation
and forces the non-dimensional temperature φn to its desired value φd at the particle
surface:

f n+1
φ = ρf cpf

φd − φn

1t
+ ρf cpf Cn

φ +
(
∂qφj
∂xj

)n

. (3.6)

In the above equation Cn
φ = [∂(ujφ)/∂xj]n is the convective term at the nth time step.

Details of the numerical method and validation tests for the hydrodynamic solution
(Garg et al. 2010; Tenneti et al. 2011; Tenneti 2013) as well as the temperature
calculation (Tenneti 2013; Tenneti et al. 2013; Sun et al. 2015) appear elsewhere.

Using the PUReIBM approach we have performed PR-DNS simulations over a wide
range of mean slip Reynolds number Rem = 1–100 and solid volume fraction εs =
0.1–0.5 in homogeneous fixed particle assemblies with a Prandtl number of 0.7, as
summarized in table 1. In order to access a range of Péclet number (PeD = RemPr=
|〈W〉|D/αf ) and thereby deduce scaling behaviour, a few simulations are also presented
for Prandtl numbers of 0.01, 0.1, 0.7 and 1 at Rem = 1 and 100 and εs = 0.1. The
convergence of relevant heat transfer characteristics such as the Nusselt number with
numerical parameters has been established previously (Sun et al. 2015). The choice of
grid resolution and the number of realizations for these simulations is based on those
findings. PR-DNS data from these simulations are now analysed to quantify and model
the PTHF and average fluid-phase conduction.
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εs Rem L/D Np Dm

0.1 1, 5, 10, 20, 30, 40, 50, 100 7.5 80 20
0.2 1, 5, 10, 20, 30, 40, 50, 100 7.5 161 20
0.3 1, 5, 10, 20, 30, 40, 50, 100 5 71 30
0.4 1, 5, 10, 20, 30, 40, 50, 100 5 95 30
0.5 1, 5, 10, 20, 30, 40, 50, 100 4 61 40

TABLE 1. Parameters for simulation of heat transfer in steady flow past random fixed
assemblies of particles. The physical parameters are the solid volume fraction εs and the
mean slip Reynolds number Rem. The numerical parameters are the ratio of the box length
to the particle diameter L/D and the grid resolution Dm=D/1x. The number of particles
Np is determined by εs and L. Five independent simulations of each case are simulated to
reduce statistical variability.

4. Inhomogeneity of fluid temperature in a fixed particle assembly
A key feature of this gas–solid flow is the variation of mean fluid temperature in

the streamwise direction which arises from fluid heating or cooling by the particles.
Note that this mean field variation is often assumed in analytical treatments. Here we
have obtained it as part of the solution by imposing the thermally fully developed
condition at the inlet and outlet domain boundaries. Since it plays an important role
in both the PTHF transport term and average fluid-phase conduction, we first quantify
and characterize its behaviour.

In § 2 we noted that this gas–solid heat transfer problem for steady flow through a
fixed homogeneous assembly of particles is analogous in an average sense to internal
forced convection in a pipe. For the case of constant pipe wall temperature, the bulk
fluid temperature in thermally fully developed internal pipe flow (Incropera et al.
2006) can be expressed as

dTm(x‖)
dx‖

= d(Tm(x‖)− Ts)

dx‖
=− Ph

ṁcpf
(Tm(x‖)− Ts), (4.1)

where h is the local heat transfer coefficient that is independent of x‖ in thermally
fully developed flow, ṁ is the mass flow rate and P is the perimeter of the pipe cross-
section. Integrating (4.1), the following expression for the non-dimensional bulk fluid
temperature φm = (Tm(x‖) − Ts)/(Tm,in − Ts) can be obtained in terms of the Nusselt
number Nu= hD/kf :

φm(x‖)= exp
(
−PNukf

ṁcpf D
x‖

)
. (4.2)

For our case of a statistically homogeneous random assembly of fixed particles,
the analogous expression for the axial variation of φm(x‖; ω) at steady state for one
realization is

dφm(x‖;ω)
dx‖

=−P(x‖;ω)Nu(x‖;ω)kf

ṁcpf D
φm(x‖;ω), (4.3)

where the steady flow rate through the homogeneous fixed assembly of particles is
ṁ= Aρf |〈W〉|εf and P(x‖; ω) is the perimeter of spheres intersecting the plane at x‖
on realization ω (see figure 18 in appendix B). Taking the ensemble average of (4.3)
results in

d〈φm〉(x‖)
dx‖

=−〈P(x‖)Nu(x‖)φm(x‖)〉kf

ṁcpf D
=−〈P(x‖)〉〈Nu(x‖)〉〈φm(x‖)〉kf

ṁcpf D
. (4.4)
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Note that in general the average of a product of random variables is not equal to
the product of the averages. Here we are not assuming that the variables φm(x‖),
Nu(x‖) and P(x‖) are uncorrelated, but that any dependence of φm(x‖) and Nu(x‖)
on P(x‖) is captured in the definition of the average heat transfer coefficient (see
(B 3) in appendix B and following discussion). Thus, the expression for the average
non-dimensional bulk fluid temperature is written as

〈φm〉(x‖)= exp
(
−〈P(x‖)〉〈Nu(x‖)〉kf

ṁcpf D
x‖

)
. (4.5)

For the average bulk fluid temperature in thermally fully developed gas–solid flow
represented by (4.5), we replace Nu(x‖) with the average Nusselt number 〈Nu〉 (see
(A 15) and (A 16)) and P(x‖) with the average perimeter 〈P〉, (see appendix B), to
obtain

〈φm〉(x‖)= exp
(
−6πεs

4
〈Nu〉

RemPr
x‖
D

)
= exp

(
−λx‖

D

)
, (4.6)

where the mean slip Reynolds number Rem = |〈W〉|D(1− εs)/νf , the Prandtl number
Pr= νf /αf = (µf /ρf )/(kf /ρf cpf ), and the ratio 〈P〉/A= 6πεs/(4D) (cf. (B 6)) have been
substituted. The non-dimensional coefficient λ given by

λ= 6πεs〈Nu〉
4RemPr

, (4.7)

determines the rate of decay of the bulk temperature with axial distance. The PR-
DNS data for 〈φm〉 as a function of axial distance shown in figure 2(a) indicate an
exponential decay.

We find that the following exponentially decaying model

〈φm〉(x‖)= e−λmx‖/D, (4.8)

with the non-dimensional decay coefficient λm given by

λm = 6πεs〈Nu〉
4(Rem + 1.4)Pr

, (4.9)

fits the PR-DNS data for axial variation of non-dimensional bulk fluid temperature
shown in figure 2(a). This model for 〈φm〉 is similar to (4.7) with a minor difference
arising from fitting the data. The average Nusselt number 〈Nu〉 in λm is taken from
PR-DNS data corresponding to the Rem, Pr and εs values for each case. Figure 2(a)
compares this exponential decay model for the average non-dimensional bulk fluid
temperature with PR-DNS data for two different volume fractions. The average error
is 2.4 % at εs= 0.1 and 3.8 % at εs= 0.4 for a Reynolds number of Rem= 100. While
in analytical treatments (Acrivos et al. 1980) this variation is assumed to be linear,
an important finding from our study is that the imposition of thermal self–similarity
conditions at the inlet and outlet boundaries results in a thermally fully developed flow
with an exponential decay of the mean fluid temperature. As we show later, this has
important implications for the pseudo-turbulent (effective) thermal diffusivity that is
inferred from the data.
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FIGURE 2. (Colour online) Axial variation of average non-dimensional bulk fluid
temperature and average non-dimensional fluid temperature from PR-DNS: (a) comparison
of the exponential decay model (lines) for the average non-dimensional bulk fluid
temperature (see (4.8)) with PR-DNS data (open symbols). (b) Cross-sectional average of
non-dimensional fluid temperature (see (4.14)) from PR-DNS data for εs= 0.1 and 0.4 at
two different Reynolds numbers (open symbols). Error bars in both panels represent 95 %
confidence intervals inferred from 5 realizations.

There is a useful relation that shows that the non-dimensional fluid temperature
(2.7) is simply the product of the scaled fluid temperature (2.2) and the average non-
dimensional bulk fluid temperature (2.9):

φ(x, t)=
(

T(x, t)− Ts

〈Tm〉(x‖, t)− Ts

)( 〈Tm〉(x‖, t)− Ts

〈Tm,in〉 − Ts

)
= θ(x, t)〈φm〉(x‖, t). (4.10)

Multiplying the above equation by the fluid indicator function If , taking the
expectation (see (2.6)) and using the definition in (1.2) leads to the corresponding
relation between the phase-averaged counterparts:

〈φ( f )〉(x, t)= 〈θ ( f )〉(x, t)〈φm〉(x‖, t). (4.11)

Also noting that the θ field is statistically homogeneous at steady state reveals that
the inhomogeneity in the steady average fluid temperature field arises solely from the
inhomogeneity in the bulk fluid temperature:

〈φ( f )〉(x‖)= 〈θ ( f )〉〈φm(x‖)〉. (4.12)

The above relation implies 〈φ( f )〉 ∼ exp(−λx‖/D) since the average scaled fluid
temperature 〈θ ( f )〉 is statistically homogeneous and does not depend on the axial
location (it is only a function of Reynolds number and solid volume fraction).
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Figure 2(b) shows the average non-dimensional fluid temperature 〈φ( f )〉 that is
computed by ensemble averaging the cross-sectional average of the non-dimensional
fluid temperature {φ( f )}cs, given by

{φ( f )}cs(x‖;ω)= 1
Af

∫
Af

φ(x;ω) dA, (4.13)

to obtain

〈φ( f )〉(x‖)≈ 1
M

M∑
ω=1

{φ( f )}cs(x‖;ω). (4.14)

The average non-dimensional bulk fluid temperature from PR-DNS data is denoted
by symbols in figure 2(a), and it decays exponentially due to fluid cooling in
the streamwise direction. The effect of fluid cooling (or heating) by particles is
significant at high solid volume fraction and low Reynolds number, and it occurs over
progressively shorter length scales as solid volume fraction increases and Reynolds
number decreases. The variation of 〈φ( f )〉 in figure 2(b) indicates that the average
non-dimensional fluid temperature can be inhomogeneous on the scale of a few
particle diameters.

With this understanding and exponential decay model for the average bulk
temperature and average fluid temperature in hand, we now turn to quantification
and modelling of the PTHF and average conduction in the fluid phase.

5. Pseudo-turbulent heat flux
In CFD simulations the PTHF term is typically neglected. Since Tenneti (2013)

and Mehrabadi et al. (2015) have reported that PTKE is an significant fraction of
the kinetic energy associated with the mean slip velocity in fixed particle assemblies,
this suggests that the PTHF could also be significant in the gas–solid heat transfer
problem.

The finding in the previous section that the average fluid temperature decays
exponentially in the streamwise direction has several important implications for the
PTHF term. In single-phase flows it is well known that scalar fluctuations cannot
be sustained in the absence of mean temperature gradients. However, if a linear
mean temperature gradient is imposed, then the resulting fluctuating temperature
field is homogeneous (Sirivat & Warhaft 1983; Subramaniam & Pope 1998). Sirivat
& Warhaft (1983) performed a fundamental scalar mixing experiment by imposing
a linear cross-stream temperature gradient and studying the correlation between
temperature and velocity fluctuations. The gas–solid heat transfer problem that
we describe in this paper is interesting because it offers a similar set-up wherein
temperature fluctuations are sustained due to an exponentially decaying streamwise
mean temperature gradient.

Another interesting feature of this flow relates to the transport term involving the
PTHF. Note that in statistically homogeneous flow this transport term is zero. Indeed
in the case of the statistically homogeneous hydrodynamic problem where the mean
fluid velocity is homogeneous there is no fluid-phase Reynolds stress transport term
(Mehrabadi et al. 2015). Therefore, although the magnitude of the Reynolds stress in
that case was reported by Mehrabadi et al. (2015) as the PTKE, its transport could not
be quantified or modelled. On the other hand, the inhomogeneous mean temperature
field in this corresponding gas–solid heat transfer problem gives us the opportunity to
quantify and model the transport term involving the PTHF.
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We now deduce an important property of the PTHF in our problem set-up. We show
that for this flow set-up the inhomogeneity in the temperature–velocity covariance
arises solely from inhomogeneity in the non-dimensional bulk temperature. This
observation is later used to propose a gradient-diffusion model for the pseudo-turbulent
heat flux. Substituting the definition of the non-dimensional fluid temperature
fluctuation φ′′( f )(x)= φ(x)− 〈φ( f )〉(x‖) into the expression for the ensemble-averaged
PTHF 〈If u

′′( f )
i φ′′( f )〉(x‖), noting that the average of the fluctuating fluid velocity

〈If u
′′( f )
i 〉 is zero due to statistical homogeneity of the velocity field and using the

relation φ = 〈φm〉θ between the non-dimensional bulk fluid temperature φm and the
scaled fluid temperature θ (see (4.10)), results in the following simplification of the
ensemble-averaged PTHF:

〈If u
′′( f )
i φ′′( f )〉(x‖)= 〈If u

′′( f )
i θ〉〈φm〉(x‖). (5.1)

Note that although 〈If u
′′( f )
i φ′′( f )〉 is inhomogeneous in x‖, the covariance of velocity

and scaled temperature 〈If u
′′( f )
i θ〉 is expected to be statistically homogeneous,

since both the fluid velocity field ui and the scaled fluid temperature field θ are
statistically homogeneous. Interestingly, in this particular thermally fully developed
steady gas–solid heat transfer problem, the inhomogeneity in the temperature–velocity
covariance arises solely from inhomogeneity of the non-dimensional bulk temperature.
It should be noted that in general the initial condition of the fluctuating temperature
field will not permit this simplification. Nevertheless, this simplification provides a
strong justification for the gradient-diffusion model that we later use to model the
PTHF.

The results reported in this study correspond to the simulation of the unsteady
temperature equation (see (3.5)) with a steady velocity field that is a converged
hydrodynamic solution to flow past the particle configuration. This solution approach
is valid because temperature is a passive scalar in the regime of gas–solid heat
transfer considered in this study. We have also simulated a case with fully coupled
instantaneous velocity and temperature fields to account for any unsteady effects as
shown in figure 3. We do not find significant differences in the PTHF between the
steady results of the fully coupled simulation and that obtained from coupling with
the steady velocity field. This is because the primary contribution to the PTHF arises
from spatial fluctuations of velocity and temperature that are adequately captured by
our averaging procedure. Here we provide the first report of PTHF data in gas–solid
flow from PR-DNS.

5.1. Computation of PTHF
First we describe the computation of the PTHF from our PR-DNS set-up, and then the
computation of the corresponding transport term. In our thermal fully developed gas–
solid flow, the fluid velocity is statistically homogeneous whereas the fluid temperature
is inhomogeneous along the axial location x‖. Therefore, any average involving fluid
temperature has to be computed over a cross-sectional plane at a given axial location.
Here the PTHF is computed from PR-DNS data using cross-sectional averages over
M realizations as

〈If u
′′( f )
i φ′′( f )〉(x‖)≈ 1

M

M∑
ω=1

{
1
A

∫
A

If u
′′( f )
i φ′′( f )(x;ω) dA

}
, (5.2)
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FIGURE 3. Variation of 〈If u
′′( f )
‖ θ〉 with non-dimensional time for the case with mean

slip Reynolds number of 100 and solid volume fraction of 0.1. The solid line represents
the evolution of 〈If u

′′( f )
‖ θ〉 for a computation where the scalar solver is coupled to the

instantaneous velocity field. The open circle represents the value of 〈If u
′′( f )
‖ θ〉 obtained

with the scalar solver using a frozen velocity field, and the error bars are obtained from
5 realizations.

where the fluid velocity fluctuation for each realization is defined as

u′′( f )
i (x;ω)= ui(x;ω)− {u( f )

i }V(ω), (5.3)

and where {u( f )
i }V is the volumetric mean fluid velocity that is computed as

{u( f )
i }V(ω)=

1
V

∫
V

If (x;ω)ui(x;ω) dV

1
V

∫
V

If (x;ω) dV
= 1

Vf

∫
V

If ui dV. (5.4)

The non-dimensional temperature fluctuation φ′′(x; ω) for each realization is defined
as

φ′′(x;ω)= φ(x;ω)− {φ( f )}cs(x‖;ω), (5.5)

where {φ( f )}cs is the cross-sectional average of the non-dimensional temperature along
the axial location (see (4.13)). Note that due to periodicity in the y and z directions
only the PTHF along the axial coordinate 〈If u

′′( f )
‖ φ′′( f )〉 is non-zero. Therefore, we only

discuss the axial component of the PTHF in the following.
Since the PTHF is computed using the cross-sectional average in (5.2) (unlike the

Nusselt number, which is computed using a volume average since it is statistically
homogeneous), it is susceptible to higher statistical variability than the Nusselt number.
Figure 4 shows the axial variation of the ensemble-averaged PTHF 〈If u

′′( f )
‖ φ′′( f )〉 for

Rem= 100 and εs= 0.4. The square symbols are the ensemble average from 5 multiple
independent simulations (MIS) while the downward triangles are the ensemble average
from 50 MIS. Both averages are very close, indicating convergence. However, as
expected, the one-sided error bars from 5 MIS (denoted below the square symbols)
are larger than the error bars from 50 MIS (above the downward triangles). Since
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FIGURE 4. (Colour online) Variation of the ensemble-averaged PTHF normalized by the
magnitude of mean slip velocity |〈W〉| along axial location x‖ over 5 and 50 MIS at
Rem = 100 and εs = 0.4. The square and triangle symbols represent the PTHF obtained
using 5 and 50 MIS, respectively. One-sided error bars indicate 95 % confidence intervals:
the error bars below the squares correspond to 5 MIS while the error bars above the
triangles correspond to 50 MIS.

the ensemble-averaged PTHF obtained from 50 MIS is within the range of the error
bars of 〈If u

′′( f )
‖ φ′′( f )〉 obtained from 5 MIS, we use 5 MIS to quantify the PTHF over

a range of mean slip Reynolds numbers and solid volume fractions.
Figure 4 also shows that the PTHF decays along the axial coordinate. In the

hydrodynamic solution of this gas–solid flow, the PTKE 〈If u
′′( f )
i u′′( f )

i 〉/2 does not
change with axial location since the velocity field is statistically homogeneous.
However, in the heat transfer problem, the fluid temperature variance 〈Ifφ

′′( f )φ′′( f )〉
decays (result not shown here) because the mean temperature gradient decays along
the axial coordinate. Correspondingly, the covariance of temperature and velocity also
decays. This corresponds to the decay of 〈φm〉 (see figure 2a) that is shown to be the
sole source of inhomogeneity in the PTHF (see (5.1)).

As shown in (5.1), another way to compute the PTHF is to obtain 〈If u
′′( f )
i θ〉, and

then multiply it by the average non-dimensional bulk fluid temperature 〈φm〉. Since the
scaled temperature field θ is homogeneous, we also expect 〈If u

′′( f )
i θ〉 to be statistically

homogeneous along the axial coordinate. Figure 5 shows the ensemble-averaged axial
value of 〈If u

′′( f )
i θ〉 (only 〈If u

′′( f )
‖ θ〉 is non-zero due to periodicity in the y and z

directions), which is computed by

〈If u
′′( f )
i θ〉 ≈ 1

M

M∑
ω=1

{If u
′′( f )
i θ}(x‖;ω), (5.6)

for 5 and 50 MIS. Again the two ensemble-averaged values are reasonably close to
each other, with higher MIS yielding smaller error bars, as expected. The ensemble
average using 50 MIS clearly shows that 〈If u

′′( f )
‖ θ〉 is statistically homogeneous.

Therefore, 〈If u
′′( f )
‖ θ〉 can be computed using a volume average. For Rem=100 and εs=

0.4, the volume-averaged value of 〈If u
′′( f )
‖ θ〉 (i.e. 〈If u

′′( f )
‖ θ〉 = (1/L) ∫ L

0 〈If u
′′( f )
‖ θ〉(x‖) dx‖,
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FIGURE 5. (Colour online) Variation of 〈If u
′′( f )
‖ θ〉 normalized by mean slip velocity |〈W〉|

along axial location x‖ at Rem = 100 and εs = 0.4. The red and blue symbols represent
the PTHF obtained using 5 and 50 realizations, respectively. One-sided error bars indicate
95 % confidence intervals: the error bars above the squares correspond to 5 MIS and the
error bars below the triangles correspond to 50 MIS.

for convenience we drop the overbar later) is approximately 0.22 from five MIS
and 0.20 from 50 MIS. This indicates that the volume-averaged value with fewer
realizations is close to the one from 50 MIS. Therefore, 〈If u

′′( f )
‖ θ〉 can be calculated

as a volume average from five realizations and only depends on mean slip Reynolds
number and solid volume fraction.

In order to develop a model for the PTHF, we characterize the dependence of
〈If u

′′( f )
‖ θ〉 on mean slip Reynolds number and solid volume fraction as shown in

figure 6. Since θ is non-dimensional, we expect 〈If u
′′( f )
‖ θ〉 to scale with |〈W〉| and

therefore increase with mean slip Reynolds number (Rem = (1 − εs)|〈W〉|D/νf ) for
a fixed solid volume fraction. For a fixed solid volume fraction (see figure 6a), the
volume average of 〈If u

′′( f )
‖ θ〉 normalized by the magnitude of the mean slip velocity

|〈W〉| is not constant but decreases slightly with increasing mean slip Reynolds
number, indicating that the dependence of 〈If u

′′( f )
‖ θ〉 on |〈W〉| is not exactly linear.

The mean value of 〈If u
′′( f )
‖ θ〉 is not very sensitive to the mean slip Reynolds number

but lies in the range 0.2–0.34 for 1 6 Rem 6 100. Figure 6(b) shows that for a fixed
Reynolds number 〈If u

′′( f )
‖ θ〉/|〈W〉| first increases with increasing solid volume fraction

up to εs = 0.2, and then decreases for εs > 0.2.
In order to develop a PTHF model in § 5.3, a correlation for 〈If u

′′( f )
‖ θ〉 is given by

fitting PR-DNS data:

〈If u
′′( f )
‖ θ〉 = (1− εs)(0.2+ 1.2εs − 1.24ε2

s ) exp(−0.002Rem)|〈W〉|. (5.7)

This correlation, shown by the lines in figure 6, fits the data with an average deviation
of 8 %. It is valid in the range of 0.1 6 εs 6 0.5 and 1 6 Rem 6 100. Note that the
homogeneity of 〈If u

′′( f )
‖ θ〉 in (5.1) also implies that, in thermally fully developed

homogeneous flow, the source of inhomogeneity in PTHF arises solely from the
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FIGURE 6. (Colour online) Dependence of 〈If u
′′( f )
‖ θ〉 on (a) mean slip Reynolds number

at εs = 0.1–0.5 and (b) solid volume fraction at Rem = 1, 50 and 100. The symbols are
〈If u

′′( f )
‖ θ〉 from PR-DNS data and the lines are the correlation by fitting PR-DNS data

in (5.7). Error bars indicate 95 % confidence intervals using 5 MIS.

average bulk fluid temperature. More importantly, inhomogeneity of PTHF implies
that the transport term corresponding to the PTHF in (1.1) is non-zero.

In the following, we first quantify the magnitude of PTHF relative to convective
mean flux in § 5.2 and then propose a model for it in § 5.3. In § 5.4 the Péclet
number dependence of the effective thermal diffusivity is explained using a wake
scaling analysis. In § 5.5 we quantify the magnitude of the transport term involving
the PTHF relative to the average gas–solid heat transfer term in (1.1).

5.2. Relative importance of the PTHF to convective mean flux
In order to verify the importance of PTHF, we compare the PTHF with the convective
mean flux εf 〈u( f )

i 〉〈φ( f )〉 that appears in (1.1). Based on the expression for the PTHF
in (5.1) and the relation for 〈φ( f )〉 in (4.12), the ratio of the PTHF to the convective
mean flux can be written as

〈If u
′′( f )
i φ′′〉(x‖)

εf 〈u( f )
i 〉〈φ( f )〉(x‖)

= 〈If u
′′( f )
i θ〉〈φm〉

εf 〈u( f )
i 〉〈φ( f )〉 =

〈If u
′′( f )
i θ〉

εf 〈u( f )
i 〉〈θ ( f )〉 . (5.8)

Since all the terms in the last expression of the above equation are homogeneous,
the ratio of the PTHF to the convective mean flux is independent of axial location.
Since 〈If u

′′( f )
i θ〉, 〈u( f )

i 〉 and 〈θ ( f )〉 are functions of mean slip Reynolds number and
solid volume fraction, this ratio also depends only on mean slip Reynolds number
and solid volume fraction.

It can be shown that the ratio of PTHF to the convective mean flux is independent
of axial location. The reason for this homogeneity lies in the important property of
the PTHF that we deduced in the paragraph preceding equation (5.1). There we used
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FIGURE 7. (Colour online) (a) Axial variation of the ratio of the PTHF to the convective
mean flux at Rem = 100 and εs = 0.4. The open circles and the squares represent the
ratio obtained from 5 MIS and 50 MIS, respectively. Error bars indicate 95 % confidence
intervals from 5 MIS (blue) and 50 MIS (red). (b) Comparison of the PTHF with
convective mean flux εf 〈u( f )

‖ 〉〈φ( f )〉 in the range 1 6 Rem 6 100 and 0.1 6 εs 6 0.5. The
open symbols represent the ratio of the PTHF and εf 〈u( f )

‖ 〉〈φ( f )〉 obtained from PR-DNS
data. Error bars indicate 95 % confidence intervals from 5 MIS.

the relation φ = 〈φm〉θ to show in (5.1) that the spatial inhomogeneity in the PTHF
〈If u′′( f )φ′′( f )〉(x‖) arises solely from the inhomogeneity of the non-dimensional bulk
temperature 〈φm〉. When the PTHF is divided by the convective mean flux, the only
spatially inhomogeneous terms appear as a ratio 〈φm〉/〈φ( f )〉. However, by virtue of
(4.12) this ratio is simply 1/〈θ ( f )〉, which is statistically homogeneous because the
locally scaled excess fluid temperature field θ is statistically homogeneous. In order to
verify this independence of the ratio of the PTHF to the convective mean flux on axial
location, figure 7(a) shows the axial variation of this ratio using 5 and 50 realizations.
Although the ratio obtained from 5 realizations has more statistical variability than the
one from 50 MIS, neither shows any systematic dependence on axial location. This
finding confirms the statistical homogeneity of this ratio in (5.8).

Figure 7(b) shows a comparison of the axial PTHF with the convective mean flux
εf 〈u( f )

‖ 〉〈φ( f )〉 over a range of mean slip Reynolds numbers and solid volume fractions.
Note that again due to the periodicity in the y and z directions, we only compare
the axial value 〈If u

′′( f )
‖ θ〉 with εf 〈u( f )

‖ 〉〈φ( f )〉. The symbols denote the ratio of the
PTHF to the convective mean flux. For a fixed Reynolds number, the ratio increases
with increasing solid volume fraction in most cases. For Rem = 100, the PTHF is
approximately 40 % of the convective mean flux at εs = 0.1 but approximately 70 %
of the convective mean flux at εs = 0.5. The increase in the magnitude of the PTHF
results from higher fluctuations at higher solid volume fraction. For a fixed solid
volume fraction, the ratio of the PTHF to the convective mean flux tends to decrease
slightly with increasing mean slip Reynolds number. Overall, the magnitude of PTHF
is in the range 40–100 % of the convective mean flux. Therefore, the PTHF is a
significant fraction of the total convective flux even at low solid volume fraction.
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5.3. Model for pseudo-turbulent heat flux
Since the PTHF is found to be significant for gas–solid heat transfer, the transport
term involving the PTHF needs to be modelled in CFD simulations based on the two-
fluid model (see (1.1)). In order to develop a model for the PTHF, we introduce a
gradient-diffusion model by analogy with turbulent scalar flux models in single-phase
flow (Fox 2003):

Ruφ = 〈If u
′′( f )
j φ′′( f )〉(x‖)
〈If 〉 =−αjk,PT

∂〈φ( f )〉
∂xk

, (5.9)

where αjk,PT is the pseudo-turbulent thermal diffusivity. Note that in general the
thermal diffusivity is a tensor rather than a scalar. However, in our gas–solid heat
transfer problem, the only non-zero component of the PTHF is the axial component
which is aligned with the gradient of the mean fluid temperature. Therefore, we can
only deduce one component α‖,‖ of the pseudo-turbulent thermal diffusivity tensor
from the PR-DNS data, as follows:

Ru‖φ =
〈If u

′′( f )
‖ φ′′( f )〉(x‖)
〈If 〉 =−αPT

∂〈φ( f )〉
∂x‖

, (5.10)

where αPT = α‖,‖.
Once the pseudo-turbulent thermal diffusivity αPT is computed, the transport term

involving the PTHF at a given axial location can be obtained in terms of the pseudo-
turbulent thermal diffusivity αPT and average non-dimensional fluid temperature 〈φ( f )〉
as:

∂

∂x‖
{ρf cpf 〈If u

′′( f )
‖ φ′′( f )〉(x‖)} = ∂

∂x‖

(
−εfρf cpfαPT

∂〈φ( f )〉
∂x‖

)
. (5.11)

A model for the pseudo-turbulent thermal diffusivity αPT can be derived by
substituting the relation 〈φ( f )〉 = 〈θ ( f )〉〈φm〉 in (4.12) into (5.10), then substituting
(5.1) and replacing 〈φm〉 with the exponential decay model 〈φm〉 = exp

(−λx‖/D) (see
(4.8)) to obtain:

αPT =− 〈If u
′′( f )
‖ θ〉 exp(−λx‖/D)

−εf 〈θ ( f )〉 λ
D

exp(−λx‖/D)
= D
λ

〈If u
′′( f )
‖ θ〉

(1− εs)〈θ ( f )〉 . (5.12)

Using the correlation for 〈If u
′′( f )
‖ θ〉 given in (5.7), the expressions for λ given in

(4.9) and the average scaled fluid temperature 〈θ ( f )〉 from Sun et al. (2015), the final
expression for αPT is

αPT = 4D(Rem + 1.4)Pr
6πεs〈Nu〉

(0.2+ 1.2εs − 1.24ε2
s ) exp(−0.002Rem)|〈W〉|

[1− 1.6εs(1− εs)− 3εs(1− εs)4 exp(−Re0.4
m εs)] . (5.13)

It is noteworthy that in this model αPT scales as D|〈W〉|. Also as expected αPT is
independent of axial location and depends only on Rem, εs, and Pr (note that 〈Nu〉 is
also a function of Rem, εs, and Pr (cf. equation (27) in Sun et al. (2015)).

In order to evaluate the performance of this model for the pseudo-turbulent thermal
diffusivity αPT , we compare αPT obtained from direct quantification of the PTHF
〈If u

′′( f )
‖ φ′′( f )〉 using PR-DNS data in (5.10) with the model expression given by (5.13).

Figure 8 shows the dependence of the ratio αPT/αf (αf is the constant molecular
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FIGURE 8. Dependence of the pseudo-turbulent thermal diffusivity normalized by the
molecular thermal diffusivity in the fluid phase αf for gas–solid flow on mean slip
Reynolds number and solid volume fraction. The symbols represent the average values
from PR-DNS data using 5 MIS. The lines represent the model for the pseudo-turbulent
thermal diffusivity for εs = 0.1, 0.3 and 0.5.

thermal diffusivity that is equal to νf /Pr) on mean slip Reynolds number and solid
volume fraction. The symbols denote the values of αPT/αf extracted from PR-DNS
data which show that the pseudo-turbulent thermal diffusivity is two orders of
magnitude larger than its molecular counterpart. In figure 8 the pseudo-turbulent
thermal diffusivity αPT increases with increasing mean slip Reynolds number for a
fixed solid volume fraction. This increase is due to the increase in the magnitude of
u′′( f ) with increasing Reynolds number.

For a fixed Reynolds number, figure 8 shows that as the solid volume fraction
increases the pseudo-turbulent thermal diffusivity decreases. Since the pseudo-turbulent
thermal diffusivity αPT can be conceived as arising from the product of a velocity
scale u′′( f ) (or equivalently the velocity scale |〈W〉|, since the two are related by
a correlation for kf given in Mehrabadi et al. (2015)), and a length scale `, the
dependence for fixed Reynolds number must arise from a change in the length scale
associated with αPT . Looking at the expression for αPT in (5.12), we can see that
such a length scale dependence on solid volume fraction can arise from D/λ(1− εs),
〈θ ( f )〉 or 〈If u

′′( f )
‖ φ′′( f )〉. Since the velocity field and the scaled temperature field θ

are statistically homogeneous, the Eulerian two-point correlation corresponding to
〈If u

′′( f )
‖ θ〉 is:

ρu‖θ(r)=
〈If (x)θ ′′( f )(x) · If (x+ r)u′′( f )

‖ (x+ r)〉
〈If (x)θ ′′( f )(x) · If (x)u

′′( f )
‖ (x)〉 , (5.14)

and it can be computed to infer a length scale associated with 〈If u
′′( f )
‖ φ′′( f )〉. Note that

in the above equation 〈If u
′′( f )
‖ θ ′′( f )〉 is equal to 〈If u

′′( f )
‖ θ〉 because θ = 〈θ ( f )〉 + θ ′′( f ) and

〈If u
′′( f )
‖ 〉 = 0.

Figure 9 shows the Eulerian two-point cross-correlation corresponding to scaled
temperature–velocity for solid volume fractions of 0.1 and 0.4. The decay of the
cross-correlation to zero within the computational domain establishes the adequacy
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FIGURE 9. Decay of the scaled fluid temperature–velocity fluctuation cross-correlation
functions with separation distance r obtained from steady flow past a random configuration
of spheres at a solid volume fraction of 0.1 and 0.4, and mean slip Reynolds numbers
of 100. The box length is L= 7.5D for solid volume fraction of 0.1 and L= 5D for for
solid volume fraction of 0.4, respectively.

of the domain size. In dispersion without interphase heat transfer, the temperature
fluctuations are only driven by velocity fluctuations. Since the temperature–velocity
correlation would be arising from the velocity–velocity correlation, the velocity–
velocity correlation length (which is related to the Brinkman length for Stokes
flow) is the important length scale for hydrodynamic dispersion (Koch & Brady
1985). However, for the present study with interphase heat transfer, the temperature
fluctuations arise from both the velocity fluctuation and the interphase heat transfer.
The fluctuations from the interphase heat transfer may not scale with the velocity
fluctuation. Therefore, this temperature–velocity cross-correlation is the appropriate
correlation for our problem rather than the velocity–velocity correlation. The
cross-correlation curves in figure 9 for the two volume fractions have comparable
length scales. The length scale (Lu‖θ =

∫∞
0 ρu‖θ(r) dr) for the case with a solid volume

fraction of 0.1 is 0.114, while for a solid volume fraction of 0.4 it is 0.078. While
this is a 46 % increase, it alone cannot explain the 230 % increase in αPT that is seen
in figure 9. This implies that the length scale in the θ field is only weakly sensitive
to solid volume fraction. Thus, 〈If u

′′( f )
‖ θ〉 is not solely responsible for the change

in length scale with solid volume fractions that is observed in αPT . Also the scaled
fluid temperature 〈θ ( f )〉 varies only slightly with Reynolds number and solid volume
fraction (see Sun et al. (2015), Figure 8). Clearly, only the length scale D/λ(1− εs)

is important in determining the magnitude of the pseudo-turbulent thermal diffusivity
αPT . According to the expression for λ (see (4.7)), with increasing solid volume
fraction, the length scale D/λ(1 − εs) decreases. This explains the decrease of the
pseudo-turbulent thermal diffusivity αPT with solid volume fraction in figure 8.

Figure 8 also compares the model for the pseudo-turbulent thermal diffusivity
(see (5.13)) with the PR-DNS data. The lines represent the model for αPT given by
(5.13) at selected solid volume fractions. This figure shows that the model has a
good agreement with PR-DNS data with an average difference of 18 %. Therefore,
this model for the pseudo-turbulent thermal diffusivity can be used to compute the
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transport term involving the PTHF in the average fluid temperature equation (1.1) if
we assume a simpler isotropic form of the pseudo-turbulent diffusivity tensor given
in (5.9).

5.4. Scaling of pseudo-turbulent thermal diffusivity with Péclet number
Theoretical studies on hydrodynamic dispersion in fixed beds for Stokes/low Reynolds
number flow predict the dependence of the effective diffusivity on the Péclet number
(Brenner 1980; Carbonell & Whitaker 1983; Eidsath et al. 1983). Koch & Brady
(1985) derived linear and Pe ln(Pe) dependencies in the effective diffusivity by
solving the convection–diffusion equation for mass transfer with no source or sink of
mass within the particles in Stokes flow using an asymptotic analysis that is valid in
the dilute limit (low solid volume fraction). The analysis of Koch & Brady (1985)
is for the case with no source or sink of mass within the particles, which is an
important distinction from the present work. Here the Péclet number is defined as
Pe=Ua/Df , where U is the average velocity through the bed, a is the particle radius
and Df is the molecular diffusivity of the scalar. The linear dependence is attributed
to the mechanical dispersion mechanism while the Pe ln(Pe) dependency is attributed
to a non-mechanical dispersion mechanism that arises from the no-slip boundary
condition (obtained from a boundary layer analysis).

While the Koch & Brady (1985) analysis is valid for Stokes flow at dilute solid
volume fraction, the results of the present study span a range of Reynolds number
from 1 to 100 and solid volume fraction values from 0.1 to 0.5. Furthermore, since
in our heat transfer problem we impose the isothermal boundary condition on particle
surfaces, we cannot compare directly with the results of Koch & Brady (1985).
Acrivos et al. (1980) analysed Stokes flow past a fixed bed with heat transfer at
low Péclet number when the local mean temperature profile is approximately linear,
rather than exponential, corresponding to the decay length of the mean temperature
being larger than the Brinkman screening length. However, the cases studied here
correspond to Pe > 1. Here we deduce the scaling of the effective thermal diffusivity
with Péclet number in two ways. The first is based on correlations developed from
the PR-DNS data for the average bulk fluid temperature and Nusselt number. We
then present a scaling analysis similar to that described in Koch (1993) which is
appropriate for Rea � 1, where Rea = U‖a/νf is the Reynolds number based on the
radii of particle, U‖ is the mean fluid velocity (which is the mean slip velocity for
fixed particles considered in this study).

In appendix C we derive a model for the effective thermal diffusivity based on the
correlations developed for the average bulk fluid temperature and Nusselt number. This
reveals the scaling of the effective thermal diffusivity with Péclet number as:

αPT + αf

αf
= C1C3

C2(C4 +C5Re0.7
m Pr1/3)

Pe2
D + 1, (5.15)

where the coefficients C1 through C5 are functions of only the solid volume fraction.
In figure 10, we compare this model evaluated at Pr = 0.7 for a fixed solid volume
fraction (εs = 0.1) with PR-DNS data. This derived model (represented by the red
solid line) is very close to our PR-DNS data that are obtained for cases with different
Prandtl number values. For these values the factor preceding the square of the Péclet
number is approximately constant. This good agreement with the PR-DNS data shows
that the effective thermal diffusivity has a Pe2

D scaling (see also the match with the
blue dashed line representing 1+ 0.25Pe2

D).
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FIGURE 10. (Colour online) Variation of (αPT + αf )/αf with Péclet number PeD =
|〈W〉|D/αf at Rem = 1 (up-triangles), Rem = 100 (down-triangles) with Pr= 0.01, 0.1, 0.7
and 1, and Rem= 10–50 at Pr= 0.7 (squares) for solid volume fraction of 0.1. The dashed
line represents the 1+ 0.25Pe2

D scaling and the solid line represents the model in (5.15).
The dotted line represents the 0.065Pe2

D[ln(1/Pr)+1]+1 scaling at Rem=100 for different
Prandtl numbers (0.01 6 Pr 6 0.7) in (D 12).

The dependence of effective thermal diffusivity on Péclet number can also be
explained on the basis of scaling arguments in the hydrodynamic and thermal
wakes behind a particle. The wake structure can be deduced from the conditionally
averaged fluid velocity 〈If U‖〉c(r=X−Xp|Xp) and conditionally averaged scaled fluid
temperature 〈If (T − Ts)/(〈Tm〉 − Ts)〉c(r=X−Xp|Xp), where Xp and r are the particle
position and the relative separation between the particle and field point in the fluid,
respectively. These conditional averages correspond to averaging the fluid velocity or
temperature field over members of an ensemble where each particle’s centre has been
translated to the origin.

Figure 11 shows that for dilute flow there exists a distinct hydrodynamic wake
at Rem = 100, and a distinct thermal wake behind the particle at both large and
small Péclet number. It is observed in figure 11(b) and (c) that the thermal wake is
longer and thinner at higher Péclet (or higher Prandtl number) than at lower Péclet
number. The distance over which wake can diffuse due to the viscous diffusion in
the cross-stream direction over the time it takes for the fluid to convect a distance
x‖ in the streamwise direction is

√
(νf x‖/U‖). We can identify the width of the

hydrodynamic wake rWM in the near-wake and far-wake regions as follows. For
x‖ < aRea, the diffusion of momentum in the near-wake region occurs over a smaller
distance than the O(a) size of the region disturbed by the particle. For x‖ > aRea in
the far-wake region the wake thickness is larger than the particle size leading to:

rWM =

∼O(a), x‖ < aRea(
νf x‖
U‖

)1/2

= a
(

x‖
aRea

)1/2

, x‖ > aRea.
(5.16)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

29
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.290


Pseudo-turbulent heat flux during gas–solid heat transfer 325

0 2 4 6 8

1

2

3

4

5

6

7

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

(a)

0 2 4 6 8

1

2

3

4

5

6

7

0 2 4 6 8

1

2

3

4

5

6

7

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

(b) (c)

FIGURE 11. (Colour online) Contour plot of (a) the conditionally averaged fluid
velocity 〈If U‖〉c/|〈W〉|, (b,c) the conditionally averaged scaled fluid temperature
〈If (T − Ts)/(〈Tm〉 − Ts)〉c based on 〈Tm〉 for solid volume fraction of 0.1 and mean
slip Reynolds number of 100; (b) Pr = 0.01, (c) Pr = 1. The conditional average is
obtained from 5 MIS.

The velocity fluctuation can be derived from the momentum balance equation
πr2

WMρf U‖u′′‖ = F leading to

u′′‖
U‖
=CD

a2

r2
WM
=CD

aRea

x‖
=

∼O(CD), x‖ < aRea

CD
aRea

x‖
, x‖ > aRea,

(5.17)

where F=CDρf U2
‖πa2 is the drag force and CD is the drag coefficient corresponding

to a fixed particle bed. Essentially this says that in the near-wake region the fluid
velocity does not vary much (u′′‖ = u − U‖ = O(U‖)) whereas in the far-wake region
the fluctuation is far less than the mean velocity (u′′‖ = u−U‖�U‖).
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Similarly, the width of the thermal wake rWH can be estimated on the basis of
thermal diffusivity as

rWH =

∼O(a), x‖ < aPea

a
(

x‖
aPea

)1/2

, x‖ > aPea,
(5.18)

and the temperature fluctuation can be derived from the energy balance equation
πr2

WHρf cpf U‖T ′′ =Qpf = 4πa2h(Ts − 〈Tm〉) as

T ′′

(Ts − 〈Tm〉) =
4h

ρf cpf U‖

a2

r2
WH
= 4h
ρf cpf U‖

aPea

x‖
=


∼O

(
4h

ρf cpf U‖

)
, x‖ < aPea

4h
ρf cpf U‖

aPea

x‖
, x‖ > aPea,

(5.19)

where Pea = U‖a/αf is the Péclet number based on the radius of the particle, and
rWH is the width of the thermal wake. The thermal wake for x‖ < aPea depends on
whether the temperature field is disturbed throughout on O(a) region at the back of
the particle or only in a thinner region where the thermal boundary layer separates
from the particle. We assume that it is an O(a) region and this assumption is verified
by the thermal wakes in figure 11(b) and (c).

The unconditional ensemble-averaged PTHF 〈If u
′′( f )
‖ T ′′( f )〉 is calculated from the

wake scaling analysis as the particle number density np times an integral over the
probability density function (p.d.f.) of the conditionally averaged particle position f :

〈If u
′′( f )
‖ T ′′( f )〉 = np

∫ Lw

0

∫ ∫
f dx‖ dy dz, (5.20)

where np is the particle number density defined as the ratio of the average number
of particles to the volume of the domain, and Lw is the length of the wake that
represents the velocity contour surrounding the particle where the value of the
conditionally ensemble-averaged velocity reaches |〈W〉| (note that since the particles
are stationary, the mean slip velocity is equal to the unconditionally averaged fluid
velocity). Note that the full length of the far wake is not attained in the computational
domain as shown in figure 11(a) due to hydrodynamic interactions with neighbour
particles (note that the two-point velocity correlation has decayed to zero within the
computational domain, indicating that the domain is large enough for this to not be
an artefact of periodicity). In this study we have Pr 6 1, and the thermal far-wake
and hydrodynamic near-wake region overlap in the interval aPea < x‖ < aRea. By
inserting (5.16)–(5.19), and integrating over the near-wake, intermediate and far-wake
regions, the PTHF yields

〈If u
′′( f )
‖ T ′′( f )〉 = Pea

[
k2 ln

(
1

Pr

)
+ k3 ln

(
Lw

aRea

)
+ k1

]
, (5.21)

where k1, k2 and k3 are undetermined coefficients arising from the scaling estimates
and uncertainty in the limits of the integral (see appendix D). In the above
expression, the ln(1/Pr) term comes from the intermediate region and the constant
term comes from the near wake. Note that since hydrodynamic interactions with
neighbour particles cause the velocity to decay before achieving a far-wake behaviour,
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ln(Lw/aRea) is not present in practice. The detailed derivation can be found in
appendix D. Substituting this expression for the PTHF into the expression for the
pseudo-turbulent thermal diffusivity:

αPT =−〈If u
′′( f )
‖ T ′′( f )〉(x‖)
∂〈If T〉
∂x‖

∼ 〈If u
′′( f )
‖ T ′′( f )〉(x‖)

∂(Ts − 〈Tm〉)
∂x‖

, (5.22)

and using the decay length scale of the bulk and mean fluid temperature D/λ to write
the gradient as (Ts − 〈Tm〉)/(D/λ) results in

αPT + αf

αf
= CDPe2

D

π2

[
B2 ln

(
1

Pr

)
+ B3 ln

(
Lw

aRea

)
+ B1

]
+ 1, (5.23)

where B1–B3 are again undetermined coefficients. Note that using the correct length
scale based on the mean temperature gradient is crucial to recovering the scaling
observed in PR–DNS.

The wake analysis of the scaling of the effective thermal diffusivity with Péclet
number is compared with PR-DNS data in figure 10. The results obtained from
the wake scaling analysis (the dotted line) agree well with the PR-DNS data (the
symbols) at Rem = 100 for Pr < 1. The Pe2

D scaling itself comes from there being a
wake and from realizing that the decay length of the mean fluid temperature is the
correct scaling to use for the mean temperature gradient. Therefore, this analysis of
the hydrodynamic and thermal wakes behind the particle gives a physical explanation
for the existence of a Pe2

D scaling in effective thermal diffusivity in the regime of
high Reynolds number and low Prandtl number.

5.5. Relative importance of the PTHF in gas–solid heat transfer
We have found that the PTHF is significant when compared with the convective mean
flux, especially for high solid volume fraction. In order to quantify the importance of
the transport term involving the PTHF

〈Tuφ〉(x‖)≡∇ · {ρf cpf 〈If u′′( f )φ′′( f )〉}, (5.24)

we need to compute the streamwise derivative of 〈If u′′( f )φ′′( f )〉 since the PTHF is
only statistically inhomogeneous along the axial coordinate. However, as shown in
figure 4, given that the ensemble-averaged statistical estimate in (5.2) has statistical
variability, this can yield noisy results. In order to circumvent this difficulty, we
integrate the transport term over the computational domain to express the mean value
of the transport term involving the PTHF in the domain in terms of boundary values
of the PTHF as follows:

〈Tuφ〉 = 〈Tu‖φ〉 =
1
L

∫
L

∂

∂x‖
{ρf cpf 〈If u

′′( f )
‖ φ′′( f )〉}(x‖) dx‖

= 1
L
([ρf cpf 〈If u

′′( f )
‖ φ′′( f )〉]out − [ρf cpf 〈If u

′′( f )
‖ φ′′( f )〉]in), (5.25)

where L is the length of the domain and [·]in and [·]out are obtained at the inlet and
outlet of the computational domain, respectively. Note that due to periodic boundary
conditions in the y and z directions the flux term in those directions is zero.
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FIGURE 12. (Colour online) Comparison of transport term involving the PTHF
(see (5.25)) with the average gas–solid heat transfer (see (A 11)) in the range 1 6 Rem 6
100 and 0.1 6 εs 6 0.5. The symbols represent the transport term involving the PTHF
obtained from PR-DNS data. Error bars indicate 95 % confidence intervals from 5 MIS.
For clarity, only one-sided error bars are shown in this figure.

In the two-fluid equation (see (1.1)), since the gas–solid heat transfer is considered
as a significant term, the importance of the transport term involving the PTHF can be
quantified by comparing it with the average gas–solid heat transfer term (see (6.5)).
Figure 12 shows a comparison of the transport term involving the PTHF scaled by
the average gas–solid heat transfer over a range of mean slip Reynolds numbers
and solid volume fractions. The colour symbols represent the ratio of the transport
term involving the PTHF to the average gas–solid heat transfer. For a fixed Reynolds
number beyond Rem = 10, the transport term involving the PTHF is approximately
50 % of the average gas–solid heat transfer at εs = 0.5, and it drops to about 30 %
of the average gas–solid heat transfer at εs = 0.1. This increase in the transport term
involving the PTHF with increasing solid volume fraction is similar to the findings
of Tenneti (2013) and Mehrabadi et al. (2015) for PTKE in a fixed particle assembly.
For a fixed solid volume fraction, the ratio of transport term involving the PTHF
to the average gas–solid heat transfer does not vary significantly beyond Rem = 10,
but reduces to 15–20 % at Rem = 1. Therefore, we conclude that the transport term
involving the PTHF is important compared to average gas–solid heat transfer for high
solid volume fraction, and it cannot be neglected in CFD simulations based on the
two-fluid model.

Note that for low Reynolds number (Rem = 1) figure 12 shows that the ratio
of PTHF to gas–solid heat transfer reduces. This results from the fact that the
total convective term (mean convective heat flux and PTHF) needs to balance axial
conduction in the fluid phase and average gas–solid heat transfer in the average
temperature equation in the steady flow (see (1.1)). A budget analysis of these terms
that is described later in this paper illustrates this point.

6. Average conduction in the fluid phase and its model
Average conduction in the fluid phase represents the divergence of the average

heat flux in the fluid phase. Since the velocity and temperature fields are statistically
homogeneous in cross-stream planes in our gas–solid flow problem that is described
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FIGURE 13. Normalized axial conduction in the fluid phase (∂/∂x‖)〈If q
φ
‖ 〉(x‖)(D2/kf ) at

Rem = 5 for solid volume fraction of εs = 0.1 (a) and εs = 0.4 (b). The open circles are
the PR-DNS data averaged over 5 MIS and the solid line represents the model.

in § 2, there is no average conduction in the cross-stream directions. We now
establish the correspondence between PR-DNS data and the unclosed axial fluid-phase
conduction term in (1.1).

Average axial conduction in the fluid phase is calculated from the PR-DNS
temperature field (see (A 10) in appendix A and details leading up to it) by

∂

∂xj
〈If q

φ
j 〉(x‖)≈

1
M

M∑
ω=1

{
1
A

∫
A

∂If q
φ
‖ (x, t;ω)
∂x‖

dA

}
, (6.1)

where qφj =−kf ∂φ/∂xj is heat flux vector based on the non-dimensional temperature
field φ(x, t)= (T(x, t)− Ts)/(Tm,in − Ts) ( Tm,in is the inlet bulk fluid temperature), kf
is the thermal conductivity in the fluid phase and ω = 1, . . . , M on the right hand
side represents M realizations of the particle configuration from which the expression
in curly braces is computed and subsequently averaged over. The integrand on the
right-hand side of (6.1) represents the sole non-zero contribution to average conduction
that arises from If q

φ
‖ (x, t;ω), the axial component of the non-dimensional heat flux in

the fluid phase on a realization ω. The axial conduction term from a realization of
a particle configuration is averaged over the cross-sectional plane with area A that is
located at x‖. Since the non-dimensional fluid temperature decays exponentially in the
axial coordinate, both the non-dimensional heat flux and the average axial conduction
term vary along the axial coordinate. More details regarding the computation of the
axial conduction term can be found in appendix A.

Figure 13 shows the ensemble-averaged PR-DNS values (the open circles) for
the normalized axial conduction in the fluid phase at a mean slip Reynolds number
Rem = 5 for two different solid volume fraction values of 0.1 and 0.4. The reference
scale for the axial conduction term based on the non-dimensional temperature φ is
kf /D2, where D is the particle diameter. Note that this corresponds to a normalization
of kf (Tm,in − Ts)/D2 for the axial conduction term in the dimensional average fluid
temperature equation (1.1). As shown in figure 2(b), the average non-dimensional
fluid temperature 〈φ( f )〉 decays exponentially along the axial direction because the
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fluid is progressively cooled as it passes over the particles. For low Reynolds number
the average fluid temperature decays to zero within 4D for the case with a solid
volume fraction of 0.1, and within less than D for a solid volume fraction of 0.4
(cf. figure 2b). The axial conduction term shown in figure 13 is negative because the
average non-dimensional fluid temperature decays exponentially with axial location
〈φ( f )〉 ∼ exp (−λx‖/D), and therefore for a statistical homogeneous particle assembly
(where εf = 1− εs is independent of x), we have

∂

∂x‖
〈If q

φ
‖ 〉 =−kf εf

∂2〈φ( f )〉
∂x‖∂x‖

∼−kf εf (λ/D)2 exp(−λx‖/D) (6.2)

(details of the derivation are shown in appendix E).
Figure 14 shows contours of the magnitude of the heat flux vector |If qφ| normalized

by the reference scale kf /D2 for the same cases in figure 13 with mean slip Reynolds
number Rem = 5 for solid volume fraction values of 0.1 and 0.4. As we go deeper
into the bed the heat flux in the fluid phase also goes to zero because the fluid
temperature becomes relatively uniform. Only for small values of the axial location
x‖/D do we see non-zero heat flux values, and the dependence of the heat flux
contours with solid volume fraction is consistent with the average fluid temperature
plots shown in figure 2. Therefore, axial conduction becomes progressively smaller
along the axial coordinate, and this drop is more pronounced for higher volume
fraction. This indicates that the magnitude of the average axial conduction term that
is the second derivative of the average fluid temperature is higher for higher solid
volume fraction because of the rapid decay of the average fluid temperature (cf. (6.2)),
with higher λ values encountered for higher solid volume fractions (see the model
for the non-dimensional decay coefficient λm in § 4).

6.1. Verification of the fluid-phase axial conduction model
Since average axial conduction in the fluid phase is modelled in terms of the second
derivative of 〈φ( f )〉, a model for axial conduction in the fluid phase can be developed
by using the expression for 〈φ( f )〉 (〈φ( f )〉 ∼ exp(−λx‖/D)) and (4.12) given in § 4.
Using these relations, the model for axial conduction in the fluid phase is:

∂

∂x‖
〈If q

φ
‖ 〉 =−kf εf

∂2〈φ( f )〉
∂x‖∂x‖

≈−kf εf 〈θ ( f )〉(λ/D)2 exp(−λx‖/D). (6.3)

A comparison of the average axial conduction in the fluid phase from PR-DNS
data and the above model is shown in figure 13. For the case of solid volume
fraction of 0.1 in figure 13(a), the normalized axial conduction in the fluid phase
(normalized by the reference scale kf /D2) obtained from PR-DNS data shows some
scatter about the model prediction in (6.3), although the average trend is captured
by the model. The scatter in the PR-DNS data is because of the finite number
of realizations and statistical variability in 〈φ( f )〉, and should reduce with more
realizations. Computational resources limit these results to five realizations of the
particle configuration. Nevertheless, the model does a fairly good job of capturing the
trend in the PR-DNS data. For the case with solid volume fraction εs= 0.4 shown in
figure 13(b), the PR-DNS data show scatter within the length L= 2D, but the model
still captures the trend of axial conduction in the fluid phase. This results from the
fact that at the same Reynolds number, the fluid temperature at high solid volume
fraction (0.4) decays faster to approach the particle surface temperature than the one
at low solid volume fraction (0.1) (see figure 2).
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FIGURE 14. (Colour online) Contours of the magnitude of the heat flux vector |If qφ|
normalized by the reference scale kf /D2 at Rem = 5 for solid volume fraction of εs = 0.1
(a) and εs = 0.4 (b).

6.2. Relative importance of fluid-phase axial conduction in average gas–solid heat
transfer

We now quantify the relative importance of the fluid-phase axial conduction
∂〈If q

φ
‖ 〉/∂x‖ with respect to average gas–solid heat transfer 〈q′′′φ 〉 (see (A 11)) over

the range of solid volume fraction and mean slip Reynolds number considered in this
work. Since both of terms are spatially inhomogeneous and vary with axial location
x‖, it is convenient to define volumetric averages of these quantities. We quantify the
average volumetric axial conduction in the fluid phase by spatially averaging axial
conduction in the fluid phase over the domain length L to obtain:

〈q′′′cond〉 =
1
L

∫ L

0

∂

∂x‖
〈If q

φ
‖ 〉(x‖) dx‖. (6.4)

In order to validate the assumption of neglecting axial conduction in the fluid phase
in 1-D models that are used to interpret experimental data, we compare this term with
average gas–solid heat transfer that is

〈q′′′φ 〉 =
1
L

∫ L

0
〈q′′′φ 〉(x‖) dx‖, (6.5)

where 〈q′′′φ 〉 is the local average interphase heat transfer rate (see (A 11)). Figure 15
compares the average volumetric axial conduction in the fluid phase 〈q′′′cond〉 with the
average gas–solid heat transfer 〈q′′′φ 〉 at selected volume fractions over a range of
Reynolds number values. For a fixed solid volume fraction, the ratio 〈q′′′cond〉/〈q′′′φ 〉
decreases rapidly with increasing mean slip Reynolds number and goes to almost
zero at high mean slip Reynolds number of 100. The scaled average volumetric
axial conduction also increases with solid volume fraction at each Reynolds number.
This results from higher temperature gradients (and heat flux) due to increase in the
proximity of particle surfaces at high solid volume fraction. For the case of solid
volume fraction of 0.4, the average volumetric axial conduction in the fluid phase
〈q′′′cond〉 is approximately 84 % of the average gas–solid heat transfer 〈q′′′φ 〉 at Rem = 1
but only 3 % at Rem = 20.
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FIGURE 15. Dependence of the ratio of average volumetric axial conduction in the fluid
phase to average gas–solid heat transfer 〈q′′′cond〉/〈q′′′φ 〉 on mean slip Reynolds number at
solid volume fraction εs = 0.1 and 0.4. The symbols are the values of the ratio from
PR-DNS data and error bars indicate 95 % confidence intervals from 5 MIS.

These findings imply that in the low Reynolds number regime, there are high
gradients of heat flux in the fluid phase. It is clear that the average volumetric axial
conduction in the fluid phase 〈q′′′cond〉 is important only for Rem < 20 (when compared
to average gas–solid heat transfer). Therefore, the neglect of axial conduction in 1-D
models that are used to infer the Nusselt number corresponding to average gas–solid
heat transfer from inlet/outlet temperature measurements is justified for Rem > 20. In
the low Reynolds number regime Rem < 20 (or low Péclet number since in gas–solid
flow Prandtl number can be less than the order of one) this assumption is not justified.
Now in order to understand the balance of various terms in (1.1) we perform a budget
analysis in the following section.

7. Budget analysis and relative magnitude of terms
Figure 16 shows a budget analysis of the two-fluid equation (1.1) at steady state for

selected values in the parameter space of Reynolds number and solid volume fraction.
At steady state, the remaining terms in (1.1), viz. fluid-phase axial conduction,
transport term involving the PTHF, and mean convection, are compared with the
average gas–solid heat transfer term 〈q′′′φ 〉 in the following form:

∂

∂xj

{
ρf εf cpf 〈u( f )

j 〉〈T ( f )〉
}

︸ ︷︷ ︸
mean flow convection

+ ∂

∂xj

{
ρf cpf 〈If u

′′( f )
j T ′′( f )〉

}
︸ ︷︷ ︸

pseudo-turbulent
heat flux

+ ∂

∂xj
〈If qj〉︸ ︷︷ ︸

average conduction
in the fluid phase

=
〈
∂If

∂xj
qj

〉
︸ ︷︷ ︸

average gas–solid
heat transfer

. (7.1)

In the above equation the average gas–solid heat transfer on the right-hand side is
negative (fluid loses heat to cold particles), and each term on the left-hand side is
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FIGURE 16. (Colour online) Budget of average fluid temperature equation in (1.1): the
normalized axial conduction in the fluid phase, transport term involving the PTHF, and
mean convection by the average gas–solid heat transfer 〈q′′′φ 〉 for Rem = 1, 10, 100 and
εs = 0.1, 0.3 and 0.5 using 5 MIS. Q represents absolute magnitude of these terms. The
colour columns represent axial conduction in the fluid phase (blue, on the bottom of the
bar), the transport term involving the PTHF (green, on the middle of the bar), and mean
convection (red, on the top of the bar), respectively.

also negative (mean fluid temperature and temperature–velocity covariance decay with
axial distance into the bed). The absolute value of the terms on the left-hand side
normalized by the absolute value of the average gas–solid heat transfer sum to unity.
In figure 16, the average axial conduction in the fluid phase is denoted by the blue
bars. It is highest at εs = 0.5 and for all volume fraction values it decreases with
increasing mean slip Reynolds number. It is approximately 80 % of the average gas–
solid heat transfer at εs= 0.5 and Rem= 1 but less than 1 % of the average gas–solid
heat transfer at Rem = 100.

The normalized transport term involving the PTHF is denoted by the green bars in
figure 16. This term is approximately 10–20 % of the average gas–solid heat transfer
at Rem = 1 and increases with Reynolds number to about 50 % of the average gas–
solid heat transfer at Rem = 100. The dependence of the normalized transport term
involving the PTHF on solid volume fraction shows a moderate increase for Rem= 10
and 100, but there is slight decrease with solid volume fraction at Rem= 1 as observed
in figure 12.

Figure 16 also shows the relative magnitude of the mean convection term in the
parameter space of mean slip Reynolds number and solid volume fraction. For a fixed
solid volume fraction, the relative magnitude of mean convection is less than 30 %
for low Reynolds number Rem = 1, but greater than 50 % for high Reynolds number
Rem= 100. Therefore, for high Reynolds number Rem> 10, the average gas–solid heat
transfer, mean flow convection, and PTHF dominate the mean fluid energy balance.
This budget analysis of the two-fluid equation in (7.1) gives insight into the relative
importance of each of the terms in the gas–solid heat transfer problem.
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8. Conclusions
PR-DNS simulations of gas–solid heat transfer in steady flow through a homogene-

ous fixed assembly of isothermal particles are used to quantify the pseudo-turbulent
heat flux arising from correlation of temperature and velocity fluctuations, and the
average fluid-phase conduction terms that appear in the average fluid temperature
equation. These simulations are performed over a range of mean slip Reynolds
numbers (1–100) and volume fractions (0.1–0.5) for a Prandtl number of 0.7. A few
cases are also presented using different Prandtl numbers in the range 0.016Pr 6 1 to
access a range of Péclet number. PR-DNS results reveal that the average bulk fluid
temperature and the average fluid temperature decay exponentially due to fluid cooling
by the particles. An exponential decay model for the average bulk fluid temperature
is proposed with a decay length scale that depends on the problem parameters. The
non-uniformity in the mean fluid temperature generates fluctuations in the temperature
field that correlate with velocity fluctuations.

PR-DNS data show that the PTHF transport is a significant contributor to the
evolution of the average fluid temperature in gas–solid heat transfer. The term arising
correlation of fluctuations in velocity and temperature cannot be neglected because the
transport term involving the PTHF is approximately 10–50 % of the average gas–solid
heat transfer. A gradient-diffusion model for the PTHF is proposed in terms of the
average fluid temperature gradient and a pseudo-turbulent thermal diffusivity. It is
found that the qualitative features of the dependence of effective diffusivity on Péclet
number are captured by a wake scaling analysis that is applicable to high Reynolds
number flows (Koch 1993). The PTHF model can be implemented in current CFD
simulations of gas–solid heat transfer using the two-fluid model.

PR-DNS results also show that axial conduction in the fluid phase can be significant
for Rem < 20. These results shows that the neglect of axial conduction in 1-D models
that are used to infer the Nusselt number corresponding to average gas–solid heat
transfer from inlet/outlet temperature measurements is not justified for Rem<20. Based
on the exponential decay model for the bulk fluid temperature, a simple model for
average axial conduction in the fluid phase is proposed. This model captures the trends
of average axial conduction in the fluid phase with mean slip Reynolds number and
solid volume fraction in fixed particle assemblies.

A budget analysis of the two-fluid equation also indicates that average gas–solid
heat transfer, mean convection and PTHF terms are the dominant contributions for
Rem > 10 in convective heat transfer through homogeneous fixed particle assemblies.
Using PR-DNS we have developed models for the PTHF and average conduction in
the fluid phase.
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Appendix A. Computation of average gas–solid heat transfer and fluid-phase axial
conduction

In order to develop models for average gas–solid heat transfer and fluid-phase
axial conduction in the two-fluid equation, we need to quantify the corresponding

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

29
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.290


Pseudo-turbulent heat flux during gas–solid heat transfer 335

x

y

z

FIGURE 17. Sketch of physical domain with a particle intersecting the cross-sectional
plane (y–z plane) normal to the streamwise direction. The cross-sectional area occupied
by fluid is denoted Af . The exterior boundary of the fluid phase in the plane is denoted
∂Aext

f . The boundary between the fluid phase and solid phase is denoted ∂Aint. The normal
vector e‖ denotes the streamwise direction. qφ‖ and qφ⊥ are the in-plane and out-of-plane
heat fluxes, respectively.

average gas–solid heat transfer and fluid-phase axial conduction terms in (1.1) using
PR-DNS data. We derive the expressions to compute these unclosed terms from the
instantaneous non-dimensional fluid temperature equation as follows.

In internal forced convection in a pipe flow (Incropera et al. 2006) the heat flux
vector at the pipe wall is perpendicular to the solid surface and always lies in the
cross-sectional plane for pipes of constant cross-section, whereas in gas–solid heat
transfer there exists a component of the local interphase heat flux vector along the
axial direction. This is because the interphase normal at the particle surface changes
direction in gas–solid flow with changing axial location. For quantifying the unclosed
terms using PR-DNS data, it is convenient to distinguish between two components
of the local interphase heat flux: (i) the component along the axial direction, which is
denoted the out-of-plane local interphase heat flux and (ii) the component of the local
interphase heat flux normal to the axial direction, or the in-plane local interphase heat
flux (see figure 17).

In steady flow, the local interphase heat flux is quantified by integrating the PR-
DNS instantaneous non-dimensional fluid temperature equation

ρf cpf

[
∂φ

∂t
+ ∂(ujφ)

∂xj

]
=−∂qφj

∂xj
(A 1)

over Af that denotes the portion of the cross-sectional area that is occupied by fluid,
in the y–z plane perpendicular to the axial direction as

ρf cpf

A

∫
Af

∂(ujφ)

∂xj
dA= 1

A

∫
Af

−∂qφj
∂xj

dA. (A 2)

The divergence term on the right-hand side of (A 2) is first expressed in terms of the
out-of-plane and in-plane components of the heat flux vector qφ = qφ‖e‖ + qφ⊥e⊥, and
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then the divergence theorem is used in the y–z plane for the in-plane component to
obtain:

1
A

∫
Af

∂qφj
∂xj

dA︸ ︷︷ ︸
RHS of (A 2)

= 1
A

∫
Af

∂qφ‖
∂x‖

dA︸ ︷︷ ︸
I

+ 1
A

∮
∂Aext

f

qφj,⊥ · n(ext)
j,⊥ dl︸ ︷︷ ︸

II

− 1
A

∮
∂Aint

qφj,⊥ · n(s)j,⊥ dl︸ ︷︷ ︸
III

, (A 3)

where l is the perimeter of circles formed by the intersection of particles in the
cross-sectional plane, qφj,⊥ is the in-plane interphase heat flux and n(s)j,⊥ is the in-plane
component of the outward unit normal vector on the surface of particles. Note that
since the heat flux is defined in terms of the non-dimensional temperature φ, its units
are W m−2 K−1). Term I represents the streamwise gradient of out-of-plane heat flux
in the cross-sectional plane. Term II represents the net conduction of heat flux into
this plane from exterior boundaries of the fluid phase at the domain boundary, while
Term III represents in-plane interphase heat transfer from particle to fluid. Term II is
equal to zero due to periodic boundary conditions on the non-dimensional temperature
field φ in the y and z directions. Term III is defined as the volumetric heat transfer
rate per unit temperature difference corresponding to the in-plane local interphase
heat flux

q
′′′
⊥(x‖;ω)=

1
A

∮
∂Aint

qφj,⊥ · n(s)j,⊥ dl, (A 4)

where the unit for q
′′′
⊥(x‖; ω) is W m−3 K−1, and this quantity is specific to the

realization ω that corresponds to a particular configuration of particles.
Term I can be decomposed into an axial conduction term and the axial (out-of-

plane) contribution to the interphase heat flux using the indicator function in the fluid
phase If as follows:

1
A

∫
Af

∂qφ‖
∂x‖

dA= 1
A

∫
A

If
∂qφ‖
∂x‖

dA= 1
A

∫
A

∂If q
φ
‖

∂x‖
dA+ 1

A

∫
A

qφ‖
∂If

∂x‖
dA. (A 5)

The first term on the right-hand side of the above equation is the axial conduction in
the fluid phase. We define the axial conduction in the fluid phase at axial location x‖
for realization ω as

q
′′′
cond(x‖;ω)=

1
A

∫
A

∂If q
φ
‖

∂x‖
dA. (A 6)

The second term on the right-hand side of (A 5) is the volumetric heat transfer rate
corresponding to the out-of-plane local interphase heat flux qφ‖ :

q
′′′
‖ (x‖;ω)=

1
A

∫
A

qφ‖
∂If

∂x‖
dA. (A 7)

It is clearly seen that due to the presence of particles, Term I includes the axial
conduction in the fluid phase and the out-of-plane local interphase heat flux. The latter
does not appear in single-phase flow.

Combining the in-plane and out-of-plane local interphase heat flux, we define
the local volumetric interphase heat transfer rate q

′′′
φ (x‖; ω) at axial location x‖ in

realization ω as
q
′′′
φ (x‖;ω)= q

′′′
‖ (x‖;ω)+ q

′′′
⊥(x‖;ω). (A 8)
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Thus, the average gas–solid heat transfer from PR-DNS corresponding to q
′′′
φ (x‖;ω) is

〈q′′′φ 〉(x‖)=
∫
ω∈Ω

q
′′′
φ (x‖;ω) dPω. (A 9)

Similarly, we also define the average fluid-phase axial conduction at axial location
x‖ corresponding to the local axial conduction in the fluid phase q

′′′
cond(x‖;ω) as

〈q′′′cond〉(x‖)=
∫
ω∈Ω

q
′′′
cond(x‖;ω) dPω ≈ 1

M

M∑
ω=1

q
′′′
cond(x‖;ω), (A 10)

which is the PR-DNS estimate of the unclosed axial fluid-phase conduction term
∂〈If q

φ
j 〉/∂xj(x‖) in (1.1). Note that the average fluid-phase axial conduction at axial

location x‖ can abe estimated using M realizations from PR-DNS data.
In order to compare with the volumetric mean of average gas–solid heat transfer

(see details in Sun et al. (2015)) we define

〈q′′′φ 〉 ≡
1
L

∫ L

0
〈q′′′φ 〉(x‖) dx‖. (A 11)

Similarly, the volumetric mean of the axial conduction in the fluid phase is defined
as

〈q′′′cond〉 ≡
1
L

∫ L

0
〈q′′′cond〉(x‖) dx‖, (A 12)

where L is the length of the computational domain.
In the cross-sectional plane at every axial location x‖ we define the local convective

heat transfer coefficient h(x‖; ω) corresponding to heat transfer between fluid and
particles following Bird, Stewart & Lightfoot (2002):

Aq
′′′
φ (x‖;ω)= h(x‖;ω)P(x‖;ω)φm(x‖;ω), (A 13)

where P(x‖;ω) is the perimeter formed by cutting the particles in the cross-sectional
plane, A is the cross-sectional area and the non-dimensional bulk temperature
φm(x‖; ω). The left-hand-side term in (A 13) represents the heat transfer rate per
unit length of interface in the cross-sectional plane and its units are W m−1 K−1.

Based on the local convective heat transfer coefficient h(x‖; ω) at axial location x‖
a local Nusselt number can be defined. The local Nusselt number at axial location x‖
for realization ω is:

Nu(x‖;ω)= h(x‖;ω)D
kf

= Aq
′′′
φ (x‖;ω)

kf P(x‖;ω)φm(x‖;ω)D. (A 14)

The local Nusselt number can then be used to calculate an average Nusselt number
at axial location x‖, where in this context we use the term average to mean an
ensemble average over different particle configurations:

〈Nu(x‖)〉M = 1
M

M∑
ω=1

Nu(x‖;ω). (A 15)
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For the case of thermally fully developed flow past a homogeneous fixed particle
assembly, the Nusselt number is homogeneous in the streamwise direction Tenneti
et al. (2013). Therefore, the average Nusselt number 〈Nu〉 can be estimated by
integrating (A 15) over the axial length of the box:

〈Nu〉 ∼= {Nu}M,V = 1
L

∫ L

0
〈Nu(x‖)〉M dx‖, (A 16)

where {Nu}V,M denotes an estimate to the expectation 〈Nu〉.

Appendix B. Improved model for average volumetric interphase heat transfer rate
A widely used two-fluid model (Benyahia, Syamlal & O’Brien 2012) for the average

gas–solid heat transfer rate 〈qj∂If /∂xj〉 (cf. (1.1)) is written in terms of the difference
between average fluid temperature 〈T ( f )〉 and average solid temperature 〈T (s)〉 as

q
′′′
TF =

6kf εsNum

D2
(〈T (s)〉 − 〈T ( f )〉), (B 1)

where εs is the solid volume fraction, and Num is a model for the Nusselt number
that is usually taken from a correlation to experimental data. This expression for the
average volumetric gas–solid heat transfer rate q

′′′
TF is valid for steady heat transfer in

a homogeneous assembly of fixed monodisperse spherical particles. The standard two-
fluid model for the average volumetric interphase heat transfer rate assumes a spatially
homogeneous average fluid temperature field, and its derivation is discussed in detail
in Sun et al. (2015).

Here we derive a model for the average volumetric interphase heat transfer rate
that is applicable to a spatially inhomogeneous average fluid temperature field, such
as encountered in the gas–solid heat transfer problem simulated by PR-DNS in this
work. We begin with (A 13) that relates the local volumetric interphase heat transfer
rate q

′′′
φ (x‖; ω) at an axial location x‖ for realization ω with φm(x‖; ω), which is the

non-dimensional difference between the bulk fluid temperature and the particle surface
temperature. Taking the ensemble average of (A 13) results in

〈q′′′φ 〉(x‖)= 〈h〉(x‖)
〈P〉(x‖)

A
〈φm〉(x‖), (B 2)

where 〈q′′′φ 〉(x‖) (cf. (2.6)) is the average volumetric interphase heat transfer rate
per unit temperature difference. We define the inhomogeneous average heat transfer
coefficient 〈h〉(x‖) to be

〈h〉(x‖)≡
A〈q′′′φ 〉(x‖)

〈P〉(x‖)〈φm〉(x‖) . (B 3)

Note that in general the average of a product of random variables is not equal to
the product of the averages, unless the random variables are uncorrelated. Here we
are not assuming that the variables on the right-hand side of (A 13) are uncorrelated,
but we are assuming in the above expression that the dependence of φm(x‖; ω) and
P(x‖; ω) on the particle configuration can be expressed as a dependence on the
average solid volume fraction εs, and any correlation of the three right-hand-side
terms can be captured in the definition of the inhomogeneous average heat transfer
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R

X

y–z

FIGURE 18. (Colour online) Sketch of computation of the average perimeter
corresponding to the intersection of the y–z plane located at x‖. The sphere radius
is R and R⊥ is the radius of the circle formed by the intersection of the y–z plane
with the sphere. The axial coordinate of the sphere centre is Xc and a random variable
uniformly distributed in (−R, R) is X = Xc − x‖. The normal vector e‖ denotes the
streamwise direction.

coefficient 〈h〉(x‖) in (B 3). It should however be noted that this model cannot capture
the dependence of the inhomogeneous average heat transfer coefficient on clustered
arrangements of homogeneous particle fields where the volumetric interphase heat
transfer rate could depend on the pair correlation function of the particles.

Now although the average volumetric interphase heat transfer rate 〈q′′′φ 〉(x‖) and
〈φm〉(x‖) are inhomogeneous in x‖ for the gas–solid flow problem considered in this
work, the particle configuration is statistically homogeneous. Therefore, the average
perimeter 〈P〉(x‖) does not depend on x‖. A simple expression for the average
perimeter 〈P〉 in terms of the average solid volume fraction is now derived.

We need to calculate the average perimeter corresponding to the intersection of
the y–z plane located at x‖ with a random assembly of monodisperse spheres as
shown in figure 18. Since the particle field is statistically homogeneous, the y–z
plane intersects spheres at various axial locations, and the axial locations reckoned
from their respective sphere centres are distributed with equal probability in (−R, R),
where R is the sphere radius. In other words, if the axial coordinate of the sphere
centre is Xc and the y–z plane is located at x‖, then X=Xc− x‖ is a random variable
uniformly distributed in (−R,R). If the radius of the circle formed by the intersection
of the y–z plane with the sphere is R⊥, then

〈P〉 = 〈N〉
∫ −R

+R
2πR⊥ fX dx, (B 4)

where 〈N〉 is the average number of spheres in the volume A×D (A being the cross-
sectional area of the plane and D being the sphere diameter), fX = 1/2R, and the
integration limits correspond to the traversal of a sphere from just touching the plane
with Xc= x‖−R to Xc= x‖+R. Noting that R⊥=R sin θ =√R2 − X2 the above integral
can be simplified to yield

〈P〉 = 2π〈N〉Rπ

4
= π2〈N〉D

4
. (B 5)
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Substituting 〈N〉 = n A D, where n is the number density that is related to the average
solid volume fraction by εs = nπD3/6, results in the following expression for 〈P〉/A:

〈P〉
A
= 6πεs

4D
, (B 6)

which is close to the geometrical factor in the original two-fluid model. This leads to
the final expression for the inhomogeneous average volumetric heat transfer rate

〈q′′′φ 〉(x‖)= 〈h〉(x‖)
6πεs

4D
〈φm〉(x‖). (B 7)

This expression differs from the standard two-fluid model (B 1) in two respects. One
is that it allows for an inhomogeneous average bulk fluid temperature field, and the
other is that the temperature difference is between the average bulk fluid temperature
and the average solid temperature. In order for this to be usable in a two-fluid
model, we first need to relate the average bulk fluid temperature to the average fluid
temperature. This is easily accomplished by (4.12) that relates the steady average
fluid temperature to the average bulk fluid temperature as 〈φ( f )〉(x‖) = 〈θ ( f )〉〈φm(x‖)〉.
Now we also assume that the flow is locally fully thermally developed, in which
case the heat transfer coefficient 〈h〉(x‖) is independent of x‖ and can be written in
terms of the homogeneous average Nusselt number as 〈h〉 = kf 〈Nu〉/D. The resulting
expression is a consistent two-fluid model in terms of the average fluid temperature
that allows for its inhomogeneous variation:

〈q′′′φ 〉(x‖)=
6πεskf 〈Nu〉

4D2

〈φ( f )〉(x‖)
〈θ ( f )〉 . (B 8)

Appendix C. Implied model for effective thermal diffusivity
The model for average bulk fluid temperature allows us to deduce the scaling of

effective thermal diffusivity with Péclet number. We derive a model for the effective
thermal diffusivity based on the exponential decay model for the average bulk fluid
temperature as follows.

We have shown that αPT is a function of decay length scale, scaled fluid
temperature, and solid volume fraction in (5.12). Based on this expression, the
non-dimensional effective thermal diffusivity can be written as

αPT + αf

αf
= DPr
λνf

〈If u
′′( f )
‖ θ〉

(1− εs)〈θ ( f )〉 + 1 (C 1)

= D
λ

PeD

D(1− εs)2

〈If u
′′( f )
‖ θ〉

|〈W〉|〈θ ( f )〉 + 1 (C 2)

= 4
6πεs〈Nu〉

Pe2
D

(1− εs)2

〈If u
′′( f )
‖ θ〉

|〈W〉|〈θ ( f )〉 + 1, (C 3)

where 〈Nu〉 is the average Nusselt number that is computed from our Nusselt number
correlation in Sun et al. (2015) as

〈Nu〉 = [−0.46+ 1.77(1− εs)+ 0.69(1− εs)
2]/(1− εs)

3

+ [1.37− 2.4(1− εs)+ 1.2(1− εs)
2]Re0.7Pr1/3. (C 4)
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FIGURE 19. Variation of 〈If u
′′( f )
‖ θ〉 normalized by mean slip velocity |〈W〉| and the

average scaled fluid temperature 〈θ ( f )〉 with Péclet number at solid volume fraction of
0.1. The symbols represent 〈If u

′′( f )
‖ θ〉/|〈W〉|〈θ ( f )〉 obtained using 5 realizations, respectively.

The error bars indicate 95 % confidence intervals.

In the above expression, since C1 = 〈If u
′′( f )
‖ θ〉/|〈W〉|〈θ ( f )〉 is not sensitive to Péclet

number at a fixed solid volume fraction as shown in figure 19 (also see discussions in
§ 5.3), and so the non-dimensional effective diffusivity only depends on Péclet number,
Nusselt number and the decay length scale D/λ for a fixed solid volume fraction.
Therefore, the effective thermal diffusivity can be further simplified as

αPT + αf

αf
= C1C3

C2
(
C4 +C5Re0.7

m Pr1/3
)Pe2

D + 1, (C 5)

where C2 = εs(1 − εs), C3 = 4/6π, C4 = [−0.46 + 1.77(1 − εs) + 0.69(1 − εs)
2]/(1 −

εs)
3, C5= 1.37− 2.4(1− εs)+ 1.2(1− εs)

2. The coefficients C1–C5 are only functions
of solid volume fraction. For a fixed solid volume fraction (εs = 0.1), we compare
this derived expression with PR-DNS data in figure 10. The values obtained from this
expression for Pr= 0.7 (denoted by the solid red line) are very close to our PR-DNS
data that are obtained from cases for different Prandtl number. This good agreement
with PR-DNS data implies that the effective thermal diffusivity indeed has Pe2

D scaling
but may contain boundary layer effects through the expression for the average Nusselt
number.

Appendix D. PTHF from wake scaling analysis

The unconditional ensemble-averaged PTHF 〈If u
′′( f )
‖ T ′′( f )〉 is calculated from the

wake scaling analysis as the particle number density np times an integral over the
p.d.f. of the conditionally averaged particle position f :

〈If u
′′( f )
‖ T ′′( f )〉 = np

∫ Lw

0

∫ ∫
f (x‖, y, z) dx‖ dy dz, (D 1)

where np = 〈Np〉/V is the particle number density defined as the ratio of the average
number of particles 〈Np〉 to the volume of the domain V , and Lw is the length of
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the wake that represents the velocity contour surrounding the particle where the
value of the conditionally ensemble-averaged velocity reaches |〈W〉| (note that since
the particles are stationary, the mean slip velocity is equal to the unconditionally
averaged fluid velocity). Note that the full length of the far wake is not attained in
the computational domain as shown in figure 11(a) due to hydrodynamic interactions
with neighbour particles (note that the two-point velocity correlation has decayed to
zero within the computational domain, indicating that the domain is large enough
for this to not be an artefact of periodicity). For Pr < 1, the integral in (D 1) can
be analysed in three regions: (i) the near-wake region x‖ < aPea < aRea, (ii) the
intermediate overlap region aPea < x‖ < aRea and (iii) the far-wake region aRea < x‖.
In the near-wake and intermediate overlap regions, since the integral over y and z
in (D 1) is dominated by a region of O(a2) where the fluid velocity disturbance is
near U‖O(CD) (see (5.17)) we can replace the integral over dy dz with a2. In the
far-wake region, there would be some spreading of the momentum wake and one
should use rWM = a(x‖/aRea)

1/2 in (5.16). Therefore, the ensemble-averaged PTHF
can be expressed as

np

∫ Lw

0
f dx‖ dy dz= np

[
a2
∫ aPea

0
fN dx‖ + a2

∫ aRea

aPea

fI dx‖ +
∫ Lw

aRea

fFr2
WM dx‖

]
, (D 2)

where fN , fI , and fF are the functions for the near-wake, intermediate and far-wake
regions based on the expressions in (5.17) and (5.19) as

fN ≈ 4h
ρf cpf U‖

(Ts − 〈Tm〉)CDU‖, (D 3)

fI ≈ 4h
ρf cpf U‖

aPea

x‖
(Ts − 〈Tm〉)CDU‖, (D 4)

and

fF ≈ 4h
ρf cpf U‖

aPea

x‖
(Ts − 〈Tm〉)CDU‖aRea

x‖
. (D 5)

Then the PTHF in the three regions can be computed as

〈If u
′′( f )
‖ T ′′( f )〉N = B1npa2

∫ aPea

0

4h
ρf cpf U‖

(Ts − 〈Tm〉)CDU‖ dx‖

= B1npa3 4〈Nu〉αf

D
(Ts − 〈Tm〉)CDPea, (D 6)

in the near-wake region x‖ < aPea < aRea, as

〈If u
′′( f )
‖ T ′′( f )〉I = B2npa2

∫ aRea

aPea

4h
ρf cpf U‖

aPea

x‖
(Ts − 〈Tm〉)CDU‖ dx‖

= B2npa2 4〈Nu〉αf

D
(Ts − 〈Tm〉)CD

∫ aRea

aPea

aPea

x‖
dx‖

= B2npa3 4〈Nu〉αf

D
(Ts − 〈Tm〉)CDPea ln

(
1

Pr

)
(D 7)
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in the intermediate region aPea < x‖ < aRea and as

〈If u
′′( f )
‖ T ′′( f )〉F = B3npa2

∫ Lw

aRea

4h
ρf cpf U‖

aPea

x‖
(Ts − 〈Tm〉)CDU‖aRea

x‖

(
x‖

aRea

)
dx‖

= B3npa2 4〈Nu〉αf

D
(Ts − 〈Tm〉)CDaPea

∫ Lw

aRea

1
x‖

dx‖

= B3npa3 4〈Nu〉αf

D
(Ts − 〈Tm〉)CDPea ln

(
Lw

aRea

)
(D 8)

in the far-wake region aRea < x‖, where B1–B3 are undetermined constant coefficients
arising from the scaling estimates in (D 6)–(D 8). Thus, the complete expression for
the PTHF is

〈If u
′′( f )
‖ T ′′( f )〉 = Pea

[
k2 ln

(
1

Pr

)
+ k3 ln

(
Lw

aRea

)
+ k1

]
, (D 9)

where k1, k2 and k3 are undetermined coefficients that arise from the constants
B1–B3 and the uncertainty in the limits of integration of the overlap region. Note that
the coefficients are not precisely known and their relative magnitude will determine
whether or not the logarithmic dependence on Pr is a dominant contribution in the
expression. The pseudo-turbulent thermal diffusivity αPT can be obtained based on
the PTHF as

αPT = −〈If u
′′( f )
‖ T ′′( f )〉(x‖)

/ ∂〈If T〉
∂x‖

= 〈If u
′′( f )
‖ T ′′( f )〉

/ (Ts − 〈Tm〉)
D/λ

, (D 10)

where the coefficient λ (see (4.7)) is

1
λ
= 4PeD

6πεs〈Nu〉 =
8Pea

6πεs〈Nu〉 . (D 11)

Using the specific expressions for the velocity (cf. (5.17)) and temperature fluctuations
(cf. (5.19)) in the three regions, we obtain the effective thermal diffusivity as

αPT + αf

αf
= npa3 1

αf

D
λ

4〈Nu〉αf

D
CDPea

[
B2 ln

(
1

Pr

)
+ B3 ln

(
Lw

aRea

)
+ B1

]
+ 1

= a3Np

V
D
λ

4〈Nu〉
D

CDPea

[
B2 ln

(
1

Pr

)
+ B3 ln

(
Lw

aRea

)
+ B1

]
+ 1

= 0.065Pe2
D

[
B2 ln

(
1

Pr

)
+ B3 ln

(
Lw

aRea

)
+ B1

]
+ 1, (D 12)

where the number density is np = 〈Np〉/V = 3εs/(4πa3) and the drag coefficient can
be obtained from the normalized average drag force for the case of Reynolds number
of 100 and solid volume fraction of 0.1 (〈F〉 = 6.7 and U‖ = |〈W〉|) as

CD = 〈F〉3πµf D|〈W〉|(1− εs)

ρf U2
‖πa2

= 12〈F〉(1− εs)
2

Rem
= 0.65. (D 13)

Note that since hydrodynamic interactions with neighbour particles cause the velocity
to decay before achieving a far-wake behaviour, the ln(Lw/aRea) term is not present
in practice.
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The wake analysis of the scaling of the effective thermal diffusivity with Péclet
number in (D 12) is compared with PR-DNS data in figure 10. Assuming B1 = 1,
B2 = 1 and neglecting the ln(Lw/aRea) term in (D 12), the results obtained from
the wake scaling analysis over a range of 0.01 < Pr < 0.7 agree very well with
the PR-DNS data. The Pe2

D scaling itself comes from there being a wake and from
realizing that the decay length of the bulk fluid temperature is the scaling to use
for the mean temperature gradient. Therefore, this analysis of the hydrodynamic and
thermal wakes behind the particle gives a physical explanation for the existence of
a Pe2

D scaling in effective thermal diffusivity in the regime of high Reynolds number
and low Prandtl number.

Appendix E. Derivation of the fluid-phase axial conduction model
The standard model (Benyahia et al. 2012) for the fluid-phase axial conduction term

∂〈If qj〉/∂xj in the two-fluid approach is

∂

∂xj
〈If qj〉 =−εf kf

∂2〈T ( f )〉
∂xj∂xj

. (E 1)

In the case of single-phase turbulence this term would not require closure in
the average temperature equation because the operations of differentiation and
averaging in single-phase flows commute, leading to the exact relation ∂〈qj〉/∂xj =
−k∂2〈T〉/∂xj∂xj. However, in two-phase flows this is a modelling assumption because
differentiation of terms such as If qj that involve the indicator function results in
additional terms.

We prefer to develop the average conduction model in terms of non-dimensional
temperature φ, which represents the difference between the fluid and solid temperature
non-dimensionalized by a reference temperature scale (Tm,in− Ts), because this avoids
any spurious dependence of the modelled terms on the choice of reference temperature.
We begin by expanding the average conduction term in (1.1) written in terms of the
non-dimensional temperature φ as:

∂

∂xj
〈If q

φ
j 〉 =

∂

∂xj

〈
−If kf

∂φ

∂xj

〉
= ∂

∂xj

〈
−kf

∂Ifφ

∂xj
+ kfφ

∂If

∂xj

〉
(xj)

= −kf
∂2〈Ifφ〉
∂xj∂xj

+ kf
∂

∂xj

〈
φ
∂If

∂xj

〉
, (E 2)

where in the last expression it is assumed that the fluid thermal conductivity kf is
constant. The second term on the right-hand side of (E 2) is zero because of continuity
of the temperature field at the gas–solid interface. Substituting the definition for the
phasic average of φ from (1.2) into the first term on the right-hand side of (E 2), and
noting that εf is a constant due to statistical homogeneity of the particle field in the
problem considered in this work, results in the standard model for average conduction
in the fluid phase:

∂

∂xj
〈If q

φ
j 〉 =−kf εf

∂2〈φ( f )〉
∂xj∂xj

. (E 3)

Recalling that in our problem set-up there is no average heat flux in the cross-stream
directions due to periodicity, results in the standard model for average axial conduction
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FIGURE 20. (Colour online) Variation of average non-dimensional fluid temperature
〈φ( f )〉 = 〈Ifφ〉/〈If 〉 and normalized temperature gradient in the fluid phase from PR-DNS
data using (a,c) 5 MIS and (b,d) 50 MIS at Rem = 100 and εs = 0.4. The white open
circles are average non-dimensional fluid temperature. The blue open circles (I) represent
−D∂〈Ifφ〉/∂x‖ and the red open circles (II) represent −D〈If ∂φ/∂x‖〉 (see (E 2)). Error bars
in both panels represent 95 % confidence intervals inferred from (a,c) 5 MIS and (b,d) 50
MIS, respectively. For clarity, only half error bars for the blue and red open circles are
shown in this figure.

in the fluid phase:
∂

∂x‖
〈If q

φ
‖ 〉 =−kf εf

∂2〈φ( f )〉
∂x‖∂x‖

. (E 4)

Equivalently, this model can be written in terms of the average heat flux in the fluid
phase as:

〈If q
φ
‖ 〉 =−kf

〈
If
∂φ

∂x‖

〉
=−kf

〈
∂Ifφ

∂x‖

〉
=−kf εf

∂〈φ( f )〉
∂x‖

, (E 5)

where εf is assumed constant due to the statistical homogeneity of the particle field.
We would like to evaluate this model using PR-DNS data. Both expressions

(E 4) and (E 5) involve taking derivatives of 〈φ( f )〉, which is a phasic average that
must be estimated from a finite number of PR-DNS realizations. Therefore, we first
examine the effect of statistical variability in 〈φ( f )〉 (arising from a finite number of
realizations) on the average heat flux in the fluid phase. Figure 20 shows the variation
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of average non-dimensional fluid temperature and its gradient from PR-DNS data for
Rem= 100 and εs= 0.4. Figure 20(a,c) shows that the gradient of the non-dimensional
average fluid temperature −D∂〈Ifφ〉/∂x‖ denoted by blue open circles (I, c) using 5
MIS has high fluctuations even though the average 1-D fluid temperature 〈φ( f )〉 (a)
has relatively small variation with axial location. With a large number of MIS (50)
the fluctuation of −D∂〈Ifφ〉/∂x‖ is reduced as shown in figure 20(d) by the blue
open circle (I). This is because the variation of the average non-dimensional fluid
temperature 〈φ( f )〉 figure 20(b) with 50 MIS is much lower than the one using 5
MIS. However, small fluctuations in the gradient of the average fluid temperature still
remain.

Figure 20(c) also shows that the axial variation of the average non-dimensional
fluid-phase temperature gradient −D〈If ∂φ/∂x‖〉 (denoted by red open circles (II)) has
high fluctuations using 5 MIS. According to (E 5), −D〈If ∂φ/∂x‖〉 (II) should be equal
to −D∂〈Ifφ〉/∂x‖ (I). However, in figure 20(c) the difference between −D∂〈Ifφ〉/∂x‖
(I) and −D〈If ∂φ/∂x‖〉 (II) can be seen clearly if only a few realizations (5 MIS)
are simulated. This difference arises from two sources. One is that there is always
statistical variability in averaging the non-dimensional fluid-phase temperature gradient
If ∂φ/∂x‖ from a finite number of realizations. Note that the variation of the average
non-dimensional fluid-phase temperature gradient using 50 MIS is much smaller
compared to the one obtained from 5 MIS. Correspondingly, the difference between
−D∂〈Ifφ〉/∂x‖ (I) and −D〈If ∂φ/∂x‖〉 (II) due to statistical variability also becomes
smaller for a large number of realizations (50 MIS), as shown in figure 20(d).
The average relative error between −D〈If ∂φ/∂x‖〉 and −D∂〈Ifφ〉/∂x‖ is less than
15 % using 50 MIS. The other reason for the difference between (I) and (II) is
that, as shown above, statistical variability in 〈φ( f )〉 arising from a finite number
of realization results in small scale spatial variation. Taking derivatives of 〈φ( f )〉
amplifies these variations. Thus, using PR-DNS data, we verify that the average
non-dimensional fluid-phase temperature gradient −D〈If ∂φ/∂x‖〉 can be approximated
by −D∂〈Ifφ〉/∂x‖ in a fixed homogeneous particle assembly. However, it should be
noted that since fluctuations in the average temperature gradient exist, these will
result in more noise in the second derivative of average temperature.
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