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Viscous symmetric stability of circular flows
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The linear stability properties of viscous circular flows in a rotating environment
are studied with respect to symmetric perturbations. Through the use of an effective
energy or Lyapunov functional, we derive sufficient conditions for Lyapunov stability
with respect to such perturbations. For circular flows with swirl velocity V (r) we
find that Lyapunov stability is determined by the properties of the function F(r) =
(2V/r + f )/Q (with f the Coriolis parameter, r the radius and Q the absolute
vorticity) instead of the customary Rayleigh discriminant Φ(r) = (2V/r + f )Q. The
conditions for stability are valid for flows with non-zero Q everywhere. Further, the
flows are presumed stationary, incompressible and velocity perturbations are required
to vanish at rigid boundaries. For Lyapunov stable flows an upper bound for the
increase of the total perturbation energy due to transient non-modal growth is derived
which is valid for any Reynolds number. The theory is applied to Couette flow and
the Lamb–Oseen vortex.

1. Introduction
In Kloosterziel & Carnevale (2007) we studied the linear stability of some simple

baroclinic parallel shear flows in rotating stratified systems through the use of
appropriate Lyapunov functionals. The flows were assumed zonally invariant and
subjected to perturbations that are also zonally invariant. The instability that may
or may not ensue is sometimes called inertial instability. It is closely related to
centrifugal instability, which is a well-known robust phenomenon observed in circular
flows subjected to perturbations that are also circularly symmetric. In the laboratory
centrifugal instability manifests itself, for example, as the famous axisymmetric
Taylor vortices in Couette flow, i.e. the flow between two co-axial rotating cylinders.
Because of the zonal invariance of disturbances in parallel shear flows and the
circularly symmetric nature of the disturbances of circular flows, both instabilities are
appropriately called symmetric instability. In the older meteorological literature it is
sometimes called dynamic instability. For graphs from numerical simulations showing
the toroidal overturning motions associated with the centrifugal instability in vortices
and their fully nonlinear evolution (see e.g. Kloosterziel, Carnevale & Orlandi 2007).
A sketch of the overturning motions associated with the toroidal vortices is provided
in figure 1(a). Unlike in Kloosterziel & Carnevale (2007), in this paper we consider
the more complicated question of stability of ‘arbitrary’ circular flows but we restrict
ourselves to flows in a homogeneous fluid.
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Figure 1. (a) Symmetric instability starts in an unstable region as toroidal vortices (‘rib
vortices’) of alternating sign. For a barotropic vortex with swirl velocity V (r) the unstable
region is where the Rayleigh discriminant Φ(r) < 0 with Φ(r) defined in (1.1). (b) Diagram
defining the polar coordinate system and velocity components for a circular vortex. Here v is
the swirl velocity, w the vertical velocity component and u the radial velocity component.

For arbitrary barotropic circular flows with swirl velocity V (r), the inviscid classical
condition for stability is that for all r:

Φ(r) > 0, where Φ =

(
2V

r
+ f

)
Q and Q =

dV

dr
+

V

r
+ f = ω + f

(1.1)

is the absolute vorticity. The inviscid classical condition for instability is that Φ(r) <

0 in some region. The cylindrical polar coordinate system (r, θ, z) is sketched in
figure 1(b). The relative vorticity component ω is in the z direction and aligned with
the axis of rotation and gravitational acceleration. At the time unfamiliar with the
older meteorological literature, Kloosterziel & van Heijst (1991) ‘rediscovered’ the
criterion in an attempt to explain the difficulty in creating stable anticyclones in a
rotating fluid in the laboratory. When f = 0 the condition Φ(r) < 0 reduces to
Rayleigh’s celebrated circulation criterion (Rayleigh 1916) for symmetric instability
(see Drazin & Reid 1981). In an extension of Bayly’s analysis (Bayly 1988) to rotating
systems, Sipp & Jacquin (2000) generalized the criterion to non-circular flows. In
Φ the term 2V/r is replaced by 2|V |/R, with |V | the velocity amplitude along a
streamline and R the local algebraic radius of curvature of the streamline. If there
are streamlines along which Φ < 0, then locally instability is guaranteed.

The classical criterion (1.1) for barotropic circular flows in a homogeneous fluid
follows from the classical condition for baroclinic circular flows with swirl velocity
V (r, z) in a stably stratified fluid. If the fluid is Boussinesq, the criterion for stability
is that everywhere in the domain:

N2 + Φ > 0 and N2Φ − S2 > 0, where S =

(
2V

r
+ f

)
∂V

∂z
, (1.2)

and N2 the square of the buoyancy frequency. Both criteria (1.1) and the general
criterion (1.2) have long been known to meteorologists (see e.g. Sawyer 1947; van
Mieghem 1951; Eliassen & Kleinschmidt 1957; Charney 1973). The second condition
in (1.2) appears in various disguises in the literature. The criterion for symmetric
stability of barotropic and baroclinic parallel shear flows in a rotating system follow
quickly by discarding the curvature term 2V/r in Φ and for baroclinic flows in S as
well.
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Viscous symmetric stability of circular flows 173

The classical stability criterion (1.2) for baroclinic flows pertains only to inviscid and
adiabatic fluids and can be established in a variety of well-known ways. For instance,
it can be established by including rotation and stratification in Rayleigh’s fluid ring
exchange argument for circular vortices (Rayleigh 1916). The ‘pressureless’ Lagrangian
displacement argument of Solberg (1936) also leads to the stability condition. Fjørtoft
(1950) used an energy method which, unlike in Rayleigh’s or Solberg’s approach,
takes continuity, boundary conditions and pressure perturbations into account. Using
the fact that for symmetric perturbations the angular momentum or circulation
of individual fluid rings is conserved, Fjørtoft showed that the combination of
total kinetic energy associated with the azimuthal (swirl) velocity and the potential
energy forms an effective potential energy for motions in the meridional rz plane.
This effective potential energy depends only on the meridional displacement field.
Fjørtoft further showed that the effective potential energy for a given basic flow
is a minimum if the criterion for stability (1.2) is satisfied. If so, it follows that
the increase in the total meridional kinetic energy can be kept arbitrarily small if
the initial velocity perturbations and initial meridional displacements are sufficiently
small.

Through a consideration of the time evolution of certain volume integrated
quantities, Ooyama (1966) also found that in the linearized dynamics the total
meridional kinetic energy and the meridional displacement field can be kept arbitrarily
small if the classical condition for stability (1.2) is satisfied. If not, then initial
perturbations can be introduced which lead to unbounded growth of both integral
quantities, i.e. there will be instability. For the instability proof, Ooyama used a
clever construction having noted that the assumption of the existence of normal-
modes solutions may be erroneous, i.e. generally the linearized dynamics allows for
a normal-modes analysis only when the boundaries have a special shape, which
differs for different flows (see Høiland 1962; Yanai & Tokiaka 1969). Thus, normal-
modes stability/instability or so-called exponential stability/instability can rarely
be expected to be established for enclosed flows. If the question of the existence
of normal-modes solutions is disregarded, a normal-modes analysis does however
lead to the inviscid criterion for stability. For barotropic flows in a homogeneous
fluid this is shown in the Appendix, i.e. if (1.1) holds, there will be normal-modes
stability.

For baroclinic parallel shear flows in a rotating system, Cho, Shepherd & Vladimirov
(1993) as well as Mu, Shepherd & Swanson (1996) showed that nonlinear stability
in the sense of Lyapunov follows if (1.2) is satisfied. They used the energy-Casimir
methodology of Fjørtoft (1950) and Arnol’d (1966). It requires the introduction of
a ‘pseudo-energy’. The difference between the pseudo-energy of the perturbed flow
and the basic unperturbed state is the disturbance pseudo-energy which is conserved
in the fully nonlinear dynamics. If (1.2) is satisfied, the disturbance pseudo-energy
is a positive-definite functional of the finite-amplitude perturbations which implies
Lyapunov stability.

In Kloosterziel & Carnevale (2007) it was shown how the presumed symmetry in
the linear perturbation problem allows for the construction of an ‘effective energy’ E
which also establishes stability in the sense of Lyapunov if the classical condition (1.2)
is satisfied. The disturbance pseudo-energy of Cho et al. (1993) reduces in the small-
amplitude limit to this effective energy. The stability proofs of Fjørtoft (1950), Ooyama
(1966) and Cho et al. (1993) all depend on conservation of angular momentum or
absolute velocity as well as density of individual fluid rings or rods. If viscosity
and density diffusion are included, these conservation laws no longer hold. But, the
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174 R. C. Kloosterziel

construction of Kloosterziel & Carnevale (2007) allows for the inclusion of viscosity
and density diffusion (albeit just for the linearized dynamics). With their approach they
rediscovered McIntyre’s stability boundary for ‘double diffusive’ instability (McIntyre
1970). McIntyre found this stability boundary with a normal-modes analysis on
an unbounded domain (approximating a circular flow by a rectilinear flow with
constant vertical and horizontal shear and embedded in a fluid with constant
buoyancy frequency) in the limit of vanishing viscosity. This favourable comparison
led us to expect that by using Kloosterziel and Carnevale’s approach (Kloosterziel
& Carnevale 2007) we might be able to extract useful information regarding
stability of more realistic viscous/diffusive flows. The first step in this direction
is taken in this paper by considering arbitrary circular flows in a homogeneous
fluid.

The plan of this paper is as follows. Section 2 starts with the linear perturbation
equations. In § 2.1 we construct the effective energy E which is conserved in the
inviscid linear dynamics, i.e. dE/dt = 0, where t is time. The construction is only
valid for flows for which the (absolute) vorticity Q is sign-definite, i.e. for flows with
Q �= 0 everywhere. The effective energy is positive definite if the function

F(r) =
2V/r + f

dV/dr + V/r + f
=

2V/r + f

Q
(1.3)

is positive everywhere and E then becomes a Lyapunov functional with which stability
is investigated throughout this paper. It follows that any flow that satisfies the inviscid
classical criterion for stability (Φ or F > 0 everywhere) is stable in the sense of
Lyapunov in the inviscid problem.

In § 2.2 we derive an upper bound for the gain in perturbation energy that may
occur due to transient non-modal growth in the inviscid dynamics for Lyapunov
stable flows. In § 2.3 we derive two conditions which guarantee that in the viscous
dynamics dE/dt � 0 at all times. The first is that if there is a constant α such that
for all r ,

F(r) > 0 and G(r; α) ≡ d2F
dr2

+
α

r

dF
dr

− 1

2
(3 − α)(1 + α)

F
r2

� 0, (1.4)

then there is Lyapunov stability. Stability is also guaranteed if everywhere

F(r) > 0 and

(
dF/dr

F

)2

�
4

r2
. (1.5)

Either (1.4) or (1.5) is sufficient: they need not both hold simultaneously. Also
it is shown that if either of these conditions is met, the inviscid upper bound
on the gain derived in § 2.2 remains valid for any Reynolds number in the
viscous dynamics. The criteria (1.4) and (1.5) are the two notable results in this
paper.

In the derivations of these results we ignore ‘end-effects’, i.e. we ignore the fact that
if there is, for example, a rigid bottom and/or top, near these boundaries the V field
should vanish if the no-slip condition applies. This inconvenience can be avoided (as
is usually done) by imagining the fluid to be of infinite extent in the vertical or by
assuming that such end-effects are confined to a thin region near the boundaries.
Also, at rigid boundaries the velocity perturbations are required to vanish, i.e. the
no-flux and no-slip condition are prescribed. In any case, the boundaries must also be
circularly symmetric. Further we assume that the unperturbed flow can be considered
stationary.
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Viscous symmetric stability of circular flows 175

In § 3 we apply the theory to Couette flow. We find with (1.4) that Couette
flow is Lyapunov stable in the viscous dynamics if the classical inviscid criterion
is satisfied. Synge (1938) proved with a normal modes analysis that Φ(r) > 0 is
sufficient for the viscous problem (normal-modes stability). Wood (1964) later gave a
short proof using an effective energy integral like ours. Both proofs depended on that
Φ ∝ 1 + constant/r2, so that when integrating and differentiating simple powers of
r appeared (see also Chandrasekhar 1961, who essentially repeats Synge’s analysis).
Here we have however general conditions for symmetric stability with which we can
test the stability of any flow.

In § 4 we consider the Lamb–Oseen vortex. In § 4.1 we find that in a non-
rotating environment (f = 0) we cannot prove stability with either (1.4) or (1.5).
If placed in a rotating environment (f �= 0) we discern between the cyclonic and
anticyclonic case through the sign of the Rossby number Ro. For cyclones (Ro > 0)
we find in § 4.2 Lyapunov stability for a finite range of positive Rossby numbers
whereas classical stability is guaranteed for all Ro > 0. In § 4.3 we show that for
anticyclones both (1.4) and (1.5) imply Lyapunov stability in the entire classically
stable range −1 < Ro < 0. For the anticyclone we find that for any Reynolds
number the perturbation energy can increase at most by a factor of 2. For the cyclone
with large Rossby number Ro = 26 the increase cannot exceed a factor of about
5. The maximum increase is smaller for weaker cyclones, i.e. for smaller Rossby
numbers.

In § 5 we conclude with a brief summary and discussion of the main results and
mention possible future extensions of this work. In the Appendix we show what the
mathematical problems are that arise if a normal-modes analysis is attempted with
viscosity included. This could have been sufficient motivation for the approach we
have taken in this paper.

2. Formulation of the linearized problem
Consider a steady circular flow or vortex v = V (r) that is in cyclo-geostrophic and

hydrostatic balance:

V 2

r
+ f V =

1

ρ

∂P

∂r
,

1

ρ

∂P

∂z
= −g, (2.1)

where p = P (r, z) is the pressure, ρ is the constant density and g is the gravitational
constant with gravity aligned with the axis of rotation (along the z-axis as sketched
in figure 1) and f the Coriolis parameter representing the effect of rotation
in the dynamics. When the kinematic viscosity ν �= 0, stationary flows must
satisfy

1

r

d

dr
r
dV

dr
− V

r2
= 0

(like Couette flow between two concentric cylinders). Nonetheless, when we perform
a stability analysis below in § 2.3 with viscous effects included, we will treat the
basic state as stationary. Whether this leads to conclusions one can have confidence
in, largely depends on whether the time scales of the evolution of the basic flow
and those of the perturbations are well separated. One can also envision the
possibility of introducing an appropriate circularly symmetric external force field
acting in the azimuthal direction which renders the azimuthal v field stationary
(see § 5).
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176 R. C. Kloosterziel

Introducing perturbations u, v, w and p independent of the azimuthal angle θ and
linearizing about the balanced state (2.1) we get(

∂

∂t
− νΔ1

)
u −

(
2V

r
+ f

)
v = − 1

ρ

∂p

∂r
, (2.2)(

∂

∂t
− νΔ1

)
v +

(
dV

dr
+

V

r
+ f

)
u = 0, (2.3)(

∂

∂t
− νΔ

)
w = − 1

ρ

∂p

∂z
, (2.4)

∇ · u =
1

r

∂(ru)

∂r
+

∂w

∂z
= 0, (2.5)

where

Δ =
1

r

∂

∂r
r

∂

∂r
+

∂2

∂z2
and Δ1 = Δ − 1

r2
. (2.6)

In what follows, it will also be useful to write

Δ1 =
∂

∂r

1

r

∂

∂r
r +

∂2

∂z2
. (2.7)

Adding u× (2.2) + w× (2.4) we get

∂

∂t

1

2

(
u2 + w2

)
−

(
2V

r
+ f

)
uv = −u · ∇p/ρ + ν(uΔ1u + wΔw), (2.8)

where

∇ = er

∂

∂r
+ ez

∂

∂z
, u = eru + eθv + ezw.

With (2.3) it follows that

u = −(∂v/∂t − νΔ1v)/

(
dV

dr
+

V

r
+ f

)
= −(∂v/∂t − νΔ1v)/Q (2.9)

provided that the (absolute) vorticity Q defined in (1.1) vanishes nowhere. There will
be difficulties, for example, if f = 0 and V is potential flow (i.e. V ∝ 1/r), as found
outside a spinning cylinder which is placed in a large quiescent basin. In that case our
analysis fails because then Q = 0 so that (2.9) is meaningless. Assuming that Q �= 0
everywhere, we can substitute (2.9) in (2.8) and get

∂

∂t

1

2

[
u2 + w2 + Fv2

]
= −u · ∇p/ρ + ν(uΔ1u + wΔw + FvΔ1v) (2.10)

with F(r) defined in (1.3).

2.1. Inviscid dynamics

If we set ν = 0 and integrate (2.10), we find that

dE
dt

= 0 with E =
1

2

∫
V

[
u2 + w2 + Fv2

]
dV (2.11)

provided that
∫

V div(up/ρ) dV = 0. dV = 2πr dr dz stands for the volume integral
over the domain. This will hold if the flow is either enclosed by rigid boundaries
where u · n = 0 with n the unit vector normal to such boundaries (no flux condition),
or can be in a domain unbounded in one or more direction, in which case we require
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Viscous symmetric stability of circular flows 177

that u vanishes ‘fast enough’ for r → ∞ if unbounded in the radial direction, or for
z → ±∞ if unbounded in the vertical. If there is no interior boundary, things must
of course be ‘well behaved’ at the origin r = 0. From here on we shall call E the
effective energy.

If 2V/r + f �= 0 everywhere the effective energy can also be written as

E =
1

2

∫
V

[
u2 + w2 +

(2V /r + f )2

Φ
v2

]
dV. (2.12)

We mentioned this result (without a derivation) already in Kloosterziel et al. (2007).
Clearly E is a positive-definite functional if the inviscid classical condition Φ > 0
is satisfied everywhere in the domain because then also F > 0 everywhere. This
establishes Lyapunov stability in the inviscid dynamics, i.e. the perturbation energy
E, ||u|| ≡ [

∫
V u2dV]1/2, ||w|| and ||v|| can be kept arbitrarily small at all times by

choosing the initial perturbations ‘small enough’. To see this, note that if F > 0
everywhere, it follows that if at some initial time (say t = 0) small perturbations are
introduced, then at all times (subscripts ‘0’ indicate t = 0)

E(t) = E0 =
1

2

∫
V

[
u2

0 + w2
0 + Fv2

0

]
dV > 0 and (2.13)

0 �
1

2

∫
V

(u2+w2)dV � E0, 0 �
1

2
min {F}

∫
V

v2dV �
1

2

∫
V

Fv2dV � E0. (2.14)

The last inequality implies

0 �
1

2

∫
V

v2dV �
E0

min {F} . (2.15)

From here on ‘min{· · · }’ and ‘max{· · · }’ stand for the minimum and maximum of the
function in the domain. The total perturbation energy E is

E =
1

2

∫
V

[
u2 + w2 + v2

]
dV. (2.16)

For convenience we have dropped the constant density ρ here. It easily verified that

0 � E �
E0

min {F} if min {F} � 1 and

0 � E � E0 if min {F} � 1.

⎫⎬
⎭ (2.17)

Hence E can be kept arbitrarily small if F > 0 everywhere provided that E0 < ∞.
Finite E0 is guaranteed if F < ∞ everywhere which means that Q = 0 cannot be
allowed.

The perturbation energy evolves according to

dE

dt
= −

∫
V

[(
dV

dr
− V

r

)
uv

]
dV + ν

∫
V

(uΔ1u + vΔ1v + wΔw) dV. (2.18)

If the classical criterion for stability (Φ > 0 or F > 0 everywhere) is satisfied and
ν = 0, clearly one would be hard pressed to establish stability with (2.18). But, (2.17)
shows that there will then always be Lyapunov stability.

2.2. Transient growth

Although the perturbation energy can be kept arbitrarily small by taking the initial
perturbations u0, v0 and w0 small enough, there can be transient growth dE/dt > 0
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for some period of time. Much recent research has focused on finding ‘optimal
perturbations’ for a variety of flows that lead to the greatest possible transient
amplification of initial perturbations. This transient growth phenomenon can occur
in any system where the operators that describe the linearized dynamics are non-
normal, i.e. not self-adjoint so that eigenmodes (as in normal-modes analysis) are not
mutually orthogonal. Even in systems that are exponentially stable (normal-modes
stable), large growth for some finite time-interval is sometimes possible for large
Reynolds numbers (see e.g. Farrell 1988, Butler & Farrell 1992, Trefethen et al. 1993,
Pradeep & Hussain 2006, Schmidt 2007). An upper bound for the so-called ‘gain’
G(t) = E(t)/E0 can be determined as follows: First note that

E0 �
1

2

∫
V

[
u2

0 + w2
0 + max {F} v2

0

]
dV =

1

2

(
||u0||2 + ||w0||2 + max {F} ||v0||2

)
.

(2.19)
Next note that

E0

E0

�
||u0||2 + ||w0||2 + max {F} ||v0||2

||u0||2 + ||w0||2 + ||v0||2 � max {F} when max {F} � 1,

� 1 when max {F} � 1.

⎫⎪⎬
⎪⎭ (2.20)

Dividing both sides of the inequalities in (2.17) by E0 yields with (2.20)

E(t)/E0 = G(t) � Gmax = 1/min {F} when max {F} � 1, (2.21a)

= max {F} when 1 � min {F} , (2.21b)

= max {F} /min {F} when min {F} � 1 � max {F}. (2.21c)

This upper bound Gmax for the gain is valid for any classically stable and therefore
Lyapunov stable flow in the inviscid dynamics. If F ≈ 1 everywhere, then Gmax

slightly exceeds unity. If one imagines, for example, that F = 1 (take f = 0 and
solid-body rotation V (r) = Ωr) then E = E and Gmax = 1 according to (2.21c). There
is neither transient growth nor decay: both dE/dt = 0 and dE/dt = 0.

One may wonder whether these upper bounds are sharp or not. Consider first
the case 0 < F � 1 so that according to (2.21a) the upper bound is Gmax =
1/min {F}. Imagine that initially there are meridional velocity perturbations u0, w0

while v0 = 0. Then E0 = (1/2)(||u0||2 + ||w0||2) = E0. Assume that later the meridional
velocity perturbations vanish and instead there is a highly concentrated azimuthal
perturbation velocity field v centred about the position r = rmin where F(rmin) =
min {F} � 1. Then E(t) = (1/2)||v(t)||2 and by conservation of E we have E(t) �
(1/2)min {F} ||v(t)||2 = E0 = E0 or E(t) � E0/min {F}. Then E(t)/E0 � 1/min {F}
which is (2.21a). Physically this scenario is plausible if the initial u, w fields are
concentrated about rmin. In the inviscid dynamics we expect that the upper bound
(2.21a), although unattainable, is quite sharp and that maximum amplification is
found for initial meridional velocity perturbations located in a narrow region where
F(r) attains it minimum.

The upper bound (2.21b) for cases with F � 1 follows likewise by imagining that
initially there is an azimuthal perturbation field v0 highly concentrated about r = rmax

where F(rmax) = max {F} � 1. If u0 = w0 = 0 we then have E0 = (1/2)||v0||2 and
E0 � (1/2)max {F} ||v0||2. If at a later time v = 0 and there are non-zero meridional
velocity perturbations then E(t) = (1/2)(||u(t)||2 + ||w(t)||2) = E(t). But conservation
of E implies E(t) = E(t) � max {F} E0 so that E(t)/E0 � max {F}. This suggests
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that the upper bound in (2.21b) could be approached by choosing an initial v field
that is confined to a narrow region about r = rmax .

If max {F} > 1 and min {F} < 1, the upper bound Gmax = max {F} /min {F}
in (2.21c) is found by imagining that initially there is a v field concentrated in the
region about rmax while u0 = w0 = 0 and that at a later time again u = w = 0 while
the v field is then concentrated around r = rmin. This is not a plausible scenario:
it is unlikely that an initial v field concentrated in one region evolves according to
(2.2)–(2.4) towards a v field that is concentrated in a different region. Hence for flows
with min {F} 	 1 	 max {F}, Gmax in (2.21c) is probably rather conservative.

2.3. Viscous dynamics

We will now derive criteria for viscous flows that guarantee that E is positive definite
while at all times dE/dt � 0. With the assumption that we can treat V as stationary,
we have

dE
dt

= ν

∫
V

(uΔ1u + wΔw) dV + ν

∫
V

FvΔ1v dV. (2.22)

Again, this is only valid if
∫

V div(up/ρ) dV = 0. At boundaries we require the
perturbations u, v, w to vanish and in any infinite direction they are again required to
vanish rapidly enough. Then (2.22) is valid and through partial integration it follows
that the first term on the right-hand side in (2.22) becomes

ν

∫
V

(uΔ1u + wΔw) dV = −ν

∫
V

(∣∣r−1∇ru
∣∣2 + |∇w|2

)
dV, (2.23)

where |a∇b|2 = a2(∂rb)2 + a2(∂zb)2. The term (2.23) would also arise as a part of the
usual viscous dissipation of the perturbation energy E. Let us evaluate the second
term on the right-hand side of (2.22). The part involving the ∂2

z operator in Δ1

simply gives the term ν
∫

V Fv∂2
z v dV = −ν

∫
V F(∂zv)2 dV. The part involving the r

derivatives can be evaluated in two ways, (A) uses the form Δ − 1/r2 with Δ as in
(2.6) while (B) uses the r operator as in Δ1 in (2.7). Assuming F to be continuous
and twice differentiable, we find through partial integration:

(A)

∫
V

Fv

(
1

r

∂

∂r
r
∂v

∂r
− v

r2

)
dV = −

∫
V

F
[(

∂v

∂r

)2

+
(v

r

)2

]
dV

+
1

2

∫
V

1

r3

d

dr
r
dF
dr

(rv)2 dV,

(B)

∫
V

Fv
∂

∂r

1

r

∂rv

∂r
dV = −

∫
V

F
(

1

r

∂rv

∂r

)2

dV +
1

2

∫
V

1

r

d

dr

1

r

dF
dr

(rv)2 dV.

Thus we get

(A)
dE
dt

= −ν

∫
V

(∣∣r−1∇ru
∣∣2 + |∇w|2

)
dV − ν

∫
V

F |∇v|2 dV

+
ν

2

∫
V

(
d2F
dr2

+
1

r

dF
dr

− 2F
r2

)
v2 dV, (2.24)

(B)
dE
dt

= −ν

∫
V

(∣∣r−1∇ru
∣∣2 + |∇w|2

)
dV − ν

∫
V

F
∣∣r−1∇rv

∣∣2 dV

+
ν

2

∫
V

(
d2F
dr2

− 1

r

dF
dr

)
v2 dV. (2.25)
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From this it follows that a sufficient condition for stability is that

F(r) > 0 and (A)
d2F
dr2

+
1

r

dF
dr

− 2F
r2

� 0 or (B)
d2F
dr2

− 1

r

dF
dr

� 0, (2.26)

because then E = (1/2)
∫

V(u2 + w2 + Fv2dV) is positive definite and at all times the
right-hand side in (2.24) or (2.25) is negative or zero and thus dE/dt � 0.

But, this can be improved as follows: Consider (2.24)−c×(2.25), with c �= 1 a
constant:

(1 − c)
dE
dt

= −(1 − c)ν

∫
V

{∣∣r−1∇ru
∣∣2 + |∇w|2 + F

(
∂v

∂z

)2
}

dV

+
ν

2

∫
V

{
(1 − c)

d2F
dr2

+ (1 + c)
1

r

dF
dr

}
v2dV

− ν

∫
V

F
{

(1 − c)

[(
∂v

∂r

)2

+
(v

r

)2

]
− 2c

∂v

∂r

v

r

}
dV. (2.27)

The term {· · · } in the last integral on the right-hand side in (2.27) equals

(1 − c)

{(
∂v

∂r
−

( c

1 − c

) v

r

)2

+

(
1 − c2

(1 − c)2

)(v

r

)2

}
.

We divide both sides of (2.27) by (1 − c) and set

α =
1 + c

1 − c
so that 2

(
1 − c2

(1 − c)2

)
=

1

2
(3 − α)(1 + α) and

c

c − 1
=

1

2
(α − 1).

The effective energy equation then becomes

dE
dt

= −ν

∫
V

{∣∣r−1∇ru
∣∣2+|∇w|2 + F

(
∂v

∂z

)2
}

dV−ν

∫
V

F
(

∂v

∂r
− 1

2
(α − 1)

v

r

)2

dV

+
ν

2

∫
V

{
d2F
dr2

+
α

r

dF
dr

− 1

2
(3 − α)(1 + α)

F
r2

}
v2dV. (2.28)

Therefore a sufficient condition for stability of a viscous flow with respect to arbitrary
symmetric perturbations is that, for some constant α, (1.4) is satisfied everywhere. In
(1.4) only the range −1 � α � 3 is useful since only in that range (3 − α)(1 + α) � 0.
For α = 1 this is condition (A) in (2.26), while (B) is found for α = −1.

Stability also follows if F > 0 and if

1

2

∫
V

{
d2F
dr2

+
α

r

dF
dr

− 1

2
(3 − α)(1 + α)

F
r2

}
v2dV−

∫
V

F
(

∂v

∂r
− 1

2
(α − 1)

v

r

)2

dV� 0.

(2.29)
If F > 0 we can substitute v = ṽ/

√
F in (2.24), (2.25) or (2.28). Then

∂v

∂r
=

1

F1/2

∂ṽ

∂r
− 1

2

(
dF/dr

F3/2

)
ṽ,

and if this is substituted in the integral
∫

V F |∇v|2 dV that appears in (2.24) one gets∫
V

F |∇v|2 dV=

∫
V

(
∂ṽ

∂z

)2

dV+

∫
V

{(
∂ṽ

∂r

)2

− ṽ

F
dF
dr

∂ṽ

∂r
+

1

4

(
dF/dr

F

)2

ṽ2

}
dV.
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Next we use that

−
∫

V

ṽ

F
dF
dr

∂ṽ

∂r
dV = −1

2

∫
V

∂

∂r

(
rṽ2

F
dF
dr

)
drdz +

1

2

∫
V

ṽ2

r

d

dr

(
r

F
dF
dr

)
dV.

Assuming v and therefore ṽ to vanish at boundaries or rapidly enough for large r or
at r = 0, the integral

∫
V ∂/∂r (· · · ) dr dz = 0 and we find that (2.24) becomes

dE
dt

= −ν

∫
V

{∣∣r−1∇ru
∣∣2 + |∇w|2 +

(
∂ṽ

∂z

)2
}

dV

− ν

∫
V

{(
∂ṽ

∂r

)2

− 1

4

[(
dF/dr

F

)2

− 4

r2

]
ṽ2

}
dV. (2.30)

Equations (2.25) and (2.28) also take this form after the substitution v = ṽ/
√

F.
Hence stability is also guaranteed if (1.5) holds everywhere. One might expect that
(1.5) is a less conservative condition than (1.4) since (1.5) follows from combining
the second negative-definite integral on the right-hand side of (2.28) with the last
integral containing G(r; α) which we defined in (1.4). But, as we will see in the next
section, this is not necessarily true. In any case, if either (1.4) or (1.5) is satisfied,
dE/dt = 0 only when ∇ru, ∇w, ∇v and v = 0 everywhere in the domain. If the
domain is either confined in the vertical or in the horizontal by rigid boundaries
where the perturbations vanish, this implies that u = v = w = 0 so that limt→∞E = 0
and limt→∞E = 0. Hence the flow would then be forced back towards the basic flow
V (r) and the flow is asymptotically stable.

If either (1.4) or (1.5), or both, are satisfied everywhere, the upper bounds Gmax

on the gain due to possible transient growth remain (2.21a)–(2.21c) because then
dE/dt � 0 at all times so that instead of (2.17) we have

0 � E(t) �
E(t)

min {F} �
E0

min {F} if min {F} � 1,

0 � E(t) � E(t) � E0 if min {F} � 1.

⎫⎬
⎭ (2.31)

Division by E0 and using (2.20) then again yields (2.21a)–(2.21c). For small Reynolds
numbers Re, these upper bounds are expected to be conservative because the evolution
equations (2.28) and (2.30) indicate that the effective energy E will diminish rapidly
for small Re if either (1.4) and/or (1.5) is satisfied everywhere.

3. Couette flow
The well-known Couette flow of a viscous fluid between rotating coaxial cylinders

has the velocity distribution

V (r) = Ar + B/r with A = Ω1

μ − η2

1 − η2
, B = Ω1R

2
1

1 − μ

1 − η2
(3.1)

and the parameters

μ = Ω2/Ω1 and η = R1/R2.

R1 and R2 are the radius of the inner and the outer cylinder which rotate with
angular velocity Ω1 and Ω2, respectively (see Drazin & Reid 1981). The Rayleigh
discriminant Φ(r) (with f = 0) is positive throughout the domain R1 � r � R2 if
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μ > η2. This means that for classical (inviscid) stability the cylinders must rotate in
the same direction and

|V (R2)R2| > |V (R1)R1|. (3.2)

We have

F(r) = 1 +
B

Ar2
= 1 +

(
1 − μ

μ − η2

)
1

(r/R1)2
(3.3)

and F(r) > 0 for all r ∈ [R1, R2] if the classical criterion (μ > η2) is satisfied (note
that Φ(r) = 4A2F(r) for Couette flow). Like every flow that satisfies the classical
condition, in the inviscid dynamics Couette flow is Lyapunov stable.

The second condition in (1.4) is after substitution of (3.3)

G(r; α) = (6 − 2α)
B

A

1

r4
− 1

2
(3 − α)(1 + α)

(
1

r2
+

B

A

1

r4

)
� 0. (3.4)

This will be satisfied for α = 3, i.e. for α = 3 the last term in (2.28) vanishes identically
for all r > 0. Hence Couette flow is also Lyapunov stable in the viscous dynamics if
the inviscid classical criterion is satisfied.

For Couette flow (1.5) is too conservative: we find that the second condition in
(1.5) is only satisfied when μ < 2 − η2. This implies that the classical condition plus
the second condition in (1.5) require that the inner and outer cylinder rotate in the
same direction and that

|V (R2)R2| > |V (R1)R1| but |V (R2)R2| < |V (R1)R1|
(
2(R2/R1)

2 − 1
)
. (3.5)

Thus (1.5) only proves Lyapunov stability of a subset of the classically stable Couette
flows whereas (1.4) proves stability for all classically stable flows. For different flows
the converse may be true, i.e. (1.5) may sometimes be less restrictive than (1.4). This
is shown in the next section with an example.

There are two special cases worthwhile mentioning. The first is that of where the
inner cylinder is taken out. Then V = Ω2r , which is simply solid-body rotation as
found inside a rotating cylinder after a sufficiently long spin-up time. Then Φ = 4Ω2

2

and F = 1. This is therefore inviscidly stable to symmetric perturbations because the
effective energy is positive-definite, but also Lyapunov stable in the viscous dynamics
since either (2.24) or (2.25) show that dE/dt � 0 and also dE/dt � 0. The second
case is the limit R2 → ∞ and Ω2 = 0 (μ = 0 and η = 0). The result would be pure
potential flow V = Ω1R

2
1/r outside a spinning cylinder. This has Φ = 0 everywhere

because the vorticity Q is zero and F is undefined. As mentioned in § 2, our approach
cannot be used in this case.

4. Lamb–Oseen vortex
The so-called Lamb–Oseen vortex or ‘Gaussian’ vortex has a velocity distribution

V (r) and corresponding vorticity ω given by

V (r) =
ω0L

(r/L)

[
1 − exp

(
−r2/2L2

)]
, ω(r) =

dV

dr
+

V

r
= ω0 exp(−r2/2L2). (4.1)

The radius r has been non-dimensionalized with an arbitrary length scale L and
ω0 is the peak vorticity found at r = 0. V and ω are shown in figure 2(a). Unlike
Couette flow, in a freely evolving viscous fluid this is not a steady state solution
of the Navier–Stokes equations and V and ω evolve according to ∂tV = νΔ1V and
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1 2 3 4 50

0.5

1.0

r/L

ω/ω0

V/ω0L

(a) (b)

1 3 4 50

1

2

3

r/L

�

4/(r/L)2

L2 d�/dr
�

2

rc/L

Figure 2. (a) The vorticity ω (stippled line) and velocity V (solid line) of the Lamb–Oseen
vortex given by (4.1) non-dimensionalized with ω0 and ω0L, respectively, as a function of
r/L. Peak vorticity is ω0 at r = 0 and L is arbitrary. The non-dimensional peak velocity
is Vmax/(ω0L) ≈ 0.45 at rmax/L ≈ 1.57. (b) Graph showing F given by (4.2) (thin line),
(dF/dr)2/F2 non-dimensionalized with L2 (thick line) and the curve 4/(r/L)2 (stippled line)
as a function of r/L. For r > rc/L ≈ 1.79 (indicated by •) the criterion (1.5) is not satisfied.
In (a) the symbol • is also shown at the position rc/L.

∂tω = νΔω. If (4.1) defined V and ω at some time t = 0, the time evolution is

V (r, t) =
ω0(t)L(t)

(r/L(t))

[
1 − exp

(
−r2/2L(t)2

)]
, ω(r, t) = ω0(t) exp

(
−r2/2L(t)2

)
with

ω0(t) =
ω0

1 + 2(νt/L2(0))
, L(t) =

√
L2(0) + 2νt.

But, we will treat the flow as stationary and only consider V and ω defined in (4.1).

4.1. Non-rotating system

In a non-rotating system (f = 0) the Rayleigh discriminant Φ = 2(V/r) ω > 0 for all
r and

F(r) =
2V/r

ω
= 2

exp(r2/2L2) − 1

(r/L)2
� 1 (4.2)

for all r � 0, as shown in figure 3(b). The smallest value F = 1 is found in the
limit r ↓ 0. Thus the effective energy is positive definite. But Lyapunov stability with
respect to symmetric perturbations in the inviscid dynamics cannot be established.
The reason is that as r → ∞ we have F → ∞. This is due to the fact that for
large r the vorticity Q = ω vanishes exponentially fast (the vortex gets ever closer to
potential flow V ∝ 1/r so that Q → 0). An upper bound Gmax for the possible gain
due to transient growth in the inviscid dynamics cannot be determined with (2.21b)
unless the flow is terminated flow at some finite r = rc. A finite Gmax = F(rc) can be
calculated but it can be made arbitrarily large by increasing rc. The fact that Gmax

is not finite on the infinite domain is perhaps not surprising since it is known that
potential flow can support unbounded algebraic growth (see § 5 for a brief discussion).

For the viscous dynamics we need to determine whether (1.4) or (1.5) can hold
everywhere. In figure 3(b) it is seen that for r/L > rc/L ≈ 1.79 the criterion (1.5) does
not hold, i.e. the second condition in (1.5) is violated. Between r = 0 and r = rc (1.5)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

41
49

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009994149


184 R. C. Kloosterziel

0 0.5 0.9 1.18 1.5 2.0

0

2

–2

4

r/L α

(a) (b)

α = 2

α = –1

α = 0L
2 �

0 1–1 2 3
0

0.4

0.8

1.2

r c
/L

Figure 3. (a) The function G(r; α) given in (1.4) and non-dimensionalized with L2, for the
Lamb–Oseen vortex and α = −1, 0 and α = 2. For α = −1 and α = 3 (not shown) G � 0 for
all r . For α = 0 we have G > 0 for all r/L > rc/L ≈ 1.18. (b) Graph showing the critical radius
rc/L as a function of α ∈ [−1, 3]. The greatest value is found for α ≈ 0.2 with rc/L ≈ 1.19.
There are no α values for which G � 0 for all r so (1.4) is never satisfied on the unbounded
domain. The symbol • is at the position r/L = rc/L ≈ 1.79 from figure 3.

is satisfied. If the flow was terminated at r = rc, the flow would be stable but on an
unbounded domain Lyapunov stability cannot be established with (1.5).

In figure 3(a) we show G(r; α), defined in (1.4), for a few values of α. In each case
there is a finite value r = rc with G > 0 when r > rc. In figure 3(b) we show the
critical value rc/L as a function of α ∈ [−1, 3]. There are no α values for which (1.4)
is satisfied everywhere. Further, the region where (1.4) can be satisfied is confined
to a far smaller range of r values than (1.5): the widest region for which Lyapunov
stability can be established according to (1.4) is r/L ∈ [0, 1.19] whereas (1.5) proves
stability for the range r/L ∈ [0, 1.79]. On a radially unbounded domain we therefore
cannot prove Lyapunov stability.

4.2. Rotating system: cyclones

We now add the Coriolis force to the dynamics (f �= 0) and define the Rossby number
for the Lamb–Oseen vortex as Ro = ω0/f . If Ro > 0 this is a cyclonic vortex, if
Ro < 0 it is an anticyclonic vortex. The Rayleigh discriminant non-dimensionalized
with f 2 is

Φ(r)/f 2 =
(
2Ro/(r/L)2

[
1 − exp

(
−r2/2L2

)]
+ 1

) (
Ro exp(−r2/2L2) + 1

)
, (4.3)

while

F =
2Ro/(r/L)2

[
1 − exp

(
−r2/2L2

)]
+ 1

Ro exp(−r2/2L2) + 1
. (4.4)

For all Ro ∈ (−1, ∞) it can be shown that Φ(r) > 0 for all r (see Carnevale et al.
1997). For the cyclone (Ro > 0) this is easily seen with (4.3). Further, for all Ro > −1
we find that F > 1/2 for all r � 0. Thus, when Ro > −1 the effective energy is
positive definite and the vortex is therefore Lyapunov stable in the inviscid dynamics
for all Rossby numbers Ro > −1. The smallest value F = 1/2 is found in the limit
Ro → −1 and r ↓ 0. The limiting case Ro → −1 is singular in that the absolute
vorticity Q = ω + f tends to zero in the limit r ↓ 0 so that F becomes undefined
there (remember F = (2V/r + f )/Q).

For the viscous dynamics, we first consider the cyclone case Ro > 0. In figure 4(a)
we show F for a few positive Rossby numbers. Generally for all Ro > 0 we have
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2 4 6 80

1

4

8

r/L

Ro = 10

�

Ro = 50

Roc = 26

(a) (b)

1 2 3 4 50

0.5

1.0

1.5

r/L

Roc = 26

Ro = 50

Ro = 10 4/(r/L)2

L2 d�/dr
�

2

Figure 4. (a) F as a function of r/L for the cyclonic Lamb–Oseen vortex with
Ro = ω0/f = 10, 26 (thick line) and Ro = 50. For any Ro > 0 we have F � 1 for all
r � 0. (b) (dF/dr)2/F2 for Ro = 10, 26 and 50 and non-dimensionalized with L2 (solid
lines) and the curve 4/(r/L)2 (stippled line) as a function of r/L. For 0 < Ro � Roc ≈ 26
the criterion (1.5) is satisfied for all r � 0 (numbers are approximate: 26 < Roc < 26.01). For
Ro = Roc the curve L2(dF/dr)2/F2 ‘touches’ the curve 4/(r/L)2 at r/L ≈ 2.25 (thick line).
For Ro > 26 there is a range of r values in which the second condition in (1.5) does not hold.
For all Ro < 26 the cyclone is Lyapunov stable according to (1.5).

0 1 2 3 4 5
−6

−3

0

3

r/L

α = –1

α = 3

α = 0.6
Roc = 10

−1.0 0 0.60 1.0 2.0 3.0
0

1

2

3

max L2�

Roc = 10

Ro = 26
r

(a) (b)

L
2 �

α

Figure 5. (a) The function G(r; α) given in (1.4) and non-dimensionalized with L2 for the
cyclonic Lamb–Oseen vortex with Ro = Roc = 10 and α = −1, 0.6 (thick line) and α = 3. (b)
Numerically determined non-dimensional maximum of G for Ro = Roc = 10 and Ro = 26 as
a function of α ∈ [−1, 3]. For Ro > Roc = 10 the maximum is positive for all α which means
that there is always a range of r values where the second condition in (1.4) is violated. For
α ≈ 0.6 the maximum is zero, as shown in (a). For all Ro < Roc there is always an α for
which G � 0 for all r � 0. According to (1.4) this guarantees Lyapunov stability.

F � 1 for all r . Numerically we find that for 0 < Ro � Roc ≈ 26 the criterion (1.5)
is satisfied. This is shown in figure 4(b). For Rossby numbers greater that Roc ≈ 26
the second condition in (1.5) is violated for some range of r values (the precise value
lies between 26 and 26.01). Thus, (1.5) establishes Lyapunov stability of the cyclonic
Lamb–Oseen vortex only in the range Ro ∈ (0, 26) in the viscous dynamics whereas
stability is guaranteed for all Ro > 0 in the inviscid dynamics.

The stability criterion (1.4) is satisfied for a smaller range of positive Rossby
numbers, i.e. only for 0 < Ro � 10. In figure 5(a) we show G(r; α) for Ro = Roc ≈ 10
and a few values of α as indicated. For α ≈ 0.6 we find that G � 0 for all r . This
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0 1 2 3 4 5
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1.00

Ro = –0.1

Ro = –0.99

Ro = –0.9999

Ro = –0.5

0 1 2 3

10–2

100

102

Ro = –0.5

Ro = –0.99

4/(r/L)2

�

(a) (b)

r/L r/L

L2 d�/dr
�

2

Figure 6. (a) F as a function of r/L for the anticyclonic Lamb–Oseen vortex with
Ro = ω0/f = −0.9999, −0.9, −1/2 and Ro = −1/10. For all Ro > −1 we find that
F � 1/2 for all r . (b) (dF/dr)2/F2 non-dimensionalized with L2 (solid lines) and the curve
4/(r/L)2 (stippled line) as a function of r/L. For −1 < Ro < 0 the criterion (1.5) is satisfied
for all r � 0. This is illustrated here with the examples Ro = −0.9 (thick line) and Ro = −1/2
(thin line). Also for Ro = −0.9999 is L2(dF/dr)2/F2 < 4/(r/L)2 for all r (not shown).

is seen in figure 5(a) where for α = 0.6 G ‘touches’ the zero level at some r between
r = 1 and r = 2, becomes negative again and then asymptotically G → 0 for r → ∞.
In this case with Ro ≈ 10, for all α �= 0.6 we find that G > 0 for some range of r

values. This is illustrated in figure 5(a) with two examples. In figure 5(b) we show
maxr{G} as a function of α. For Ro = Roc ≈ 10 we see that maxr{G} = 0 just
for α ≈ 0.6, while for all other α the maximum is positive. For Ro � 10 we find
maxr{G} > 0 for all α and the second condition in (1.4) can therefore not be satisfied
for any α when Ro � 10. This is illustrated in figure 5(b) with Ro = 26. For all
Rossby numbers 0 < Ro < Roc ≈ 10, there is always an α ∈ [−1, 3] for which G � 0
for all r (in each case G → 0 as r → ∞). Thus, with (1.5) we find the widest range of
positive Rossby numbers (0 < Ro � 26) for which we can prove Lyapunov stability
in the viscous dynamics.

Contrary to the case of the vortex in a non-rotating environment, we can determine
the upper bound on the gain Gmax . Since for any finite positive Rossby number
1 � F < ∞, according to (2.21b) we have Gmax = max{F}. Figure 8(a) shows Gmax

as a function of the Rossby number in the (viscously) stable range 0 < Ro � 26. For
the largest Rossby number Ro = 26 we find that Gmax ≈ 5.25. Since this upper bound
is valid for any Reynolds number, including the limit Re → ∞, this is in marked
contrast with the result of Pradeep & Hussain (2006) who studied the Lamb–Oseen
vortex in a non-rotating system. They showed that there can be significant transient
growth of axisymmetric perturbations well outside the core of the vortex. A 100-fold
increase in the total perturbation energy E (a gain G = 102) was found even for a
modest Reynolds number Re = 2500, although the flow is normal-modes stable. The
difference between the rotating and the non-rotating case is further discussed in § 5.

4.3. Rotating system: anticyclones

In the inviscid dynamics the anticyclonic Lamb–Oseen vortex is classically and
Lyapunov stable for all Rossby numbers in the range −1 < Ro < 0. In figure 6(a) we
show F for a few negative Rossby numbers. For Ro ≈ −1 (illustrated in figure 6a with
Ro = −0.9999) the smallest possible value F = 1/2 is approached near r = 0. The
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0 1 2 3 4 5
−1.0

−0.5

0

Ro = –0.99

α = 2.34

α = 1

α = –0.57

−1.0

−0.5

0

Ro = –0.5

α = 2.66

α = 1

α = –0.74(a) (b)
L

2 �

r/L
0 1 2 3 4 5

r/L

Figure 7. (a) The function G for the anticyclonic Lamb–Oseen vortex with Ro = −0.99 and
α values as indicated. For all α ∈ [−0.57, 2.34] we find that G � 0 for all r . For the two
bounding values of this range G is shown as a thick line. (b) Same as (a) but for Ro = −1/2
and α values as indicated. For all α ∈ [−0.74, 2.66] we have G � 0 for all r . In both cases
the anticyclonic Lamb–Oseen vortex is Lyapunov stable according to (1.4). Generally for any
Rossby number −1 < Ro < 0 there is a range of α values within the range [−1, 3] that
yield G � 0 for all r while G → 0 for r → ∞. The narrowest range is found in the limit
Ro ↓ −1. For Ro = −0.9999 it is to three significant digits the same as shown in (a), i.e. for
−0.57 � α � 2.34.

0 5 10 15 20 25
1

2

3

4

5

Ro

(a) (b)

Gmax

−1.00 −0.75 −0.50 −0.25 0
1.0

1.5

2.0

Gmax

Ro

Figure 8. Upper bound Gmax for the gain G(t) = E(t)/E(0) for (a) the cyclonic Lamb–Oseen
vortex for the Lyapunov stable range of Rossby numbers 0 < Ro � 26 with Gmax = max {F}
and (b) for the anticyclonic Lamb–Oseen vortex in the Lyapunov and classically stable range
−1 < Ro < 0 with Gmax = 1/min {F}. For Ro = 26 we have Gmax ≈ 5.25 in (a) while for
Ro ↓ −1 in (b) Gmax → 2. The bounds are valid for any Reynolds number.

second condition in (1.5) is satisfied for all Rossby numbers in the classically stable
range −1 < Ro < 0. This is illustrated in figure 6(b) with the examples Ro = −0.9 and
Ro = −1/2. A logarithmic scale is used along the vertical axis because of the large
differences between the peak values of (dF/dr)2/(F)2 as the Rossby number varies.
So, contrary to the cyclonic case, (1.5) proves Lyapunov stability of the anticyclonic
Lamb–Oseen vortex in the viscous dynamics for all Rossby numbers in the classically
stable range.

We find that (1.4) also proves stability for the entire classically stable range: for all
Rossby numbers in this range (−1 < Ro < 0) there is always an α ∈ [−1, 3] for which
G � 0 for all r . Figure 7 shows two examples: in figure 7(a) the Rossby number is
Ro = −0.99, in figure 7(b) Ro = −1/2. In both cases there is a negative and positive
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α (indicated by the thick lines) for which G = 0 at some finite r . For all α in between
these two extremes, G < 0 for all finite r and only asymptotically G → 0 as r → ∞.
For Ro = −0.99 Lyapunov stability follows for −0.57 � α � 2.34 (see figure 7a), for
Ro = −1/2 stability for −0.74 � α � 2.66 (see figure 7b). The smallest range of α

values with which Lyapunov stability follows is found in the limit Ro ↓ −1.
The bound Gmax on the gain is shown in figure 8(b). Since 0 < F � 1 in this case,

according to (2.21a) Gmax = 1/min {F}. In the entire range −1 < Ro < 0, Gmax never
exceeds a value of 2. Hence just as in the cyclonic case, no significant transient growth
can be expected for the anticyclonic Lamb–Oseen vortex with Rossby numbers in the
stable range, no matter how large the Reynolds number is.

5. Summary and discussion
In this paper we have first shown that if the inviscid classical criterion for symmetric

stability is satisfied (F(r) > 0 or Φ(r) > 0 everywhere), the effective energy E defined
in (2.11) or (2.12) is a Lyapunov functional. It establishes Lyapunov stability in the
inviscid dynamics for arbitrary circular flows with respect to circularly symmetric
perturbations. In the inviscid dynamics dE/dt = 0 and we showed that Gmax in
(2.21a)–(2.21c) provides an upper bound for the amplification of perturbation energy
which may occur due to transient non-modal growth in the inviscid dynamics. The
development is somewhat simpler but otherwise analogous to the case of parallel
shear flows in stratified fluids as discussed in Kloosterziel & Carnevale (2007).

Next we have derived two novel criteria for Lyapunov stability of viscous circular
flows with respect to symmetric perturbations, i.e. (1.4) and (1.5). In both criteria we
first find the requirement for classical inviscid stability, i.e. Φ > 0 or F > 0 which
guarantees that E is positive definite. The additional conditions guarantee that in the
viscous dynamics dE/dt � 0 at all times. This implies that the upper bound Gmax

for the gain in the inviscid dynamics remains valid for the viscous dynamics. If the
second conditions in (1.4) and (1.5) are not satisfied in some overlapping regions,
there is the possibility that the effective energy grows for some period of time, i.e.
E(t) > E0 and then (2.21a)–(2.21c) may not be true.

The theory has been applied to a few examples. For other types of vortices or
confined circular flows than discussed in this paper, one must apply both (1.4) and
(1.5) to see if the flow is provable stable. If a flow is characterized by a variable
parameter like the Rossby number in rotating systems or some parameter which
determines the velocity distribution and is provable stable with both (1.4) and (1.5),
the results must be compared to see which of the two criteria proves stability for the
broadest range of the parameter(s). It is impossible to predict a priori.

For Couette flow we established in § 3 with (1.4) Lyapunov stability for the entire
classically stable range by setting α = 3. A normal-modes analysis by Synge (1938)
and an energy method by Wood (1964) had already established this, but both studies
were specifically aimed at Couette flow. In this study it quickly followed with the
general condition (1.4) which can be applied to any flow for which Q �= 0 everywhere.

In § 4.1 we found it impossible to prove Lyapunov stability of the Lamb–Oseen
vortex in a non-rotating system (f = 0), both in the inviscid and the viscous dynamics.
For the inviscid case this is not surprising because for large r the Lamb–Oseen vortex
approaches potential flow, i.e. according to (4.1) for large r we have approximately
V (r) ≈ ω0L

2/r so that Q ≈ 0. As noted by Miyazaki & Hunt (2000), potential flow
supports unbounded algebraic growth. This is easily seen by setting ν = 0 and f = 0
in (2.3) so that ∂v/dt = 0 when V ∝ 1/r . Hence for potential flow v(r, z, t) = v0(r, z)
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remains unchanged. This can drive growth of the azimuthal vorticity ωθ in the
linearized dynamics according to

∂ωθ

∂t
=

∂

∂t

[
∂u

∂z
− ∂w

∂r

]
=

2V

r

∂v0

∂z
(5.1)

provided that ∂v0/∂z does not vanish everywhere. Therefore the perturbation kinetic
energy can grow without bounds if ∂v0/∂z �= 0. Pradeep & Hussain (2006) also
noted that in the inviscid case the Lamb–Oseen vortex can experience amplification
of perturbation energy that becomes unbounded as the ‘optimal’ perturbations are
initiated at ever increasing distances from the vortex axis. Our thought experiment
in § 2.2, which showed how Gmax = max {F} in (2.21b) might be approached, agrees
with their observation that for initial perturbations concentrated at ever larger r ,
an ever increasing gain is expected. In the viscous case, Pradeep & Hussain (2006)
calculated a maximal gain of about Gmax = 102 for Re = 2500 which will continue to
increase indefinitely with increasing Reynolds number. With our approach we could
not establish a finite upper bound for the gain because for large r both (1.4) and (1.5)
are not satisfied so that (2.21a)–(2.21c) may be false.

In § 4.2 (1.5) proved stability of the cyclonic Lamb–Oseen vortex in the viscous
dynamics for a finite range of positive Rossby numbers 0 < Ro � 26 whereas there
is classical stability for all Ro > 0. With (1.4) stability followed for a smaller range
of Rossby numbers. For 0 < Ro � 26 we found 1 < Gmax � 5.25. Our results imply
that even in the case of rather weak rotation (large positive Ro but Ro < 26 or small
‘rotation number’ 1/Ro) a numerical search for significant gain (several orders of
magnitude) in perturbation energy would be futile no matter how large the Reynolds
number is.

For Ro > 26 we do not expect a sudden transition to far larger transient growth
than for Ro ≈ 26 because there is no destabilizing mechanism present like the double-
diffusive mechanism for baroclinic flows mentioned in the introduction. Since ever
increasing Ro can be interpreted as ever weaker rotation, the computations by Pradeep
& Hussain (2006) for the non-rotating case suggest that as Ro tends to infinity, for
finite Reynolds numbers the maximum gain gradually approaches some finite value
Gmax(Re) and Gmax → ∞ as Re → ∞. For the anticyclonic Lamb–Oseen vortex we
found in § 4.3 that either condition (1.4) or (1.5) established stability in the viscous
dynamics for the entire classically stable range −1 < Ro < 0 with 1 < Gmax < 2.

We must note that a study of the evolution of an integral quantity like the
effective energy E cannot predict what kind of perturbations, characterized by spatial
structure and relative amplitudes of the three perturbation velocity components,
lead to maximal gain in the perturbation energy E. This can only be determined
with a numerical search procedure as described by Pradeep & Hussain (2006). For
inviscid flows likely candidates are perturbations concentrated about the maximum
or minimum of F but for viscous flows further analysis is required.

The modest upper bounds for the possible gain in the case of the Lamb–Oseen
vortex in a rotating environment can be understood with simple model which captures
the inviscid behaviour. The model equations are

∂u

∂t
=

(
2V

r
+ f

)
v,

∂v

∂t
= −

(
dV

dr
+

V

r
+ f

)
u = −Qu, (5.2)
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which follow from (2.2) and (2.3) by ignoring pressure perturbations. If we solve (5.2)
for some position (r, z), the general solution is

u(t) = u0 cos
(√

Φt
)

+ v0

√
F sin

(√
Φt

)
, v(t) = v0 cos

(√
Φt

)
−

u0 sin
(√

Φt
)

√
F

.

(5.3)

If V = 0 and f �= 0 one has F = 1 and Φ = f 2 and (5.3) describes simple
inertial oscillations. The effective energy for this model is conserved, i.e. E(t) =
(1/2)

(
u2(t) + Fv2(t)

)
= (1/2)

(
u2

0 + Fv2
0

)
= E0 but the kinetic energy is not unless

F = 1. If one chooses a location where F > 1 and takes u0 = 0, then E0 = (1/2)v2
0

but at time t = 2/(
√

Φπ) we have E(t) = (1/2)Fv2
0 and the ‘gain’ is therefore F > 1. If

F < 1 a gain of 1/F > 1 is found by taking v0 = 0. This is essentially a mathematical
formulation of our thought experiment at the end of § 2.2 which made it plausible
that the upper bounds (2.21a) and (2.21b) are fairly sharp in the inviscid dynamics.

A Taylor-series expansion yields

u(t) = u0 + v0

(
2V

r
+ f

)
t − 1

2
u0Φt2 + . . . , v(t) = v0 − u0Qt − 1

2
v0Φt2 + . . . . (5.4)

The higher order terms (proportional to t3, t4, etc.) vanish in the limit Q → 0 in
which case also Φ → 0. The algebraic growth for potential flow V ∝ 1/r when f = 0,
which means Q = 0, is recovered provided that v0 �= 0. When f �= 0, the u and v

field are coupled through the Coriolis force and generally this leads to oscillatory
behaviour.

For large r in the Lamb–Oseen vortex Q ≈ 0 while F 
 1 and large amplification
is possible but the growth is very slow because Φ ≈ 0. For the Lamb–Oseen vortex
in a rotating environment we have Φ > 0 for all Ro > −1. For the cyclone Φ � f 2

whereas for the anticyclone Φ � f 2(1−|Ro|)2. In the context of the simple model this
means that for the cyclone the time scale Tmax for the transient amplification is faster
than 1/f , i.e. Tmax < 1/f and for the anticyclone Tmax < 1/(f (1−|Ro|)). A model with
Rayleigh damping added to (5.2) has been discussed by Pradeep & Hussain (2006,
equation (4.2)). This is a reasonable model for the viscous dynamics. It is clear that
with damping the maximum gain will be smaller and occur at an earlier time than in
the undamped dynamics. For our simple model this means that if damping is added,
the time scale Tmax remains smaller than 1/f for the cyclonic Lamb–Oseen vortex
and smaller than 1/(f (1 − |Ro|)) for the anticyclone.

As is quite common in viscous stability studies, we assumed that the basic flow
V (r) is stationary in the viscous dynamics. This is true for Couette flow, solid body
rotation and potential flow but not, for example, for the Lamb–Oseen vortex. This
was not mentioned by Pradeep & Hussain (2006) and various others preceding them
with studies of viscous transient growth. If we imagine the presence of a circularly
symmetric force field acting in the azimuthal direction, i.e. a force Fθ (r) = −ρνΔ1V (r)
then any flow would be stationary. For such a ‘forced-dissipative’ system, our results
remain valid. But for freely evolving viscous flows like the unforced Lamb–Oseen
vortex, the time-dependence may be important. The time scale of evolution of the
Lamb–Oseen vortex is Tν = L2/ν, where L is roughly the initial ‘size’ of the vortex
(the distance from the axis where V = Vmax; see figure 3a). If we take as the relevant
time scale for the growth of perturbations the transient growth time scale Tmax then
the assumption of stationarity is valid if Tν/Tmax 
 1. Using the time scale from
our model for Tmax , we expect transient growth to be much faster than the viscous
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evolution of the cyclone when Re 
 Ro while for the anticyclone the model suggest
that it requires Re 
 |Ro|/(1 − |Ro|). For any Rossby number Ro > −1 this can
be satisfied if Re is sufficiently large. The favourable comparison found by Pradeep
& Hussain (2006, figure 14) between the numerically determined optimal gains Gmax

and the time scale Tmax and the Gmax and Tmax found with the simple model with
Rayleigh damping, suggests that at least for large-Reynolds-number flows our results
are valid.

A discussion of separation of time scales is unnecessary if general criteria can be
formulated that guarantee Lyapunov stability in the viscous dynamics for arbitrary
time-dependent barotropic flows V = V (r, t) but this has not yet been accomplished.
Another obvious extension of this work is to consider what are the stability criteria
for viscous symmetric stability for stationary baroclinic flows V (r, z) in stratified and
rotating fluids and non-stationary flows V (r, z, t). Also of considerable interest in
geophysical fluid dynamics is symmetric stability/instability of zonal flows on the
equatorial β plane. This was already considered by Kloosterziel & Carnevale (2007)
but only for a particularly simple flow. Whether sufficient conditions for viscous
Lyapunov stability can be found for the above mentioned flows is currently an open
question.

This material is based upon work supported by the National Science Foundation
Grant OCE 07-26866. The author would like to express his gratitude to G. F.
Carnevale for carefully reading the manuscript.

Appendix. Normal-modes analysis
If normal-modes solutions of the linear perturbation equations exist, we can

derive the inviscid classical criterion for stability (Φ(r) > 0 everywhere) as follows.
Eliminating the pressure perturbation between (2.2) and (2.4) and setting ν = 0, we
get the equation for the meridional vorticity component ωθ = ∂zu − ∂rw:

∂

∂t

[
∂u

∂z
− ∂w

∂r

]
−

(
2V

r
+ f

)
∂v

∂z
= 0. (A 1)

Continuity (2.5) will be satisfied if we introduce a streamfunction for the motions in
the meridional rz plane: u = ∂ψ/∂z, w = −(1/r)∂rψ/∂r. Differentiating (A 1) with
respect to time and substituting ∂v/∂t from (2.3) with ν = 0, we find

∂2

∂t2

[
∂

∂r

1

r

∂rψ

∂r
+

∂2ψ

∂z2

]
+ Φ

∂2ψ

∂z2
= 0. (A 2)

This is a simple case of what meteorologists sometimes call the Eliassen–Sawyer
equation (Sawyer 1949; Eliassen 1951).

The normal-modes assumption is that we presume that solutions ψ = estΨ (r, z)
exist. For convenience we assume that the flow in the meridional plane is bounded
by rigid boundaries (e.g. at z = 0 and z = H and at some radius r = R). The no-flux
condition is satisfied if we set Ψ = 0 at such boundaries. Ψ may be complex and if so
Ψ � (� indicates complex conjugate) must also vanish at the boundaries. We replace
∂2/∂t2 by s2 in (A 2), ψ by Ψ and then multiply by Ψ �. Integrating over the domain
we find, using the boundary condition for Ψ and Ψ �, that

s2 = −
∫

V
Φ

∣∣∣∣∂Ψ

∂z

∣∣∣∣
2

dV/

∫
V

(∣∣∣∣1r ∂Ψ r

∂r

∣∣∣∣
2

+

∣∣∣∣∂Ψ

∂z

∣∣∣∣
2
)

dV. (A 3)
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If Φ(r) > 0 everywhere, s2 < 0 for all normal-modes perturbations and there will be
no growth. Hence stability is established in the inviscid dynamics with the somewhat
tenuous assumption that normal modes exist. The modes oscillate in that case without
decay or growth. In a rotating system at rest (V = 0) we have Φ = f 2 so that for
the oscillation frequency ω (with s = ±iω) we find 0 < |ω| < |f |. This corresponds to
gyroscopic (internal) waves in a rotating fluid.

If we let ν �= 0 things become complicated. Instead of (A 2) we find

Dν
t

(
Dν

t Δ1ψ

2V/r + f

)
+

(
dV

dr
+

V

r
+ f

)
∂2ψ

∂z2
= 0, where Dν

t = ∂t − νΔ1 (A 4)

with Δ1 defined in (2.7). If we set ν = 0 and if 2V/r + f �= 0, this reduces to (A 2).
For the u field the same equation can also be derived, for the w field we have failed
to find a single equation when ν �= 0 and for the v field the equation is

Dν
t Δ1

(
Dν

t v

dV/dr + V/r + f

)
+

(
2V

r
+ f

)
∂2v

∂z2
= 0. (A 5)

To proceed with a normal-modes analysis, a number of boundary conditions need
to be supplied but we have found it impossible to prove with either (A 4) or (A 5)
that generally there will be normal-modes stability if ν �= 0 and Φ > 0 everywhere.
Normal-modes stability would follow only in certain special cases. For example, (A 5)
with f = 0 could prove normal-modes stability of Couette flow, at least for the v field,
if Φ > 0 everywhere. This would be an alternative to Synge’s analysis who studied
the normal-modes stability of Couette flow through two coupled equations that are
first order in time (Synge 1938). For all flows for which either V/r �= constant in (A 4)
or ω = dV/dr + V/r �= constant in (A 5), mathematical difficulties arise which make
it impossible to derive general conditions for normal-modes stability in the viscous
dynamics.
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